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ABSTRACT

Visual anomaly detection aims to identify anomalous regions in images through
unsupervised learning paradigms, with increasing application demand and value in
fields such as industrial inspection and medical lesion detection. Despite significant
progress in recent years, there is a lack of comprehensive benchmarks to adequately
evaluate the performance of various mainstream methods across different datasets
under the practical multi-class setting. The absence of standardized experimen-
tal setups can lead to potential biases in training epochs, resolution, and metric
results, resulting in erroneous conclusions. This paper addresses this issue by
proposing a comprehensive visual anomaly detection benchmark, ADer, which is
a modular framework that is highly extensible for new methods. The benchmark
includes multiple datasets from industrial and medical domains, implementing
fifteen state-of-the-art methods and nine comprehensive metrics. Additionally,
we have proposed the GPU-assisted ADEval package to address the slow eval-
uation problem of metrics like time-consuming mAU-PRO on large-scale data,
significantly reducing evaluation time by more than /000-fold. Through extensive
experimental results, we objectively reveal the strengths and weaknesses of dif-
ferent methods and provide insights into the challenges and future directions of
multi-class visual anomaly detection. We hope that ADer will become a valuable
resource for researchers and practitioners in the field, promoting the development
of more robust and generalizable anomaly detection systems. Full codes have been
attached in Appendix and will be open-sourced.

1 INTRODUCTION

In recent years, with the rapid advancement in model iteration and computational power, Visual
Anomaly Detection (VAD) has made significant progress across various fields Liu et al. (2024); Cao
et al. (2024). It has become a crucial component in key tasks such as industrial quality inspection and
medical lesion detection. Due to its unsupervised experimental setup, VAD demonstrates immense
application value in real-world scenarios where the yield rate is high, defect samples are difficult to
obtain, and potential defect patterns are diverse. However, the field faces challenges such as small
dataset sizes and insufficient evaluation metrics, resulting in potentially unfair comparison outcomes
due to differing training recipes among methods. Moreover, most methods have not been compared
on the latest large-scale datasets (e.g., Real-IAD Wang et al. (2024) and COCO-AD Zhang et al.
(20244a)) and new evaluation metrics (e.g., mAD Zhang et al. (2023a) and mloU-max Zhang et al.
(2024a)). The fundamental issue lies in the absence of standardized training strategies, akin to those
in object detection, to evaluate different algorithms. Factors such as training epoch and resolution
can potentially affect evaluation results, leading to erroneous conclusions.

To address this pressing issue, we believe that establishing a comprehensive and fair benchmark
is crucial for the sustained and healthy development of this field. Therefore, we have constructed
an integrated ADer library, benchmarking state-of-the-art methods by utilizing a unified evaluation
interface under the more practical multi-class setting. This library is designed as a highly extensible
modular framework (see Sec. 3), allowing for the easy implementation of new methods. Specifically,
the framework integrates multiple datasets from industrial, medical, and general-purpose domains (see
Sec. 3.2), and implements fifteen state-of-the-art methods (including augmentation-based, embedding-
based, reconstruction-based, and hybrid methods, see Sec. 3.1) and nine comprehensive evaluation
metrics (see Sec. 3.3), ensuring thorough and unbiased performance evaluation for each method.
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Figure 1: Intuitive benchmarked results comparison on MVTec AD Bergmann et al. (2019) (Left),
VisA Zou et al. (2022) (Middle), and Real-IAD Wang et al. (2024) (Right) datasets among mainstream
methods. For each dataset, the horizontal axis represents the training time for different methods, the
left vertical axis represents mAD Zhang et al. (2023a) (marked as circles, with radius indicating model
parameter count), and the right vertical axis represents mloU-max Zhang et al. (2024a) (marked as
squares, with side length indicating model FLOPs).
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Additionally, to address the efficiency issue of evaluating time-consuming metrics like mAU-PRO
on large-scale data, we have developed and open-sourced the GPU-assisted ADEval package (see
Sec. 3.6), significantly reducing evaluation time by over 1000 times, making previously impractical
extensive detailed evaluations feasible on large-scale datasets.

Through extensive and fair experiments, we objectively reveal the strengths and weaknesses of
different visual anomaly detection methods, comparing their efficiency (i.e., model parameter count
and FLOPs) and training resource consumption across different datasets, as shown in Fig. 1. Detailed
results and analyses (see Sec. 4 and Appendix) elucidate the challenges of multi-class visual anomaly
detection and provide valuable insights for future research directions.

In summary, the contributions of this paper are as follows: 1) Comprehensive benchmark: We
introduce a modular and extensible library termed ADer for visual anomaly detection, which im-
plements and evaluates 15 state-of-the-art anomaly detection methods on 11 popular datasets with
9 comprehensive evaluation metrics. 2) GPU-assisted evaluation package: We develop and will
open-source the ADEval package for large-scale evaluation, significantly reducing the evaluation time
of complex metrics by over 1000 times. 3) Extensive experimental analysis: We conduct extensive
experiments to objectively evaluate the performance of different methods, providing insights into
their strengths, weaknesses, and potential areas for improvement. 4) Open-source resources: We
will open-source the complete ADer code, making it a valuable resource for the research community
and promoting further advancements in the field.

