
RRL: Resnet as representation for Reinforcement Learning

Rutav Shah1 and Vikash Kumar2,3

Abstract— Generalist robots capable of performing dexterous,
contact-rich manipulation tasks will enhance productivity and
provide care in un-instrumented settings like homes. Such
tasks warrant operations in real-world only using the robot’s
proprioceptive sensor such as onboard cameras, joint encoders,
etc which can be challenging for policy learning owing to
the high dimensionality and partial observability issues. We
propose RRL: Resnet as representation for Reinforcement
Learning – a straightforward yet effective approach that can
learn complex behaviors directly from proprioceptive inputs.
RRL fuses features extracted from pre-trained Resnet into the
standard reinforcement learning pipeline and delivers results
comparable to learning directly from the state. In a simulated
dexterous manipulation benchmark, where the state of the art
methods fails to make significant progress, RRL delivers contact
rich behaviors. The appeal of RRL lies in its simplicity in
bringing together progress from the fields of Representation
Learning, Imitation Learning, and Reinforcement Learning. Its
effectiveness in learning behaviors directly from visual inputs
with performance and sample efficiency matching learning
directly from the state, even in complex high dimensional
domains, is far from obvious.

I. INTRODUCTION

Recently, Reinforcement learning (RL) has seen tremen-
dous momentum and progress [9, 19, 37, 21] in learning
complex behaviors from states [18, 24, 17]. Most success
stories, however, are limited to simulations or instrumented
laboratory conditions as real world doesn’t provide direct
access to its internal state. Not only learning with state-space,
but visual observation spaces have also found reasonable
success [26, 42]. However, the majority of these methods have
been tested on low-dimensional, 2D tasks [31] that lack depth
information. Contact rich manipulation tasks, on the other
hand, are high dimensional and necessitate intricate details
in order to be completed successfully. In order to deliver the
promise presented by data-driven techniques, we need efficient
techniques that can learn complex behaviors unobtrusively
without the need for environment instrumentation.

Learning without environment instrumentation, especially
in unstructured settings like homes, can be quite challenging
[59, 34, 46]. Challenges include – (a) Decision making with
incomplete information owing to partial observability as the
agents must rely only on proprioceptive on-board sensors
(vision, touch, joint position encoders, etc) to perceive and act.
(b) The influx of sensory information makes the input space
quite high dimensional. (c) Information contamination due
to sensory noise and task-irrelevant conditions like lightning,

1Department of Computer Science and Engineering, Indian Institute of
Technology, Kharagpur, India rutavms@gmail.com

2Department of Computer Science, University of Washington, Seattle,
USA vikash@cs.washington.edu

3Facebook AI Research, USA

Supervised Learning

Reinforcement
Learning

Fig. 1. RRL Resnet as representation for Reinforcement Learning takes
a small step in bridging the gap between Representation learning and
Reinforcement learning. RRL pre-trains an encoder on a wide variety of real
world classes like ImageNet dataset using a simple supervised classification
objective. Since the encoder is exposed to a much wider distribution of
images while pretraining, it remains effective whatever distribution the policy
might induce during the training of the agent. This allows us to freeze the
encoder after pretraining without any additional efforts.

shadows, etc. (d) Most importantly, the scene being flushed
with information irrelevant to the task (background, clutter,
etc). Agents learning under these constraints is forced to
take a large number of samples simply to untangle these
task-irrelevant details before it makes any progress on the
true task objective. A common approach to handle these
high dimensionality and multi-modality issues is to learn
representations that distil information into low dimensional
features and use them as inputs to the policy. While such
ideas have found reasonable success [43, 40], designing such
representations in a supervised manner requires a deep under-
standing of the problem and domain expertise. An alternative
approach is to leverage unsupervised representation learning
to autonomously acquire representations based on either
reconstruction [13, 59, 56] or contrastive [51, 52] objective.
These methods are quite brittle as the representations are
acquired from narrow task-specific distributions [61], and
hence, do not generalize well across different tasks Table
I. Additionally, they acquire task-specific representations,
often needing additional samples from the environment
leading to poor sample efficiency or domains specific data-
augmentations for training representations.

The key idea behind our method stems from an intuitive
observation over the desiderata of a good representation i.e.
(a) it should be low dimensional for a compact representation.
(b) it should be able to capture silent features encapsulating
the diversity and the variability present in a real-world task for
better generalization performance. (c) it should be robust to
irrelevant information like noise, lighting, viewpoints, etc so
that it is resilient to the changes in surroundings. (d) it should
provide effective representation in the entire distribution that
a policy can induce for effective learning. These requirements

are quite harsh needing extreme domain expertise to manually
design and an abundance of samples to automatically acquire.
Can we acquire this representation without any additional
effort? Our work takes a very small step in this direction.

The key insight behind our method (Figure 1) is embarrass-
ingly simple – representations do not necessarily have to be
trained on the exact task distribution; a representation trained
on a sufficiently wide distribution of real-world scenarios,
will remain effective on any distribution a policy optimizing
a task in the real world might induce. While training over
such wide distribution is demanding, this is precisely what
the success of large image classification models [8, 10, 54,
12] in Computer Vision delivers – representations learned
over a large family of real-world scenarios.

Our Contributions: We list the major contributions
1) We present a surprisingly simple method (RRL) at

the intersection of representation learning, imitation
learning (IL) and reinforcement learning (RL) that
uses features from pre-trained image classification
models (Resnet34) as representations in standard RL
pipeline. Our method is quite general and can be
incorporated with minimal changes to most state based
RL/IL algorithms.

2) Task-specific representations learned by supervised as
well as unsupervised methods are usually brittle and
suffer from distribution mismatch. We demonstrate that
features learned by image classification models are
general towards different task (Figure 2), robust to
visual distractors, and when used in conjunction with
standard IL and RL pipelines can efficiently acquire
policies directly from proprioceptive inputs.

3) While competing methods have restricted results pri-
marily to planar tasks devoid of depth perspectives, on a
rich collection of simulated high dimensional dexterous
manipulation tasks, where state-of-the-art methods
struggle, we demonstrate that RRL can learn rich
behaviors directly from visual inputs with performance
& sample efficiency approaching state-based methods.

4) Additionally, we underline the performance gap be-
tween the SOTA approaches and RRL on simple low
dimensional tasks as well as high dimensional more
realistic tasks. Furthermore, we experimentally establish
that the commonly used environments for studying
image based continuous control methods are not a true
representative of real-world scenario.

II. RELATED WORK

RRL rests on recent developments from the fields of Rep-
resentation Learning, Imitation Learning and Reinforcement
Learning. In this section, we outline related works leveraging
representation learning for visual reinforcement and imitation
learning.

A. Learning without explicit representation

A common approach is to learn behaviors in an
end to end fashion – from pixels to actions – without
explicit distinction between feature representation and policy

Features for ImageNet categories Features for our tasks

Fig. 2. Visualization of Layer 4 of Resnet model of the top 1 class using
Grad-CAM [45][Top] and Guided Backpropogation [11][Bottom]. This
indicates that Resnet is indeed looking for the right features in our task
images (right) in spite of such high distributional shift.

representations. Success stories in this categories range from
seminal work [5] mastering Atari 2600 computer games using
only raw pixels as input, to [14] which learns trajectory-
centric local policies using Guided Policy Search [4] for
diverse continuous control manipulation tasks in the real
world learned directly from camera inputs. More recently, [35]
has demonstrated success in acquiring multi-finger dexterous
manipulation [33] and agile locomotion behaviors using off-
policy action critic methods [24]. While learning directly
from pixels has found reasonable success, it requires training
large networks with high input dimensionality. Agents require
a prohibitively large number of samples to untangle task-
relevant information in order to acquire behaviors, limiting
their application to simulations or constrained lab settings.
RRL maintains an explicit representation network to extract
low dimensional features. Decoupling representation learning
from policy learning delivers results with large gains in
efficiency. Next, we outline related works that use explicit
representations.

