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Abstract001

Reinforcement learning with verifiable rewards002
(RLVR) has become a key technique for en-003
hancing large language models (LLMs), with004
verification engineering playing a central role.005
However, best practices for RL in instruction006
following remain underexplored. In this work,007
we explore the verification challenge in RL for008
instruction following and propose VERIF, a009
verification method that combines rule-based010
code verification with LLM-based verification011
from a large reasoning model (e.g., QwQ-32B).012
To support this approach, we construct a high-013
quality instruction-following dataset, VERIN-014
STRUCT, containing approximately 22,000 in-015
stances with associated verification signals. We016
apply RL training with VERIF to two models,017
achieving significant improvements across sev-018
eral representative instruction-following bench-019
marks. The trained models reach state-of-the-020
art performance among models of comparable021
size and generalize well to unseen constraints.022
We further observe that their general capabil-023
ities remain unaffected, suggesting that RL024
with VERIF can be integrated into existing RL025
recipes to enhance overall model performance.026
We will release our datasets, codes, and models027
to facilitate future research.028

1 Introduction029

Reinforcement learning with verifiable rewards030

(RLVR) has emerged as a key technique for enhanc-031

ing large language models (LLMs), leading to vari-032

ous advanced LLMs, such as DeepSeek R1 (Guo033

et al., 2025). The core component of RLVR is ver-034

ification engineering. Recently, numerous works035

have explored reliable verification across diverse036

domains, such as math (Lambert et al., 2024; Guo037

et al., 2025; Luo et al., 2025b), code (Wang et al.,038

2024b; Luo et al., 2025a), logic (Xie et al., 2025),039

medicine (Chen et al., 2024; Wang et al., 2025),040

and finance (Qian et al., 2025b; Liu et al., 2025a).041

In this work, we explore verification engineering042

for reinforcement learning in instruction following.043

Could you give a simple, friendly, and imaginative 
explanation of how solar panels work, as if you’re 
talking to a curious five-year-old? Submit your 
response that contains at least 160 words.

Hard Constraint

Long chain-of-
thought 

reasoning

def check (res):
... return False
return True

Verification Score for Instruction Following

Soft Constraint

Figure 1: A simplified illustration of VERIF. The in-
struction constraints are categorized as soft or hard and
verified using different methods in VERIF.

Specifically, this work focuses on the following of 044

constraints in the instruction (Zhou et al., 2023), 045

such as response length, as shown in Figure 1. The 046

constraints are usually divided into two types: hard 047

constraints, which can be verified using simple 048

rules, e.g., length, and soft constraints, which re- 049

quire semantic judgment, e.g., style. Assessing 050

whether a response satisfies these constraints pro- 051

vides a natural basis for verification in RLVR. How- 052

ever, reinforcement learning for instruction follow- 053

ing remains underexplored. The only notable work, 054

TULU 3 (Lambert et al., 2024), applies RLVR to 055

enhance instruction following. However, the im- 056

provement is limited, and it focuses solely on hard 057

constraints, neglecting soft constraints. Therefore, 058

the best practice of verification engineering for RL 059

in instruction following remains under-explored. 060

Given the above issues, we explore the best prac- 061

tice of RLVR in instruction following and propose 062

VERIF, a verification method for instruction fol- 063

lowing that combines rule-based code verification 064

with verification from a large reasoning model. As 065

shown in Figure 1, hard constraints are verified 066

through code, and soft constraints are handled by 067
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a large reasoning model, which enables effective068