2 BACKGROUND AND RELATED WORK

2.1 PROBLEM DEFINITION AND OBJECTIVE

Visual anomaly detection (VAD) is a critical task in computer vision, aiming at identifying patterns
or instances in visual data that deviate significantly from the norm. These anomalies can manifest as
industrial defects, medical lesion, or rare objects that are not typically present in the training data.
The primary objective of VAD is to develop algorithms capable of discerning these irregularities with
high accuracy and reliability. This task is particularly challenging due to the inherent variability and
complexity of visual data, the scarcity of anomalous examples, and the need for robust generalization
across diverse scenarios. In a formal context, multi-class VAD can be defined as follows: Given a
training dataset Dypqin = {1, T2, ..., Tn } With C categories and each visual image z; belonging to
a specific category, the goal is to learn a unified AD model M that can predict an anomaly score
s; = M (z;) for each image. This score reflects the likelihood of each pixel in x; being an anomaly.
The model M is typically trained on Dy,.4;,, that predominantly contains normal instances, with the
assumption that anomalies are rare and not well-represented in the training set. Inevitably, there are
some mislabeled or inaccurately labeled noisy samples, which constitute inherent biases within the
dataset. These are typically disregarded under standard settings. The performance of the model is
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Figure 2: A comparative diagram of different frameworks for the benchmarked methods in Sec. 3.1.

then evaluated based on its ability to correctly identify anomalous images and their defect regions in
a unified testset that contains normal and anomalous images.

2.2 CHALLENGES IN MULTI-CLASS VAD

The complexity of VAD arises from several factors: /) Data Imbalance: Anomalies are rare, leading
to highly imbalanced datasets where normal instances and region areas vastly outnumber anomalous
ones. 2) Variability of Anomalies: Anomalies can vary widely in appearance, making it difficult
to capture all possible variations during training. 3) Context Sensitivity: The definition of what
constitutes an anomaly can be context-dependent, requiring models to understand the broader context
in which the visual data is situated. 4) Efficiency Requirements: Many applications of VAD require
real-time processing and limited GPU memory, necessitating efficient and scalable algorithms. 5)
Comprehensive and Fair Evaluation: Current methods exhibit significant differences in training
hyperparameters and insufficient evaluation of performance metrics, so it is necessary to benchmark
them using fair and standardized criteria. In this benchmark study, we systematically evaluate a range
of state-of-the-art VAD methods (Sec. 3.1) across multiple datasets (Sec. 3.2) and comprehensive
metrics (Sec. 3.3). Our goal is to provide a comprehensive assessment of current capabilities, identify
key challenges, and suggest directions for future research in visual anomaly detection.

2.3 VISUAL ANOMALY DETECTION

Visual anomaly detection methods can generally be categorized into three types: 1) Augmentation-
based methods generate pseudo-supervised information for anomalies by creating abnormal regions Li
et al. (2021); Zavrtanik et al. (2021), constructing anomalous data Zhang et al. (2021a); Hu et al.
(2024), or adding feature perturbations Liu et al. (2023); Tien et al. (2023). This enables the model
to learn the differences between normal and abnormal distributions. 2) Embedding-based methods
leverage pretrained models to extract powerful feature representations and judge anomalies in high-
dimensional space. Typical approaches include distribution-map-based methods Gudovskiy et al.
(2022); Lei et al. (2023), teacher-student frameworks Bergmann et al. (2020); Wang et al. (2021a),
and memory-bank techniques Roth et al. (2022); Gu et al. (2023). 3) Reconstruction-based methods
use encoder-decoder architectures to locate anomalies by analyzing the reconstruction error. They
typically include both image-level Akgay et al. (2019); Liang et al. (2023); He et al. (2024b) and
feature-level approaches Deng & Li (2022); Zhang et al. (2023a; 2024a). There are also some hybrid
methods You et al. (2022); Tien et al. (2023); Zhang et al. (2023c) that attempt to integrate multiple
techniques to further enhance model performance.

Basic network structures of VAD. Early visual anomaly detection methods typically employ UNet-
based autoencoder architectures Akcay et al. (2019); Liang et al. (2023); Zavrtanik et al. (2021).
With advancements in foundational visual model structures He et al. (2016); Wang et al. (2021b);
Liu et al. (2021); Zhang et al. (2021b; 2024b; 2023b) and pretraining techniques He et al. (2022);
Caron et al. (2021), more recent methods often utilize models pretrained on ImageNet-1K Deng et al.
(2009) as feature extractors, such as the ResNet He et al. (2016) series, Wide ResNet-50 Zagoruyko
& Komodakis (2016), and EfficientNet-b4 Tan & Le (2019). Recently, benefiting from the dynamic
modeling capabilities of Vision Transformers (ViT) Dosovitskiy et al. (2021), some studies De Nardin
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Table 1: Attribute comparison for mainstream representative methods. Notations: Augmentation-
based (Aug.), Embedding-based (Emb.), Reconstruction-based (Rec.), Parameters (Params), Memory
(Mem.), Batch Size (BS), Optimizer (Optim.), Time (T.), ResNet (RN), Wide-ResNet (WRN),
EfficientNet (EN), hours (h), minutes (m), seconds (s), unavailable (-), out-of-memory (OOM). Train
and test time are evaluated under the standard setting described in Sec. 4.1 in one L40S GPU. Memory
is tested under the standard setting with a batch size of 8, and the results for different methods are
presented in Sec. 4.2. Bold, underline, and wavy-line represent the best, second-best, and third-best
results, respectively.

