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Abstract

State-of-the-art order dispatching algorithms for ridesharing
batch passenger requests and allocate them to a fleet of ve-
hicles in a centralized manner, optimizing over the estimated
values of each passenger-vehicle matching using integer lin-
ear programming (ILP). Using good estimates of future val-
ues, such ILP-based approaches are able to significantly in-
crease the service rates (percentage of requests served) for
a fixed fleet of vehicles. However, such approaches that fo-
cus solely on maximizing efficiency can lead to disparities for
both drivers (e.g., income inequality) and passengers (e.g., in-
equality of service for different groups). Existing approaches
that consider fairness only do it for naive assignment policies,
require extensive training, or look at only single-sided fair-
ness. We propose a simple incentive-based fairness scheme
that can be implemented online as a part of this ILP formula-
tion that allows us to improve fairness over a variety of fair-
ness metrics. Deriving from a lens of variance minimization,
we describe how these fairness incentives can be formulated
for two distinct use cases for passenger groups and driver fair-
ness. We show that under mild conditions, our approach can
guarantee an improvement in the chosen metric for the worst-
off individual. We also show empirically that our Simple In-
centives approach significantly outperforms prior art, despite
requiring no retraining; indeed, it often leads to a large im-
provement over the state-of-the-art fairness-aware approach
in both overall service rate and fairness.

Introduction
In a ridesharing system, multi-capacity vehicles allow pas-
sengers to share rides with others or be added onto existing
trips, and a single central agent aggregates all information
and dynamically matches passenger requests to available
vehicles. On-demand ridesharing has been gaining traction
over the past few years as a solution to the growing need for
urban mobility and, as a consequence, there has been exten-
sive work on developing approaches for optimizing the effi-
ciency of such systems. Recent approaches to this problem
use dynamic programming and deep reinforcement learning
to learn value functions for matching pools of passenger re-
quests to available drivers, and have led to significant im-
provements in service rate (percentage of passenger requests
served) as well as total passenger delay (Alonso-Mora et al.
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2017; Shah, Lowalekar, and Varakantham 2020; Lowalekar,
Varakantham, and Jaillet 2019; Li et al. 2019).

Optimizing the efficiency of the overall system, however,
can lead to both geographic disparity in the quality of ser-
vice for the passengers, potentially exacerbating historical
inequalities, and income disparity of the drivers. While fair-
ness in ridesharing has been a subject of some prior discus-
sion (Nanda et al. 2020; Xu and Xu 2020), the particular is-
sue of geographic disparities has received less attention. Ra-
man, Shah, and Dickerson (2021) consider balancing over-
all efficiency and either geographic or income fairness, but
this approach loses a great deal of overall efficiency, and re-
quires complete retraining of the deep reinforcement learn-
ing model for any change in hyperparameters, such as the
relative importance of fairness.

Instead of proposing yet another algorithm-specific ap-
proach to address fairness in ridesharing, we seek to develop
a general framework that can be applied orthogonally to a
large class of existing ridesharing approach. Specifically, we
leverage the two-stage approach that many existing rideshar-
ing algorithms (Alonso-Mora et al. 2017; Shah, Lowalekar,
and Varakantham 2020; Lowalekar, Varakantham, and Jail-
let 2021) rely on: (1) Identifying or learning good value
functions for matches, and (2) Optimizing over those value
functions to find a good match. While one could incor-
porate fairness in the value function learning stage, doing
this would undermine our goal of generality since different
ridesharing approaches employ different ways of identify-
ing or learning their value functions. However, since all ap-
proaches employ similar ILP-based optimization approaches
to find good matches, incorporating fairness in the second
stage would result in the generality that we seek.

Therefore, in this paper, we propose Simple Incen-
tives (SI), a general framework for including fairness in ILP-
based matching, using any off-the-shelf value function ap-
proximations. The key ingredient in SI is a novel linear mea-
sure of relative disparity that can be associated with indi-
viduals based on their group membership (e.g, passengers’
origin and destination pair or drivers’ relative income level).
We make the following contributions in this paper: (1) We
show how we can derive a general form for this measure
from the lens of minimizing variance in a metric of interest,
following which we derive instantiations of passenger- and
driver-side fairness functions. (2) We theoretically demon-



strate that our approaches, under mild assumptions, provably
improve the service rate of passengers from the most histor-
ically disadvantaged region as well as improve the income
of the driver with the least historical income. (3) We empiri-
cally demonstrate the generality of SI by showing that it sig-
nificantly improves fairness for a variety of ridesharing algo-
rithms with minimal compromises on service rate. Addition-
ally, through extensive experiments, we show that the best SI
variant achieves significantly greater fairness than the state-
of-the-art fair ridesharing approach, while at the same time
yielding overall system efficiency (measured by the service
rate) that is nearly inline with a state-of-the-art approach that
maximizes efficiency and ignores fairness. (4) We show that
our passenger- and driver-side approaches can be combined
to improve two-sided fairness in such systems. (5) Finally,
unlike the existing state of the art (Raman, Shah, and Dick-
erson 2021), our approach is completely online, allowing
ridesharing operators or policy makers to tune the tradeoff
between fairness and efficiency in real time during execu-
tion.