verification through long chain-of-thought reason-069

ing (Liu et al., 2025b). VERIF requires no man-070

ual annotations or reference answers, offering an071

efficient solution for automatic verification. To072

support this approach, we construct a high-quality073

dataset, VERINSTRUCT, containing approximately074

22, 000 instances with verification. The data con-075

struction involves two main steps: (1) instruction076

construction with multiple constraints, where we077

apply constraint back-translation (Qi et al., 2024)078

to augment existing instructions with additional079

constraints; (2) verification generation. For hard080

constraints such as length, we use Qwen2.5-72B-081

Instruct (Yang et al., 2024) to generate verification082

code. For soft constraints, they are verified online083

during RL training using large reasoning models.084

We apply reinforcement learning with VERIF085

on two SFT-trained models using VERINSTRUCT,086

including TULU 3 SFT (Lambert et al., 2024) and087

DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025).088

Specifically, VERIF computes the final reward as089

the average of hard constraint scores (0 or 1) from090

code validation and soft constraint scores (0 or 1)091

determined by the QwQ-32B (Qwen, 2025). We092

train the models using the GRPO algorithm (Shao093

et al., 2024). We evaluate the trained models on sev-094

eral widely-used instruction-following benchmarks,095

including IFEval (Zhou et al., 2023), Multi-IF (He096

et al., 2024b), SysBench (Qin et al., 2024), Follow-097

Bench (Jiang et al., 2024), and CFBench (Zhang098

et al., 2024a). Experimental results show that the099

RLVR-trained models using VERIF achieve signif-100

icant improvements. Notably, the model trained101

based on TULU 3 SFT achieves state-of-the-art102

performance among models of similar parameter103

scale and outperforms TULU 3 (Lambert et al.,104

2024), which is trained with extensive DPO data105

and rule-based RLVR. The results demonstrate the106

effectiveness of our verification method VERIF.107

We conduct further analytical experiments. We108

first evaluate the generalization of the trained mod-109

els on general instruction following tasks, includ-110

ing AlpacaEval 2.0 (Dubois et al., 2024) and MT-111

Bench (Zheng et al., 2023), and mathematical rea-112

soning tasks, including GSM8K (Cobbe et al.,113

2021) and Omni-MATH (Gao et al., 2025), nat-114

ural language understanding datasets: MMLU-115

Pro (Wang et al.) and DROP (Dua et al., 2019), and116

a natural language inference benchmark BBH (Suz-117

gun et al., 2023). We observe that RL with VERIF118

preserves general and mathematical capabilities,119

indicating its potential as an additional RL stage 120

to enhance instruction following without affecting 121

other skills. We analyze the performance gains of 122

trained models across different constraint types and 123

find that RL with VERIF exhibits good generaliza- 124

tion to unseen constraints. We also conduct abla- 125

tion studies on the verification method, using only 126

code validation or only LLM verification, both of 127

which lead to notable performance drops. Finally, 128

we develop a smaller and efficient 7B LLM as the 129

soft constraint verifier. Specifically, we extract ap- 130

proximately 130k complex instructions from Wild- 131

Chat (Zhao et al., 2024) and Infinity Instruct (BAAI, 132

2024), collect responses from 6 different LLMs, 133

and use QwQ to generate constraint verification. 134

We then train DeepSeek-R1-Distill-Qwen-7B on 135

this dataset as a generative verifier for soft con- 136

straints, achieving RL performance comparable to 137

the model trained using QwQ-32B as the verifier. 138

2 Pilot Experiments 139

This section explores the potential of RL for in- 140

struction following (§ 2.1) and preliminarily ex- 141

plores different verification methods (§ 2.2) using 142

the reward benchmark IFBench (Peng et al., 2025). 143

2.1 Potential for RL Training 144

We first explore the potential of RL in instruction 145

following, as most previous works have adopted 146

supervised fine-tuning (SFT; Ouyang et al., 2022) 147

or direct preference optimization (DPO; Rafailov 148

et al., 2023), with limited use of RL. This raises 149

a key question: Does RL hold untapped potential 150

for instruction following? To explore this question, 151

we evaluate the pass@k performance of several 152

LLMs on the instruction following benchmark IFE- 153

val (Zhou et al., 2023). The motivation is that RL 154

enhances performance by increasing the likelihood 155

of sampling correct responses, and a high pass@k 156

at large k suggests untapped potential that RL can 157

exploit (Yue et al., 2025a). The experimental re- 158

sults of TULU 3 SFT and DeepSeek-R1-Distill- 159

Qwen-7B are shown in Figure 2. We can observe 160

that the results are much higher with larger k, with 161

pass@64 showing over a 20% increase compared 162

to pass@1. This suggests that LLMs can sample 163

correct answers on IFEval at higher k, with the 164

potential that can be exploited during RL training. 165

2.2 Verification Engineering 166

We preliminarily conduct verification engineer- 167

ing using reward model benchmarks. Specifically, 168

2



1 2 4 8 16 32 64
Pass@k

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy
 (%

)

TULU3-SFT
DeepSeek-R1-Distill-Qwen-7B

Figure 2: Pass@k results (%) of two SFT-trained LLMs
on IFEval. We report the prompt-level strict score.

Method Hard Soft Overall

Code-only 60.6 13.2 48.6
LLM-onlyQWQ 31.5 48.1 37.4
LLM-onlyQWEN 19.7 45.3 28.6
Code+LLMQWQ 61.3 48.1 58.1

Table 1: Accuracy (%) of three verification methods on
IFBench. “Hard” or “Soft” indicates that the rejected
response only violates certain hard or soft constraints.

we evaluate different verification methods on IF-169

Bench (Peng et al., 2025), a benchmark designed170

for instruction-following rewards that consists of171

an instruction and two responses, where the task is172

to select the response that better follows the instruc-173

tion. IFBench includes 3 common hard constraints:174

length, format, and keyword, and 2 common soft175

constraints: style and content. We explore three176

verification methods: (1) code-only verification,177

similar to RewardAgent proposed by Peng et al.178

(2025), which uses automatically generated code179

for each constraint verification; (2) LLM-only veri-180

fication, which directly uses the LLM as the judge;181

(3) code+LLM verification, which applies code ver-182

ification for hard constraints and LLM for soft con-183

straints. We explore using QwQ-32B (Qwen, 2025)184

and Qwen2.5-72B-Instruct (Yang et al., 2024) as185

the LLMs. The results are shown in Table 1. We186

can observe that code+LLM verification performs187

much better and reasoning LLMs (QwQ) also per-188

form better than non-reasoning LLMs (Qwen).189

We further investigate the accuracies of code and190

LLM verification on different types of constraints,191

and report their respective accuracy for soft and192

hard constraints in Table 1, which further confirms193

that code verification is more effective for hard194

constraints and LLM verification performs better195

on soft constraints, supporting the rationale for the196

code+LLM verification approach. The detailed re-197

sults across different constraint types are shown198
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Figure 3: Accuracy (%) of code-only or LLM-only
verification in verifying compliance with different types
of constraints. LLM-only adopts QwQ-32B.

in Figure 3, and we can observe that LLMs per- 199

form particularly poorly on keyword and length 200

constraints, which may be due to inherent limita- 201

tions in numerical counting (Fu et al., 2024; Ball 202

et al., 2024). Since keyword and length constraints 203

can be efficiently verified with code, we conclude 204

that in instruction-following verification, hard con- 205

straints should be checked with code, and soft con- 206

straints can be reliably verified by advanced LLMs. 207

3 Method 208

This section introduces the formalization of VERIF 209

(§ 3.1), the construction process of VERINSTRUCT 210

(§ 3.2), and the RL training method (§ 3.3). 211

3.1 Verification Method 212

Suppose we are given an instruction x, which in-
cludes the task decription and a set of constraints
C = {c1, c2, ..., cn}. We follow the task defini-
tion of instruction-following by Zhou et al. (2023):
given x, generating a response y that satisfies all
constraints in C. In this work, our primary goal is
to accurately verify whether y meets all constraints
and to apply this reliable verification in reinforce-
ment learning training. Specifically, the constraint
set C consists of two types: hard constraints Ch,
which can be verified by simple rules or code (e.g.,
length), and soft constraints Cs, which require se-
mantic understanding (e.g., style). As explored in
§ 2.2, we propose a hybrid verification approach,
VERIF, that uses code verification for Ch and LLM
verification for Cs. Formally, this is defined as:

VERIF(x, y) = F (Code(x,Ch),LLM(x,Cs))

Code(x,Ch) ∈ {0, 1} denotes whether y satis- 213

fies all hard constraints in Ch, and LLM(x,Cs) ∈ 214

{0, 1} indicates whether y satisfies all soft con- 215

straints in Cs. F denotes the aggregation method 216
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Can you explain how solar panels work?

