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Abstract

We introduce GO-Diff, a diffusion-based method for global structure optimization
that learns to directly sample low-energy atomic configurations without requiring
prior data or explicit relaxation. GO-Diff is trained from scratch using a Boltzmann-
weighted score-matching loss, leveraging only the known energy function to guide
generation toward thermodynamically favorable regions. The method operates in a
two-stage loop of self-sampling and model refinement, progressively improving
its ability to target low-energy structures. Compared to traditional optimization
pipelines, GO-Diff achieves competitive results with significantly fewer energy
evaluations. Moreover, by reusing pretrained models across related systems, GO-
Diff supports amortized optimization — enabling faster convergence on new tasks
without retraining from scratch.

1 Introduction

The potential energy surface (PES) is a high-dimensional, non-convex function that encodes the
stability of atomic configurations by mapping atomic positions to their associated potential energy.
Exploring this surface to identify low-energy (and thus stable) structures is a fundamental challenge
in computational materials science, chemistry, and catalysis.[1] This task, often referred to as global
structure optimization, underpins applications ranging from the discovery of new catalytic surfaces to
the design of functional materials.

Traditional global optimization methods — such as random structure search (RSS)[2], basin-
hopping[3], genetic algorithms[4], and simulated annealing[5] — rely on local relaxation with
gradient-based optimizers to identify nearby minima. While effective, these methods are computa-
tionally expensive due to the many energy and force evaluations required, and their reliance on local
optimization can limit the exploration of complex energy landscapes. Machine learning interatomic
potentials[6, 7, 8, 9, 10], whether pre-trained[11, 12] or learned on-the-fly[13, 14], can reduce the
cost of local optimization. However, they require carefully selected training data to capture relevant
minima; otherwise, the search risks getting trapped in self-reinforcing local minima (by only gathering
new data near known regions of the PES) far from the true global optimum.

Score-based diffusion models[15] have shown promise for structure generation in molecular[16,
17, 18] and materials science[19, 20, 21, 22]. However, applying them to global optimization tasks
is challenging: the goal is to sample rare, low-energy configurations corresponding to the global
minimum of a PES, but the data distribution over such structures is typically unknown or inaccessible.
This makes it difficult to train models that prioritize physically meaningful, low-energy samples.

In this work, we introduce GO-Diff, a diffusion-based framework for global structure optimization
that operates without prior data by leveraging the known energy function during training. GO-Diff
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learns to generate low-energy configurations without explicit relaxation using a Boltzmann-weighted
score-matching loss combined with iterative self-sampling and annealed training.

Our key contributions are:

1. A data-free generative optimization method that directly samples minima of the potential
energy surface.

2. A Boltzmann-weighted loss with annealing to guide sampling toward low-energy regions
while maintaining exploration.

3. Amortized optimization through transfer of pretrained models across related systems.
4. Empirical evidence of superior sample efficiency compared to classical search methods.

GO-Diff departs from prior Boltzmann samplers (see SI) by using a direct Boltzmann-weighted
score-matching loss that avoids force evaluations and Monte Carlo estimates, and by demonstrating
amortized optimization through transfer of pretrained models across related systems.

2 Methods

Training loop. GO-Diff optimizes atomic structures by training a diffusion model to generate
low-energy configurations without requiring data or local relaxation. It operates in a self-sampling
loop: the model generates atomic structures via reverse-time diffusion, evaluates their energies, and
uses the resulting samples to refine itself.

A replay buffer B = {(x(i)
0 , E(i))} stores generated configurations x

(i)
0 along with their energies

E(i). The buffer is initially seeded with N samples from an untrained model. At each iteration, the
current model samples N new structures from the reverse stochastic differential equation (SDE),
which are then evaluated using an energy function. These are merged with existing buffer entries.

This iterative process enables GO-Diff to learn directly from its own generations, progressively
focusing on thermodynamically favorable regions of the energy landscape.

