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Abstract

Accelerating the numerical integration of partial differential equations by learned1

surrogate model is a promising area of inquiry in the field of air pollution modeling.2

Most previous efforts in this field have been made on learned chemical operators3

though machine-learned fluid dynamics has been a more blooming area in machine4

learning community. Here we show the first trial on accelerating advection operator5

in the domain of air quality model using a realistic wind velocity dataset. We de-6

signed a convolutional neural network-based solver giving coefficients to integrate7

the advection equation. We generated a training dataset using a 2nd order Van Leer8

type scheme with the 10-day east-west components of wind data on 39◦N within9

North America. The trained model with coarse-graining showed good accuracy10

overall, but instability occurred in a few cases. Our approach achieved up to 12.5×11

acceleration. The learned schemes also showed fair results in generalization tests.12

1 Introduction13

Numerical integration of partial differential equations (PDEs) is a core element of air quality model.14

To run the air quality model one should solve coupled PDEs within many grid boxes and multiple15

time steps. Since solving many PDEs requires a huge amount of computational cost, the invention of16

a fast and accurate solver with has been always welcomed. Recent advancement in physics-informed17

machine learning [Karniadakis et al., 2021, Kashinath et al., 2021] has gained popularity to emulate18

existing solvers and researchers are seeking a pareto optimum between speed and accuracy.19

So far, research efforts on learning air quality models for acceleration have mostly focused on20

chemistry solvers. Kelp et al. [2020] developed the encoder-operator-decoder structure neural21

network and achieved ×260 speedup in emulation of Carbon Bond Mechanism Z coupled to the22

Model for Simulating Aerosol Interactions and Chemistry. Huang and Seinfeld [2022] showed their23

neural integrator could solve two benchmarking problems (the H2O2/OH/HO2 System and the Verwer24

System) with acceleration in at least one order of magnitude.25

Although this type of research is an emerging area, the potential of a learned solver for transport26

operators in air quality modeling has not been actively investigated. However, there could be possible27

speedup by using a learned transport operator since researchers in computational fluid dynamics28

(CFD) already showed machine-learned acceleration. Kochkov et al. [2021] and Stachenfeld et al.29

[2021] showed convolutional neural network (CNN) based coarse-graining solver could accelerate30

CFD solvers. Zhuang et al. [2021]’s learned discretization to estimate coefficients in advection solver31

achieved 1.8× faster computing by 4× coarsening. The more examples of machine-learned fluid32

dynamics could be found from the review papers by Brunton et al. [2020] andKutz [2017].33

Our study examines the potential of a learned advection operator for computational acceleration of air34

quality modeling. To build a foundation for future analysis, we first explore the potential of learned35

Submitted to the DLDE Workshop in the 36th Conference on Neural Information Processing Systems (NeurIPS
2022). Do not distribute.



solver in 1-D advection. We used a realistic wind velocity instead of a synthetic velocity to generate36

our baseline dataset. Since the modeling domain in the global air quality model is not rectangular, but37

spherical, evaluation of the model skills in different grid sizes is critical to generalization. We tested38

the model’s generalization ability in different latitudes which have different grid sizes. Also, we39

tested the model’s ability to integrate the wave from an initial condition shape out of training regime.40

2 Numerical advection41

We simulated a passive scalar advection in a horizontal line passing 39.00◦N of North America42

(130◦W - 60◦W). The spatial grid size was 0.3125◦. We simulated advection using east-west43

components of wind data from 1 to 10 January 2019 with 5-minute intervals. We obtained wind data44

from GEOS-FP of NASA Global Modeling and Assimilation Office [NASA, 2022]. We used a square45

initial condition with a 10−7 on the central 1/3 of domain, while other areas have 0. We implemented46

the L94 advection scheme [Lin et al., 1994] in the Julia computing language [Bezanson et al., 2012].47

After generating this dataset by numerical integration, we down-sampled those wave datasets in lower48

resolutions in both space and time. To conserve mass, we averaged the scalar values in down-sampling.49

The sample resolutions are ×1, ×2, ×4, ×8, and ×16 in space and ×1, ×2, ×4, ×8, ×16, ×32, ×6450

in time, so we have 35 different cases from one scenario.51

3 Learned advection using a convolutional neural network52

Figure 1 illustrates the design of the CNN-based surrogate advection solver. Our surrogate equation53

has information of ∆t/∆x, which is critical in earth system modeling domain since grid spacing ∆x54

can change along with latitude. The three-layer CNN receives scalar and velocity fields at nth time55

step as inputs and yields six coefficients to construct surrogate numerical equation. We used two56

GeLU activations [Hendrycks and Gimpel, 2016] to resolve sharp gradients [Kim et al., 2021], and57

one hypertangent since the temporal gradient can have both positive and negative signs. We used58

gradient scaling by adopting k1 and k1 to make k1(∆t/∆x) and k2(∆t/∆x)2 be in the order of 100.59