Sure! Solar panels are devices that convert sunlight into 
electricity through the photovoltaic effect. …

Instruction

Response

1. A simple, friendly, and 
imaginative tone.
2. …

Soft Constraint Generation Hard Constraint Generation
1. Contain at least 160 
words
2. …

Could you give a simple, friendly, and imaginative 
explanation … contains at least 160 words.

Complex Instruction

Sure! Let’s imagine the Sun is a giant 
flashlight in the sky, shining down …

1. Writing Style
2. Semantic Elements

3.   …

Final Verification Score∈ [0, 1]

Cs Response Response

Aggregation

LLM Verification

[LLM] [Length] [Keyword] …

Verification Construction …

[Keyword]

[Length]
[LLM]

Policy Model

Code VerificationTagging Coding

Figure 4: Left: The construction process for VERINSTRUCT, including complex instruction generation and
verification construction. Right: Our verification method, VERIF, providing verification for instruction following.

used to combine the code verification score and217

the LLM verification score, including averaging or218

multiplication. In this work, we consider only three219

types of hard constraints, including length, format,220

and keyword. All other constraints are taken as soft221

and verified using LLMs. As explored in § 2.2, we222

use large reasoning models for LLM-based verifica-223

tion, which is a form of scaling up verification and224

has been demonstrated effective in practice (Liu225

et al., 2025b; ByteDance-Seed, 2025).226

3.2 Data Construction Method227

We construct a high-quality instruction-following228

dataset for reinforcement learning, where each in-229

stance is paired with a corresponding verification.230

Prior works on enhancing instruction-following of231

LLMs (Sun et al., 2024; Dong et al., 2024; Qi et al.,232

2024) have primarily focused on generating com-233

plex instructions and corresponding high-quality234

responses for supervised fine-tuning (SFT). In this235

work, we focus on generating complex instruc-236

tions with associated verification, eliminating the237

efforts to generate and filter high-quality responses.238

As shown in Figure 4, the construction process239

consists of two main parts: (1) Complex instruc-240

tion generation. We adopt the constraint back-241

translation approach (Qi et al., 2024) to generate242

complex instructions, which produces few unrealis-243

tic cases. Specifically, we randomly sample 25, 000244

data instances from four high-quality datasets, in-245

cluding Alpaca GPT4 (Peng et al., 2023), Orca246

Chat (Es, 2023), Evol Instruct (Xu et al., 2023),247

and OpenAssitant (Köpf et al., 2024). We use248

Llama3.1-70B-Instruct (Grattafiori et al., 2024) to249

generate constraints implicitly satisfied by each re-250

sponse, such as language style. Since LLMs often 251

struggle with understanding length constraints (Sun 252

et al., 2024), we instead automatically synthesize 253

them based on response length using Python scripts. 254

We combine the generated constraints with the orig- 255

inal instruction to form the final complex instruc- 256

tion. (2) Verification construction. We then auto- 257

matically generate a verification method for each 258

constraint. For hard constraints, including length, 259

format, and keyword presence, we use Qwen2.5- 260

72B-Instruct to generate verification Python code. 261

Given the simplicity of these generated Python 262

code scripts, we manually check them and find 263

nearly no errors. For soft constraints, we do not 264

generate code but instead tag them with “LLM”, 265

which indicates that verification during RL train- 266

ing should be online produced by an LLM. We 267

finally filter out instructions with fewer than 2 con- 268

straints, resulting in VERINSTRUCT, which con- 269

tains 22, 000 instructions, each including an aver- 270

age of 6.2 constraints and corresponding verifica- 271

tion methods. The details of VERINSTRUCT are 272

placed in Appendix A. 273

3.3 RL Training 274

We conduct reinforcement learning using VERIF 275

on VERINSTRUCT. Specifically, we adopt the 276

GRPO algorithm (Shao et al., 2024) and perform 16 277

rollouts per prompt for value estimation. For each 278

response, the reward is provided online by VERIF. 279

To reduce the overhead of LLM-based verification, 280

we input all soft constraints Cs to the LLM at once 281

to assess whether the response satisfies all of them 282

in a single pass. We conduct RL training using the 283
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Model IFEval Multi-IF SysBench FollowBench CFBench

Pr. (S) Pr. (L) Ins. (S) Ins. (L) Turn 1 Turn 2 Turn 3 ISR SSR ISR

GPT-4o 79.9 84.8 85.6 89.6 82.3 71.7 59.3 80.2 75.3 80.0
QwQ-32B 82.8 86.1 88.0 90.4 64.2 56.6 48.4 67.8 73.5 80.0
Qwen2.5-7B-Instruct 71.5 74.1 79.4 81.3 75.3 57.9 47.0 − 65.9 74.0
LLaMA3.1-8B-Instruct 72.6 77.3 80.8 84.2 71.3 62.8 54.6 − 65.9 71.0
TULU 3 79.7 82.8 85.1 87.5 82.1 63.2 51.2 48.9 70.3 72.0

Crab-7B-DPO 47.3 57.1 59.7 67.9 47.2 36.5 28.9 − 56.3 62.0
Conifer-7B-DPO 48.1 52.3 59.1 63.3 50.7 37.6 26.6 − 56.9 62.0
UltraIF-8B-DPO† 71.3 75.4 79.4 83.1 69.6 58.3 46.9 − 62.6 −

R1-Distill-Qwen-7B 59.9 65.1 70.4 74.2 55.8 43.6 32.7 16.9 53.9 66.0
+VERIF 75.6 79.5 82.7 85.5 66.0 53.8 41.9 26.5 61.0 68.0

TULU 3 SFT 68.4 71.7 76.3 79.5 67.3 50.9 40.3 33.2 62.0 63.0
+VERIF 84.5 87.1 89.3 91.4 79.4 65.2 54.0 54.7 68.6 72.0

Table 2: Experimental results (%) on several representative instruction-following benchmarks. “Pr.” and “Ins.”
denote prompt-level and instruction-level metrics respectively. “S” and “L” mean strict and loose respectively. †
denotes the results are sourced from the original paper (An et al., 2025). All the other results are reproduced by us
in this paper. For reasoning LLMs, we remove the thinking tokens and evaluate using only the final response.