Related Work
Order dispatching in ridesharing: Rideshare-matching
has been extensively studied, and researchers have intro-
duced methods that improve the quality of the matches
made in terms of increasing the number of requests
matched (Lowalekar, Varakantham, and Jaillet 2021; Ma,
Zheng, and Wolfson 2015), reducing the pickup and detour
delays (Alonso-Mora et al. 2017; Huang et al. 2014), and in-
creasing drivers’ earnings (Lesmana, Zhang, and Bei 2019).
The complexity of ridesharing algorithms increases with the
increase in vehicle capacity and fleet size. As the runtime
of real-time algorithms need to be relatively small, most ex-
isting work has either considered assigning one request at
a time (sequentially) to available drivers for high capaci-
ties (Ma, Zheng, and Wolfson 2015; Tong et al. 2018) or
assigning all active requests together in a batch for a small
capacity (Yu and Shen 2019; Zheng, Chen, and Ye 2018).
The sequential solution is faster to compute but the solution
quality is typically poor (Uber 2018). Alonso-Mora et al.
(2017) proposes ILP optimization approaches for assigning
all active requests together for high-capacity ridesharing.
Shah, Lowalekar, and Varakantham (2020) and Lowalekar,
Varakantham, and Jaillet (2021) further improve these ap-
proaches by including information about anticipated future
requests while matching current batch of requests to avail-
able drivers.

Fairness in ridesharing: Researchers have evaluated
ridesharing fairness from many viewpoints. For passen-
gers, there has been work on addressing lack of trans-
parency (Wolfson and Lin 2017), using game-theoretic ap-
proaches to fairness (Foti, Lin, and Wolfson 2021), and ben-
efit sharing by ensuring non-increasing disutility (Gopalakr-
ishnan, Mukherjee, and Tulabandhula 2016). Driver-side
fairness has also been explored from the economic perspec-
tive, by using a max-min approach to fairness to balance ef-
ficiency and fairness (Lesmana, Zhang, and Bei 2019), and
by looking at fairness over longer periods of time by equaliz-

ing driver income proportional to the number of hours spent
on the platform (Sühr et al. 2019). Fairness isn’t restricted
to monetary benefits, however. Motivated by demographic
and geographic fairness concerns, recent work formulates
a matching problem with parameters to trade profit for fair-
ness in terms of discriminatory cancellations, looking at fac-
tors like start/end locations, race, gender, or age of passen-
gers (Nanda et al. 2020) and drivers (Xu and Xu 2020).

A work that is closest to ours is by Raman, Shah, and
Dickerson (2021), which looks at disparate treatment of pas-
sengers and income disparity amongst drivers. While they
also look at geographic zones to quantify fairness for passen-
gers, their approach requires the training of a neural network
based value function to include the fairness term in the ob-
jective, making it costly to change parameters for fairness.
Our approach presents an online way to address this prob-
lem, without retraining existing value functions. Further, our
approach offers better tradeoffs between efficiency and fair-
ness as compared to the existing approach, and we show this
in our empirical evaluation.

Dynamic Matching in Ridesharing Settings
A matching algorithm for ridesharing receives as inputs a
continuous stream of batches of requests from passengers R
and the current state of all the taxis V operating in a street
network G. The street network G = ⟨L, E , c(e)⟩ is a graph
containing locations L connected by roads E , with a cost
function c : E → R+ that defines the cost c(e) of each edge
e ∈ E in the graph, which commonly corresponds to the
time needed by a taxi to traverse e. A request is a tuple r =
⟨q, d, t⟩ that contains the pickup location q, dropoff location
d, and the request arrival time t. The vehicle i is associated
with a state vi = ⟨li, pi, ci, Ui⟩ that includes its location li,
current path pi, capacity ci, and the set of requests Ui it is
currently serving.

State-of-the-art approaches to this dynamic match-
ing problem take a discrete-time multi-agent perspec-
tive (Alonso-Mora et al. 2017; Shah, Lowalekar, and
Varakantham 2020). In this framework, a decision-maker is
faced in each time step with a set of outstanding requests,
along with the state of vehicles at that point in time. The
set of actions of this decision-maker is the set of all feasible
matches of requests to vehicles. Since any matching impacts
the distribution of future requests (unmatched requests can
spill over into the next time step) and vehicle states, the as-
sociated expected future value is captured by a value func-
tion. This allows the decision-maker to make non-myopic
decisions by considering expected rewards in addition to im-
mediate rewards. To manage problem complexity, a value
function is associated with individual vehicles and assumed
to be identical for all vehicles, conditional on vehicle state;
furthermore, it is approximated by a Value Function Approx-
imator (VFA) – most recently, by a deep neural network in
the NeurADP framework (Shah, Lowalekar, and Varakan-
tham 2020).

