RollingQ: Reviving the Cooperation Dynamics in Multimodal Transformer

Haotian Ni! Yake Wei?3* Hang Liu®> Gong Chen® Chong Peng® Hao Lin®
Di Hu 234

Abstract

Multimodal learning faces challenges in effec-
tively fusing information from diverse modalities,
especially when modality quality varies across
samples. Dynamic fusion strategies, such as at-
tention mechanism in Transformers, aim to ad-
dress such challenges by adaptively emphasiz-
ing modalities based on the characteristics of in-
put data. However, through amounts of carefully
designed experiments, we surprisingly observed
that the dynamic adaptability of widely-used self-
attention models diminishes. Model tends to pre-
fer one modality regardless of data characteristics.
This bias triggers a self-reinforcing cycle that pro-
gressively overemphasizes the favored modality,
widening the distribution gap in attention keys
across modalities and deactivating attention mech-
anism’s dynamic properties. To revive adaptabil-
ity, we propose a simple yet effective method
Rolling Query (RollingQ), which balances atten-
tion allocation by rotating the query to break the
self-reinforcing cycle and mitigate the key dis-
tribution gap. Extensive experiments on various
multimodal scenarios validate the effectiveness
of RollingQ and the restoration of cooperation
dynamics is pivotal for enhancing the broader ca-
pabilities of widely deployed multimodal Trans-
formers. The source code is available at Github.

1. Introduction

Multimodal learning focuses on extracting and integrat-
ing information from data across different modalities (Bal-
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trusaitis et al., 2018; Zhang et al., 2024) to achieve a com-
prehensive understanding. Each modality provides unique
information, and the challenge of effectively fusing these
modalities has been emphasized in prior works (Gao et al.,
2020; Liang et al., 2022). Current research primarily ex-
plores two fusion paradigms: static fusion and dynamic fu-
sion (Zhang et al., 2024). Static fusion applies fixed weights
to different modalities during inference (illustrated in Fig-
ure 1(a)), assuming that the information provided by each
modality remains consistent (Zhang et al., 2024). However,
this assumption often breaks down in real-world scenar-
ios, where modality quality can vary significantly across
samples. Dynamic fusion, by contrast, directly addresses
this issue by dynamically adjusting weights to each modal-
ity based on the specific characteristics of the input data
(illustrated in Figure 1(b)). To enable dynamic fusion, mul-
timodal Transformers (Vaswani, 2017; Xu et al., 2023) have
emerged as a powerful scheme, leveraging the inherent at-
tention mechanism to identify and focus on the most infor-
mative and task-relevant tokens in the input (Clark, 2019;
Kovaleva, 2019). Using self-attention and cross-attention
fusion layers, these models can adaptively and effectively
integrate information from different modalities, achieving
superior performance in tasks such as audio-visual learn-
ing (Nagrani et al., 2021; Chumachenko et al., 2022), senti-
ment analysis (Wankhade et al., 2022), and visual question
answering (Yu et al., 2019).

To validate the practical performance of static and dynamic
fusion paradigms, we conducted experiments on the widely
used audio-visual dataset, Kinetic-Sound (Arandjelovic &
Zisserman, 2017). Surprisingly, dynamic fusion imple-
mented through a self-attention layer, often considered more
flexible and adaptive, achieves an accuracy of 67.0, which
underperforms the static fusion’s accuracy of 68.0'. To in-
vestigate this unexpected outcome, we first examine whether
this attention-based dynamic fusion paradigm can adaptively
adjust weights as anticipated, by analyzing the attention
scores in the model’s fusion layer. However, as shown in
Figure 1(c), the model allocates disproportionately high
attention to the audio modality, regardless of data character-
istics. To further verify this behavior, we replaced the audio
input with Gaussian noise, which contains no information.

See Table 1 for more details.
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Figure 1. (a): Ilustration of multimodal static fusion, where the modality weights w® and w"” are fixed values after learned. (b): Illustration
of multimodal dynamic fusion, where the modality weights w® and w" are determined by the input data  and x". (¢): Attention scores
assigned to each modality on the Kinetic-Sound dataset(Arandjelovic & Zisserman, 2017). The left half shows normal samples, while the
right half shows samples where the audio modality’s input is replaced with Gaussian noise. (d): Distribution of keys in the attention layer
for different modalities on Kinetic-Sound. The red dots represent the keys when the audio modality is replaced with Gaussian noise.