B. Learning with supervised representations

Another approach is to first acquire representations using
expert supervision, and use features extracted from repre-
sentation as inputs in standard policy learning pipelines.
A predominant idea is to learn representative keypoints
encapsulating task details from the input images and using the
extracted keypoints as a replacement of the state information
[38]. Using these techniques, [43, 39] demonstrated tool
manipulation behaviors in rich scenes flushed with task-
irrelevant details. [41] demonstrated simultaneous manipu-
lation of multiple objects in the task of Baoding ball tasks
on a high dimensional dexterous manipulation hand. Along
with the inbuilt proprioceptive sensing at each joint, they
use an RGB stereo image pair that is fed into a separate
pre-trained tracker to produce 3D position estimates [57] for
the two Baoding balls. These methods, while powerful, learn
task-specific features and requires expert supervision, making
it harder to (a) translate to variation in tasks/environments,
and (b) scale with increasing task diversity. RRL, on the other
hand, uses single task-agnostic representations with better
generalization capability making it easy to scale.

C. Learning with unsupervised representations

With the ambition of being scalable, this group of
methods intends to acquire representation via unsupervised
techniques. [30] uses contrastive learning to time-align visual
features across different embodiment to demonstrate behavior
transfer from human to a Fetch robot. [20], [62, 59]
use variational inference [7, 20] to learn compressed latent
representations and use it as input to standard RL pipeline
to demonstrate rich manipulation behaviors. [47] additionally
learns dynamics models directly in the latent space and use
model-based RL to acquire behaviors on simulated tasks. On
similar tasks, [36] uses multi-step variational inference to
learn world dynamic as well as rewards models for off-policy
RL. [51] use image augmentation with variational inference
to construct features to be used in standard RL pipeline
and demonstrate performance at par with learning directly
from the state. [49, 48] demonstrate comparable results by
assimilating updates over features acquired only via image
augmentation. Similar to supervised methods, unsupervised
methods often learns task-specific brittle representations as
they break when subjected to small variations in the surround-
ings and often suffers challenges from non-stationarity arising
from the mismatch between the distribution representations
are learned on and the distribution policy induces. To induce
stability, RRL uses pre-trained stationary representations
trained on distribution with wider support than what policy
can induce. Additionally, representations learned over a wide
distribution of real-world samples are robust to noise and
irrelevant information like lighting, illumination, etc.

D. Learning with representations and demonstrations

Learning from demonstrations has a rich history. We focus
our discussion on DAPG [17], a state-based method which
optimizes for the natural gradient [2] of a joint loss with
imitation as well as reinforcement objective. DAPG has been
demonstrated to outperform competing methods [15, 16] on
the high dimensional ADROIT dexterous manipulation task
suite we test on. RRL extends DAPG to solve the task suite
directly from proprioceptive signals with performance and
sample efficiency comparable to state-DAPG. Unlike DAPG
which is on-policy, FERM [58] is a closely related off-policy
actor-critic methods combining learning from demonstrations
with RL. FERM builds on RAD [49] and inherits its
challenges like learning task-specific representations. We
demonstrate via experiments that RRL is more stable, more
robust to various distractors, and convincingly outperforms
FERM since RRL uses a fixed feature extractor pre-trained
over wide variety of real world images and avoids learning
task specific representations.

III. BACKGROUND

RRL solves a standard Markov decision process (Section
III-A) by combining three fundamental building blocks - (a)
Policy gradient algorithm (Section III-B), (b) Demonstration
bootstrapping (Section III-C), and (c) Representation learning
(Section III-D). We briefly outline these fundamentals before
detailing our method in Section IV.

A. Preliminaries: MDP

We model the control problem as a Markov decision
process (MDP), which is defined using the tuple: M =
(S,A,R, T , ρ0, γ). S ∈ Rn and A ∈ Rm represent the state
and actions. R : S × A → R is the reward function. In
the ideal case, this function is simply an indicator for task
completion (sparse reward setting). T : S × A → S is the
transition dynamics, which can be stochastic. In model-free
RL, we do not assume any knowledge about the transition
function and require only sampling access to this function. ρ0
is the probability distribution over initial states and γ ∈ [0, 1)
is the discount factor. We wish to solve for a stochastic policy
of the form π : S × A → R which optimizes the expected
sum of rewards:

η(π) = Eπ,M
[∞∑
t=0

γtrt

]
(1)

B. Policy Gradient

The goal of the RL agent is to maximise the expected
discounted return η(π) (Equation 1) under the distribution
induced by the current policy π. Policy Gradient algorithms
optimize the policy πθ(a | s) directly, where θ is the function
parameter by estimating ∇η(π). First we introduce a few
standard notations, Value function : V π(s), Q function
: Qπ(s, a) and the advantage function : Aπ(s, a). The
advantage function can be considered as another version
of Q-value with lower variance by taking the state-value off
as the baseline.

V π(s) = EπM
[∞∑
t=0

γtrt | s0 = s
]

Qπ(s, a) = EM
[
R(s, a)

]
+ Es′∼T (∫ ,a)

[
V π(s′)

]
Aπ(s, a) = Qπ(s, a)− V π(s)

(2)

The gradient can be estimated using the Likelihood ratio
approach and Markov property of the problem [1] and using
a sampling based strategy,

∇η(π) = g =
1

NT

N∑
i=0

T∑
t=0

∇θ log πθ(ait|sit)Âπ(sit, ait, t)

(3)
Amongst the wide collection of policy gradient algorithms,
we build upon Natural Policy Gradient (NPG) [2] to solve
our MDP formulation owing to its stability and effectiveness
in solving complex problems. We refer to [32] for a detailed
background on different policy gradient approaches. In the
next section, we describe how human demonstrations can be
effectively used along with NPG to aid policy optimization.

C. Demo Augmented Policy Gradient

Policy Gradients with appropriately shaped rewards can
solve arbitrarily complex tasks. However, real-world envi-
ronments seldom provide shaped rewards, and it must be
manually specified by domain experts. Learning with sparse
signals, such as task completion indicator functions, can relax

domain expertise in reward shaping but it results in extremely
high sample complexity due to exploration challenges. DAPG
([17]) combines policy gradients with few demonstrations
in two ways to mitigate this issue and effectively learn
from them. We represent the demonstration dataset using
ρD =

{(
s
(i)
t , a

(i)
t , s

(i)
t+1, r

(i)
t

)}
where t indexes time and i

indexes different trajectories.
(1) Warm up the policy using few demonstrations (25

in our setting) using a simple Mean Squared Error(MSE)
loss, i.e, initialize the policy using behavior cloning [Eq 4].
This provides an informed policy initialization that helps in
resolving the early exploration issue as it now pays attention
to task relevant state-action pairs and thereby, reduces the
sample complexity.

LBC(θ) =
1

2

∑
i,t∈minibatch

(
πθ(s

(i)
t)− a(i)Ht

)2
(4)

where, θ are the agent parameters and a(i)Ht represents the
action taken by the human/expert.

(2) DAPG builds upon on-policy NPG algorithm [2]
which uses a normalized gradient ascent procedure where the
normalization is under the Fischer metric.

