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Abstract
We consider here the problem of co-clustering
count matrices with a high level of missing values
that may evolve along the time. We introduce a
generative model, named dynamic latent block
model (dLBM), to handle this situation and which
extends the classical binary latent block model
(LBM) to the dynamic case. The modeling of the
dynamic time framework in a continuous time re-
lies on a non-homogeneous Poisson process, with
a latent partition of time intervals. The continu-
ous time is handled by a time partition over the
whole considered time period, where the interac-
tions are aggregated on the time intervals of such
partition obtaining a sequence of static matrices
that allows us to identify meaningful time clusters.
We proposed to use the SEM-Gibbs algorithm for
model inference and the ICL criterion for model
selection. Finally, an application with real-world
data is proposed.

1. Introduction
In many applications, it is now frequent to have to sum-
marize large matrices with a large amount of missing data
that may evolve along the time. For instance, such data are
commonly produced by e-commerce systems which record
in continuous time all purchases of products made by cus-
tomers. It is of great interest for those companies to cluster
both customers and products to better understand the pur-
chasing behaviors for marketing and purchase prediction.
The simultaneous clustering of rows and columns of matri-
ces is known as a co-clustering problem. We propose in this
paper to add a third dimension of analysis to co-clustering
by handling the dynamic of the count data generation.
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The latent block model (LBM) is often used as a basis for
many model-based methods for co-clustering. This model
was proposed for the first time by Govaert & Nadif (2003)
and it is based on the assumption that rows and columns are
grouped in hidden clusters. In the last decade, the model has
been extended allowing to deal with counting data (Nadif
& Govaert, 2010), real data (Lomet et al., 2013), categor-
ical data (Keribin et al., 2015), ordinal data (Jacques &
Biernacki, 2018; Corneli et al., 2020) and functional data
(Bouveyron et al., 2018).

In this work, we extend the latent block model to the dy-
namic case by relying on a non-homogeneous Poisson pro-
cess, with a latent partition of time intervals, for modeling
the temporal data generation process. Such an approach has
been already used, in a different context and with a different
inference, by Corneli et al. (2018) for clustering dynamic
networks. We propose here a SEM-Gibbs algorithm for
model inference and to make use of the ICL criterion for
model selection. The proposed model, named dynamic
latent block model (dLBM), allows therefore to discover
latent partitions for rows and columns, but also for the time
periods. Thus, dLBM provides a meaningful summary of
a massive set of data, even with a large number of missing
data. We present experiments on data set extracted from
Amazon to illustrate the main features of our approach.

2. The dynamic latent block model
In this section, we introduce the dynamic latent block model
(dLBM), the main goal of this model is the simultaneous
clustering of rows and columns of high-dimensional sparse
matrices in a dynamic time framework. The data we con-
sider are organized such that we denoted as i = 1, ..., N the
index of individuals (rows) and as j = 1, ..., P the index
of objects (columns). We also consider a time period [0,T]
during which the total number of rows, N , and columns, P ,
is fixed. Moreover, we indicate as Xij(t) the matrix that
contains the number of interactions occurring between the
individual i and the item j at time t ∈ [0, T ]. When no
interaction between individuals and objects occurs, we have
therefore missing values and the number of interactions is
0 for time t. Following Corneli et al. (2016), we further
assume that the number of interactions between individuals
and objects follows a non-homogeneous Poisson process
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(NHPP) where the intensity function λ(t) only depends on
the clusters they belong to. The latent structure of rows and
columns of the matrix X(t) is identified by:

• z = (zik; i = 1, ..., N ; k = 1, ...,K) : represents
the clustering of rows into K groups: A1, ...,AK .
Row i belongs to cluster Ak iff zik = 1 and
zi= (zik)k ∈ {0 , 1}K is the group indicator of row
i;

• w = (wj`; j = 1, ..., P ; ` = 1, ..., L): represents
the clustering of columns into L groups: B1, ...,BL.
Column j belongs to cluster B` iff wj` = 1 and
wj= (wj`)` ∈ {0 , 1}L is the group indicator of col-
umn j;

Moreover, z and w are assumed to be independent and that
they are distributed as follows:

p(z|γ) =
K∏

k=1
γ
|Ak|
k , (1)

where γk = P{zi = k};
K∑

k=1
γk = 1 and |Ak| represents

the number of rows in the cluster Ak.

p(w|ρ) =
L∏

`=1
ρ
|B`|
` , (2)

where ρ` = P{wj = `};
L∑

`=1
ρ` = 1 and |B`| represent

the number of columns in the cluster B`. As mentioned
previously, a non-homogeneous Poisson process (NHPP)
is used to count the interactions between the row i and the
column j up to time t ∈ [0, T ], denoted by Xij(t):

Xij(t)|zikwj` = 1 ∼ P
(∫ t

0
λk`(u)du

)
, (3)

where λk`(t) represents the intensity function that only de-
pends on the considered row cluster k and on the column
cluster `. Moreover, λk`(t) has to be positive and integrable
on the time interval [0, T ].