Figure 1: Illustrative diagram of convolutional neural net advection operator

We used mean absolute error (MSE) in 10-time steps as a loss function to reflect the dynamic nature60

of advection. To prevent error accumulation, we introduced random noise with 4×10−5 magnitude of61

initial scalar intensity. We used the ADAM optimizer [Kingma and Ba, 2014] with default parameters62

in Flux.jl [Innes, 2018], except for the learning rate. We used a decaying learning rate to reach the63

optimum. After training the model, we evaluated the model performance by feeding only the initial64

condition and velocity field and assessed if the model could integrate the advection process till a65

given period. We used a single CPU core from an HPE Apollo 6500 system with dual 6248 Cascade66

Lake CPUs to evaluate computational time.67

Figure 2 shows the performance of the learned solver in integrating the training dataset. We68

normalized MSE and root mean square error (RMSE) by the initial magnitude. Here we should note69
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that the model training was not successful in (1∆x, 8∆t), (1∆x, 16∆t), (1∆x, 32∆t), and (1∆x,70

64∆t) as the outputs exploded out. Except for those cases, the learned schemes showed fair fidelity71

since error was usually less than 10 % (Figure 2A and 2B) and r2 was higher than 0.9 (Figure 2C).72

Maximum acceleration was achieved in (16∆x, 64∆t) and this scheme was 12.5× faster than the73

original solver (Figure 2D). As seen in Figure 2D, the acceleration in failure cases would be lower74

than the maximal acceleration case, so we may consider those resolutions to be out of our scope.75

Figure 2: Performance indices of the surrogate learned solver in emulating the training dataset (A:
normalized mean absolute error, B: normalized root mean square error, C: r2, and D: speed)

Time series plots of advection in the resolution with the best accuracy (4∆x, 4∆t; Figure 3A) and76

with the maximum acceleration (16∆x, 64∆t; Figure 3B) show the snapshots in the first step from77

initial condition, 1/3 of time span, 2/3 of time span, and the final step. As seen in Figure 3, we could78

confirm that the learned model could emulate the coarsened numerical results within fair accuracy.79

4 Generalization80

We tested if our model could integrate the waves from outside of the training regime. We implemented81

two tests: 1) integrating advection in the Northern area; 2) integrating advection from Gaussian82

shape initial condition. In the first test, we applied our surrogate solver in a horizontal line passing83

45◦N. Though we used 0.3125◦ as grid spacing as we did on the training set, the exact spacing was84

shorter here because of the earth’s spherical shape. In the second test, we fed a Gaussian shape initial85

condition to be integrated. Any conditions not mentioned are the same as the training.86

The results of generalization test are summarized in Figure 4. Figure 4A and 4B show the r2 in87

the horizontal line passing 45◦N and the integration Gaussian shape initial condition, respectively.88

As seen in Figure 4, we can use our learned scheme in a regime beyond the training set without89

substantial performance degradation. We did not test the coarsening cases in (1∆x, 8∆t), (1∆x,90

16∆t), (1∆x, 32∆t), and (1∆x, 64∆t) because the surrogate models in those cases failed in training.91
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Figure 3: Time series display of both numerical (orange line) and learned (blue line) scalar advection
(A: (4∆x, 4∆t) and B: (16∆x, 64∆t))

Figure 4: Generalization ability of the learned solver summarized by r2 (A: The horizontal line
passing 45◦N, and B: Integration with Gaussian shape initial condition)

5 Limitation92

The most noticeable limitation of this work is that the learned scheme could not work in certain93

resolutions. One possible explanation is that violations of the CFL condition were most extreme in94

those cases. Though we increased the stencil size in an attempt to resolve this issue, this approach95

did not fix the problem. The reason for this instability is an area for future study. Another limitation96

is that we did not optimize the model training in the light of hyperparameter tuning or rigorous code97

optimization. We would argue, however, our approach can be promising since it showed robust98

performance without optimization and there is still room to achieve acceleration. Finally, to use this99

scheme on the whole globe, we would need more generalization tests on different latitudes to see if100

the current scheme could work or would need more training on different regimes.101

6 Conclusion102

Our study revealed the learned advection scheme can be used to emulate passive scalar advection in103

the domain of air quality modeling using real wind-field data. The learned advection solver showed104

up to ×12.5 with fairly accurate integration. The learned solver was robust in generalization even105

though we only used a single training dataset. This robustness may come from the randomness106

of realistic wind data, implying choice of a dataset can be crucial in physics-informed machine107

learning. There could be more potential acceleration by code optimization or high-performance108

computing. With an appropriate splitting technique, we could extend this learned 1-D advection109

solver to multi-dimensions and eventually accelerate air quality models.110
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Supplementary materials111

The codes and data can be accessed at https://github.com/manozzing/Learned-1-D-advection-solver-112

with-grid-spacing-physics113
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