Method Hyper Params. Efficiency Train Mem. Test Mem. MVTec AD VisA Real-ITAD
BS Optim. LR Params. FLOPs Backbone (M) (M) TrainT. TestT. TrainT. TestT. TrainT. TestT.
" DRAEM Zavrtanik et al. (2021) 8 Adam le-4 974M 198G UNet 12,602 2,858 3.4h 35s 8.0h 36s 392 18mdls
2 SimpleNet Liu et al. (2023) 32 AdamW le-4 728M 17.715G WRNS50 2,266 4,946 1.7h 5m50s 39h  7m2ls  159h  4h51m
RealNet Zhang et al. (2024¢) 16 Adam le-4 59IM 115G WRNS50 14,004 3,794 2.6h 4ls 5.4h 41s - -
CFA Lee et al. (2022) 4 AdamW le-3 38.6M 553G WRNS50 4,364 2,826 1.2h 18s 2.7h 17s 10.9h  14m20s
—E' PatchCore Roth et al. (2022) 8 - - - - WRNS50 - - - 9h22m - OOM - OOM
M CFLOW-AD Gudovskiy et al. (2022) 32 Adam 2e-4 237M 287G WRN50 3,048 1,892 5.2h 56s 10.4h  1ml5s  40.9h 22m49s
PyramidalFlow Lei et al. (2023) 2  Adam 2e-4 343M 962G RN18 3,904 2,836 7.9h  1m30s 10.5h  2md43s 45h  38ml5s
RD Deng & Li (2022) 16 Adam 5e-3 80.6M 284G  WRNS50 3,286 1,464 0.8h 13s 1.1h 18s 4.1lh  7m48s
DiAD He et al. (2024b) 12 Adam le-5 1331M 451.5G RN50 26,146 20,306 9.1h 16m 21.6h 19m 90h  16h20m
P ViTAD Zhang et al. (2023a) 8 AdamW le-4 39.0M 9.7G ViT-S 1,470 800 0.8h 15s L1h 15s 52h  10m2s
~ InvAD Zhang et al. (2024a) 32 Adam le-3 95.6M 454G  WRNS50 5,920 3,398 1.0h 3ls 2.3h 33s 9.2h 2lm
InvAD-lite Zhang et al. (2024a) 32 Adam le-3 17.IM  9.3G RN34 1,846 1,100 0.8h 20s 1.1h 31s 3.4h  9m27s
MambaAD He et al. (2024a) 16 AdamW 5e-3  257M  8.3G RN34 6,542 1,484 2.4h 34s 5.6h 23s 23.6h  24m6s
b=} UniAD You et al. (2022) 8 AdamW le-4 245M 34G EN-b4 1856 968 0.8h 22s 1.0h 18s 4.1h  7m2s
4; RD++ Tien et al. (2023) 16 Adam le-3 96.IM 37.5G WRNS50 4772 1,480 33h 28s 7.8h 33s 42.4h  15ml17s
T DesTSegZhangetal. (2023c) 32 SGD 04 352M 307G RNI8 3,446 1240 1O0h 19 L7h  16s  68h  8ml3s

et al. (2022); You et al. (2022); Zhang et al. (2023a) have attempted to incorporate this architecture
into the design of anomaly detection models.

3 METHODOLOGY: ADER BENCHMARK

3.1 SupPPORTED VAD METHODS

Following the categories of current VAD methods in Sec. 2.3, we choose representative models
for each category. The selection criteria are based on the method’s popularity, effectiveness, and
ease of use. 1) For Augmentation-based methods, we choose DRAEM Zavrtanik et al. (2021),
SimpleNet Liu et al. (2023), and RealNet Zhang et al. (2024c). 2) For Embedding-based methods, we
select CFA Lee et al. (2022), PatchCore Roth et al. (2022), CFLOW-AD Gudovskiy et al. (2022),
and PyramidalFlow Lei et al. (2023). 3) For Reconstruction-based methods, we include RD Deng
& Li (2022), DiAD He et al. (2024b), ViTAD Zhang et al. (2023a), InvAD Zhang et al. (2024a),
InvAD-lite Zhang et al. (2024a), and MambaAD He et al. (2024a). Additionally, UniAD You et al.
(2022), RD++ Tien et al. (2023), and DesTSeg Zhang et al. (2023c) are categorized as hybrid methods
due to their use of multiple techniques. Fig. 2 presents schematic diagrams and comparisons of
the frameworks for each method belonging to different types, facilitating a better understanding of
the differences among these methods. Tab. 1 provides a direct comparison of the hyperparameters,
efficiency, and training time on three mainstream datasets for different methods, using one L40S
GPU. Note that different methods may yield varying results when tested on different hardware, but
the overall relative trends remain largely unchanged.

3.2 VAD DATASETS

To comprehensively evaluate the effectiveness, stability, and generalization of different methods, we
benchmark extensive and fair experiments on three types of datasets: /) Real and synthetic industrial
anomaly detection (AD) datasets, i.e., MVTec AD Bergmann et al. (2019), MVTec AD 3D Bergmann
et al. (2022b), MVTec LOCO-AD Bergmann et al. (2022a), VisA Zou et al. (2022), BTAD Mishra
etal. (2021), MPDD Jezek et al. (2021), MAD_Real Zhou et al. (2024), MAD_Sim Zhou et al. (2024),
and Real-IAD Wang et al. (2024). 2) The medical Uni-Medical Zhang et al. (2023a) dataset. 3)
The general-purpose COCO-AD Zhang et al. (2024a) dataset. Detailed descriptions of the datasets
are provided in Tab. 2, including the categories and scales of the datasets. Note that COCO-AD
is inherently a multi-class dataset with four splits, and the average is taken when evaluating the
comprehensive results.
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Table 2: Comparison of representative VAD datasets, i.e., industrial, medical, and general-purpose
fields, respectively. Large-scale Real-IAD and COCO-AD only employ the 100 epoch setting.