In order to ease the understanding of the time dimension, we
also assume that the whole continuous time period can be
split in time clusters on which the data generation process
is stable. It is worth noticing that a specific time cluster can
occur more than once in the temporal line when its peculiar
features are repeated after some time. Thanks to this assump-
tion and without loss of generality the continuous time inter-
val [0,T] can be discretized in sufficient number U of subin-
tervals Iu = [tu−1−tu[, 0 = t0 < t1 < · · · < tU = T , that
will be then clustered. The number of interactions between

i and j on the considered time partition Iu is summarized
by Xiju and is defined as:

Xiju := Xij(tu)−Xij(tu−1),∀(i, j, u).

We introduce a tensor X = {Xiju}iju with dimensionality
N × P × U . To model the membership to time clusters,
a new latent variable s is introduced, in particular su = c
if the time interval Iu belongs to the time cluster Dc. We
assume that s follows a multinomial distribution:

p(s|δ) =
C∏

c=1
δ|Dc|

c , (4)

where δc = P{su = c};
C∑

c=1
δc = 1 and |Dc| represents the

number of time intervals in the cluster Dc.

Once these additional assumpions have been made, we can
rewrite Eq. (3) considering that the intensity functions are
stepwise constant on each time cluster Dc. Thus:

Xiju|zikwj`suc = 1 ∼ P(λk`c∆u) (5)

where ∆u indicates the length of the interval Iu that is
usually constant, ∆u = ∆. Moreover, we can set ∆u = 1
without loss of generality.

3. Likelihood and model inference
From Eq. (5), it holds that:

p(Xiju|zikwjlsuc = 1, λk`c) =
(

(λklc)Xiju

Xiju! exp (−λklc)
)

(6)
Therefore, we can introduce the K × L× C tensor λ, iden-
tified by the triplet (i, j, u) and whose elements are denoted
as λk`c. At this point it is possible to write the complete
data likelihood of the model, identified by the following
equation:

p(X, z,w, s|γ, ρ, δ, λ) = p(z|γ)·p(w|ρ)·p(s|δ)·p(X|z, w, s, λ)
(7)

Looking at the right hand side of the Eq. (7), we can notice
that p(z|γ), p(w|ρ) and p(s|δ) have been defined in the
previous section respectively by the Eqs. (1), (2) and (4).
The joint distribution of X, given z,w, and s, can be easily
obtained from Eq. (6) by independence:

p(X|z, w, s, λ) =
∏
k,`,c

(
(λk`c)Rk`c

Pk`c
exp (−|Ak||B`||Dc|λk`c)

)
(8)

where

Rk`c =
N∑

i=1

P∑
j=1

U∑
u=1

zikwj`sucXiju
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Pk`c =
N∏

i=1

P∏
j=1

U∏
u=1

(zikwj`sucXiju)!

Denote by θ the set of all model parameters, i.e. θ =
(γ, ρ, δ, λ), the log-likelihood can be written as:

`(θ;X) =
∑

z

∑
w

∑
c

log p(X, z,w, s|θ) (9)

3.1. Model inference

As usual, we look for a way to maximize the log-likelihood
in order to obtain the estimation of θ. In the co-clustering
case, the EM algorithm is computationally infeasible. In this
work, we have chosen to use a different inference strategy
than the one used in Corneli et al. (2016) that relies on a
maximization, through a greedy search algorithm, of the
derived exact integrated classification likelihood criterion.
The inference strategy we use here for dLBM is known as
SEM-Gibbs, proposed by Keribin et al. (2010) and exploited,
for instance, by Bouveyron et al. (2018) in the functional
latent block model (funLBM). During the SE step the algo-
rithm evaluates the posterior probabilities using the current
values for the parameters, while during the M step a new
estimation of the model parameters is made. Thanks to the
Gibbs Sampling, in the SE step a partition for z, w and s
is generated without computing the joint distribution. The
algorithm starts with initial values for the parameter set θ(0),
the column clusters w(0) and the time clusters s(0). Regard-
ing the burn-in period, after a certain number of iterations of
the algorithm, we can obtain the final parameters estimation
by computing the mean of the sampled distribution. The
optimal values for z, w and s are estimated by the mode of
their sample distributions.

3.2. Model selection

Up to now, we have assumed that the exact number of row
clusters (K), column clusters (L) and time clusters (C) to
be included in the algorithm were known. However, for
real data sets this assumption is unrealistic. For this reason,
our purpose in this section is to define a model selection
criterion that can automatically identify the optimal number
of clusters that compose a data set. The model selection
approach is considered. We propose to rely on the ICL
(Integrated Completed Likelihood, Biernacki et al. (2000))
criterion to approximate the complete-data integrated log-
likelihood. We derived the formulation of the ICL criterion
for the model proposed above:

ICL(K,L,C) = log p(X, ẑ, ŵ, ŝ; θ̂)− K − 1
2 logn+

−L− 1
2 log p− C − 1

2 log u− KLC

2 log(npu)
(10)

The triplet (K̂, L̂, Ĉ) that leads to the highest value for the
ICL is considered as the most correct for those data.