VeRL framework1 and integrate a parallel reward284

computation mechanism to accelerate RL training.285

4 Experiments286

This section introduces experimental setup (§ 4.1),287

main results (§ 4.2), analytical experiments (§§ 4.3288

to 4.5), and developing a smaller verifier (§ 4.6).289

4.1 Experimental Setup290

Reported Models We conduct RL training based291

on two SFT-trained models: TULU 3 SFT (Lam-292

bert et al., 2024) and DeepSeek-R1-Distill-Qwen-293

7B (Guo et al., 2025). For the specific implemen-294

tation of VERIF, we use QwQ-32B as the LLM295

verifier and set F in Equation 3.1 as average. For296

comparison, we evaluate TULU 3 (Lambert et al.,297

2024), which is trained directly based on TULU298

3 SFT with extensive DPO and RLVR training.299

We also evaluate various industrial models, includ-300

ing GPT-4o (Hurst et al., 2024), QwQ-32B (Qwen,301

2025), Qwen2.5-7B-Instruct (Yang et al., 2024),302

LLaMA3.1-8B-Instruct (Grattafiori et al., 2024),303

and open-source models specifically optimized for304

instruction following, including Conifer (Sun et al.,305

2024), Crab (Qi et al., 2024), and UltraIF (An et al.,306

2025). More details are placed in appendix B.307

Evaluation benchmarks We evaluate the mod-308

els on several representative instruction-following309

benchmarks, including IFEval (Zhou et al., 2023),310

the most commonly used dataset; Multi-IF (He311

et al., 2024b), which includes multi-turn and multi-312

lingual instruction following; SysBench (Qin et al.,313

1https://github.com/volcengine/verl

2024), which evaluates instruction following to sys- 314

tem prompts; FollowBench (Jiang et al., 2024) and 315

CFBench (Zhang et al., 2024a), which cover a com- 316

prehensive range of constraint types. 317

4.2 Main Results 318

All experimental results are presented in Table 2. 319

We have the following observations: (1) Reinforce- 320

ment learning with VERIF demonstrates strong per- 321

formance. Compared to their corresponding back- 322

bones (R1-Distill-Qwen-7B and TULU 3 SFT), 323

the trained models using RL perform much bet- 324

ter. Notably, the model trained based on TULU 3 325

SFT even outperforms the original TULU 3 (Lam- 326

bert et al., 2024), which is trained based on TULU 327

3 SFT using approximately 271k DPO pairs and 328

specialized RLVR data. Among models with sim- 329

ilar parameter scales, the model trained based on 330

TULU 3 SFT achieves state-of-the-art performance 331

and surpasses several open-source models devel- 332

oped by industry using larger datasets and more 333

resources. This demonstrates the potential of RL 334

training for instruction following and the effective- 335

ness of VERIF in providing reliable rewards. (2) 336

RL with VERIF generalizes effectively to unseen 337

instruction-following tasks. Although the training 338

dataset VERINSTRUCT contains only English and 339

single-turn instruction-following data, the trained 340

model shows substantial improvements on multi- 341

lingual, multi-turn (Multi-IF) instruction following, 342

and following system prompts (SysBench). This 343

suggests that the patterns of instruction following 344

may be inherently generalizable and that RL further 345

enhances this generalization (Chu et al., 2025). (3) 346

RL with VERIF benefits both reasoning and non- 347

5
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Model AlpacaEval 2.0 MT-Bench GSM8K Omni-MATH MMLU-Pro BBH DROP

Qwen2.5-7B-Instruct 37.5 7.8 91.4 13.6 56.5 71.8 77.2
Llama3.1-8B-Instruct 29.4 6.0 83.6 10.8 48.1 63.0 74.4
TULU 3 39.9 7.5 88.4 14.2 35.9 68.5 69.4

R1-Distill-Qwen-7B 16.6 5.7 87.0 35.0 54.3 21.5 74.0
+VERIF 15.5 5.9 90.0 33.6 54.8 32.2 75.6

TULU 3 SFT 7.9 6.3 78.8 11.4 36.4 67.4 58.3
+VERIF 22.0 7.0 83.4 12.4 36.0 67.9 59.5

Table 3: Experimental results (%) on various general natural language benchmarks.