Despite this, the model remains excessive attention to the
perturbed audio modality in Figure 1(c), indicating that such
dynamic fusion paradigm is overly biased and fails to adapt
attention score according to the informativeness of different
modalities. This breakdown in multimodal attention adaptiv-
ity undermines the intended advantages of dynamic fusion
and degrades overall model performance.

To investigate the underlying cause of this counterintuitive
phenomenon, we analyzed the distribution of attention keys
for each modality and their cosine similarity with the query
of the class token, which directly determines the attention
scores. As shown in Figure 1(d), the degradation of the
dynamic property in the attention mechanism arises from a
significant disparity in the attention key distributions across
modalities. A modality is biased: the query of the class to-
ken, which determines the prediction of the model, remains
significantly similar to the keys of the biased modality even
when it contains no information. To further understand the
factors driving this distribution gap, we performed both the-
oretical analysis and empirical verification. Our findings
reveal a self-reinforcing cycle driven by the greedy nature of
multimodal learning (Wu et al., 2022), where the model con-
tinuously emphasizes the biased modality in feed-forward
stage and optimizes its features through backward propa-
gation. Over time, this feedback loop exacerbates the dis-
tribution disparity: the biased modality accumulates higher
attention scores and more informative features, while other
modalities receive diminished attention and remain under-
optimized. As a result, regardless of the data characteristics,
the biased modality consistently receives higher attention
scores due to the distribution gap, thereby significantly im-
pairing the attention mechanism’s dynamic adaptability.

To break the self-reinforcing cycle and revive the cooper-
ative dynamics of multimodal Transformers, we propose
a simple yet effective strategy: Rotating the Query! Con-

cretely, we could facilitate dynamic multimodal coopera-
tion by mitigating the over-reliance on the biased modality.
This Rolling Query (RollingQ) algorithm rotates the cur-
rent query towards an anchor, which is designed to allocate
higher attention scores to the unbiased modality rather than
the biased one. After rotating the query to the anchor, the
learning of this new query will encourage the key distri-
bution across modalities to narrow the gap between them.
Consequently, during optimization, the formerly underuti-
lized modality gains more momentum, enabling it to ob-
tain more informative features. This rebalancing gradually
equalizes the quality of features across modalities. Further-
more, we validate the effectiveness of our RollingQ strategy
through extensive experiments and provide detailed obser-
vations demonstrating how RollingQ restores the dynamic
adaptability of multimodal Transformers.

Our contributions are summarized as follows: Firstly, we
identify the deactivation of the dynamic property in multi-
modal Transformers, which we attribute to a self-reinforcing
cycle during training, resulting in a significant distribu-
tion gap between the attention keys of different modali-
ties. Secondly, we propose a simple but effective algorithm,
RollingQ, which effectively disrupts this self-reinforcing
cycle by rotating the query and rebalancing the attention
mechanism. Finally, through extensive experiments, we
demonstrate that RollingQ not only restores the cooperative
dynamics of multimodal Transformers but also significantly
improves their performance across diverse datasets.

2. Related Works
2.1. Multimodal Learning

Multimodal learning aims to leverage data from multiple
modalities, where the fusion paradigm serves as the core to
integrate multimodal information (Gao et al., 2020). Based
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on the ideology of aggregate information within the fea-
ture space, several works explore various fusion schemes
to effectively combine features under a late fusion struc-
ture (Zadeh et al., 2017; Liu et al., 2018). Besides, instead
of simply aggregating, some works focus on enhancing
the multimodal interaction thus fusing information within
modalities at an earlier stage. Specifically, they have in-
vented special transfer modules or exchange mechanisms
between encoders to introduce interaction (Joze et al., 2020;
Wang et al., 2020b). Meanwhile, behind these fusion struc-
tures, researchers found that there is always a modality
favored by the model, hence it dominate the overall learning
process, leading to imbalance multimodal learning (Wang
et al., 2020a; Huang et al., 2022). To address this, several
methods have been proposed to mitigate learning imbalance
through optimization adjustments, data filtration, and spe-
cialized objectives (Peng et al., 2022; Fan et al., 2023; Xia
et al., 2023; Wei et al., 2024; Yang et al., 2024; 2025; Huang
et al., 2025). However, these approaches primarily focus
on the static fusion paradigms. In this work, we examine a
more complex paradigm, dynamic fusion, investigating the
side effects of imbalanced feature quality on both attention
score allocation and encoder optimization.