A key workhorse in such approaches is an integer linear
program (ILP) for computing the optimal matching of re-
quests to vehicles in a given time step, given a value func-
tion. We now formalize the general form of this ILP, which
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Figure 1: The rideshare-matching pipeline. Every time step, based on incoming requests and available vehicles, feasible trips
for each vehicle are generated. These are assigned values using a score function, and an ILP is solved to optimize for total score.

is central to our proposed approach below. For each vehicle
i ∈ V , we define an action a ⊆ R as a subset of requests that
could be matched to it. Each action a of vehicle i is associ-
ated with a (discounted) value V (i, a) obtained using VFA,
and an immediate reward:

R(i, a) =
∑
r∈a

R(i, r) (1)

where R(i, r) is an immediate reward to vehicle i for servic-
ing request r. Let Ai be the set of feasible actions of vehicle
i (i.e., all feasible subsets of requests that can be matched
to i). Then, for any feasible action a ∈ Ai of vehicle i, we
define the score of vehicle i associated with action a as:

s(i, a) = V (i, a) +R(i, a). (2)
Let A = {ai}i∈V , ai ∩ aj = ∅ for all i ̸= j be a matching

of requests to vehicles. We say that this matching is optimal
if it maximizes the total score

∑
i s(i, ai). We can compute

such an optimal matching by solving the following ILP:

max
xi(a)∈{0,1}

∑
i∈V

∑
a∈Ai

xi(a)s(i, a) s.t. (3)

∑
a∈Ai

xi(a) = 1 ∀i ∈ V (4)

∑
i∈V

∑
a∈Ai|r∈a

xi(a) ≤ 1 ∀r ∈ R (5)

where xi(a) is an indicator variable associated with vehicle
i and its action a ∈ Ai. The constraints ensure that each ve-
hicle is assigned exactly one action (Eq. 4) and no request
is assigned to more than one vehicle (Eq. 5). In each vehi-
cle’s set of available actions, there is always the null action
(i.e., accepting no new requests), so that there is always a
solution. The final assignment A is a concatenation of all ve-
hicle assignments. In existing approaches (Shah, Lowalekar,
and Varakantham 2020), this ILP serves to maximize the to-
tal expected number of requests served (i.e., the service rate
when normalized by the total number of requests), and it
can be readily generalized to maximize total expected profit.
Figure 1 shows an illustration of the ILP matching process.

SI: A General Fairness Framework
By focusing on maximizing measures of efficiency such as
service rate, traditional matching algorithms for rideshar-
ing fail to account for the emergence of fairness issues for
both the passengers and drivers. Additionally, since match-
ing algorithms in ridesharing are often trained on real-world
data, they can further exacerbate historical inequalities. For
example, from a passenger’s perspective, it is conceivable
that while maximizing efficiency, matching algorithms focus
resources towards high-traffic areas (e.g., downtown loca-
tions) while reducing service in low-traffic areas (e.g., sub-
urbs). If such algorithms are deployed in practice, it may
also lead to a feedback loop that continually reduces service
to regions with low demand, which causes fewer passen-
gers to make requests from such regions and so on. From a
driver’s perspective, the matching algorithms may prioritize
drivers in high-traffic areas to continually service requests
from those areas over drivers in low-traffic areas, leading to
disparity in driver income. In this work, our goal is to tackle
this kind of unfairness with minimal impact to the efficiency
vis-a-vis the service rate.

We consider statistical parity (Feldman et al. 2015; Agar-
wal, Dudı́k, and Wu 2019) as the notion of fairness in this
work, which defines that the expected value of a given met-
ric z over a group g is the same as z̄ = Eg′∈G [z(g′)] the
expected value of that same metric over all groups g′ ∈ G:

z(g) = z̄ (6)

More generally, we can write it as:

|z̄ − z(g)| ≤ ϵ ∀g ∈ G (7)

where ϵ is a slack parameter.
As an example, let’s say that we want parity in service

rates for passenger groups defined by their origin-destination
pairs and in normalized income for drivers. If a matching
algorithm achieves statistical parity for both passengers and
drivers, then the probability of a passenger receiving a ride is
the same regardless of their origin and destination locations
and the income of drivers are the same for all drivers.