Category Number Image Quantity N .
Dataset Trai Test Train Test Ep(_u,hA%emng
ram es Normal Anomaly  Normal mn er
MVTec AD Bergmann et al. (2019) 15 15 3,629 1,258 467 100 300
MVTec AD 3D Bergmann et al. (2022b) 10 10 2,950 249 248 100 300
MVTec LOCO-AD Bergmann et al. (2022a) 5 5 1,772 993 575 100 300
VisA Zou et al. (2022) 12 12 8,659 962 1,200 100 300
BTAD Mishra et al. (2021) 3 3 1,799 580 451 100 300
MPDD Jezek et al. (2021) 6 6 888 282 176 100 300
MAD_Real Zhou et al. (2024) 10 10 490 221 50 100 300
MAD _Sim Zhou et al. (2024) 20 20 4,200 4,951 638 100 300
Real-TAD Wang et al. (2024) 30 30 36,465 51329 63256 100 -
Uni-Medical Zhang et al. (2023a) 3 3 13,339 4,499 2,514 100 300
30,438 1,291 3,661 100 B
. ) 65,133 2,785 2,167 100
COCO-AD Zhang et al. (2024a) 61 81 79,083 3328 U624 100
77,580 3,253 1,699 100
& Dataset % Optimizer Metric
’ Standard Interface ‘ Mainstream Optimizer ’ Standard Interface ‘
’ Multiple Datasets ‘ W Loss ’ Fast ADEval ‘
’ Data Augmentation ‘ ’ Mainstream Losses ‘
&3 Model % Trainer £ Configures
Shared Basic ’ ‘
Shared Backbones : Common CF&
Trainer -
= = ; Inherited CFG
’ Specific Model ‘ ’ Specific Trainer ‘ for Specific Method

Figure 3: Core sub-modules of the training framework in ADer. The blue area represents standard
components, while the red area indicates that a new method requires only three corresponding files.

3.3 EVALUATION METRICS

Following the ViTAD Zhang et al. (2023a) setting, we select image-level mean Area Under the
Receiver Operating Curve (mAU-ROC) Zavrtanik et al. (2021), mean Average Precision (mAP) Zavr-
tanik et al. (2021), mean F}-score (mFj-max) Zou et al. (2022), region-level mean Area Under the
Per-Region-Overlap (mAU-PRO) Bergmann et al. (2020), pixel-level mAU-ROC, mAP, mF} -max,
and the average AD (mAD) Zhang et al. (2023a) of seven metrics to evaluate all experiments. Addi-
tionally, we adopt the more practical order-independent pixel-level mean maximal Intersection over
Union (mloU-max) proposed in InvAD Zhang et al. (2024a).

3.4 SIMPLIFY IMPLEMENTATION BY STRUCTURED ADER CODEBASE

To ensure fair comparison among different methods, we construct a standardized ADer framework.
As shown in Fig. 3, it includes shared foundational training/testing components and implements
various metric calculations (compatible with our ADEval). The standardized dataset allows for easy
comparison, eliminating potential unfair settings from different codebases. Additionally, ADer is
highly extensible for new methods, requiring only compliant model, trainer, and configuration files.

3.5 FEATURE COMPARISON WITH CURRENT BENCHMARKS.

The existing vision anomaly detection benchmark works are primarily and

However, their updates for general AD models only extend up to 2022, and they have not yet
implemented the latest and practical multi-class anomaly detection methods. We briefly discuss
the relationship between the most popular Anomalib and ADer as follows: /) From the framework
perspective: Anomalib is based on PyTorch Lightning that is deeply encapsulated, whereas ADer has
a shallower encapsulation, exposing more interfaces to facilitate rapid algorithm iteration. 2) From the
methods perspective: Anomalib supports general AD models only up to 2022, while ADer supports
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Table 3: Benchmarked results on MVTec AD dataset Bergmann et al. (2019) by the suggested metrics
in Sec. 3.3 under 100/300 epochs. Bold, underline, and wavy-line represent the best, second-best,
and third-best results, respectively. Patchcore requires no training that shares results under different
epoch settings.

Image-level Pixel-level
mAU-ROC mAP mF-max mAU-ROC mAP mF;-max
DRAEM Zavrtanik et al. (2021) 54.5/55.2  76.3/77.0 83.6/83.9 47.6/48.7 32/ 31 67/ 63 14.3/158 3.5/ 33  44.7/453

Method mAU-PRO  mloU-max mAD

z SimpleNet Liu et al. (2023) 954/792 983/90.8 95.7/87.6  96.8/82.4 48.8/240 51.9/29.0 86.9/620 36.4/17.8 83.8/67.6
RealNet Zhang et al. (2024c) 84.8/82.9 94.1/933 90.9/90.9  72.6/69.8 48.2/50.0 41.4/40.4 56.8/51.2 28.8/28.5 72.3/70.9
CFA Lee et al. (2022) 57.6/558 783/788 847/84.5  54.8/43.9 119/ 48 147/ 89 253/193 89/ 47 50.1/46.1