Boltzmann-weighted score matching. We wish to sample from the Boltzmann distribution[23] at
temperature T

πT (x) =
exp(−E(x)/T )

ZT
, ZT =

∫
exp(−E(x)/T ) dx, (1)

where E(x) is the potential energy of configuration x.

If we had direct i.i.d. samples x0 ∼ πT , the denoising score matching objective for training a score
network sθ(xt, t) would follow standard denoising score matching[24]

Lθ = Et∼U(0,1)

[
λ(t)Ex0∼πT ,xt∼pt|0(xt|x0)

∥∥sθ(xt, t)−∇xt
log pt|0(xt|x0)

∥∥2
2

]
, (2)

where sθ(xt, t) is the score model, xt is a noisy version of x0 and pt|0 denotes the marginal of the
forward SDE conditioned on the initial data point usually referred to as the transition kernel.

Because direct samples from πT are unavailable, we approximate expectations with samples x0 ∼ q,
where q denotes the empirical buffer distribution. From importance sampling (IS)[25, 26], we have
that for any integrable g,

EπT
[g(x)] = Eq

[
g(x)

πT (x)

q(x)

]
. (3)

In practice, q is not known analytically and we only store a buffer B of evaluated configurations. From
self-normalized importance sampling (SNIS)[26], we have that the expectation can be approximated
by

EπT
[g(x)] ≈

∑
i

w(E(i)) g(x(i)), (4)

where the weights are the Boltzmann weights normalized over the buffer samples

w(E) =
exp(−E/T )∑

E(i)∈B exp(−E(i)/T )
. (5)
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Substituting g =
∥∥sθ(xt, t)−∇xt log pt|0(xt|x0)

∥∥2
2

from Eq. 2 yields the Boltzmann-weighted
score matching loss

LBoltzmann
θ = Et∼U(0,1)

[
λ(t)Ex0∼q,xt∼pt|0(xt|x0)w(E)

∥∥sθ(xt, t)−∇xt log pt|0(xt|x0)
∥∥2
2

]
, (6)

where x0 now represents buffer samples. The loss emphasizes low-energy structures without requiring
force labels or sampling from the true Boltzmann distribution.

Annealing strategy. To balance exploration and exploitation, the temperature T is annealed from a
high initial value to a low final value over training. This encourages broad exploration early on and
convergence toward deep minima in later stages, analogous to simulated annealing.

Force-field guidance. Atomic forces are typically available alongside energies at negligible addi-
tional cost. Although they are not used directly in the Boltzmann-weighted loss, we exploit them
through a force-prediction head attached to the shared representation backbone of the score network.
The predicted forces Fθ(x) are incorporated into a predictor–corrector sampling scheme: each reverse
diffusion (predictor) step is followed by a force-based correction step,

∆x = α(1− t)ζFθ(x), (7)

where t denotes the diffusion time, ζ is a scalar hyperparameter, and α is an adaptive step size. As
t → 0, the corrective term plays a progressively larger guiding role, steering samples toward low-
energy configurations, while early in sampling the stochastic diffusion dynamics promote exploration.
The force head is trained jointly on all evaluated configurations during GO-Diff training. This
approach, similar in spirit to Ref. [21], provides physically grounded force-field guidance (FFG) that
accelerates convergence toward equilibrium configuration.

Diffusion process. We follow the methodology of Ref. [21, 27] for the atomistic diffusion process.

3 Results

We evaluate GO-Diff on two atomistic optimization tasks using the MACE-MP0 universal
potential[12], following the established benchmark systems from Ref. [28]. The first task involves
optimizing the placement of a Pt addatom on a stepped Pt surface. Although the system is three-
dimensional, the energy landscape can be effectively visualized by projecting optimized addatom
positions along the surface normal, yielding a two-dimensional representation. The second task
targets the discovery of a stable Pt-heptamer cluster on a large 6 × 6 Pt(111) surface. This more
complex system serves both as a benchmark against classical RSS and as a testbed for amortized
optimization via transfer of the pretrained score model from the first task.