While the goal of achieving parity is noble, achieving it
through the matching of a single time step is rarely possi-
ble, especially when there is a large disparity. Instead, it is
often better to look at amortized parity over a longer period
of time (Sühr et al. 2019). To do this, we aim for a matching
that “moves closer” towards parity with the goal of achiev-
ing parity in the near future. Towards that end, our frame-
work uses variance var(Z), where Z = {z(g),∀g ∈ G} is
the set of metric values for all groups, as a proxy measure
for fairness and, at each time step, it takes a gradient step in
the solution space, moving in the direction that minimizes
variance.

If we assume that the average of the metric over all groups
is stable (i.e., ∂

∂A z̄ ≃ 0, a reasonable assumption if a long
enough history is included), then we can find an assignment
for a modified score function that accounts for the gradient
of the variance with respect to the assignment A:

s′(i, a) = s(i, a)− λ
∂

∂A
var(Z) (8)

= s(i, a)− 1

|Z|
λ

∂

∂A
∑
zj∈Z

(zj − z̄)2 (9)

= s(i, a) +
2

|Z|
λ

∑
zj∈Z

(z̄ − zj)
∂zj
∂A

(10)

where λ is a hyperparameter. The general form above for
the second term is our incentive score: A constant (weight)
multiplied by the disparity of group j, scaled by a deriva-
tive term. We show later that the sum can usually be simpli-
fied within the context of a given action a and the derivative
can be approximated for specific metrics, including our two
passenger- and driver-side fairness metrics of interest.

The “Simple Incentives” idea is that, for each group in-
volved in an action, provide them with an incentive (or
penalty) proportional to how disadvantaged (or advantaged)
their group has been historically. Given the recent abundance
of black-box algorithms, we find this simplicity helpful from
a transparency perspective, making it easy to explain to any
stakeholder how this score is calculated.
SI(+): While there is generally a consensus for applying in-
centives to help disadvantaged groups, it may be controver-
sial to impose penalties for advantaged groups in some ap-
plications. With this in mind, we also present a modification
to SI, where we clip the incentive term to be larger than 0,
resulting in the SI(+) variant, where the “+” indicates that
we include only positive incentives.

In the following sections, we discuss how we specify the
incentive score (see Eq. 10) for two use cases, one for pas-
sengers and one for drivers.

SI for Passengers (SIP): Geographic Fairness
Our notion of passenger-side fairness is defined by the idea
that the probability of receiving a ride should not depend
on your origin or destination. To do this, we divide the ge-
ographical area served by the fleet into a collection of areas
C. Recall that each request r contains both the origin o and
destination d. Thus, we can map each passenger to one of
C × C groups, uniquely identified by the origin-destination

area pair based on (o, d). Computing the service rate for each
of these groups gives us the passenger-side metric set Zp,
where zi ∈ Zp denotes the historical service rate for pas-
senger group i. For a given request r, let g(r) denote the
group to which r belongs, and let z(r) = zg(r) (i.e., the
historical service rate of the group g(r) ∈ C × C). These
historical service rates are updated every time step after an
assignment is made. The goal is thus to achieve parity in the
service rates for all geographic groups.

We now derive the fairness incentive for this metric, based
on Eq. 10:

s′(i, a) = s(i, a) +
2

|Zp|
λ

∑
zj∈Zp

(z̄ − zj)
∂zj
∂A

(11)

≃ s(i, a) +
2

|Zp|
λ

∑
zj∈Zp

(z̄ − zj)
∂zj
∂a

(12)

= s(i, a) +
2

|Zp|
λ
∑
r∈a

(z̄ − z(r))
∂z(r)

∂a
(13)

≃ s(i, a) +
2

|Zp|
λ
∑
r∈a

(z̄ − z(r))λ′ (14)

= s(i, a) + β
∑
r∈a

(z̄ − z(r)) (15)

Notice that computing ∂zj
∂A is difficult due to circular de-

pendencies: The matching A depends on the score function,
which depends on the service rates, which in turn depend on
the matching. As such, computing it precisely will require
a global optimization procedure. Therefore, we approximate
it with ∂zj

∂a (from Eqs. 11 to 12) based on the assumption
that the change in the service rate of zone zj that is based on
action a is independent of the actions of other vehicles. Ad-
ditionally, as serving a single request r can only make small
changes to the service rate z(r) because service rates are ag-
gregated over a reasonably long time period, we assume that
the change is a (positive) constant λ′ for all requests (from
Eqs. 13 to 14). We also introduce a fairness incentive term
Fp(i, a) to represent the summation in the second term of
Eq. 15 and use it in the new approximated score function sβ :

Fp(i, a) =
∑
r∈a

(z̄ − z(r)) (16)

sβ(i, a) = s(i, a) + β Fp(i, a) (17)
Here, β is a hyperparameter that controls the relative im-
portance of geographic fairness for passengers. In summary,
for our SIP score function sβ , we include a fairness incen-
tive term Fp(i, a) that increases (or decreases) the score of
actions proportional to how disadvantaged (or advantaged)
their respective passenger groups have been according to our
geographic fairness metric.