g PatchCore Roth et al. (2022) 98.8/ - 995/ - 98.4/ - 98.3/ - 599/ -  6LO/ - 942 - 449/ -  88.6/ -
@ CFLOW-AD Gudovskiy etal. (2022) 91.6/92.7 ~ 96.7/97.2 93.4/940  95.7/95.8 45.9/46.8 48.6/49.6 88.3/89.0 33.2/34.0 81.8/82.5
PyramidalFlow Lei etal. (2023)  70.2/66.2 85.5/843 85.5/85.1  80.0/742 22.3/172 22.0/19.6 475400 12.8/114 61.7/58.1
RD Deng & Li (2022) 93.6/90.5 9721950 95.6/95.1  958/95.9 482/47.1 53.6/521 91.2/912 37.05358 83.8/82.6
DiAD He et al. (2024b) 88.9/92.0 95.8/96.8 93.5/944  89.3/893 27.0/27.3 325327 63.9/644 211213  70.1/71.0
g VIiTAD Zhang et al. (2023a) 98.3/984 99.3/99.4 97.3/975  97.6/97.5 55.2/552 584/58.1 92.0/91.7 42.3/42.0 87.1/87.0
3 InvAD Zhang et al. (2024a) 98.1/98.9 99.0/99.6 97.6/98.2  98.0/98.1 563/57.1 59.2/59.6 94.4/94.4 42.8/43.1 87.6/88.1
InvAD-lite Zhang et al. (2024a)  97.9/98.1  992/99.1 96.8/96.8  97.3/97.3 54.4/55.0 57.8/58.1 93.3/93,1 41.4/41.7 86.8/86.9
MambaAD He et al. (2024a) 97.8/98.5 99.3/99.5 973/97.7  97.4/97.6 55.1/56] 57.6/587 93.4/93.6  41.2/42.3 87.0/87.5
= UniAD You et al. (2022) 92.5/96.8 97.3/989 95.4/97.0  95.8/96.8 42.7/45.0 48.0/50.2 89.3/91.0 3255342 82.0/84.2
£ RD++ Tien et al. (2023) 97.9/95.8 98.8/98.0 96.4/96.6  97.3/97.3 547/53.0 58.0/57.0 93.2/929  41.540.5 86.8/85.9
= DesTSeg Zhang et al. (2023¢) 96.4/963 98.6/98.8 962/96.1  92.0/92.6 7TLI5.8 68.2/71.3 83.4/826 52.8/56.6 87.0/88.8

Table 4: Benchmarked results on VisA dataset Zou et al. (2022) by the suggested metrics under
100/300 epochs.

Method

Image-level Pixel-level
mAU-ROC mAP mF-max mAU-ROC mAP mF}-max
DRAEM Zavrtanik et al. (2021) 55.1/56.2  62.4/64.6 72.9/74.9 37.5/45.0 0.6/ 0.7 1.7/ 1.8 10.0/16.0 0.9/ 0.9 38.0/40.6

mAU-PRO  mloU-max mAD

%b SimpleNet Liu et al. (2023) 86.4/80.7 89.1/83.8 82.8/79.3 96.6/94.4  34.0/29.2 37.8/33.1 79.2/742  25.7/22.1 74.0/69.5
RealNet Zhang et al. (2024¢) 71.4/79.2  79.5/84.8 74.7/78.3 61.0/65.4 25.7/29.2 22.6/27.9 27.4/339  13.5/17.4 54.7/59.9
CFA Lee et al. (2022) 66.3/67.1  74.3/73.8 74.2/75.3 81.3/83.0 22.1/13.7 26.2/18.7 50.8/48.7  17.0/11.3  58.4/56.5

E=)
£ CFLOW-AD Gudovskiy et al. (2022)  86.5/87.2  88.8/89.5 84.9/85.1 97.7197.8  33.9/34.2 37.2/372 86.8/87.3  24.9/249 75.3/75.7
PyramidalFlow Lei et al. (2023) 58.2/69.0 66.3/72.9 74.4/75.8 77.0/79.1 72/ 79 9.6/ 8.7 42.8/52.6 5.6/ 47 50.2/54.8

RD Deng & Li (2022) 90.6/93,9 90.9/948 89.3/904  98.0/98.1 35.4/384 425/437 91,9919 27.9/29.0 78.6/80.5
DiAD He et al. (2024b) 84.8/90.5 88.5/91.4 86.9/90.4  82.5/83.4 17.9/19.2 23.2/250 44.5/443  14.9/162 61.2/635

g VITAD Zhang et al. (2023a) 90.4/90.3 91.1/91.2 86.0/86.4  98.2/982 36.4/36.4 41.0/40.9 85.7/85.8 27.527.5 77.2/71.3
& InvAD Zhang et al. (2024a) 95.4/95.6 95.7/96.0 91.6/92.3  98.9/99.0 43.3/43.7 46.8/469 93.1/93.0 32.5/32.6 82.4/82.6
InvAD-lite Zhang et al. (2024a)  94.9/953  95.2/958 90.7/91.0  98.6/98.7 40.2/412 44.0/449 93.1/932 29.8/30.6 81.3/81.8
MambaAD He et al. (2024a) 945/93.6 949/93.9 90.2/89.8  98.4/982 39.3/340 43.7/393 92.1/905 2957259 80.8/79.0

o UniAD You et al. (2022) 89.0/91.4 91.0/93.3 85.8/87.5  98.3/985 34.5/35.3 39.6/40.2 86.5/89.0 26.4/265 76.7/782
3 RD-++ Tien et al. (2023) 93.9/93.1 94.7/94.1 902/90.0  98.4/98.4 423/40.4 463/448 9190914  31.2/299 B81.3/80.6
o DesTSeg Zhang et al. (2023c) 89.9/80.0 91.4/90.3 86.7/85.9  86.7/84.8 46.6/43.3 47.2/444 61.1/57.5 327/30.1 74.9/73.0

more recent models up to 2024. 3) From the data and metrics perspective: Compared to Anomalib,
ADer supports large-scale industrial Real-IAD Wang et al. (2024), medical Uni-Medical Zhang et al.
(2023a), and general-purpose COCO-AD Zhang et al. (2024a) datasets, as well as more application-
relevant metrics like mloU-max Zhang et al. (2024a) and averaged mAD Zhang et al. (2023a). 4)
From the setting perspective: ADer focuses more on the recently popular and future research trend of
multi-class settings.