Pt-addatom on stepped Pt surface. Figure 1(a) shows the projected 2D potential energy surface
for different Pt addatom placements. The colored points represent GO-Diff buffer samples at various
temperatures during annealing. Initially, samples from the untrained model are broadly scattered. As
training progresses and temperature decreases, samples increasingly concentrate around low-energy
basins near the global minimum.

Figure 1(b) illustrates the corresponding energy evolution of buffer structures. Lower temperatures
bias sampling toward deeper minima, validating the effectiveness of the Boltzmann-weighted loss
and annealing schedule.

Pt-heptamer on Pt(111). We next evaluate GO-Diff (with and without FFG) on the more chal-
lenging task of discovering the Pt-heptamer cluster on a 6× 6 Pt(111) surface. We compare against
RSS by measuring both success and the average number of evaluations required to find the target
structure. In addition, we test amortized optimization: transferring a pretrained GO-Diff model from
the addatom task to initialize the score model in this new system.

Figure 2 reports the mean best energy achieved over time for each method. RSS shows limited
progress, often failing to improve beyond its initial state. In contrast, GO-Diff consistently discovers
the Pt-heptamer within 2,560 energy evaluations. We observe an improvement using force-field
guidance both in terms of evaluated energies and success. With model transfer, amortized GO-Diff
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Figure 1: Addatom optimization on a stepped Pt surface. (a) Projected 2D energy surface for
different addatom placements. Colored dots indicate buffer samples, with color denoting annealing
temperature (red = high, blue = low). (b) Evolution of buffer structure energies during annealing.
Sampling gradually concentrates in low-energy basins.
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Figure 2: Benchmarking GO-Diff on Pt-heptamer discovery. Mean best energy over eight
independent experiments with faint lines showing the moving average evaluate energy of each run
(Only plotted for GO-Diff and GO-Diff + Transfer). Crosses indicate discovery of the Pt-heptamer.
GO-Diff rapidly improves, while RSS stagnates. Transfer learning further accelerates convergence.

(without FFG) achieves even faster convergence and better performance, finding the target in seven
out of eight runs using ∼600 energy evaluation on average. See Table 1 for details.

This acceleration is expected: the transferred model already captures bonding preferences, such as
the stability of hollow sites below step edges. As a result, the optimization task reduces to adjusting
interatomic geometry, rather than learning bonding from scratch. These results highlight GO-Diff’s
ability to reuse generative knowledge across systems, enabling amortized optimization in more
complex scenarios.

Table 1 summarizes these findings. GO-Diff achieves better success across all experiments using
fewer evaluations than RSS, and amortized optimization via model transfer further reduces the
computational budget by more than 2× on average.

The stochasticity of the diffusion process allows GO-Diff to robustly escape local minima and
explore high-quality regions of the potential energy surface. Unlike greedy optimizers, it maintains
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Table 1: Comparison of methods by total single-point evaluations, success, and mean success iteration.
A successful optimization run discovers the Pt-heptamer structure.

Method # Evaluations Success Mean Success Iteration
RSS 10,000 1/8 7,816
GO-Diff 2,560 5/8 1,667
GO-Diff + FFG 2,560 8/8 1,994
GO-Diff + Transfer 1,280 7/8 591

diversity throughout sampling, guided by the annealed Boltzmann-weighted objective—enabling
both efficiency and reliability even in complex optimization tasks.

4 Discussion

Extending to multi-objective or compositional design. A unique strength of GO-Diff is that it
can be extended to optimize over additional properties, such as the atomic composition, electronic or
catalytic properties. These can be incorporated directly into the diffusion model or via conditioning
guidance, enabling optimization beyond geometry. This is particularly attractive in materials design,
where properties are tightly coupled.