As described earlier, we also have the corresponding SI(+)
version of this passenger-side incentive, which takes into ac-
count only requests from groups with below-average service
rates:

Fp(i, a) =
∑
r∈a

max{z̄ − z(r), 0} (18)

We call this variant of the framework SIP(+).



SI for Drivers (SID): Income Fairness
Our notion of driver-side fairness is defined by the idea
that all drivers should earn similar incomes. This makes our
driver-side fairness metric Zd the set of all zi, where zi now
denotes historical driver incomes for each driver i. We scale
the driver incomes by the largest driver income to restrict
it to within [0, 1] and avoid scaling issues. The goal here is
thus to achieve parity in the scaled income for all drivers.

We now derive the fairness incentive for this metric, based
on Eq. 10, where we model the income of a driver to be
proportional to the value of the request they serve R(i, r):

s′(i, a) = s(i, a) +
2

|Zd|
λ

∑
zj∈Zd

(z̄ − zj)
∂zj
∂A

(19)

= s(i, a) +
2

|Zd|
λ

∑
zj∈Zd

(z̄ − zj)
∂zj
∂a

(20)

= s(i, a) +
2

|Zd|
λ (z̄ − zi)

∂zi
∂a

(21)

= s(i, a) + δ (z̄ − zi)R(i, a) (22)

Eqs. 19 and 20 are equivalent because, unlike the case in
passenger-side fairness, computing ∂zj

∂A when the metric is
driver income is straightforward as the income of a driver de-
pends solely on their actions. Next, Eqs. 20 to 22 are equiv-
alent because ∂zj

∂a = R(i, a) when j = i and is 0 otherwise.
Analogous to the case for passenger-side fairness, we also

introduce a similar fairness incentive term Fd(i, a) and use
it in the new score function sδ:

Fd(i, a) = (z̄ − zi)R(i, a) (23)
sδ(i, a) = s(i, a) + δ Fd(i, a) (24)

Here, δ is a hyperparameter that controls the relative impor-
tance of income fairness for drivers.

We also have the variant that we call SID(+), where the
fairness incentive is applied only to drivers with below-
average income:

Fd(i, a) =
∑
r∈a

max{z̄ − zi, 0}R(i, r) (25)

Theoretical Properties
While our approach directly works to minimize variance in
the selected metric across groups, max-min fairness is an-
other popular notion of fairness, where we want to maxi-
mize the worst-off group. Towards that end, given a suffi-
cient large weight (β for passenger-side fairness and δ for
driver-side fairness), our approaches provide guarantees for
improving worse-off groups. We provide proof sketches here
for the two metrics discussed in the previous section, with
complete proofs our supplemental document.1 Both proofs
assume that vehicles can only accept a single request at any
time step (including the null action). With this assumption,
each action a contains only one request r, allowing us to use
them interchangeably.

1The code and supplementary material can be found at: https:
//github.com/YODA-Lab/Simple-Incentives-For-Ridesharing

Let A(w) be the matching solution produced by the ILP
with fairness weight w ∈ {β, δ}. Further, let z′j(w) denote
the updated metric value of group j after an assignment
A(w); and gmin = argminj zj denote the group with the
smallest metric value. We now describe the theoretical prop-
erties for each of our two fairness metrics below.

Passenger-side Fairness Properties
Let Rf = {r}g(r)=gmin

denote the set of current requests
corresponding to group gmin. Any request r ∈ Rf would
have the largest fairness incentive by definition (Eq. 16).

In what follows, we state the theorem, claiming that as
long as it is possible to improve the service rate of zgmin rel-
ative to A(0) – a condition that we formalize as passenger-
min-unfairness in the following definition – we can do so for
a sufficiently high β.
Definition 1. A matching A is passenger-min-unfair if there
exists a request rf ∈ Rf not served in A, there is a vehicle
i ∈ V such that rf ∈ Ai, but the request assigned to i is
ri /∈ Rf .
Theorem 1. If A(0) is passenger-min-unfair, then there ex-
ists β > 0 such that z′gmin

(β) > z′gmin
(0).

Proof Sketch: It can be shown that:
1. The highest-preferred request of vehicle i, r∗i =

argmaxr∈Ai
sβ(i, r) will always be assigned to some ve-

hicle in the optimal assignment. This follows from the
nature of the ILP, which maximizes the total score.

2. Any vehicle that prefers (see (1)) rf ∈ Rf also prefers
it for higher β values. This can be proven using the fact
that rf has the largest fairness incentive, and increasing
β only increases the contribution of the fairness incentive
towards sβ(i, a).