2.2. Multimodal Transformers

Multimodal Transformers (Xu et al., 2023), which leverage
the attention mechanism to integrate information from mul-
tiple modalities, are widely used across various fields since
they can dynamically select informative and task-relevant
tokens to accomplish the task. Some works directly con-
catenate the input sequence of different modalities and pass
them together into the Transformer blocks (Li et al., 2019;
Kim et al., 2021). However, identifying the redundancy
and computational expense associated with the long input
sequence, others focus on structural modifications to unlock
the full potential of Transformer models (Gao et al., 2019;
Tsai et al., 2019; Wu et al., 2021). For example, some ap-
proaches use Transformer blocks to fuse features provided
by two unimodal encoders (Chumachenko et al., 2022). Na-
grani et al. (2021) and Recasens et al. (2023) limit modality
interactions to specific tokens, thus compressing the interac-
tion information for greater efficiency. Further, identifying
that some tokens may be irrelevant to the task, Wang et al.
(2022) propose a specialized scoring network to evaluate
and select the most informative tokens for task completion.

Despite their reported superior performance on various
tasks (Yu et al., 2019; Wankhade et al., 2022), the internal
workings of the attention mechanism within fusion mod-
ules—and whether they function as intended—remain un-
derexplored. In this work, we delve into the learning process
of the attention module, shedding light on how the attention
mechanism attributes weights across different modalities.
We further propose the RollingQ algorithm, which restores

their dynamic capabilities and leads to better performance.

3. Method

3.1. Preliminary

In this work, we focus on exploring the attention mechanism
within multimodal Transformers. To simplify the analysis
and emphasize the core dynamics of attention, we use a
single self-attention layer, which is both representative and
widely adopted for theoretical analysis. As for different
fusion paradigms within multi-layer Transformer, we also
provide experiment verifications in Appendix C.4. For con-
venience, we denote the dataset as D = {x;,¥i }ic[1,n]s
where each sample in the dataset consists of a pair of differ-
ent modalities z; = (z¢, z}), using audio and visual data
here for example. Two encoders are denoted by ®¢, 7,
with parameter 6, 6", so the transformed features z¢, z¥
follows 2" = ®™(x*;0™),m € {a,v}. In order to ap-
ply the attention mechanism for fusion, the modality fea-
tures should be a sequence of tokens with embedding di-
mension d and sequence length L™ for each modality, i.e.
2" € RE" >4 m € {a,v}. We follow Dosovitskiy (2020)
and add a special [class] token as a query vector denoted
as zqs € R?, which will eventually be used as the output
feature for task completion.

Within the attention layer (Vaswani, 2017), we have ma-
trix W, WE WV e R4 that map current input into
queries, keys, and values, respectively. We denote these
as K" = 2mWE Qn = ;mWe V™ = WY m €
{a,v}. Specifically, we use ¢ = 2,4 W< € R? to denote
the query for brevity. Hence, the output of the fusion layer
can be simplified as follows:

gk
A= — 1
d (D
h; = softmaz(A;)V; 2)

where K; = [K¢, K}, V; = [V,*,V;"]. Finally, we use a
linear classifier f(-) to obtain the prediction g; = f(h;).

From Equation 1, we know that the attention score for
each modality is determined by the dot product of the ¢
and K[". Since K" € RF"*? is a sequence of keys,
we express it as K" = [k} ), ..., k(] ;)] Similarly,
the A; can be expanded into a sequence form as A; =
[qk?iﬁl), ...,qk(“i7La),qkzji71), ""qkz)i,L“)]'

Given that softmax function as a normalization function (Bri-
dle, 1989), attention score for modality m is determined by

ZLm &\/j) By averaging the keys of modality m,

j=1
e
fm _ 2=t FGig)

? Lm ’ me {avv}v (3)
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we have:

\fl\QH 2|k |2cos6]". ©)

Z ~ ak(3)
=
Here, ||q||2, ||k7"||2 represent the Ly-norms of ¢, k7", re-
spectively, while cosf]" denotes the cosine similarity be-

tween ¢ and l%;".

3.2. A Self-reinforcing Cycle Undermines Cooperation
Dynamics

To explore the underlying causes of the deactivated coopera-
tion dynamics, we delve into the training process, providing
a theoretical analysis of attention allocation during the feed-
forward stage and the optimization of unimodal encoders
during backward propagation.