5 Limitations

Samples, temperature profile and training steps. The number of samples per iteration, the
annealing schedule and the number of training steps per iteration are critical hyperparameters in
GO-Diff. Too few samples reduce buffer diversity and slow convergence, while overly large batches
raise computational cost with diminishing returns. Likewise, overly aggressive temperature decay or
overfitting each iteration can cause premature collapse around suboptimal minima, whereas slower
schedules and fewer training steps enable broader exploration and better generalization. In our
experiments, we adopt an exponential decay schedule to balance exploration and exploitation. Future
extensions may include dynamic temperature adjustment, adaptive sampling, and tuning the number
of training steps per iteration—all of which could improve efficiency and robustness without manual
tuning.

Scalability. The scalability of atomistic diffusion models remains limited. In practice, current
score-based models have mostly been demonstrated on systems with fewer than 20 atoms.[19, 22]
Although recent work such as [21, 29, 30, 31] has extended diffusion-based approaches to larger
systems, further research is needed to make GO-Diff scalable to very large and realistic sized systems.

6 Conclusion

We introduced GO-Diff, a generative diffusion-based framework for global structure optimization that
avoids relaxation steps and pretraining. Trained directly on the energy landscape via a Boltzmann-
weighted loss, GO-Diff efficiently samples low-energy configurations. It outperforms random
structure search in both efficiency and success, and enables amortized optimization through transfer
across related systems. Our results establish diffusion models as scalable optimization engines for
atomistic modeling, with promising extensions to compositional design, surrogate acceleration, and
multi-objective optimization.
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A Appendix

A.1 Related work

Diffusion Models for Black-Box Optimization. Krishnamoorthy et al.[32] introduce Denoising
Diffusion Optimization Models (DDOM), an inverse approach for black-box optimization that learns
a conditional diffusion-based generative model mapping target function values to input configurations.
It employs dataset reweighing and classifier-free guidance alongside a two-stage training approach.

Diffusion Model for Data-Driven Black-Box Optimization. Li et al.[33] propose a
reward-directed conditional diffusion model trained on mixed unlabeled and labeled data. By
conditioning on high predicted reward, they cast design optimization as conditional sampling.

Iterated Denoising Energy Matching for Sampling from Boltzmann Densities.
Akhound-Sadegh et al.[34] introduce iDEM, a novel diffusion-based Boltzmann sampler
trained using an energy-matching loss using Monte-Carlo samples to estimate the score. iDEM
alternates between drawing samples from its current model and updating via an energy-matching loss.
iDEM does not require prior data, and purely relies on energy and forces of the potential.

BNEM: A Boltzmann Sampler Based on Bootstrapped Noised Energy Matching. This recent
follow-up[35] extends iDEM by leveraging bootstrapped energy estimates to improve sampling
robustness and improve performance.

Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching. Havens et al.[36]
propose an adjoint-matching based sampling scheme to train diffusion-based Boltzmann samplers.
The key contribution alongside the reciprocal adjoint matching is the possibility to get many gradient
updates with few potential energy evaluations and model samples. They show state-of-the-art
performance on synthetic energy functions and difficult conformational sampling.

Unlike prior Boltzmann samplers such as iDEM[34] and BNEM[35], which estimate training targets
from Monte Carlo generated samples, or Adjoint Sampling[36], which relies on adjoint matching to
improve update efficiency, GO-Diff uses a direct Boltzmann-weighted score-matching loss requiring
only energy evaluations — avoiding force labels or MC estimation. Combined with an annealed
temperature schedule and replay-buffer self-sampling, this yields a simpler and very sample-efficient
training loop. Furthermore, while previous samplers have not demonstrated transfer across systems,
we show that pretrained GO-Diff models can be reused for amortized global optimization achieving
faster optimization.

A.2 Score-Based Diffusion Models

Score-based diffusion models[15] are a class of generative models that learn to reverse a diffusion
process that progressively adds noise to data. These models are grounded in stochastic differential
equations (SDEs) and denoising score matching.