4. Analysis of the Amazon fine foods dataset
This section focuses on a real dataset consisting of re-
views of fine foods from Amazon. The dataset can
be freely downloaded at https://snap.stanford.
edu/data/web-FineFoods.html. A time horizon
of 10 years is considered, up to October 2012. In the orig-
inal dataset, the number of reviews reported is 568,464
and each row corresponds to one review. Some additional
information is reported for each review: the user/product
numerical identifiers, a summary of the review and a rating
attributed to the product by the user. The rating is expressed
via an integer number spanning from 1 (very bad) to 5 (very
good). To focus on the most meaningful part of the data, we
only considered the users reviewing more than 30 times and
the products being reviewed more than 55 times.

In the Amazon Fine Foods dataset, we consider one month
as the dimension of a single time interval as ∆u. The dis-
tribution of the observations during the considered time
period is shown in Figure 1. To be able to run our algorithm,
we need to group the data building a sparse array with N
rows, P columns and U slices. Thus, we end up with a
235×151×52 cube X , where each user is represented by a
row, each product is represented by a column and each time
interval is represented by a slice of the cube. Each entry of
the cube represents an interaction between a reviewer and a
product on a specific time interval. In the final data set, the
rate of missing values is 0.98%.
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Figure 1. Distribution of users and products before running the
algorithm

Once the array has been built, we can run the model using
the SEM-Gibbs algorithm to identify the optimal number
of K row clusters (users), L column clusters (products) and
C time clusters. We run the algorithm over 48 different
models, with rows and columns groups ranging from 2 to 5
and time clusters groups ranging from 2 to 4. To run this

https://snap.stanford.edu/data/web-FineFoods.html
https://snap.stanford.edu/data/web-FineFoods.html
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Figure 2. Reorganized incidence matrix for each time cluster. Rows and columns clusters are delimited by the dashed lines while the
colored dots marks an interaction (i.e. review) between a user and a product.

Figure 3. Estimated parameters of the probability distribution of
interactions between users and products, according to time clusters

experiment the algorithm takes approximately 6 hours. As
shown in Table 1, the ICL selects as the best dLBM model
the one with 2 groups of users, 3 groups of products and 4
time clusters.

Rank K L C ICL
1 2 3 4 -32509.56
2 2 5 2 -32916.66
3 2 4 2 -32919.41
4 4 5 2 -32957.24
5 4 2 2 -32978.14

Table 1. Selection of the most appropriate model for the Amazon
Fine Foods data.

In Figure 2, one can observe the reorganized incidence
matrix according to row and column clusters, and this for
each time cluster (each panel represents a different time
cluster). To this end, we permuted the rows and the columns
of the incidence matrix thanks to the estimates ẑ and ŵ in
such a way that nearby rows (columns) belong to the same
cluster of rows (columns). The blocks are also delimited by
the black dashed lines.

One can notice that time cluster 1 contains few and sparse

interactions, without a clear structure regarding the blocks.
This means that, for time periods belonging to this time
cluster, the users comment the product on an irregular basis
and almost randomly. Conversely, in time cluster 2, there is
a clear structure regarding the blocks: all users have a clear
tendency to comment and buy products of the first column
clusters whereas they do not consider at all products of the
two other column clusters (2 and 3). It can be also noticed
that users of the firs row cluster (bottom row blocks) have a
higher probability to comment products of the first column
cluster than users from the second row cluster. The third
time cluster is quite similar to the 2nd time cluster in term of
block structure, but the interaction intensity is clearly lower.
Finally, time cluster 4 shows a very specific structure since,
this time, the first group of product does not receive much
attention whereas the products of the second column cluster
are frequently commented by all users and the ones of the
third column cluster are very intensively reviewed by the
users of the 2nd row cluster (top row block). These analyses
are also summarised in Figure 2 which shows the estimated
valued for the tensor λ.

5. Conclusion
We considered the problem of co-clustering count matrices
with a high level of missing values that may evolve along the
time. To this end, we introduce a generative model, named
dynamic latent block model (dLBM), which extends the
classical binary latent block model to the dynamic case. The
modeling of the dynamic time framework in a continuous
time relies on a non-homogeneous Poisson process, with
a latent partition of time intervals. Inference is done using
a SEM-Gibbs algorithm and the ICL criterion is used for
model selection. The dLBM algorithm was applied to a real-
world data set from Amazon with a extremely high level of
missing values. In this context, dLBM provided meaningful
segmentation of rows, columns and time.
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