θk+1 = θk +

√
δ

gT F̂−1θk
g
F̂−1θk

g (5)

where F̂θk is the Fischer Information Metric at the current
iterate θk,

F̂θk =
1

T

T∑
t=0

∇θlog πθ(at|st)∇θlog πθ(at|st)T (6)

and g is the sample based estimate of the policy gradient [Eq
3]. To make the best use of available demonstrations, DAPG
proposes a joint loss gaug combining task as well as imitation
objective. The imitation objective asymptotically decays over
time allowing the agent to learn behaviors surpassing the
expert.

gaug =
∑

(s,a)∈ρπ

∇θ ln πθ(a|s)Aπ(s, a)

+
∑

(s,a)∈ρD

∇θ ln πθ(a|s)w(s, a)
(7)

where, ρπ is the dataset obtained by executing the current
policy, ρD is the demonstration data and w(s, a) is the
heuristic weighting function defined as :

w(s, a) = λ0λ
k
1 max
(s′,a′)∈ρπ

Aπ(s′, a′) ∀ (s, a) ∈ ρD (8)

DAPG has proven to be successful in learning policy for
the dexterous manipulation tasks with reasonable sample
complexity.

D. Representation Learning

DAPG has thus far only been demonstrated to be effective
with access to low-level state information which is not readily
available in real-world. DAPG is based on NPG which works
well but faces issues with input dimensionality and hence,
cannot be directly used with the input images acquired from
onboard cameras. Representation learning [6] is learning
representations of input data typically by transforming it or
extracting features from it, which makes it easier to perform
the task (in our case it can be used in place of the exact
state of the environment). Let I ∈ Rn represents the high
dimensional input image, then

h = fρ(I) (9)

where f represents the feature extractor, ρ is the distribution
over which f is valid and h ∈ Rd with d << n is the
compact, low dimensional representation of I . In the next
section, we outline our method that scales DAPG to solve
directly from visual information.

IV. RRL: RESNET AS REPRESENTATION FOR RL
In an ideal RL setting, the agent interacts with the environ-

ment based on the current state, and in return, the environment
outputs the next state and the reward obtained. This works
well in a simulated environment but in a real-world scenario,
we do not have access to this low-level state information.
Instead we get the information from cameras (It) and other
onboard sensors like joint encoders (δt). To overcome the
challenges associated with learning from high dimensional
inputs, we use representations that project information into a
lower-dimensional manifolds. These representations can be
(a) learned in tandem with the RL objective. However, this
leads to non-stationarity issue where the distribution induced
by the current policy πi may lie outside the expressive power
of f , πi 6⊂ ρi at any step i during training. (b) decoupled from
RL by pre-training f . For this to work effectively, the feature
extractor must be trained on a sufficiently wide distribution
such that it covers any distribution that the policy might induce
during training, πi ⊂ ρ ∀ i. Getting hold of such task specific
training data beforehand becomes increasingly difficult as the
complexity and diversity of the task increases. To this end,
we propose to use a fixed feature extractor (Section V-B) that
is pretrained on a wide variety of real world scenarios like
ImageNet dataset [Highlighted in purple in Figure 1]. We
experimentally demonstrate that the diversity (Section V-C)
of the such feature extractor allows us to use it across all
tasks we considered. The use of pre-trained representations
induces stability to RRL as our representations are frozen
and do-not face the non-stationarity issues encountered while
learning policy and representation in tandem.

The features (ht) obtained from the above feature extractor
are appended with the information obtained from the internal
joint encoders of the Adroit Hand (δ t). As a substitute of
the exact state (st), we empirically show that [ht, δ t] can be
used as an input to the policy. In principle any RL algorithm
can be deployed to learn the policy, in RRL we build upon
Natural Policy Gradients [3] owing to effectiveness in solving

Algorithm 1 RRL
1: Input: 25 Human Demonstrations ρD
2: Initialize using Behavior Cloning [Eq.4].
3: repeat
4: for i = 1 to n do
5: for t = 1 to horizon do
6: Take action
7: at = πθ([Encoder(It), δ t])
8: and receive It+1, δ t+1, rt+1

9: from the environment.
10: end for
11: end for
12: Compute ∇θ log πθ(at|st) for each (s, a) ∈ ρπ, ρD
13: Compute Aπ(s, a) for each (s, a) ∈ ρπ and w(s, a)

for each (s, a) ∈ ρD according to Equations 2, 8
14: Calculate policy gradient according to 7
15: Compute Fisher matrix 6
16: Take the gradient ascent step according to 5.
17: Update the parameters of the value function in order

to approximate(2) : V πk (s
(n)
t) ≈

∑T
t′=t γ

t′−tr
(n)
t

18: until Satisfactory performance

complex high dimensional tasks [17]. We present our full
algorithm in Algorithm-1.

V. EXPERIMENTAL EVALUATIONS

Our experimental evaluations aims to address the following
questions: (1) Does pre-tained representations acquired via
large real world image dataset allow RRL to learn complex
tasks directly from proprioceptive signals (camera inputs
and joint encoders)? (2) How does RRL’s performance and
efficiency compare against other state-of-the-art methods? (3)
How various representational choices influence the generality
and versatility of the resulting behaviors? (5) What are the
effects of various design decisions on RRL? (6) Are com-
monly used benchmarks for studying image based continuous
control methods effective?

A. Tasks

Applicability of prior proprioception based RL methods
[49, 48, 47] have been limited to simple low dimensional tasks
like Cartpole, Cheetah, Reacher, Finger spin, Walker, Ball in
cup, etc. Moving beyond these simple domains, we investigate
RRL on Adroit manipulation suite [17] which consists of
contact-rich high-dimensional dexterous manipulation tasks
(Figure 3) that have found to be challenging ever for state (st)
based methods. Furthermore, unlike prior task sets, which are
fundamentally planar and devoid of depth perspective, the
Adroit manipulation suite consists of visually-rich physically-
realistic tasks that demand representations untangling complex
depth information.

B. Implementation Details

We use standard Resnet-34 model as RRL’s feature
extractor. The model is pre-trained on the ImageNet dataset
which consists of 1000 classes. It is trained on 1.28 million

Fig. 3. ADROIT manipulation suite consisting of complex dexterous
manipulation tasks involving object relocation, in hand manipulation (pen
repositioning), tool use (hammering a nail), and interacting with human
centric environments (opening a door).

images on the classification task of ImageNet. The last
layer of the model is removed to recover a 512 dimensional
feature space and all the parameters are frozen throughout the
training of the RL agent. During inference, the observations
obtained from the environment are of size 256 × 256, a
center crop of size 224× 224 is fed into the model. We also
evaluate our model using different Resnet sizes (Figure 7).
All the hyperparameters used for training are summarized in
Appendix(Table II). We report an average performance over
three random seeds for all the experiments.

C. Results

In Figure 4, we contrast the performance of RRL against
the state of the art baselines. We begin by observing that
NPG [3] struggles to solve the suite even with full state
information, which establishes the difficulty of our task suite.
DAPG(State) [17] uses privileged state information and a
few demonstrations from the environment to solve the tasks
and pose as the best case oracle. RRL demonstrates good
performance on all the tasks, relocate being the hardest, and
often approaches performance comparable to our strongest
oracle-DAPG(State).

A competing baseline FERM 1 [58] is quite unstable in
these tasks. It starts strong for hammer and door tasks but
saturates in performance. It makes slow progress in pen,
and completely fails for relocate. In Figure 5 [Left] we
compare the computational footprint of FERM (along with
other methods, discussed in later sections) with RRL. We
note that our method not only outperforms FERM but also
is approximately five times more compute-efficient.