At the beginning of training, since both modalities’ features
lack task-relevant information, the attention scores for each
modality primarily depend on initialization. Specifically,
we usually initialize the [class] token using truncated nor-
mal distribution with expectation E[z.s] = 0 (Dosovitskiy,
2020). Inspired by Chen et al. (2018) and Geshkovski et al.
(2023), we regard both query ¢ and the average key l%}” as
a sample from its corresponding random variables @), Km
and distribution Q, K™. We can denote it as follows:

Q ~ Q,Km ~ I@Tn. (5)

From the [class] token to query following ¢ = 24, W®,
we has E[Q] = 0. Due to the empirical fact that Q) and
K™ are independent variables, their expectation can be
directly multiplied, resulting in E[QK®] = E[QK"] = 0 at
the training’s initial phase. Therefore, we can deduce the
following proposition:

Proposition 3.1. Ar the start of training, both modalities
receive similar attention scores.

As training progresses, the situation evolves during the feed-
forward stage. Due to intrinsic differences between modal-
ities, a modality may be favored by the model and pro-
vide higher quality features over time, becoming the biased
modality. Here, we assume audio is the biased modality.

Taking the greedy nature of multimodal deep neural net-
works into account (Wu et al., 2022), the model tends to
prioritize the modality @ when it provides higher quality fea-
tures. As a result, the biased modality accumulates higher at-

tention scores, which are determined by ZjLa qk\(}“ With
Equation 4, this greedy nature increases cosine similarity
between the modality a’s average key l%f and ¢ while si-
multaneously decreasing the cosine similarity between the
modality v’s average key I%}’ and ¢q. Consequently, this

leads to a significant disparity in the average key distribu-
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Figure 2. The distribution of average key on CREMA-D and MO-
SEI(V+T); the x-axis refers to the cosine similarity with query
while the y-axis refers to the L£2-norm of key.

tions across modalities and disproportionately high attention
score for biased modality.

Meanwhile, modality bias will also influence the backward
propagation for unimodal encoders. We use L(y;g) to
denote the loss function where y represents the ground truth
label and g is the prediction generated by the linear classifier
f(-), following § = f(h). We can integrate the Equation 1
and Equation 2 to the form below:

ql K7, KT
Vd
the current loss is L(y;; f(hi)).

h; = softmax( NV, Vi, (6)

The gradient of modality m’s encoder parameter is:

OL 0L 8f 0h 92"
90m — Of Oh; 021" 96m

(N

According to Equation 7, we can ﬁnd that 8L and af are

shared for both modalities and em depends on the modahty-
specific encoder @™ which is not influenced by the attention
layer. Hence, the only difference in the gradients across

modalities arises from g th .
7

Using s(-) to denote so ftmax(-), with Equation 6, we can

expand the gradient -2 52 7; to
alK KT
as(f) 6Km +S(Q[K'LQ?K';U]T)8‘/’Lm (8)
oK™ oz Vd 9zm

At the backward propagation for encoders, the biased modal-
a T
ity a receiving higher attention score 5(%), has

a v1T
greater gradient s(%) aa‘z/a , augmenting the gradient

of Equation 7 and Equation 8. It, in turn, reinforces the opti-
mization of its corresponding unimodal encoder parameters

0. In contrast, the unbiased modality v receive less gra-
K7, KT oV
Vi) e

dient from s( leading to under-optimized
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Figure 3. The illustration of RollingQ algorithm.

encoder parameters #V. Consequently, this dynamic further
exacerbates the inequality between feature qualities. To
verify this analysis, we provide visualization on gradients
of unimodal encoders in Appendix A.2.

In summary, the modality bias triggers a self-reinforcing
cycle: during the feed-forward stage, biased modality ac-
cumulates more attention score due to its more informative
feature, while in the backward propagation, the higher atten-
tion score provides more momentum to optimize the biased
modality’s encoder parameters. Consequently, this cycle not
only creates a significant distribution disparity between Ke
and K but also amplifies the inequality of feature quality
between the two modalities.

Due to the significant distribution gap, the l%f and IAcl” main-
tain considerable differences regardless of data character-
istics, where l;;? consistently has higher cosine similarity
with ¢ than l%f As shown in Figure 2, when the biased
modality is replaced with Gaussian noise on the CREMA-D
and CMU-MOSEI datasets, we observe a large distribution
gap between the modalities. Notably, the noise input is
mapped to a marginal position within the original distri-
bution, yet it still exhibits a higher cosine similarity to ¢
compared to the unbiased modality. As a result, the model
over-rely on the biased modality, leading to the deactivation
of the cooperation dynamics in multimodal Transformers.
Further verifications and visualizations on more datasets are
provided in Appendix A.1.