3. There is a threshold β̄ value such that for higher β values,
the βFp(·) term in sβ(i, a) dominates the other factors
(i.e., any action a1 with Fp(i, a1) > Fp(i, a2) will be
preferred by vehicle i over action a2). This can be shown
if we assume some bounds on R(·) and V (·).

4. Any request rf that was assigned in A(0) will also be
assigned in A(β), where β > β̄ ≥ 0. This follows from
a combination of the previous points.

If A(0) is passenger-min-unfair, then we can conclude that
there is some request r ∈ Rf that was not preferred in A(0)
but will now be preferred (3) and assigned to some vehi-
cle (1). Thus, A(β) assigns all requests in Rf that were as-
signed in A(0) and at least one more, thus increasing the
service rate for gmin as compared to A(0). 2

Driver-side Fairness Properties
For drivers, note that they would see a highest improvement
in income after receiving an action with the highest immedi-
ate reward. In what follows, we state the theorem, claiming
that, for SID(+) with high enough δ, any worse-off driver j
(zj < z̄) is guaranteed to get their highest preferred request
r∗j as long as no other worse-off driver can serve it.
Definition 2 (driver-min-unfair). A matching A is driver-
min-unfair if any worse-off driver j is assigned a request



r ̸= r∗j in A and there exists no other worse-off driver k that
can serve r∗j .

Theorem 2. If A(0) is driver-min-unfair for any driver j,
then there exists δ > 0 such that z′j(δ) > z′j(0), when using
SID(+).

Proof Sketch: It can be shown that:

1. For a worse-off driver j, their highest-preferred request
r∗j will have the highest score for some value of δ, and
will be assigned in A(δ) to some driver.

2. Any better-off driver that can serve r∗j will not serve it
for some large value of δ.

If A(0) is driver-min-unfair, then we can conclude that r∗j
will be assigned to j for some large value of δ because no
other worse-off driver can serve it; no better-off driver can
serve it (2); and it must be served by some driver (1). Thus,
z′j(δ) > z′j(0) because j is getting their highest-preferred
request r∗j for some large δ > 0, but not when δ = 0. 2

Experimental Evaluations
To comprehensively evaluate our SI framework, we ran three
sets of experiments. First, to demonstrate the generality of
the framework, we evaluated it in combination with vari-
ous ridesharing algorithms, which use different value func-
tion approximations, from the literature. Second, to demon-
strate the competitiveness of the framework, we evaluated
it against a state-of-the-art ridesharing fairness approach.
Finally, to demonstrate the flexibility of the framework,
we evaluated it on two-sided fairness with both of our
passenger- and driver-side fairness approaches combined.

We evaluate the performance and fairness metrics after
running the matching algorithms over a 24-hour period on
the island of Manhattan using demand data from the NY
Yellow Taxi dataset (NYC Taxi & Limousine Commission
2020). The locations in the road network correspond to street
intersections, with edges as roads connecting them. We de-
fine areas with respect to a standard partition of Manhat-
tan into neighborhoods, where passenger groups correspond
to pairs of areas in which passengers are to be picked up
and dropped off. Our efficiency objective is to maximize
service rate, and thus, correspondingly, we set the value
of each request to 1. For each hyperparameter β and δ,
we performed a logarithmic search in the [0.5, 20] range to
capture a wide range of behaviors. Consistent with litera-
ture (Shah, Lowalekar, and Varakantham 2020; Lowalekar,
Varakantham, and Jaillet 2021; Raman, Shah, and Dickerson
2021), we use a fleet size of 1000 vehicles, with a maximum
request waiting time of 300 seconds. In all approaches, any
request not assigned in the current assignment (one minute
window) is dropped. All experiments were run on a Ryzen
3700x CPU, RTX2080 Super GPU, and 32GB RAM.1

We consider two standard measures of equity: The Gini
coefficient Gini(Z) and the minimum metric value min(Z)2

for a set Z of service rates for passenger-side fairness or in-
come for driver-side fairness. For ease of comprehension, we

2For drivers, we plot the minimum income (unscaled), to pre-
vent bias because of scaling by the max.

plot FGini(Z) = 1−Gini(Z) so that our goal is to maximize
each of these metrics. Our efficiency measure is the overall
service rate, defined as the fraction of all passenger requests
served.

Generality: Evaluation on Benchmark Algorithms
We tested the efficacy of our framework on a variety of nat-
ural and state-of-the-art ridesharing algorithms:
• Greedy: A baseline algorithm that considers only current

rewards R(i, a) as the score in the ILP optimization.
• R+D: A pioneering approach proposed by Alonso-Mora

et al. (2017) that estimates future values by using delays
for passengers, as part of the score function in the ILP
optimization.