1Reporting best performance amongst over 30 configurations per task we
tried in consultation with the FERM authors.

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

Door Opening

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

0

20

40

60

80

100

Su
cc

es
s

Ra
te

Tool Use (Hammer)

0 10 20 30
Robot Hours

0 10 20 30
Robot Hours

0 10 20 30
Robot Hours

0 10 20 30
Robot Hours

0 2 4 6 8 10 12
samples(M)

In-hand Manipulation (Pen)

0 5 10 15 20
Robot Hours

0 5 10 15 20
Robot Hours

0 5 10 15 20
Robot Hours

0 5 10 15 20
Robot Hours

0 2 4 6 8
samples(M)

Object Relocation

RRL(Ours)
FERM
DAPG(State)
NPG(State)

Fig. 4. Performance on ADROIT dexterous manipulation suite [17]: State of the art policy gradient method NPG(State) [29] struggles to solve the
suite even with privileged low level state information, establishing the difficulty of the suite. Amongst demonstration accelerated methods, RRL(Ours)
demonstrates stable performance and approaches performance of DAPG(State) [17] (upper bound), a demonstration accelerated method using privileged
state information. A competing baseline FERM [58] makes good initial, but unstable, progress in a few tasks and often saturates in performance before
exhausting our computational budget (40 hours/ task/ seed).

Ti
m

e(
H

ou
rs

)

0.0

10.0

20.0

30.0

40.0

RRL
(Ours)

FERM RRL
(Resnet 18)

RRL
(Resnet 50)

RRL
(VAE)

RRL
(ShuffleNet)

RRL
(MobileNet)

RRL
(vdvae)

Compute Cost
S

uc
ce

ss
 R

at
e

0

25

50

75

100

Default Light Position Light Direction Object Color Random Object

RRL(Ours) FERM

Hammer-v0

S
uc

ce
ss

 R
at

e

0

25

50

75

100

Default Light Position Light Direction Object Color Random Object

RRL(Ours) FERM

Door-v0

Fig. 5. LEFT: Comparison of the computational cost of RRL with Resnet34 i.e RRL(Ours), FERM - Strongest baseline, RRL with Resnet 18, RRL
with Resnet 50, RRL(VAE), RRL with ShuffleNet, RRL with MobileNet and RRL with Very Deep VAE baseline. CENTER,RIGHT: Influence of various
environment distractions (lightning condition, object color) on RRL(Ours), and FERM. RRL(Ours) consistently performs better than FERM in all the
variations we considered.

D. Effects of Visual Distractors

In Figure 5 [Center, Right] we probe the robustness
of the final policies by injecting visual distractors in the
environment during inference. We note that the resilience
of the resnet features induces robustness to RRL’s policies.
On the other hand, task-specific features learned by FERM
are brittle leading to larger degradation in performance. In
addition to improved sample and time complexity resulting
from the use of pre-trained features, the resilience, robustness,
and versatility of Resnet features lead to policies that are also
robust to visual distractors, clutter in the scene. More details
about the experiment setting is provided in Section VII-H in
Appendix.

E. Effect of Representation

Is Resnet lucky? To investigate if architectural choice
of Resnet is lucky, in Figure 6 we test different models
pretrained on ImageNet dataset as RRL’s feature extractors
– MobileNetV2 [44], ShuffleNet [27] and state of the art
hierarchical VAE [60] [Refer Section VII-E in Appendix
for more details]. Not much degradation in performance is
observed with respect to the Resnet model. This highlights
that it is not the architecture choices in particular, rather the
dataset on which models are being pre-trained, that delivers
generic features effective for the RL agents.

Task-specific vs Task-agnostic representation: In Figure
7, we compare the performance between (a) learning task

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

Door Opening

RRL(Ours)
RRL(ShuffleNet)
RRL(vdvae)
RRL(MobileNet)

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

0

20

40

60

80

100

Su
cc

es
s

Ra
te

Tool Use (Hammer)

Fig. 6. Effect of different types of Feature extractor pretrained on ImageNet
dataset, highlighting that not just Resnet but any feature extractor pretrained
on a sufficiently wide distribution of data remains effective.

specific representations (VAE) (b) generic representation
trained on a very wide distribution (Resnet). We note that
RRL using Resnet34 significantly outperforms a variant
RRL(VAE) (see appendix for details Section VII-G) that
learns features via commonly used variational inference
techniques on a task specific dataset [22, 23, 25, 28]. This
indicates that pre-trained Resnet provides task agnostic
and superior features compared to methods that explicitly
learn brittle (Section-V-H) and task-specific features using
additional samples from the environment. It is important to
note that the latent dimension of the Resnet34 and VAE
are kept same (512) for a fair comparison, however, the

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

Door Opening

RRL(Ours)
RRL(Resnet18)
RRL(Resnet50)
RRL(VAE)
NPG(Resnet34)

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

0

20

40

60

80

100

Su
cc

es
s

Ra
te

Tool Use (Hammer)

Fig. 7. Influence of representation: RRL(Ours), using resnet34 features,
outperforms commonly used representation

(
RRL(VAE)

)
learning method

VAE. Amongst different Resnet variations, Resnet34 strikes the balance
between representation capacity and computational overhead. NPG(Resnet34)
showcases the performance with Resnet34 features but without demonstration
bootstrapping, indicating that only representational choices are not enough
to solve the task suite.

model sizes are different as one operates on a very wide
distribution while the other on a much narrower task specific
dataset. Additionally, we summarize the compute cost of both
the methods RRL(Ours) and RRL(VAE) in Figrue 5 [Left].
We notice that even though RRL(VAE) is the cheapest, its
performance is quite low (Figure 7). RRL(Ours) strikes a
balance between compute and efficiency.

F. Effects of proprioception choices and sensor noise

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

Door Opening

RRL(Vision+Sensors)
RRL(Noise)
RRL(Vision)

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

0

20

40

60

80

100

Su
cc

es
s

Ra
te

Tool Use (Hammer)

Fig. 8. Influence of proprioceptive signals on RRL(Vision+sensors-Ours):
RRL(Noise) demonstrates that RRL remains effectiveness in presence of
noisy (2%) proprioception. RRL(Vision) demonstrates that RRL remains
performant with (only) visual inputs as well.

While it’s hard to envision a robot without proprioceptive
joint sensing, harsh conditions of the real-world can lead to
noisy sensing, even sensor failures. In Figure 8, we subjected
RRL to (a) signals with 2% noise in the information received
from the joint encoders RRL(Noise), and (b) only visual
inputs are used as proprioceptive signals RRL(Vision). In
both these cases, our methods remained performant with
slight to no degradation in performance.

G. Ablations and Analysis of Design Decisions

In our next set of experiments, we evaluate the effect of
various design decisions on our method. In Figure 7, we study
the effect of different Resnet features as our representation.
Resnet34, though computationally more demanding (Figure 5)
than Resnet18, delivers better performance owing to its

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

0

20

40

60

80

100

Su
cc

es
s

Ra
te

Tool Use (Hammer)

RRL(Sparse)
RRL(Dense)

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 2 4 6 8 10
Robot Hours

0 1 2 3 4
samples(M)

0

20

40

60

80

100

Su
cc

es
s

R
at

e

Tool Use (Hammer)

RRL(64,64)
RRL(128,128)
RRL(256,256)
RRL(512,512)

Fig. 9. LEFT: Influence of rewards signals: RRL(Ours), using sparse
rewards, remains performant with a variation RRLdense using well-shaped
dense rewards. RIGHT: Effect of policy size on the performance of RRL .
We observe that it is quite stable with respect to a wide range of policy
sizes.

improved representational capacity and feature expressivity.
A further boost in capacity (Resnet50) degrades performance,
likely due to the incorporation of less useful features and
an increase in samples required to train the resulting larger
policy network.