3.6 ADEVAL: FAST AND MEMORY-EFFICIENT ROUTINES FOR MAU-ROC/MAP/MAU-PRO

The speed of metric evaluation is crucial for the iterative process of model algorithms. When
the number of test images increases and the resolution becomes higher, the pixel-level evaluation
algorithms implemented naively using sklearn and skimage packages become time-consuming. This
is particularly evident with large-scale datasets such as Real-TAD Wang et al. (2024) and COCO-
AD Zhang et al. (2024a), where evaluation times can exceed one hour. To address this issue, we
have released the GPU-assisted ADEval library, which employs an iterative-accumulating algorithm
with optional CUDA acceleration. For instance, in the case of the most time-consuming mAU-PRO
metric on the multi-class MVTec AD dataset, as demonstrated by UniAD You et al. (2022), the naive
implementation requires 242.7 seconds, whereas the optimized version reduces this to less than 0./
second, achieving a more than 1000-fold speedup.
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Table 5: Benchmarked results on Real-IAD dataset Wang et al. (2024) by the suggested metrics under
100 epoch.

Image-level Pixel-level
Method MAUROC mAP mfimax  mAUROC mAP mFimax TAU-PRO mloUmax mAD
gb DRAEM Zavrtanik et al. (2021) 50.9 459 61.3 44.0 0.2 0.4 13.6 0.2 33.6
< SimpleNet Liu et al. (2023) 54.9 50.6 61.5 76.1 1.9 49 42.4 2.5 435
= CFA Lee et al. (2022) 55.7 50.5 61.9 81.3 1.6 3.8 48.8 2.0 45.0
£ CFLOW-AD Gudovskiy et al. (2022) 77.0 75.8 69.9 94.8 17.6 21.7 80.4 124 63.9
= PyramidalFlow Lei et al. (2023) 54.4 48.0 62.0 71.1 1.2 1.1 349 0.5 40.9
RD Deng & Li (2022) 82.7 79.3 74.1 97.2 252 32.8 90.0 20.0 70.0
DiAD He et al. (2024b) 75.6 66.4 69.9 88.0 29 7.1 58.1 3.7 52.6
B ViTAD Zhang et al. (2023a) 82.7 80.2 73.7 97.2 243 323 84.8 19.6 69.3
[ InvAD Zhang et al. (2024a) 894 87.0 80.2 98.4 326 389 92.7 24.6 75.6
InvAD-lite Zhang et al. (2024a) 87.2 852 77.8 98.0 31.7 37.9 92.0 23.8 742
MambaAD He et al. (2024a) 870 853 716 98.6 324 381 91.2 239 742
B UniAD You et al. (2022) 83.1 81.2 74.5 97.4 233 30.9 87.1 18.6 69.6
S RD++ Tien et al. (2023) 83.6 80.6 74.8 97.7 259 33.6 90.7 20.5 70.8
== DesTSeg Zhang et al. (2023c) 79.3 76.7 70.7 80.3 36.9 40.3 56.1 26.2 64.5

Table 6: Benchmarked results on all other datasets by the mloU/mAD metrics under 100 epoch.

Method MVTec 3D MVTecLOCO BTAD  MPDD MAD Real MAD Sim Uni-Medical COCO-AD
., DRAEM Zavrtanik etal. 2021) 1.0/46.6 5.6/418 34/474 25354  08/489  0.7/480  3.05370  8.0/383
z SimpleNet Liu et al. (2023) 139/70.1  212/674  28.6/788 245762  63/56.7  4.2/60.9  23.3/689  11.5/42.9
RealNet Zhang et al. (2024c) - /- - /- 36.6/76.1 28.2/723 - /- - /- - /- - /-
CFA Lee et al. (2022) 9.3/58.6 9.1/522  33.6/802 16.6/65.1 8.7/587  4.6/582 147/572  8.9/41.0
4 PatchCore Roth et al. (2022) 24.5/784  204/67.7  380/83.3 35.0/83.5 16.6/682 - /- - /- - /-
& CFLOW-AD Gudovskiy etal. (2022) 15.8/71.6  17.3/640  33.8/789 20.1/69.7  88/634  2.7/60.0  17.7/699  16.0/53.0
PyramidalFlow Lei ct al. (2023) 6.4/61.9 8.0/47.5  183/683 104/64.6 5.1/59.0  25/574  94/476  8.0/38.4
RD Deng & Li (2022) 222/753 158/630  42.1/847 31.4/80.6 72/60.6 45626 269/71.1  11.5/458
DiAD He et al. (2024b) 5.4/62.8 149/56.5  15.7/68.5 82/58.1  3.6/558  4.2/589  23.2/69.1  11.6/44.1
g ViTAD Zhang et al. (2023a) 204/754  19.8/648  40.1/83.1 27.7/773  5.0/574  50/628  33.7/75.5  20.1/535
& InvAD Zhang et al. (2024a) 27.4/803  23.1/69.2  44.3/859 34.0/819 168/67.6  8.6/67.4 326754  143/505
IvAD-lite Zhang etal. (2024a)  26.9/79.6  20.6/67.1  42.6/844 30.9/79.8  8.1/625 _6.0/649  265/71.6  13.7/49.2
MambaAD He et al. (2024a) 259/79.0  20.6/66.4  39.0/82.5 26.8/78.1  7.2/605  50/636 33.5/75.9  12.9/48.8
) UniAD You et al. (2022) 1677723 21.6/644  369/829 125/633 58/582  3.5/609 27.6/71.6  10.9/44.0
£ RD++ Tien et al. (2023) 25.2/78.1 17.6/645  42.8/84.8 33.6/80.8  8.5/61.4  44/627  294/723  11.8/46.4
T DesTSeg Zhang et al. (2023c) 284/72.6  20.3/63.9  29.0/77.0 25.6/71.9  4.5/528  4.1/536  212/61.0  8.5/40.7