3.3. Rolling Query Algorithm

Based on the above analysis, attention fusion tends to over-
rely on the biased modality, losing its cooperation dynamics.
It is therefore crucial to revive its dynamic property. To
address this issue, we propose a simple yet effective Rolling
Query (RollingQ) algorithm, which requires a few increase
on model parameters and computation complexity?.

The key idea to revive the cooperation dynamics is to find
an effective method for identifying and breaking the self-

2See Table 4 for details

Algorithm 1 Rolling Query Algorithm.

Input: Training Dataset D = {(z{,z),¥i}i=1,2,... N+
number of batch Np, iter epoch T', hyperparameter p, 3,
model parameters 8™, m € {a, v}, [class] token 2z and
We, WX in attention layer
Initialize R =1
fort=1to1 do
for j = 1to Np do
Sample Batch B;
Feed-forward with ¢ = 2, s W®R
Update model parameter 0
if j =N B then
Calculate the average key using Equation 3
Calculate E[K™] = mean (k™) in B,
Calculate E[Q)] = mean(q) in B;
Calculate the AIR indicator by Equation 9
if |[AIR| > (3 then
Freeze the model parameter 6™
Calculate o by Equation 11
Calculate rebalance position ¢, by Equation 10
Calculate rotation matrix R, by Equation 13
Update rotation matrix R = R(Rp.detach())
Unfreeze the model parameter 6™
end if
end if
end for
end for

reinforcing cycle. Firstly, to detect the occurrence of this
cycle, we can evaluate and monitor the distribution dispar-
ity across modalities. Next, to break the cycle, we must
suppress its two driving factors: unequal feature quality
and disproportionate attention scores. While feature quality
is inherently determined by the modality itself, making it
difficult to evaluate and control, we focus on modulating
the attention scores. Specifically, we expect to find a rea-
sonable anchor that could assign higher attention scores to
the unbiased modality rather than the biased one. We then
rotate the current query towards this anchor and let the new
query learn in this region, encouraging the equalization of
feature quality and reduction of distribution disparity across
modalities.

Evaluation of distribution gap. Referring to Equation 3,
we transform the attention score into a cosine similarity
form. Based on the experiments observations and consid-
ering the LayerNorm layers used in the model, we hold
||k]|2 & ||k?||2, L* ~ LV in practice. Thus, the primary
factor determining the attention score is the cosine similarity
cosB™ between the average key lAczm of the modality m and
the query ¢. To quantify the distribution gap, we define the
Attention Imbalance Rate (AIR) indicator:

AIR = E[cosf* — cosf"] € [-2,2]. )
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Table 1. Validation on CREMAD (Audio+Visual), Kinetic-Sound (Audio+Visual) and MOSEI (Visual+Text) with Transformer backbone.
The best results are presented in bold. We use 1 to show the improvement in performance compared to not implementing the RollingQ.

Dataset Fusion | CREMA-D | Kinetic-Sound | CMU-MOSEI (V+T)
Metric Layers Acc Acc Acc
Audio 0 47.6 53.9 -
Unimodal Visual 0 36.3 57.0 47.1
Text 0 - - 60.9
Concat 1 49.3 68.0 62.8
Static OGM (Peng et al., 2022) 1 51.2 68.2 62.7
PMR (Fan et al., 2023) 1 50.1 68.2 63.0
Vanilla MT 1 48.8 67.0 62.7
Vanilla MT* 2 51.5 69.1 62.2
Dynamic MulT (Tsai et al., 2019) 1 - - 62.4
MBT (Nagrani et al., 2021) 2 51.5 72.2 63.0
JMT (Nagrani et al., 2021) 2 50.7 67.7 62.6
MMML (Wu et al., 2024) 2 52.0 69.8 62.8
Vanilla MT+RollingQ 1 51.9 (1 3.1) 69.3 (1 2.3) 63.2 (10.5)
Ours Vanilla MT*+RollingQ 2 522 (10.7) 70.1 (1 1.0) 62.9 (10.7)
MulT (Tsai et al., 2019)+RollingQ 1 - - 62.5(10.1)
MMML (Wu et al., 2024)+RollingQ 2 52.7 (1 0.7) 70.7 (1 0.9) 63.2 (1 0.4)

A hyperparameter 3 serves as the threshold for AIR. For
those |[AIR| > 3, we consider the distribution gap signifi-
cant, indicating disproportionate attention scores.