Reward design, especially for complex high dimensional
tasks, requires domain expertise. RRL replaces the needs of
well-shaped rewards by using a few demonstrations (to curb
the exploration challenges in high dimensional space) and
sparse rewards (indicating task completion). This significantly
lowers the domain expertise required for our methods. In
Figure 9-LEFT, we observe that RRL (using sparse rewards)
delivers competitive performance to a variant of our methods
that uses well-shaped dense rewards while being resilient to
variation in policy network capacity (Figure 9-RIGHT).

H. Rethinking benchmarking for visual RL

DMControl [31] is a widely used benchmark for propri-
oception based RL methods – RAD [49], SAC+AE [56],
CURL [51], DrQ [48]. While these methods perform well
(Table I) on such simple DMControl tasks, their progress
struggles to scale when met with task representative of real
world complexities such as realistic Adroit Manipulation
benchmarks (Figure 4).

For example we demonstrate in Figure 4 that a repre-
sentative SOTA methods FERM (uses expert demos along
with RAD) struggles to perform well on Adroit Manipulation
benchmark. On the contrary, RRL using Resnet features pre-
trained on real world image dataset, delivers state comparable
results on Adroit Manipulation benchmark while struggles on
the DMControl (RRL+SAC: RRL using SAC and Resnet34
features I). This highlights large domain gap between the
DMControl suite and the real-world.

We further note that the pretrained features learned by
SOTA methods aren’t as widely applicable. We use a pre-
trained RAD encoder (pretrained on Cartpole) as fixed
feature extractor (Fixed RAD encoder in Table I) and retrain
the policy using these features for all environments. The
performance degrades for all the tasks except Cartpole. This

500K Step Scores RRL+SAC RAD Fixed RAD Encoder CURL SAC+AE State SAC
Finger, Spin 422± 102 947± 101 789± 190 926± 45 884± 128 923± 211
Cartpole, Swing 357± 85 863± 9 875± 01 845± 45 735± 63 848± 15
Reacher, Easy 382± 299 955± 71 53± 44 929± 44 627± 58 923± 24
Cheetah, Run 154± 23 728± 71 203± 31 518± 28 550± 34 795± 30
Walker, Walk 148± 12 918± 16 182± 40 902± 43 847± 48 948± 54
Cup, Catch 447± 132 974± 12 719± 70 959± 27 794± 58 974± 33
100K Step Scores
Finger, Spin 135± 67 856± 73 655± 104 767± 56 740± 64 811± 46
Cartpole, Swing 192± 19 828± 27 840± 34 582± 146 311± 11 835± 22
Reacher, Easy 322± 285 826± 219 162± 40 538± 233 274± 14 746± 25
Cheetah, Run 72± 63 447± 88 188± 20 299± 48 267± 24 616± 18
Walker, Walk 63± 07 504± 191 106± 11 403± 24 394± 22 891± 82
Cup, Catch 261± 57 840± 179 533± 148 769± 43 391± 82 746± 91

TABLE I
RESULTS ON DMCONTROL BENCHMARK. RAD OUTPERFORMS ALL THE BASELINES WHEREAS RRL PERFORMS WORSE IN THE 100K AND 500K

ENVIRONMENTAL STEP BENCHMARK SUGGESTING THAT IT IS QUICKER TO LEARN TASK SPECIFIC REPRESENTATION IN SIMPLE TASKS WHEREAS FIXED

RAD ENCODER HIGHLIGHTS THAT THE REPRESENTATIONS LEARNED BY RAD ARE NARROW AND TASK SPECIFIC.

highlights that the representation learned by RAD (even
with various image augmentations) are task specific and
fail to generalize to other tasks set with similar visuals.
Furthermore, learning such task specific representations are
easier on simpler scenes but their complexity grows drastically
as the complexity of tasks and scenes increases. To ensure
that important problems aren’t overlooked, we emphasise
the need for the community to move towards benchmarks
representative of realistic real world tasks.

VI. STRENGTHS, LIMITATIONS & OPPORTUNITIES

This paper presents an intuitive idea bringing together
advancements from the fields of representation learning,
imitation learning, and reinforcement learning. We present a
very simple method named RRL that leverages Resnet features
as representation to learn complex behaviors directly from
proprioceptive signals. The resulting algorithm approaches
the performance of state-based methods in complex ADROIT
dexterous manipulation suite.

Strengths: The strength of our insight lies in its simplicity,
and applicability to almost any reinforcement or imitation
learning algorithm that intends to learn directly from high
dimensional proprioceptive signals. We present RRL , an
instantiation of this insight on top of imitation + (on-policy)
reinforcement learning methods called DAPG, to showcase its
strength. It presents yet another demonstration that features
learned by Resnet are quite general and are broadly applicable.
Resnet features trained over 1000s of real-world images are
more robust and resilient in comparison to the features learned
by methods that learn representation and policies in tandem
using only samples from the task distribution. The use of
such general but frozen representations in conjunction with
RL pipelines additionally avoids the non-stationary issues
faced by competing methods that simultaneously optimizes
reinforcement and representation objectives, leading to more
stable algorithms. Additionally, not having to train your own
features extractors results in a significant sample and compute
gains, Refer to Figure 5.

Limitations: While this work demonstrates promises of
using pre-trained features, it doesn’t investigate the data

mismatch problem that might exist. Real-world datasets used
to train resnet features are from human-centric environments.
While we desire robots to operate in similar settings, there
are still differences in their morphology and mode of
operations. Additionally, resent (and similar models) acquire
features from data primarily comprised of static scenes. In
contrast, embodied agents desire rich features of dynamic
and interactive movements.

Opportunities: RRL uses a single pre-trained represen-
tation for solving all the complex and very different tasks.
Unlike the domains of vision and language, there is a non-
trivial cost associated with data in robotics. The possibility
of having a standard shared representational space opens up
avenues for leveraging data from various sources, building
hardware-accelerated devices using feature compression, low
latency and low bandwidth information transmission.

REFERENCES

[1] Ronald J. Williams. “Simple statistical gradient-
following algorithms for connectionist reinforcement
learning”. In: Machine Learning. 1992, pp. 229–256.

[2] S. Kakade. “A Natural Policy Gradient”. In: NIPS.
2001.

[3] Sham M Kakade. “A natural policy gradient”. In:
Advances in neural information processing systems
14 (2001).

[4] Sergey Levine and Vladlen Koltun. “Guided Policy
Search”. In: Proceedings of the 30th International
Conference on Machine Learning. Ed. by Sanjoy
Dasgupta and David McAllester. Vol. 28. Proceedings
of Machine Learning Research 3. Atlanta, Georgia,
USA: PMLR, 17–19 Jun 2013, pp. 1–9. URL: http:
//proceedings.mlr.press/v28/levine13.
html.

[5] Volodymyr Mnih et al. Playing Atari with Deep
Reinforcement Learning. 2013. arXiv: 1312.5602
[cs.LG].

[6] Yoshua Bengio, Aaron Courville, and Pascal Vincent.
Representation Learning: A Review and New Perspec-
tives. 2014. arXiv: 1206.5538 [cs.LG].

http://proceedings.mlr.press/v28/levine13.html
http://proceedings.mlr.press/v28/levine13.html
http://proceedings.mlr.press/v28/levine13.html
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1206.5538

[7] Diederik P Kingma and Max Welling. Auto-Encoding
Variational Bayes. 2014. arXiv: 1312 . 6114
[stat.ML].