reasoning models. As reinforcement learning has348

demonstrated its effectiveness in enhancing reason-349

ing abilities on challenging tasks (Guo et al., 2025;350

Luo et al., 2025a), such as math and code, we sug-351

gest integrating instruction-following training into352

RL pipelines. Our further analysis (§ 4.3) shows353

that general capabilities, such as mathematical rea-354

soning and language understanding, do not degrade355

after RL with VERIF and may even slightly im-356

prove, indicating that RL with VERIF can be inte-357

grated into broader model development for enhanc-358

ing the model’s instruction following capabilities.359

(4) Models developed by the academic community,360

such as Conifer, Crab, and UltraIF, show relatively361

lower performance, which is reasonable given their362

focus on exploring effective SFT data synthesis363

and limited training resources. Given that there is364

abundant open-source SFT data, such as Infinity In-365

struct (BAAI, 2024) with approximately 7 million366

instances, we encourage the research community367

to devote more attention to constructing RL data368

instead, as RL data remains scarce and RL has been369

demonstrated to be effective for instruction follow-370

ing. In conclusion, RL with VERIF effectively en-371

hances instruction-following capabilities, and we372

encourage more efforts on developing effective RL373

methods or data for instruction-following.374

4.3 Analysis on General Capabilities375

We further investigate the general capabilities of the376

trained models to assess the broader impact of RL377

with VERIF. Specifically, we conduct an evaluation378

on various representative general benchmarks, in-379

cluding general instruction-following datasets that380

focus on task completion and are evaluated using381

LLM-as-a-judge: AlpacaEval 2.0 (Dubois et al.,382

2024) and MT-Bench (Zheng et al., 2023), math-383

ematical reasoning benchmarks: GSM8K (Cobbe384

et al., 2021) and Omni-Math (Gao et al., 2025),385

natural language understanding datasets: MMLU-386

Pro (Wang et al.) and DROP (Dua et al., 2019), and387

50 60 70 80 90 100
Accuracy (%)

Change Case
Combination

D. Content
D. Format
Keywords
Language

Length
Punctuation

Startend

TULU3 + VerIF TULU3

Figure 5: Prompt-level strict scores (%) across different
types of constraints on IFEval. “D.” denotes Detectable.

a natural language inference benchmark BBH (Suz- 388

gun et al., 2023). The results are shown in Table 3. 389

We can observe that RL training does not degrade 390

general performance and even improves the perfor- 391

mance in some cases, such as MT-Bench, GSM8K, 392

and BBH. We attribute this to a key difference 393

between RL and SFT: while SFT learns and memo- 394

rizes patterns from data and is prone to catastrophic 395

forgetting (Chu et al., 2025), RL typically maxi- 396

mizes optimal patterns it has learned (Yue et al., 397

2025b), thereby reducing the risk of knowledge for- 398

getting. These results suggest a promising finding 399

that instruction-following reinforcement learning 400

can be integrated into existing RL pipelines to en- 401

hance adherence to instructions without compro- 402

mising the model’s general capabilities. 403

4.4 Analysis on Constraint Types 404

VERINSTRUCT includes only five constraint types: 405

length, keyword, format, content, and style. We fur- 406

ther investigate the improvements across different 407

constraint types in IFEval to analyze the general- 408

ization of constraint adherence. Results are shown 409

in Figure 5. We observe clear improvements across 410

most types except for “Startend” and “Language” 411

(which already achieves 100% accuracy). This in- 412

dicates that RL training can generalize instruction- 413
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Figure 6: Reward curves during RL training with dif-
ferent verification methods. We visualize the first 200
steps and smooth the data for better visualization.

Model IFEval Multi-IF CFBench

VERIF 84.5 54.0 72.0
w/o code* 81.7 51.2 70.0
w/o code 76.2 52.0 73.0
w/o LLM 74.7 46.0 59.0

VERIF (Qwen-2.5) 76.9 48.5 71.0

Table 4: Ablation results (%) for different verification
methods. “Qwen-2.5” uses Qwen2.5-72B-Instruct as
the LLM instead of QwQ-32B. We report the prompt-
level strict score for IFEval, the Turn 3 score for Multi-
IF, and the ISR score for CFBench.

following ability to unseen constraint types. For414

constraint types covered in VERINSTRUCT, such415

as length, keyword, and content, the improvements416

are more pronounced, which demonstrates the pre-417

cision of the verification provided by VERIF. This418

also suggests that incorporating datasets with richer419

constraint types can further improve performance.420

We encourage the community to explore more di-421

verse data for RL for instruction following.422

4.5 Ablation Studies423

We conduct ablation studies on the verification424

method. Specifically, we perform three ablations:425

(1) “w/o code*”, which uses only the LLM to verify426

all constraints; (2) “w/o code”, which uses only the427

LLM for soft constraints; (3) “w/o LLM”, which428

verifies only hard constraints using Python code429

scripts. We conduct RL training using different430

verification methods based on TULU 3 SFT. The431

reward curves during training are shown in Fig-432

ure 6. We observe that using only code verification433

yields lower rewards and limited growth, likely due434

to the difficulty of following hard constraints. In435

contrast, using only LLM verification results in436

higher and more pronounced reward growth, pos-437
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Re
wa

rd

VerIF (QwQ-32B)
VerIF (IF-Verifier-7B)

VerIF (Qwen-7B)

Figure 7: Reward curves during RL training using dif-
ferent LLM verifiers in VERIF. Qwen-7B is short for
DeepSeek-R1-Distilled-Qwen-7B.

sibly because the LLM verifier is easier to fit or 438

hack (Li et al., 2024). The results are shown in 439

Table 4. We can observe that removing any veri- 440

fication component degrades model performance 441

compared to VERIF. Notably, “w/o LLM”, which 442

uses only Python scripts for hard constraint veri- 443

fication, performs significantly poorly. This may 444

be due to that approximately 77.7% constraints in 445

training data are soft. This suggests that using code 446

verification for hard constraints only, as adopted 447

in training TULU 3 (Lambert et al., 2024), is sub- 448

optimal for RL in instruction following. We also 449

adopt Qwen2.5-72B-Instruct as the LLM verifier 450

in VERIF and find it significantly underperforms 451

QwQ-32B. The potential reason may be that in our 452

implementation of VERIF, the LLM is required 453

to verify whether a response satisfies all soft con- 454

straints in a single pass, which requires step-by-step 455

reasoning and poses significant challenges. The 456

results demonstrate the potential of scaling up ver- 457

ification (Liu et al., 2025b). In conclusion, we 458

suggest that the best practice for verification in RL 459

for instruction following is VERIF with reasoning 460

models as the LLM verifier. We further explore a 461

smaller reasoning LLM as the verifier in § 4.6. 462

4.6 Training a Smaller Verifier 463

Although we have demonstrated VERIF with a 464

large reasoning model, such as QwQ-32B, is ef- 465

fective for RL in instruction following, the long 466

outputs of QwQ-32B lead to high latency during 467

online reward computation. For example, when 468

training TULU 3 SFT, we adopt 8 H800 GPUs for 469

deploying QwQ-32B and set batch size to 32, roll- 470

outs to 16, and the average time to obtain the reward 471

for a batch reaches about 180 seconds, accounting 472

for roughly 80% of the time per training step. To 473
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Model IFEval Multi-IF SysBench FollowBench CFBench