The balance anchor and the rotation matrix. To break
the self-reinforcing cycle, the query g is rotated to a rebal-
anced anchor ¢, that could balance the allocation of attention
scores and narrow the distribution gap between K and K°.
A suitable position should favor the unbiased modality while
considering the biased modality based on the AIR indicator.
This enables the underutilized modality to gain more mo-
mentum during optimization, helping it learn higher quality
features. As a result, the quality of features across modal-
ities can gradually equalize during backward propagation,
reducing the disparity in their key distributions during the
feed-forward stage. To determine ¢, we calculate it using
the expectation form, which allows for easy extension to
multi-layer scenarios as we discussed in Appendix B, of the
average key distributions E[K"™] and the query distribution
E[Q], with a weight o

E[K]

N E[K")
IE[K ][]

R,

@ = ( )IE[Q][|2, (10)

while the weight « is derived, indicating Al R:
1
a= 5[1 + Tanh(—pAIR)], (11)

where p is an hyperparameter holds p > 0.

This ensures that the ¢; decreases the influence of the biased
modality on the output. For instance, for AIR > 0 which
indicates that modality a is the biased modality, receiv-
ing a higher attention score than modality v, we will have

Tanh(—pAIR) < 0, resultingin « < 0.5 and 1 —a > 0.5.
Thus, the modality a will have a lower impact on the deter-
mination of ¢, as shown in Equation 10.

To enable the current query to learn around the rebalance an-
chor as we wished, a rotation matrix R, € R%4*? is essential.
Since we already ensure the L2-norm of rebalance anchor
qp and query q is the same by Equation 10, we can cal-
culate Ry by Singular Value Decomposition(SVD) (Baker,
2005) with rebalance g, and the expectation of current query
distribution E[Q)]:

Ry, = SVD([E[Q], g)), 12)

which statisfied g, = E[Q]Rp.

Finally, for the query after rotation g¢,, its value can be
obtained by multiplying rotation matrix R on g, where we
can obtain:

qr = qRy. 13)

Overall, by leveraging the AIR indicator to detect the self-
reinforcing cycle and learning new rotated query around
rebalance anchor with a rotation matrix, RollingQ can mit-
igate over-reliance on the biased modality and revive the
cooperation dynamics in multimodal Transformer.

4. Experiments

4.1. Dataset and Experiment Settings

Datasets. CREMA-D (Cao et al., 2014) is an audio-visual
dataset designed for emotion recognition, covering 6 com-
mon emotions. Kinetic-Sound (Arandjelovic & Zisserman,
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Figure 4. (a): The distribution of two modalities before Rolling Query on the Kinetic-Sound dataset. (b):The distribution of two modalities
after Rolling Query on Kinetic-Sound dataset. (c): The variation of attention score on each modality during the training process on
Kinetic-Sound dataset when implementing the RollingQ algorithm. (d): Attention scores assigned to each modality on the Kinetic-Sound
dataset when implementing the RollingQ algorithm. The left half shows normal samples, while the right half shows samples where the

audio modality’s input is replaced with Gaussian noise.

2017) consists of 31 human action classes selected from
the Kinetics dataset, which includes 400 action categories
derived from YouTube videos. CMU-MOSEI (Zadeh et al.,
2018) is a multimodal dataset that integrates audio, visual,
and textual data.

Settings For the CREMA-D and Kinetic-Sound datasets,
we use a 4-layer ViT-B/16 (Dosovitskiy, 2020) as the back-
bone, initializing it with pre-trained weights from ImageNet-
21k (Ridnik et al., 2021). For CMU-MOSEI (Zadeh et al.,
2018), we adopt a 4-layer vanilla Transformer following the
preprocessing and settings outlined in Liang et al. (2021).
As for training, we use SGD as optimizer and use cosine
scheduler. The learning rate is set to le-3 with batch size
64 for all experiments. More detailed experimental settings
can be found in Appendix C.1.

4.2. Comparison with Static and Dynamic Fusion

To validate the effectiveness of our RollingQ method in
reviving the dynamic properties of the attention mecha-
nism and improving overall performance, we conducted
experiments on various datasets and compared our method
with previous fusion techniques. We use vanilla concate-
nation as representations of static fusion approaches and
include unimodal models as baselines. Besides, several
methods, aiming at improving the performance of the static
fusion paradigm by modulating the optimization for uni-
modal encoders, are considered, including OGM (Peng
et al., 2022) and PMR (Fan et al., 2023). From the per-
spective of the dynamic fusion paradigm, we collect several
attention-based methods from prior work for comparison,
including MulT (Tsai et al., 2019), MBT (Nagrani et al.,
2021), IMT (Waligora et al., 2024) and MMML (Wu et al.,
2024). Finally, we use a single-layer attention for multi-
modal fusion method, named Vanilla MultiTrans, and a
2-layer Transformer fusion module, denoted by Vanilla Mul-

tiTrans*. We implement the RollingQ algorithm on these
two representative methods to reveal its effectiveness and
extend it to MulT (Tsai et al., 2019) and MMML (Wu et al.,
2024) on its last attention layer to demonstrate the general
applicability of our approach, with implementation details
shown in Appendix B. The results are presented in Table 1.