[8] Kaiming He et al. Deep Residual Learning for Image
Recognition. 2015. arXiv: 1512.03385 [cs.CV].

[9] Volodymyr Mnih et al. “Human-level control through
deep reinforcement learning”. In: Nature 518.7540 (Feb.
2015), pp. 529–533. ISSN: 00280836. URL: http:
//dx.doi.org/10.1038/nature14236.

[10] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-Scale Image Recog-
nition. 2015. arXiv: 1409.1556 [cs.CV].

[11] Jost Tobias Springenberg et al. Striving for Simplicity:
The All Convolutional Net. 2015. arXiv: 1412.6806
[cs.LG].

[12] Christian Szegedy et al. Rethinking the Inception
Architecture for Computer Vision. 2015. arXiv: 1512.
00567 [cs.CV].

[13] Irina Higgins et al. “beta-vae: Learning basic visual
concepts with a constrained variational framework”.
In: (2016).

[14] Sergey Levine et al. End-to-End Training of Deep
Visuomotor Policies. 2016. arXiv: 1504 . 00702
[cs.LG].

[15] Abhishek Gupta et al. Learning Dexterous Manipula-
tion for a Soft Robotic Hand from Human Demonstra-
tion. 2017. arXiv: 1603.06348 [cs.LG].

[16] Todd Hester et al. Deep Q-learning from Demonstra-
tions. 2017. arXiv: 1704.03732 [cs.AI].

[17] Aravind Rajeswaran et al. “Learning Complex Dexter-
ous Manipulation with Deep Reinforcement Learning
and Demonstrations”. In: CoRR abs/1709.10087 (2017).
arXiv: 1709.10087. URL: http://arxiv.org/
abs/1709.10087.

[18] John Schulman et al. Trust Region Policy Optimization.
2017. arXiv: 1502.05477 [cs.LG].

[19] David Silver et al. “Mastering the game of Go with-
out human knowledge”. In: Nature 550 (Oct. 2017),
pp. 354–. URL: http://dx.doi.org/10.1038/
nature24270.

[20] Christopher P. Burgess et al. Understanding disen-
tangling in β-VAE. 2018. arXiv: 1804 . 03599
[stat.ML].

[21] Lasse Espeholt et al. IMPALA: Scalable Distributed
Deep-RL with Importance Weighted Actor-Learner
Architectures. 2018. arXiv: 1802.01561 [cs.LG].

[22] David Ha and Jürgen Schmidhuber. Recurrent World
Models Facilitate Policy Evolution. 2018. arXiv: 1809.
01999 [cs.LG].

[23] David Ha and Jürgen Schmidhuber. “World models”.
In: arXiv preprint arXiv:1803.10122 (2018).

[24] Tuomas Haarnoja et al. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor. 2018. arXiv: 1801 . 01290
[cs.LG].

[25] Irina Higgins et al. DARLA: Improving Zero-Shot
Transfer in Reinforcement Learning. 2018. arXiv:
1707.08475 [stat.ML].

[26] Dmitry Kalashnikov et al. QT-Opt: Scalable Deep
Reinforcement Learning for Vision-Based Robotic
Manipulation. 2018. arXiv: 1806.10293 [cs.LG].

[27] Ningning Ma et al. ShuffleNet V2: Practical Guidelines
for Efficient CNN Architecture Design. 2018. arXiv:
1807.11164 [cs.CV].

[28] Ashvin Nair et al. Visual Reinforcement Learning
with Imagined Goals. 2018. arXiv: 1807.04742
[cs.LG].

[29] Aravind Rajeswaran et al. Towards Generalization and
Simplicity in Continuous Control. 2018. arXiv: 1703.
02660 [cs.LG].

[30] Pierre Sermanet et al. Time-Contrastive Networks: Self-
Supervised Learning from Video. 2018. arXiv: 1704.
06888 [cs.CV].

[31] Yuval Tassa et al. DeepMind Control Suite. 2018. arXiv:
1801.00690 [cs.AI].

[32] Lilian Weng. “Policy Gradient Algorithms”. In:
lilianweng.github.io/lil-log (2018). URL: https://
lilianweng.github.io/lil- log/2018/
04 / 08 / policy - gradient - algorithms .
html.

[33] Henry Zhu et al. Dexterous Manipulation with Deep
Reinforcement Learning: Efficient, General, and Low-
Cost. 2018. arXiv: 1810.06045 [cs.AI].

[34] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd
Hester. “Challenges of real-world reinforcement learn-
ing”. In: arXiv preprint arXiv:1904.12901 (2019).

[35] Tuomas Haarnoja et al. Soft Actor-Critic Algo-
rithms and Applications. 2019. arXiv: 1812.05905
[cs.LG].

[36] Danijar Hafner et al. Learning Latent Dynamics for
Planning from Pixels. 2019. arXiv: 1811.04551
[cs.LG].

[37] Max Jaderberg et al. “Human-level performance in 3D
multiplayer games with population-based reinforce-
ment learning”. In: Science 364.6443 (May 2019),
pp. 859–865. ISSN: 1095-9203. DOI: 10 . 1126 /
science.aau6249. URL: http://dx.doi.
org/10.1126/science.aau6249.

[38] Tejas Kulkarni et al. Unsupervised Learning of Object
Keypoints for Perception and Control. 2019. arXiv:
1906.11883 [cs.CV].

[39] Lucas Manuelli et al. kPAM: KeyPoint Affordances
for Category-Level Robotic Manipulation. 2019. arXiv:
1903.06684 [cs.RO].

[40] Lucas Manuelli et al. “kpam: Keypoint affordances for
category-level robotic manipulation”. In: arXiv preprint
arXiv:1903.06684 (2019).

[41] Anusha Nagabandi et al. Deep Dynamics Models for
Learning Dexterous Manipulation. 2019. arXiv: 1909.
11652 [cs.RO].

[42] OpenAI et al. Solving Rubik’s Cube with a Robot Hand.
2019. arXiv: 1910.07113 [cs.LG].

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1504.00702
https://arxiv.org/abs/1504.00702
https://arxiv.org/abs/1603.06348
https://arxiv.org/abs/1704.03732
https://arxiv.org/abs/1709.10087
http://arxiv.org/abs/1709.10087
http://arxiv.org/abs/1709.10087
https://arxiv.org/abs/1502.05477
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
https://arxiv.org/abs/1804.03599
https://arxiv.org/abs/1804.03599
https://arxiv.org/abs/1802.01561
https://arxiv.org/abs/1809.01999
https://arxiv.org/abs/1809.01999
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1707.08475
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1807.11164
https://arxiv.org/abs/1807.04742
https://arxiv.org/abs/1807.04742
https://arxiv.org/abs/1703.02660
https://arxiv.org/abs/1703.02660
https://arxiv.org/abs/1704.06888
https://arxiv.org/abs/1704.06888
https://arxiv.org/abs/1801.00690
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://arxiv.org/abs/1810.06045
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1811.04551
https://arxiv.org/abs/1811.04551
https://doi.org/10.1126/science.aau6249
https://doi.org/10.1126/science.aau6249
http://dx.doi.org/10.1126/science.aau6249
http://dx.doi.org/10.1126/science.aau6249
https://arxiv.org/abs/1906.11883
https://arxiv.org/abs/1903.06684
https://arxiv.org/abs/1909.11652
https://arxiv.org/abs/1909.11652
https://arxiv.org/abs/1910.07113

[43] Zengyi Qin et al. KETO: Learning Keypoint Repre-
sentations for Tool Manipulation. 2019. arXiv: 1910.
11977 [cs.RO].