4 RESULTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Different methods potentially introduce various factors that can impact model performance. To ensure
a fair and comprehensive evaluation of the effectiveness and convergence of different methods, we
fix the most influential parameters, i.e., resolution (256x256) and training epochs (100 and 300).
The reason lies in the fact that tasks such as classification, detection, and segmentation typically set
specific resolutions and standard training epochs. We observe that for most methods, 100 epochs
generally suffice to reach saturation Zhang et al. (2023a; 2024a), with only a few methods You et al.
(2022) requiring more epochs for training. Therefore, we also establish a setting with 300 epochs.
Meanwhile, we maintain consistency with the original papers for batch size, optimizer, learning rate,
and data augmentation. We report the evaluation results corresponding to the final epoch at the end of
training to ensure fairness. All experiments are conducted on one L40S GPU.

4.2 BENCHMARK RESULTS ON INDUSTRIAL, MEDICAL, AND GENERAL-PURPOSE UAD
DATASETS

To thoroughly evaluate the effectiveness of different methods and their adaptability to various data
domains, we conduct experiments on multiple datasets across three domains. Due to space constraints,
we report the average metrics for the popular MVTec AD (see Tab. 3), VisA (see Tab. 4), and Real-
IAD (see Tab. 5) datasets in the main paper. For the remaining datasets, we report the mAD and
mloU-max metrics (see Tab. 6). Full results for each category are provided in Appendix ?? to ??.

Quantitative results. InvAD Zhang et al. (2024a) consistently shows excellent performance across
all datasets. ViITAD Zhang et al. (2023a) and MambaAD He et al. (2024a), specifically designed for
multi-class settings, also achieve good results. In contrast, DIAD He et al. (2024b) and UniAD You



Under review as a conference paper at ICLR 2025

et al. (2022) require more epochs to converge and do not perform well under the 100/300 epoch
standard we set. DeSTSeg Zhang et al. (2023c) exhibits outstanding performance in pixel-level
segmentation. Methods designed for single-class settings, such as RD Deng & Li (2022), RD++ Tien
et al. (2023), CFLOW-AD Gudovskiy et al. (2022), and RealNet Zhang et al. (2024c), also perform
well in multi-class settings. However, single-class methods like DRAEM Zavrtanik et al. (2021),
SimpleNet Liu et al. (2023), CFA Lee et al. (2022), and PyramidFlow Lei et al. (2023) show significant
performance gaps in multi-class anomaly detection and are not suitable for such tasks. Considering
the training time, model parameters, and FLOPs shown in Fig. 2, InvAD, InvAD-lite, and ViTAD
achieve a good balance of effectiveness and efficiency. RD, UniAD, and DeSTSeg also perform well
in terms of both efficiency and effectiveness. On the other hand, methods like DiAD, PyramidFlow,
CFLOW-AD, RD++, RealNet, MambaAD, and SimpleNet have significantly longer training times
compared to other methods.

Qualitative results. Fig. 4 presents intuitive visualization results under the training setting of 100
epochs on popular MVTec AD Bergmann et al. (2019) and VisA Zou et al. (2022) datasets, as well as
the medical Uni-Medical Zhang et al. (2023a) and large-scale Real-IAD Wang et al. (2024) datasets.

Convergence analysis. From Tab. 3 and Tab. 4, we analyze the convergence of different methods by
comparing the results after training for 100 epochs and 300 epochs. The methods can be categorized
into three groups: 1) Methods that show no significant improvement in performance after 300 epochs
compared to 100 epochs, indicating rapid convergence within 100 epochs. These models include
DRAEM Zavrtanik et al. (2021), SimpleNet Liu et al. (2023), CFA Lee et al. (2022), PyramidFlow Lei
et al. (2023), ViTAD Zhang et al. (2023a), InvAD-lite Zhang et al. (2024a), RD++ Tien et al. (2023),
and DeSTSeg Zhang et al. (2023c).2) Methods that show improvement with continued training on
the VisA dataset but no improvement or a decline on the MVTec AD dataset, indicating slower
convergence on larger datasets. These models include RealNet and RD. 3) Methods that show
significant improvement after 300 epochs compared to 100 epochs, indicating slower convergence.
These models include CFLOW-AD Gudovskiy et al. (2022), DiAD He et al. (2024b), InvAD Zhang
et al. (2024a), MambaAD He et al. (2024a), and UniAD You et al. (2022).

Stability analysis. For current anomaly detection algorithms, most authors select the best epoch’s
results as the model’s performance. However, this method of epoch selection is unscientific and may
indicate significant model instability. Therefore, we further analyze model stability using Tab. 3 and
Tab. 4, comparing the results at 100 epochs and 300 epochs to identify any substantial differences. The
results show that SimpleNet Liu et al. (2023) and PyramidFlow Lei et al. (2023) exhibit considerable
differences, indicating poor model stability, while other methods do not show significant fluctuations.