Pr. (S) Pr. (L) Ins. (S) Ins. (L) Turn 1 Turn 2 Turn 3 ISR SSR ISR

VERIF (QwQ-32B) 84.5 87.1 89.3 91.4 79.4 65.2 54.0 54.7 68.6 72.0

VERIF (Qwen-7B) 77.1 80.4 84.3 86.6 78.5 60.8 49.0 42.7 62.0 72.0
VERIF (IF-Verifier-7B) 80.0 84.5 86.0 89.4 80.1 63.7 52.7 49.5 68.8 70.0

Table 5: Experimental results (%) of models trained using different LLM verifiers. Qwen-7B is short for DeepSeek-
R1-Distilled-Qwen-7B. The base model used for RL training is TULU 3 SFT.

address this, we explore using smaller reasoning474

models as LLM verifiers while maintaining compa-475

rable performance. A straightforward approach is476

to distill a verifier from QwQ-32B. Therefore, we477

distill 130k SFT data instances from QwQ, where478

each instance consists of an instruction, a response,479

and a critic indicating whether a response satisfies480

the given constraints in the instruction. The data481

collection process is detailed in Appendix C.482

We fine-tune DeepSeek-R1-Distill-Qwen-7B on483

the collected dataset, resulting in IF-Verifier-7B.484

We then conduct RL training on TULU 3 SFT using485

the new LLM verifiers in VERIF. Figure 7 shows486

the reward curves during training. We can observe487

that DeepSeek-R1-Distill-Qwen-7B yields higher488

initial rewards, but its reward growth is limited.489

IF-Verifier-7B exhibits a similar reward trajectory490

as QwQ-32B. The results of the trained models491

are shown in Table 5. We observe that using IF-492

Verifier-7B as the LLM verifier in VERIF signifi-493

cantly outperforms DeepSeek-R1-Distill-Qwen-7B494

and achieves competitive performance to QwQ-495

32B. Moreover, IF-Verifier-7B reduces computa-496

tional cost a lot. Deploying IF-Verifier-7B requires497

only one single H800 GPU, with an average re-498

ward computation time of 120 seconds per batch,499

which can be further reduced with multi-GPUs.500

This makes VERIF a practical method for effective501

RL training under limited resources. This work502

preliminarily explores more efficient LLM verifiers503

and encourages further efforts (Liu et al., 2025b).504

5 Related Work505

Instruction following requires models to generate506

responses that satisfy complex user instructions.507

Recent work has primarily focused on following508

constraints in instructions, such as length and key-509

word (Zhou et al., 2023). Existing efforts to en-510

hance instruction-following capabilities primarily511

focus on methods for (1) collecting SFT data, in-512

cluding directly distilling from larger LLMs (Sun513

et al., 2024; He et al., 2024a; Dong et al., 2024;514

Ren et al., 2025), back-translation (Qi et al., 2024;515

Pham et al., 2024), and training dedicated instruc- 516

tion composers (An et al., 2025), and (2) collecting 517

preference pairs (Cheng et al., 2024; Pham et al., 518

2024; Dong et al., 2024; Zhang et al., 2024b). No- 519

tably, two works are similar to ours: AutoIF (Dong 520

et al., 2024), which constructs both instructions 521

and corresponding verification code, but but does 522

not explore RL training or soft constraints verifi- 523

cation; and TULU 3 (Lambert et al., 2024), which 524

adopts RLVR for instruction following but the im- 525

provement is limited and also does not consider 526

soft constraints. In summary, the best practice for 527

RL in instruction following remains underexplored. 528

As RL has proven to be an effective post-training 529

technique, many prior studies have explored its ap- 530

plications across various domains, primarily focus- 531

ing on verification engineering, such as math (Lam- 532

bert et al., 2024; Guo et al., 2025; Luo et al., 2025b; 533

ByteDance-Seed, 2025), code (Wang et al., 2024b; 534

Luo et al., 2025a), logic (Xie et al., 2025), tool 535

using (Feng et al., 2025; Jin et al., 2025; Qian et al., 536

2025a; Li et al., 2025; Zheng et al., 2025), machine 537

translation (Wang et al., 2024a; He et al., 2025), 538

medicine (Chen et al., 2024; Wang et al., 2025), 539

and finance (Qian et al., 2025b; Liu et al., 2025a). 540

In this work, we explore the best practice of RL 541

for instruction following and propose VERIF, an 542

effective verification method for RL training. 543

6 Conclusion 544

In this work, we propose VERIF, an effective verifi- 545

cation method for RL in instruction following. We 546

also construct VERINSTRUCT, a dataset for instruc- 547

tion following where each instruction is paired with 548

corresponding verification signals. We perform RL 549

training with VERIF on VERINSTRUCT, leading 550

to significant improvements. The trained models 551

achieve SoTA performance on several representa- 552

tive instruction-following benchmarks at a similar 553

model scale, without hurting general capabilities. 554

This work demonstrates the promising potential 555

of RL in instruction following, and we encourage 556

further exploration of novel RL methods and data. 557
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Limitations558