[44] Mark Sandler et al. MobileNetV2: Inverted Residuals
and Linear Bottlenecks. 2019. arXiv: 1801.04381
[cs.CV].

[45] Ramprasaath R. Selvaraju et al. “Grad-CAM: Visual
Explanations from Deep Networks via Gradient-Based
Localization”. In: International Journal of Computer
Vision 128.2 (Oct. 2019), pp. 336–359. ISSN: 1573-
1405. DOI: 10.1007/s11263-019-01228-7.
URL: http://dx.doi.org/10.1007/s11263-
019-01228-7.

[46] Michael Ahn et al. “ROBEL: RObotics BEnchmarks
for Learning with low-cost robots”. In: Conference on
Robot Learning. PMLR. 2020, pp. 1300–1313.

[47] Danijar Hafner et al. Dream to Control: Learning
Behaviors by Latent Imagination. 2020. arXiv: 1912.
01603 [cs.LG].

[48] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image
Augmentation Is All You Need: Regularizing Deep
Reinforcement Learning from Pixels. 2020. arXiv:
2004.13649 [cs.LG].

[49] Michael Laskin et al. Reinforcement Learning with Aug-
mented Data. 2020. arXiv: 2004.14990 [cs.LG].

[50] Aravind Rajeswaran, Igor Mordatch, and Vikash Ku-
mar. A Game Theoretic Framework for Model Based
Reinforcement Learning. 2020. arXiv: 2004.07804
[cs.LG].

[51] Aravind Srinivas, Michael Laskin, and Pieter Abbeel.
CURL: Contrastive Unsupervised Representations for
Reinforcement Learning. 2020. arXiv: 2004.04136
[cs.LG].

[52] Adam Stooke et al. Decoupling Representation Learn-
ing from Reinforcement Learning. 2020. arXiv: 2009.
08319 [cs.LG].

[53] A.K Subramanian. PyTorch-VAE. https://github.
com/AntixK/PyTorch-VAE. 2020.

[54] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks.
2020. arXiv: 1905.11946 [cs.LG].

[55] Denis Yarats and Ilya Kostrikov. Soft Actor-Critic
(SAC) implementation in PyTorch. https : / /
github.com/denisyarats/pytorch_sac.
2020.

[56] Denis Yarats et al. Improving Sample Efficiency in
Model-Free Reinforcement Learning from Images. 2020.
arXiv: 1910.01741 [cs.LG].

[57] Yang You et al. KeypointNet: A Large-scale 3D
Keypoint Dataset Aggregated from Numerous Human
Annotations. 2020. arXiv: 2002.12687 [cs.CV].

[58] Albert Zhan et al. A Framework for Efficient Robotic
Manipulation. 2020. arXiv: 2012.07975 [cs.RO].

[59] Henry Zhu et al. The Ingredients of Real-World Robotic
Reinforcement Learning. 2020. arXiv: 2004.12570
[cs.LG].

[60] Rewon Child. Very Deep VAEs Generalize Autoregres-
sive Models and Can Outperform Them on Images.
2021. arXiv: 2011.10650 [cs.LG].

[61] Austin Stone et al. The Distracting Control Suite – A
Challenging Benchmark for Reinforcement Learning
from Pixels. 2021. arXiv: 2101.02722 [cs.RO].

[62] Chelsea Finn et al. “Learning Visual Feature Spaces
for Robotic Manipulation with Deep Spatial Autoen-
coders”. In: ().

https://arxiv.org/abs/1910.11977
https://arxiv.org/abs/1910.11977
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1007/s11263-019-01228-7
https://arxiv.org/abs/1912.01603
https://arxiv.org/abs/1912.01603
https://arxiv.org/abs/2004.13649
https://arxiv.org/abs/2004.14990
https://arxiv.org/abs/2004.07804
https://arxiv.org/abs/2004.07804
https://arxiv.org/abs/2004.04136
https://arxiv.org/abs/2004.04136
https://arxiv.org/abs/2009.08319
https://arxiv.org/abs/2009.08319
https://github.com/AntixK/PyTorch-VAE
https://github.com/AntixK/PyTorch-VAE
https://arxiv.org/abs/1905.11946
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac
https://arxiv.org/abs/1910.01741
https://arxiv.org/abs/2002.12687
https://arxiv.org/abs/2012.07975
https://arxiv.org/abs/2004.12570
https://arxiv.org/abs/2004.12570
https://arxiv.org/abs/2011.10650
https://arxiv.org/abs/2101.02722

VII. APPENDIX

A. Project’s webpage

Full details of the project (including video results, codebase, etc) are available at https://sites.google.com/view/abstractions4rl.

B. Overview of all methods used in baselines and ablations

The environmental setting and the feature extractor used in all the variations and different methods considered is summarized
in Table VII-B

Observation Latent
Features

Demos Rewards

Vision (RGB) Joint
Encoders

Environment
State

RRL(Ours) ✓ ✓ Resnet34 ✓ Sparse

RRL(Resnet18) ✓ ✓ Resnet18 ✓ Sparse

RRL(Resnet50) ✓ ✓ Resnet50 ✓ Sparse

RRL (VAE) ✓ ✓ VAE ✓ Sparse

RRL(Vision) ✓ Resnet34 ✓ Sparse

FERM ✓ ✓ ✓ Sparse

NPG(State) ✓ ✓ Sparse

NPG(Vision) ✓ Resnet34 Sparse

DAPG(State) ✓ ✓ ✓ Sparse

RRL(Sparse) ✓ ✓ Resnet34 ✓ Sparse

RRL(Dense) ✓ ✓ Resnet34 ✓ Dense

RRL(Noise) ✓ ✓ Resnet34 ✓ Sparse

RRL(Vision +
 Sensors)

✓ ✓ Resnet34 ✓ Sparse

RRL(ShuffleNet) ✓ ✓ ShuffleNet-v2 ✓ Sparse

RRL(MobileNet) ✓ ✓ MobileNet-v2 ✓ Sparse

RRL(vdvae) ✓ ✓ Very Deep
VAE

✓ Sparse

C. RRL(Ours)

Parameters Setting
BC batch size 32
BC epochs 5
BC learning rate 0.001
Policy Size (256, 256)
vf batch size 64
vf epochs 2
rl step size 0.05
rl gamma 0.995
rl gae 0.97
lam 0 0.01
lam 1 0.95

TABLE II
HYPERPARAMETER DETAILS FOR ALL THE RRL VARIATIONS.

Same parameters are used across all the tasks (Pen, Door, Hammer, Relocate, PegInsertion, Reacher) unless explicitly
mentioned. Sparse reward setting is used in all the hand manipulation environments as proposed by Rajeswaran et al. along
with 25 expert demonstrations. We have directly used the parameters (summarize in Table II) provided by DAPG without
any additional hyperparameter tuning except for the policy size (used same across all tasks). On the Adroit Manipulation
task, 200 trajectories for Hammer-v0, Door-v0, Relocate-v0 whereas 400 trajectories for Pen-v0 per iteration are collected in
each iteration.