Based on empirical results, we make several observations.
First, compared to all unimodal models, multimodal mod-
els consistently outperform them, demonstrating that in-
tegrating information from multiple modalities is indeed
beneficial. Besides, dynamic fusion methods do not always
outperform static fusion methods, including the simple con-
catenation approach. This may be due to optimization chal-
lenges and the potential loss of dynamic properties as we
explored in this work. Moreover, our RollingQ algorithm
shows significant improvement over the original method,
including the vanilla multimodal Transformers and special-
ized multimodal models like MulT (Tsai et al., 2019) and
MMML (Wu et al., 2024), which indicates the prevalence of
deactivated dynamic properties in multimodal Transformers
and it is pivotal to revive the cooperation dynamics in multi-
modal Transformers. Finally, our method yields comparable
results to imbalance techniques in static fusion scenarios,
although RollingQ algorithm does not directly enhance the
learning of unimodal encoders. Unlike more complex Trans-
former architectures, such as MBT (Nagrani et al., 2021) and
JMT (Waligora et al., 2024), which require additional pa-
rameters and specialized modules, our RollingQ algorithm
is grounded in a simple yet effective idea, demonstrating
strong performance without the need for such complexities.

4.3. What Has RollingQ Done to Revive Cooperation
Dynamics?

Effective of rotation. First, we visualize the distribution
of average keys before and after the Rolling Query during
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training. As shown in Figure 4(a) and Figure 4(b), after
the Rolling Query, the biased audio modality and the un-
biased visual modality exchange their similarity with the
query. Specifically, the rotated query will learn around a
new region, that could assign more attention to the visual
modality, while slightly decreasing the similarity with the
audio modality like Figure 4(b), which will not significantly
impair the learning of audio modality but encourage the
learning of visual modality. As a result, the audio modal-
ity, which still maintains more informative features, will no
longer reinforce the optimization of its encoder, while the
visual modality’s optimization is enhanced.

Evolution after rotation. After rotating the query, the new
query learns in a new rebalance region. Due to the fact
that audio modality remains higher quality features, the
new query tends to consecutively increase attention score to
audio modality as we discussed in Section 3.2. To verify this
analysis, we visualize the variation of attention scores on
different modalities during the training process. As shown
in Figure 4(c), the attention score of audio modality drops in
certain iterations, while increasing latter. This phenomenon
ensures that the query remains learnable based on the input
data, indicating that the learning of attention allocation is
not hindered by Rolling Query.

Cooperation dynamics. we investigate whether RollingQ
can restore the cooperative dynamics of the attention mecha-
nism. To test this, we replace the input of the biased modal-
ity with Gaussian noise and observe the results. First, by
averaging the attention scores for both normal and noise
samples, we can assess whether the attention layer assigns
appropriate weights based on the current input. As shown
in Figure 4(d), on the Kinetic-Sound dataset, replacing the
audio modality with noise significantly reduces the attention
score for the audio modality and increases the attention score
for the visual modality. Compared to the disproportionately
high attention observed in Figure 1(c), the model with the
RollingQ algorithm demonstrates improved inter-modality
cooperation. Further tests verifying cooperation dynamics
based on attention like adding attention mask or QUAG

CREMA-D Kinetic-Sound
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Figure 5. The distribution of two modalities is key when imple-
menting the RollingQ algorithm. The red dots denote the audio
modality with noise interference.

Table 2. The Pearson correlation between the attention score and
whether it is a noise input. The coef closer to 1 or -1 indicates a
stronger relation between attention score and input, while the p <
0.01 means that the coef is trustworthy.

Dataset CREMA-D Kinetic-Sound
Correlation coef p coef p
Vanilla MT 052 <001 044 <0.01

Vanilla MT+RollingQ | 0.76 < 0.01 | 0.78 < 0.01

Table 3. Experiment results when perturbing the audio modality
(the biased modality) with Gaussian noise following Liang et al.
(2021) on Kinetic-Sound Dataset.