The forward process is defined as a stochastic differential equation (e.g., a variance-preserving or
variance-exploding SDE) that transforms a data sample x0 ∼ pdata into a noisy sample xt over time
t ∈ [0, 1]. The generative goal is to model the reverse-time dynamics using a parameterized score
function sθ(xt, t) ≈ ∇xt

log pt(xt).

The model is trained using score matching, which minimizes the expected squared difference between
added noise to samples and the prediction hereof. The learning objective is expressed as:

Lθ = Et∼U(0,1)

[
λ(t)Ex0∼pdata,xt∼pt|0(xt|x0)

∥∥sθ(xt, t)−∇xt
log pt|0(xt|x0)

∥∥2
2

]
, (8)

where λ(t) is a weighting function depending on the noise schedule, and pt|0 denotes the marginal of
the forward SDE conditioned on the initial data point.

Once trained, new samples are generated by solving the reverse-time SDE using numerical solvers
such as the Euler-Maruyama samplers.
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For a complete description of applying diffusion models to the materials domain see Ref. [27] and
specifically for the application to surface-supported systems see Ref. [21].

A.3 Buffer update

We maintain the buffer by applying weighted reservoir sampling [37] over all evaluated structures,
using Boltzmann weights (at the current temperature) as sampling probabilities. This yields a dynamic
buffer that gradually shifts focus toward lower-energy configurations as training progresses.

A.4 Training algorithm

Below we present pseudocode for the full GO-Diff optimization loop:

Algorithm 1 GO-Diff Optimization Procedure
1: Initialize: buffer B ← ∅, score model sθ, temperature schedule {Tk}Kk=1
2: for iteration k = 1, . . . ,K do
3: Set temperature T ← Tk

4: Sample N structures {X(j)}Nj=1 from pθ(x0) via reverse SDE
5: for each structure X(j) do
6: Evaluate energy E(j) ← U(X(j))
7: end for
8: Update buffer B with {(X(j), E(j))}
9: Train sθ using LBoltzmann

θ on B
10: end for

A.5 Hyperparameters

We provide common and specific hyperparameters for all experiments.

Table 2: Common hyperparameters used in GO-Diff experiments.

Parameter Value
Diffusion sampling steps 500
Noise schedule Linear (VE-SDE)
Score model architecture PaiNN GNN (4 blocks); 6Å cutoff
Final temperature TK 0.02
Learning rate 10−4

Optimizer AdamW

Table 3: Hyperparameters used in Pt-addatom on stepped Pt surface experiment.

Parameter Value
Buffer size |B| 16
Samples per iteration N 32
Initial temperature T1 5.0
Annealing schedule Exponential decay over 10 iterations
Batch size 8
Training epochs per iteration 1000

The Pt-heptamer on Pt(111) + FFG experiment uses same settings as without FFG and with ζ = 3.
The step size α is found using L-BFGS with a scaling factor of 0.2. The number of reverse diffusion
steps is kept at 500, but this effectively doubles the number of model predictions during sampling
due to the direct force predictions for the corrector step.
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Table 4: Hyperparameters used in Pt-heptamer on Pt(111) experiment.

Parameter Value
Buffer size |B| 64
Samples per iteration N 128
Initial temperature T1 5.0
Annealing schedule Exponential decay over 20 iterations
Batch size 16
Training epochs per iteration 2000

Table 5: Hyperparameters used in Pt-heptamer on Pt(111) + transfer experiment.

Parameter Value
Buffer size |B| 64
Samples per iteration N 64
Initial temperature T1 3.0
Annealing schedule Exponential decay over 20 iterations
Batch size 16
Training epochs per iteration 4000

A.6 RSS

RSS is performed using the software package AGOX[38] following their documentation.

A.7 Compute resources

All experiments where run on single NVIDIA SM3090 GPU with 24GB of memory.

A.8 Code availability

All details to reproduce the experiments are provided at https://github.com/nronne/go-diff
including specific implementation details and hyperparameters. The diffusion model is implemented
in the AGeDi software package[27].
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