We discuss the limitations of our work here, in-559

cluding two main aspects: (1) The training dataset560

VERINSTRUCT includes only English data, which561

may limit the broader usage of the dataset. We562

observe that RL on VERINSTRUCT still general-563

izes well to multiple languages, and we encourage564

the community to collect more diverse data cover-565

ing more languages. (2) VERIF relies on an LLM566

as the verifier, which inherits common issues of567

LLM-as-a-judge, such as potential biases (Ye et al.,568

2024) and vulnerability to adversarial attacks (Shi569

et al., 2024). We believe developing more robust570

and efficient LLM judges (Liu et al., 2025b) is a571

promising direction and leave it for future work.572

Ethical Considerations573

We discuss potential ethical concerns as follows:574

(1) Intellectual property. Alpaca-GPT4 and Infinity-575

Instruct are licensed under CC BY-NC 4.02, Ope-576

nAssistant is licensed under Apache License 2.03.577

WildChat is licensed under ODC-By license4. Evol-578

Instruct and Orca-Chat do not specify explicit li-579

censes. We strictly adhered to all claimed licenses.580

Our dataset will be released under the Apache Li-581

cense 2.0. We believe the original open-source582

datasets are properly anonymized, and we do not583

introduce any additional sensitive information. (2)584

Potential risk control. In this paper, we propose585

VERIF, a verification method for RL to improve586

instruction-following capabilities of LLMs. As587

VERIF includes an LLM verifier, it inherits the588

known risks of LLMs, such as potential bias (Gal-589

legos et al., 2024; Ye et al., 2024). We do not intro-590

duce any additional risks. Users should not exploit591

VERIF for reward hacking (Skalse et al., 2022) and592

are responsible for verifying the compliance of the593

models trained using it. (3) AI assistance. We use594

ChatGPT and Claude to refine some sentences.595
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Appendices917

A VERINSTRUCT918

A.1 Dataset Construction Details919

Following Qi et al. (2024), we collect original920

instructions and responses from several publicly921

available instruction-tuning datasets, including Al-922

paca GPT-4 (Peng et al., 2023), Orca Chat (Es,923

2023), Evol Instruct (Xu et al., 2023), and Ope-924

nAssistant (Köpf et al., 2024). We then apply a925

back-translation-based method to extract both soft926

and hard constraints from the instruction-response927

pairs. Table 6 presents the prompt to generate soft928

constraints used in VERINSTRUCT construction.929

The hard constraints, including Length, Keyword,930

and selected aspects of Format, are automatically931

generated through Python-based processing. These932

constraints are subsequently combined to form the933

final constraint-enhanced prompt.934

A.2 Dataset Statistics935

Figure 8 shows the distribution of 22, 000 in-936

stances in the VERINSTRUCT dataset. Following937

IFBench (Peng et al., 2025), we categorize con-938

straints into five types: length, keyword, format,939

content, and style. The left chart presents the pro-940

portional distribution of constraint types. Since941

certain format constraints, such as those requiring942

hierarchical output structures, are not easily veri-943

fiable via Python, we define format, content, and944

style as soft constraints, which together account945

for 77.7% of the total. Length and keyword are de-946

fined as hard constraints, making up the remaining947

22.3%. The right chart categorizes the data by the948

number of constraints after merging.949

B Experimental Details950

We train our model using the open-source VeRL951

framework5 with the GRPO algorithm (Shao et al.,952

2024), setting the KL loss coefficient to 1× 10−3.953

The batch size is set to 32, the number of rollouts954

to 16, the maximum generation length of rollout955

to 4, 096, and the learning rate to 1 × 10−6. We956

save checkpoints every 20 steps during training.957

Following TULU 3 (Lambert et al., 2024), we use958

IFEval (Zhou et al., 2023) as the validation set to959

select the best checkpoint. We train the models960

for one epoch on VERINSTRUCT with early stop-961

ping if performance on IFEval does not improve962

for more than 5 checkpoints. The best checkpoints963

5https://github.com/volcengine/verl

Figure 8: left: Proportional distribution of constraint
types in the dataset. right: Distribution of the number
of constraints per instruction.

are typically found within the first 200 steps. For 964

evaluation, we set the sampling temperature to 0 965

to ensure reproducibility. For all evaluations us- 966

ing LLM-as-a-judge, we adopt gpt-4o-2024-11-20 967

as the judge. Since the Conifer model (Sun et al., 968

2024) is not publicly open-sourced, we instead train 969

a model using its SFT and DPO data, and the re- 970

ported results of Conifer are evaluated based on our 971

reproduced model. For the evaluation of reasoning 972

LLMs, we remove thinking tokens and evaluate 973

only the final responses. For evaluation of general 974

capabilities, we report the length-controlled win 975

rate for AlpacaEval 2.0 (Dubois et al., 2024). Both 976

training and evaluation are conducted on Nvidia 977

H800 GPUs, with the entire training process taking 978

approximately 1, 900 GPU hours in total. 979

C Training a Small Verifier 980

We provide a detailed description of the training 981

data construction process and training details. Fol- 982

lowing the construction of VERINSTRUCT, we first 983

generate an additional 20, 000 data instances. To 984

ensure diversity, we additionally mined complex 985

instructions from WildChat (Zhao et al., 2024) and 986

Infinity Instruct (BAAI, 2024). Specifically, we 987

use Qwen2.5-72B-Instruct to extract constraints 988

from each instruction and classify them as hard 989

or soft. For hard constraints, we adopt Qwen2.5- 990

72B-Instruct to generate corresponding verifica- 991

tion Python code scripts. The full prompt is pre- 992

sented in Table 7. For each instruction, we ran- 993

domly sample a response from 6 different models, 994

including Llama3.1-8B-Instruct (Grattafiori et al., 995

2024), Llama-3.3-70B-Instruct (Grattafiori et al., 996

2024), Qwen2.5-7B-Instruct (Yang et al., 2024), 997

Qwen2.5-72B-Instruct (Yang et al., 2024), QwQ- 998

32B (Qwen, 2025), DeepSeek-R1-Distilled-Qwen- 999

32B (Guo et al., 2025). We then adopt QwQ-32B 1000

to generate a step-by-step verification indicating 1001

whether the output satisfies the instruction for each 1002

instruction-response pair. As a result, we collect 1003
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about 130k instruction–response pairs with corre-1004