• NeurADP: A state-of-the-art approach by Shah,
Lowalekar, and Varakantham (2020) that uses deep
reinforcement learning to approximate the value function,
as part of the score function in the ILP optimization. We
use a pre-trained model trained with 1000 vehicles.

• AsyncNeural: An asynchronous and distributed baseline
algorithm that uses the approximated value function from
NeurADP, but each vehicle greedily chooses its action and
ties in vehicle order are broken randomly. (No ILP.)
Figure 2 show the impact of SI on our four ridesharing

algorithms. The origin of each arrow corresponds to the per-
formance of an algorithm without SI and the arrowhead cor-
responds to the best performance with SI while restricting
the service rate to be above 95% of the service rate without
SI. Figures 2(a) and 2(b) show the results for passenger-side
fairness for the FGini and min metrics, respectively; while
Figures 2(c) and 2(d) show the results for driver-side fair-
ness for those two metrics as well.

We observed that our methods can provide significant im-
provement in fairness at a marginal impact to service rates.
Even with varying degrees of initial fairness, consistent im-
provement for both passengers and drivers can be seen. The
one outlier is that SI failed to improve driver fairness for
AsyncNeural. The reason is that, for each driver, their fair-
ness incentive scaling term in Fd(·) for all actions are identi-
cal. Therefore, the incentive does not affect their preference
ordering of requests to serve, and the outcome of the algo-
rithm remains unchanged with and without the fairness in-
centive term. On the other hand, with the other centralized
approaches, the ILP is able to arbitrate between different ve-
hicles and prioritize low-income drivers.

Competitiveness: Comparisons with FairNN
As our fairness baseline, we use FairNN, a recent fairness
extension of NeurADP (Raman, Shah, and Dickerson 2021).
Like our SI framework, FairNN also considers geographic
fairness for passengers or income fairness for drivers, but
unlike SI, it cannot consider both together. It does this by
minimizing the variance in service rates or incomes, learning
a neural network-based VFA to do so. As it follows a similar
ILP formulation to solve the optimization problem, it is well
suited for comparison with SI. It also has a hyperparameter
λ that controls the scale of the variance term in the objective,
similar to β or δ in our formulation.
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Figure 2: Change in efficiency and passenger-side fairness (with (a) FGini and (b) min) as well as driver-side fairness (with
(c) FGini and (d) min) when Simple Incentives are used. The arrows show the best improvement for each algorithm metric
while limiting SR to remain above 95% of the initial value. Optimal point is to the top-right (high fairness & high service rate).
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Figure 3: Comparison of SIP & SIP(+) against NeurADP &
FairNN (line plotted in the order of hyperparameter values)
for passenger-side fairness with (a) FGini and (b) min. Opti-
mal point is to the top-right (high fairness & service rate).

We note below some key differences between our ap-
proach and FairNN: (1) FairNN directly includes variance
in the optimization, but as history size increases, the change
in variance per action diminishes, reducing the impact of
the fairness term if a constant weight is used. SI com-
putes the scores based on historical inequalities rather than
marginal contribution, which, combined with metric scaling,
allows our approach to work well even with large histories.
(2) FairNN applies the fairness uniformly across all actions,
and we can improve both overall efficiency and fairness by
adding further flexibility to the objective (as shown below
with SI(+)). (3) Possibly most important of all, this approach
requires full retraining of VFA for even a small change in the
tradeoff weight, or a change in any other problem parameters
(such as the particular measure of fairness used), making it
difficult to scale in practice. Our approach is completely on-
line, and can be used with any pre-existing value function,
and with any hyperparameter value.

We trained FairNN using their provided code, suggested
parameter values, and suggested hyperparameter values λ
from 107 − 1010 for passengers and 1

6 − 6
6 for drivers, each

of which requires costly retraining. For SI, we use the pre-
trained NeurADP value function described in the previous
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Figure 4: Comparison of SID & SID(+) against NeurADP &
FairNN (line plotted in the order of hyperparameter values)
for driver-side fairness with (a) FGini and (b) min. Optimal
point is to the top-right (high fairness & service rate).

section. NeurADP (without fairness) also acts as our effi-
ciency baseline.

Baseline Comparisons for Passenger-side Fairness: Fig-
ures 3(a) and 3(b) compare SIP and SIP(+), with different
β values, against both baselines. FairNN outperforms SIP
when the service rate is small (∼0.65), but SIP(+) signif-
icantly outperforms FairNN by achieving similar fairness
with much higher service rates. Consistent with results in
Figure 2, SIP and SIP(+) improves the fairness of NeurADP
as β increases.