D. Results on MJRL Environment

https://sites.google.com/view/abstractions4rl

0 1 2 3 4
Robot Hours

0 1 2 3 4
Robot Hours

0 1 2 3 4
Robot Hours

0 1 2 3 4
Robot Hours

0.00 0.25 0.50 0.75 1.00 1.25 1.50
samples(M)

PegInsertion

RRL(Ours)
FERM
DAPG(State)
NPG(State)

0 1 2 3 4 5
Robot Hours

0 1 2 3 4 5
Robot Hours

0 1 2 3 4 5
Robot Hours

0 1 2 3 4 5
Robot Hours

0.0 0.5 1.0 1.5 2.0
samples(M)

0

20

40

60

80

100

Su
cc

es
s

Ra
te

Reacher

Fig. 10. Results on MJRL Environment. RRL outperforms FERM
and delivers results on par with DAPG(State) in the PegInsertion task. In
Reacher, FERM outperforms RRL following that learning task specific
representations is easier in simple tasks.

We benchmark the performance of RRL on two of the
MJRL environments [50], Reacher and Peg Insertion in
Figure 10. These environments are quite low dimensional
(7DoF Robotic arm) compared to the Adroit hand (24 DoF)
but still require rich understanding of the task. In the peg
insertion task, RRL delivers state comparable (DAPG(State))
results and significantly outperforms FERM. However, in the
Reacher task, we notice that DAPG(State) and FERM perform
surprisingly well whereas RRL struggles to perform initially.
This highlights that using task specific representations in
simple, low dimensional environments might be beneficial as
it is easy to overfit the feature encoder for the task in hand
while the Resnet features are quite generic. For the MJRL
environment, shaped reward setting is used as provided in the
repository 2 along with 200 expert demonstrations. For the
Peg Insertion task 200 trajectories and for Reacher task 400
trajectories are collected per iteration.

E. Other variations of RRL

a) RRL(MobileNet), RRL(ShuffleNet) : The encoders (ShuffleNet [27] and MobileNet [44]) are pretrained on ImageNet
Dataset using a classification objective. We pick the pretrained models from torchvision directly and freeze the parameters
during the entire training of the RL agent. Similar to RRL(Ours), the last layer of the model is removed and a latent feature
of dimension 1024 and 1280 in case of ShuffleNet and MobileNet respectively is used.
b) RRL(vdvae) : We use a very recent state of the art hierarchical VAE [60] that is trained on ImageNet dataset. The code
along with the pretrained weights are publically available 3 by the author. We use the intermediate features of the encoder of
dimension 512. All the parameters are frozen similar to RRL(Ours).

F. DMControl Experiment Details

For the RAD [49], CURL [51], SAC+AE [56] and State SAC [35], we report the numbers directly provided by Laskin
et al. For SAC+RRL, Resnet34 is used as a fixed feature extractor and the past three output features (frame stack= 3) are
used as a representative of state information in SAC algorithm. For the fixed RAD encoder, we train the RL agent along
with RAD encoder using the default hyperparameters provided by the authors for Cartpole environment. We used the trained
encoder as a fixed feature extractor and retrain the policies for all the tasks. The frame skip values are task specific as
mentioned in [56] also outlined in Table IV. The hyperparameters used are summarized in the Table III where a grid search
is made on actor lr = {1e− 3, 1e− 4}, critic lr = {1e− 3, 1e− 4}, critic update freq = {1, 2}, critic tau = {0.01, 0.05, 0.1}
and an average over 3 seeds is reported. SAC implementation in PyTorch courtesy [55].

G. RRL(VAE)

Fig. 11. ROW1: Original input images of the Hammer task; ROW2: Corresponding Reconstructed images; ROW3: Original input images of the Door
task; ROW4: Corresponding Reconstructed images. These images depict that the latent features sufficiently encodes features required to reconstruct the images.

For training, we collected a dataset of 1 million images of size 64 x 64. Out of the 1 million images collected, 25% of
the images are collected using an optimal course of actions (expert policy), 25% with a little noise (expert policy + small
noise), 25% with even higher level of noise (expert policy + large noise) and remaining portion by randomly sampling

2https://github.com/aravindr93/mjrl
3https://github.com/openai/vdvae

Parameter Setting
frame stack 3
replay buffer capacity 100000
init steps 1000
batch size 128
hidden dim 1024
critic lr 1e-3
critic beta 0.9
critic tau 0.01
critic target update freq 2
actor lr 1e-3
actor beta 0.9
actor log std min -10
actor log std max 2
actor update freq 2
discount 0.99
init temperature 0.1
alpha lr 1e-4
alpha beta 0.5

TABLE III
SAC HYPERPARAMETERS.

Environment action repeat
Cartpole, Swing 8
Reacher, Easy 4
Cheetah, Run 4
Cup, Catch 4
Walker, Walk 2
Finger, Spin 2

TABLE IV
ACTION REPEAT VALUES FOR DMCONTROL SUITE

actions (random actions). This is to ensure that the images collected sufficiently represents the distribution faced by policy
during the training of the agent. We observed that this significantly helps compared to collecting data only from the expert
policy. The variational auto-encoder(VAE) is trained using a reconstruction objective [7] for 10epochs. Figure 11 showcases
the reconstructed images. We used a latent size of 512 for a fair comparison with Resnet. The weights of the encoder are
freezed and used as feature extractors in place of Resnet in RRL. RRL(VAE) also uses the inputs from the pro-prioceptive
sensors along with the encoded features. VAE implementation courtesy [53].

H. Visual Distractor Evaluation details

Fig. 12. COL1: Original images; COL2: Change in light position; COL3: Change in light direction; COL4: Randomizing object colors; COL5: Introducing
a random object in the scene. All the parameters are randomly sampled every time in an episode.

In order to test the generalisation performance of RRL and FERM [58], we subject the environment to various kinds of
visual distractions during inference (Figure 12). Note all parameters are freezed during this evaluation, an average performance
over 75 rollouts is reported. Following distractors were used during inference to test robustness of the final policy -

• Random change in light position.
• Random change in light direction.
• Random object color. (Handle, door color for Door-v0; Different hammer parts and nail for Hammer-v0)
• Introducing a new object in scene - random color, position, size and geometry (Sphere, Capsule, Ellipsoid, Cylinder,

Box).

I. Compute Cost calculation

We calculate the actual compute cost involved for all the methods (RRL(Ours), FERM, RRL(Resnet-50), RRL(Resnet-18))
that we have considered. Since in a real-world scenario there is no simulation of the environment we do not include the cost
of simulation into the calculation. For fair comparison we show the compute cost with same sample complexity (4 million
steps) for all the methods. FERM is quite compute intensive (almost 5x RRL(Ours)) because (a) Data augmentation is applied
at every step (b) The parameters of Actor and Critic are updated once/twice at every step (Compute results shown are with
one update per step) whereas most of the computation of RRL goes in the encoding of features using Resnet. The cost of
VAE pretraining in included in the over all cost. RRL(Ours) that uses Resnet-34 strikes a balance between the computational
cost and performance. Note: No parallel processing is used while calculating the cost.

	Introduction
	Related Work
	Learning without explicit representation
	Learning with supervised representations
	Learning with unsupervised representations
	Learning with representations and demonstrations

	Background
	Preliminaries: MDP
	Policy Gradient
	Demo Augmented Policy Gradient
	Representation Learning

	RRL: Resnet as Representation for RL
	Experimental Evaluations
	Tasks
	Implementation Details
	Results
	Effects of Visual Distractors
	Effect of Representation
	Effects of proprioception choices and sensor noise
	Ablations and Analysis of Design Decisions
	Rethinking benchmarking for visual RL

	Strengths, Limitations & Opportunities
	Appendix
	Project's webpage
	Overview of all methods used in baselines and ablations
	RRL(Ours)
	Results on MJRL Environment
	Other variations of RRL
	DMControl Experiment Details
	RRL(VAE)
	Visual Distractor Evaluation details
	Compute Cost calculation