sponding step-by-step verification. For SFT train-1005

ing, we use the open-source alignment-handbook1006

framework (Tunstall et al.). Based on DeepSeek-1007

R1-Distill-Qwen-7B, we train the model on the1008

collected dataset for 2 epochs, with 2× 10−5 learn-1009

ing rate, 64 batch size, 8, 192 max sequence length,1010

resulting in the verifier IF-Verifier-7B.1011
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Prompt: Generating Constraints from Instruction and Output
As a linguist with expertise in contextual language nuances, please add constraints to enrich the #Given Instruction# based on the
#Given Output#. The goal is to enhance the specificity and detail of the instruction to ensure that the response is more aligned
with the output text.
To supplement the instruction using the output, please consider adding specific and detailed constraints across the following
dimensions:

• Desired_Writing_Style: Specify the intended tone or narrative voice, such as humorous, formal, poetic, or conversational.

• Semantic_Elements: Clarify the core meaning, focus, or conceptual emphasis that the response should reflect.

• Morphological_Constraints: Indicate any forbidden words, expressions, or formatting (e.g., avoid passive voice or
markdown).

• Multi-lingual_Constraints: Specify the language(s) or code-switching rules to be used in the response.

• Hierarchical_Instructions: Define a priority order among multiple tasks, outlining how they should be structured or
emphasized.

• Special_Output_Format: Specify required formats, such as Python code, JSON structure, tables, LaTeX, or HTML.

• Paragraphs_Constraints: Indicate how many paragraphs are needed, and whether any separators (e.g., horizontal lines,
“***”) should be used.

• Specific_Sentence: Require inclusion of a specific sentence at the beginning or end of the response.

• Key_Formatting: Specify formatting of key phrases—such as using bold, italics, or ALL CAPS—based on content in the
#Given Output#.

• Item_Listing_Details: Define how items should be listed, including use of symbols like bullets (•), numbers (1., 2., 3.), or
dashes (-).

#Given Instruction#
{Instruction}

#Given Output#
{Response}

Please format your response directly in JSON, using "Constraint_Type" as the key and the specific constraint as its value.
Ensure that each constraint is a concise and complete sentence of 10–20 words, and use varied phrasing across types.
If a specific type of constraint cannot be derived from the #Given Output#, assign the value "NULL". For example:
"Constraint_Type": "NULL",
Do not include any headings or prefixes in your response.

Table 6: Prompt for generating format, content, and style constraint types based on the back-translation method.
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Prompt: Extracting Constraints from Instruction
You are an expert in natural language processing and constraint checking. Your task is to analyze a given instruction and identify
which constraints need to be checked.
The ‘instruction’ contains a specific task query along with several explicitly stated constraints. Based on the instructions, you
need to return a list of checker names that should be applied to the constraints.
[Task Example 1]
Instruction: Write a 300+ word summary of the Wikipedia page "https://en.wikipedia.org/wiki/Raymond_III_Count_of_Tripoli".
Do not use any commas and highlight at least 3 sections that have titles in markdown format, for example *highlighted section
part 1*, *highlighted section part 2*, *highlighted section part 3*.
Response: NumberOfWordsChecker: 300+ word <sep> HighlightSectionChecker: highlight at least 3 sections that have titles in
markdown format <sep> ForbiddenWordsChecker: Do not use any commas.
#Task Instruction#
{Instruction}

### Your task:
- Generate the appropriate checker names with corresponding descriptions from the original instruction description. - Return the
checker names with their descriptions separated by <sep>.
- Focus only on the constraints explicitly mentioned in the instruction.
- Ensure that each constraint is complete, such as specifying whether the 300-word limit applies to the entire text or a specific
section. A defined scope is required.
- Do **not** generate checkers for the task query itself or its quality.
- If the instruction is in Chinese/English, please output the constraint in the same language.
- Each checker should be responsible for checking only one constraint.
- Do not output any constraints that are not included in the instruction.

Prompt: Classifying Constraints
Please classify whether the given checker can be judged using simple lexical rules.
#Checker#
{checker_name}

Classification rules:
- If the checker can be determined using simple lexical rules—such as word count, text length, number of paragraphs, number of
sentences, or presence of specific keywords—output [[A]].
- If the checker requires semantic understanding—such as style, tone, sentiment, language, context, genre, or structure—and thus
necessitates an additional semantic analysis model (e.g., a large language model), output [[B]].
- If the constraint is meaningless, non-informative, or irrelevant (e.g., "NA"), output [[C]].

Prompt: Generating code
You are tasked with implementing a ‘Python’ function ‘check_following’ that determines whether a given ‘response’ satisfies the
constraint defined by a checker. The function should return ‘True’ if the constraint is satisfied, and ‘False’ otherwise.
[Example Input 1]
no more than 800 words
[Example Output 1]
def check_following(response): return len(response.split()) <= 800
[Example Input 2]
Include keywords ’cloud storage’, ’open-source’
[Example Output 2]
import re def check_following(response): return bool(re.search(r’cloud storage’, response, re.IGNORECASE) and
re.search(r’open-source’, response, re.IGNORECASE))
[Example Input 3]
The word ’huge’ should appear 3 times
[Example Output 3]
import re def check_following(response): return len(re.findall(r’huge’, response, re.IGNORECASE)) == 3
#Task Input Checker#
{checker_name}

[Requirements]
- The function should be self-contained with necessary imports.
- DO NOT use nltk.
- Only return exactly ‘Python‘ code script, without any other info.

Table 7: Prompt for extracting constraints from instruction, classifying constraint types, and generating code for
hard constraints.
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