Baseline Comparisons for Driver-side Fairness: Fig-
ures 4(a) and 4(b) compare SID and SID(+), with differ-
ent δ values, against NeurADP. FairNN for drivers had poor
efficiency compared to NeurADP, which is consistent with
observations by the authors (Raman, Shah, and Dickerson
2021). Performing better than FairNN, SID and SID(+) im-
prove the fairness of NeurADP as δ increases. Analogous to
the passenger-side variants, SID(+) outperforms SID.

Relative Performance of our Variants: For both drivers
and passengers, we observed the SI(+) variants provided
better tradeoffs between fairness and efficiency. The rea-
son is that these variants improve fairness without signifi-
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Figure 5: Comparison of Pareto frontiers of our combined variants on efficiency vs passenger-side fairness (with (a) FGini and
(b) min) and driver-side fairness (with (c) FGini and (d) min). Optimal point is to the top-right (high fairness & service rate)

cantly sacrificing efficiency since high-efficiency groups are
not penalized. The base variants achieved much better fair-
ness in the extreme, albeit at a higher cost to service rate.
The reason is that if extreme fairness is required, then there
may be no choice but to penalize high-efficiency groups.

Ablation Experiments: Two-Sided Fairness
Finally, we evaluate SI with NeurADP’s value function on
two-sided fairness with both passenger- and driver-side fair-
ness approaches combined. Specifically, we ran ablation ex-
periments, running all combinations of β and δ values in a
logarithmic grid search for the score function:

sβ,δ(i, a) = s(i, a) + βFp(i, a) + δFd(i, a) (26)

Figure 5 shows the Pareto frontier for each passenger- and
driver-side fairness combination. In general, we observe the
trend that using SIP leads to much lower service rates as
compared to SIP(+). SID and SID(+) with SIP(+) are almost
equivalent, Pareto dominating the other approaches, with the
exception of extremely high fairness regions. SIP and SID
combined resulted in the fairest algorithm, albeit at a high
cost to service rate.

Typically, one would expect a tradeoff between fairness
and service rate. However, out of 175 combinations of β
and δ hyperparameter values as well as SIP/SIP(+) and
SID/SID(+) pairs, 15 combinations (∼8.5%) outperformed
NeurADP on all five metrics (four fairness metrics and ser-
vice rate). A commonality across all 15 combinations is that
they all have small hyperparameter values with β ≤ 2 and
δ ≤ 2. Further, 41 out of 175 combinations (∼23.5%) out-
performed NeurADP on four out of five metrics, with β ≤ 2
and δ ≤ 10. This observation reinforces the idea that fair-
ness does not have to be a trade off and, in many cases,
improving fairness and efficiency can go hand-in-hand.

Discussion and Conclusions
As the demand for cutting-edge algorithms for urban mo-
bility increases, their effects on the underlying fairness of
these systems need to be studied, and measures taken to en-
sure that the algorithms do not inherit implicit biases that
result from pure optimization. In this work, we focused on

the issue of fairness in ridesharing systems, specifically ge-
ographic fairness for passengers and income fairness for
drivers. We proposed Simple Incentives (SI), a general fair-
ness framework that can be adapted to a class of existing
ridesharing algorithms that use an integer linear program to
find matches. At a high level, SI applies fairness incentives
to groups of passenger requests and drivers based on their
service rate and income disparity. Under mild assumptions,
SI provably improves the service rate of passengers from
the group with the worst service rate as well as the income
of driver with the lowest income. Our experimental results
demonstrated its generality by showing that it improves the
fairness for several ridesharing benchmarks and its compet-
itiveness by outperforming existing state of the art in terms
of both efficiency (measured through overall service rates)
and fairness (measured through the Gini coefficient and the
minimum service rates and driver income) despite requir-
ing no retraining. Our experiments showed that it is better
to apply fairness incentives only to requests from passen-
ger groups with below-average service rates and to drivers
with below-average income, as opposed to a blanket ap-
proach that applies fairness incentives to all passenger re-
quests and drivers. Finally, interestingly, our results showed
that it is possible to improve both efficiency and fairness in
some cases.

Limitations: We do not prescribe “best” hyperparameters as
that decision is subjective and will depend on the use-case.
Instead, we provide an easy way to tune the importance of
fairness using the hyperparameters. We selected geographic
fairness because of the lack of other protected demographic
information of passengers in public datasets. However, our
formulation is general enough to allow any group-based di-
vision of passengers (e.g., by race and/or gender). Our in-
come fairness does not take into account the number of hours
worked by drivers as we assume that all drivers work all 24
hours, consistent with the literature. Finally, SI is a myopic
approach to fairness. We may expect to see a non-myopic
approach perform better when system dynamics allow for
making suboptimal actions in the present that could lead
to better fairness returns in the future. However, we expect
these situations to be infrequent in practice.
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