Cross-domain dataset correlation. To analyze

the adaptability of different methods across vari- vec A0,
ous datasets and the relationships and differences 099
between different types of datasets, we employ

Pearson correlation analysis to examine the cor-  reatino-
relations among these datasets. Specifically, we = "
select four distinct datasets for analysis: MVTec

AD Bergmann et al. (2019), Uni-Medical Zhang

et al. (2023a), Real-TAD Wang et al. (2024), and
COCO-AD Zhang et al. (2024a). MVTec AD repre-  uowvedica-
sents a fundamental industrial dataset, Uni-Medical =~ “©<°*°
consists of medical images from CT scans, Real-

IAD is a large-scale multi-view industrial dataset WV Tec AD.

from real-world scenarios, and COCO-AD is a €OCO-AD

large-scale panoptic segmentation dataset from real- ) )

life scenes. We evaluate four categories of methods Flgure 5: _A Pearson correlation coefficient anal-
using eight metrics: image and pixel mAU-ROC, YSis for different methods on several datasets.
mAP, mF1-max, region mAU-PRO, and segmentation mloU-max. The results, as shown in Fig. 5,
indicate that the COCO-AD and Uni-Medical datasets exhibit lower Pearson correlation coefficients
due to significant differences in data distribution compared to general industrial datasets. Although
the Pearson correlation coefficient between the Uni-Medical and Real-IAD datasets is relatively high,
Tab. 5 and Tab. ?? in the Appendix reveal that this is because all methods perform poorly on these two
datasets. Additionally, it is observed that the methods SimpleNet and DeSTSeg show considerable

SimpleNet
MVTec AD-
Real-IAD CFLOW-AD
= PyramidFlow
e RD
s [\VAD
e MambaAD
Uni-Medical- RP+*
Real-IAD DeSTSeg
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(a) MVTec AD [3] )

(b) VisA [47]

W-AByramidFi

(c) Uni-Medical [40] (d) Real-IAD [32]

Figure 4: Qualitative visualizations on the popular MVTec AD and VisA datasets, as well as the
medical Uni-Medical and large-scale Real-IAD datasets. Zoom in for better viewing.
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instability in their results across different datasets. This instability may be attributed to the inherent
instability of the data augmentation algorithms they employ.

Training-free PatchCore. PatchCore Roth et al. (2022) does not require model training. It extracts
all features from the training data, then selects a core subset and stores it in a Memory Bank. During
testing, each test image is compared with the Memory Bank to compute an anomaly score. Because
it stores the core subset of all normal features in the Memory Bank, PatchCore is only feasible
for multi-class anomaly detection tasks on small-scale datasets. For large-scale datasets, it faces
limitations due to insufficient GPU and memory resources. Although it achieves excellent results on
the MVTec AD dataset, as shown in Tab. 1, its testing time is nearly a thousand times longer than
other methods. In summary, PatchCore performs exceptionally well on small-scale datasets but is
constrained by large-scale datasets and testing time.

Dataset Analysis. The experimental results indicate that there is room for improvement in the
VisA Zou et al. (2022) and Real-IAD Wang et al. (2024) datasets due to the very small defect
areas, necessitating models with stronger capabilities for detecting minor defects. The MAD_Real
and MAD_Sim Zhou et al. (2024) datasets, due to their small data volume and varying difficulty
levels, result in similar performance across all models, particularly in the mF1-max metric. The
Uni-Medical Zhang et al. (2023a) dataset, consisting of images converted from CT scans, has a data
distribution that significantly differs from other industrial datasets, suggesting the need for specialized
detection networks tailored to medical datasets. COCO-AD Zhang et al. (2024a), as a newly proposed
large-scale dataset for general scenarios, presents high complexity. Current industrial AD networks
are unable to achieve effective results on the COCO-AD dataset.

4.3 CHALLENGES FOR CURRENT VAD

Immature method. For challenging anomaly detection datasets such as MVTecLOCO, pose-agnostic
MAD, and general-purpose COCO-AD, current methods perform poorly in a multi-class setting.
Future research should focus on designing more robust methods to address this issue.

Efficiency. Most methods do not consider model complexity during design, resulting in high
FLOPs. This issue becomes more pronounced when applied to real-world high-resolution scenarios.
Incorporating lightweight characteristics in model design could be a potential solution.

Dataset scale. Mainstream datasets in the VAD field, such as MVTec AD and Real-IAD, are
relatively small compared to those in detection and segmentation fields and are tailored to specific
industrial scenarios. This limitation could hinder technological development. Collecting larger-scale,
general-scene AD datasets is crucial for the advancement of the VAD field.

VAD-specific metric. Metrics like mAU-ROC and mAP are not uniquely designed for the BAD field.
Developing more reliable evaluation methods to better meet practical application needs is essential.
Augmentation and tricks. In fields such as classification, detection, and segmentation, data
augmentation and tricks are extremely important for model training. However, few studies explore
their role in the AD field, potentially limiting model performance.

Model interpretability. In many applications, understanding why a model detects a particular
anomaly is crucial. Providing effective visualization tools to display detection results and the model’s
decision-making process remains a challenge.

5 CONCLUSION AND DISCUSSION

This paper addresses the urgent need for a comprehensive and fair benchmark in the field of visual
anomaly detection. We introduce a modular and scalable ADer library designed to fairly facilitate
the evaluation of fifteen advanced VAD methods across multiple mainstream datasets. ensuring a
thorough and unbiased assessment of each method’s performance. Our extensive experiments reveal
the strengths and weaknesses of different methods, providing valuable insights into their efficiency
and training resource consumption. We also develop and open-source a GPU-assisted ADEval
package to reduce the evaluation time, enabling extensive assessments. Experimental results highlight
the challenges of various VAD methods and offer valuable insights for future research directions.

Broader Impacts. The open-sourcing ADer can accelerate the development of new VAD technology
for the open-source community and become a valuable resource for practitioners in the field.

10
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