Noise level | Vanilla MT | Vanilla MT + RollingQ
0.00 67.0 69.3
0.25 62.7 (1 4.3) 67.2(11.9)
0.50 529 14.1) 582 () 11.1)
0.75 43.2 (] 23.8) 47.5 (J 21.8)
1.00 34.7 (4 32.3) 40.6 (J 28.7)

attention (Rawal et al., 2023) are provided in Appendix C.2.

Additionally, we visualize the distribution of averaged at-
tention keys across modalities. As shown in Figure 5, the
RollingQ algorithm significantly reduces the distribution
gap between modalities, compared to Figure 1(d). Regard-
ing the noise input (represented by the red dots), it now
shows a lower cosine similarity to the query than to the av-
erage keys of both modalities. Consequently, the attention
mechanism allocates less attention to the relatively uninfor-
mative input in the biased modality as expected.

Furthermore, we conduct a correlation analysis between the
noise input and attention scores in models with and without
the RollingQ algorithm. Using Pearson correlation analy-
sis on both the CREMA-D and Kinetic-Sound datasets, we
assess whether the model can effectively recognize sample-
wise variations in modality quality and adjust the attention
scores accordingly. As shown in Table 2, after applying
the RollingQ algorithm, the correlation coefficient increases
significantly. This indicates that the attention mechanism
becomes more sensitive to the data characteristics of each
modality and can dynamically adjust attention scores. These
findings confirm that the RollingQ algorithm successfully re-
stores the cooperation dynamics in multimodal Transformer.

4.4. Test-time Adaptation for Noisy Biased Modality

To further and more comprehensively verify that RollingQ
can restore cooperative dynamics within multimodal Trans-
formers, thereby enhancing multimodal performance under
more general conditions, we conduct experiments with noisy
biased modality on Kinetic-Sound. We perturb the biased
audio modality with Gaussian noise at various noise levels,
as described in Liang et al. (2021), rendering the biased
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Table 4. The accuracy, model parameters, and time complexity
analysis on CREMA-D dataset. The GFLOPs are obtained from

the thop library.
Method Acc | Parameters | GFLOPs
Vanilla MT 48.8 59.87M 1489.13
MBT 51.5 114.21M 2746.90
MMML 52.0 77.88M 1828.29
IMT 50.7 62.23M 1494.87
Vanilla MT + RollingQ | 51.9 60.46M 1489.20

Table 5. Abaltion of different batch size on CREMA-D dataset.
Batch Size | Vanilla MT | Vanilla MT + RollingQ

16 49.1 50.6
64 48.8 51.9
256 47.8 48.5

modality unreliable for final predictions. As shown in Ta-
ble 3, both methods experience a performance drop as the
noise level increases. However, RollingQ consistently out-
performs the baseline, demonstrating its ability to better
leverage both modalities and facilitate their cooperation. Be-
sides, RollingQ exhibits a lower accuracy drop rate than the
baseline, indicating that by reviving cooperation dynamics,
RollingQ enables the model to better handle variations in
data quality across modalities, enhancing its robustness to
perturbations and leading to superior performance. Addi-
tionally, to evaluate RollingQ’s performance under more
severe and systematic distribution shifts, we conduct mul-
timodal out-of-distribution (OOD) detection experiments
following Dong et al. (2024) in Appendix C.3.

4.5. Complexity and Efficiency

Since RollingQ only needs an additional rotation matrix to
work effectively, it is a simple method that requires few in-
creases on parameters and computational cost. To verify the
detailed additional cost of RollingQ, we record the model
parameters and GFLOPs on experiments of CREMA-D
dataset. As shown in Table 4, the proposed RollingQ algo-
rithm requires /% increase in parameters and 0.1 % increase
on GFLOPs, while achieving considerable improvements
on its baseline vanilla multimodal Transformer and gaining
comparable and even better performance over other special
designed Transformer architectures.

4.6. Ablation Study

Ablation of batch size. To test the sensitivity of RollingQ
toward batch size decision, we conducted an ablation study

Table 6. Ablation of different ViT encoder layers on Kinetic-Sound
dataset.

Encoder-Layer | Vanilla MT | Vanilla MT + RollingQ
2 57.6 58.5
4 67.0 69.3
6 73.6 74.6

Table 7. Experiment results of our method with ResNet18 back-
bone on CREMA-D.

Method Acc

Audio 60.1

Visual 40.1

Concat 614

Vanilla MT 60.8
Vanilla MT + RollingQ | 62.6

on CREMA-D dataset with batch size around 16, 64, and
256 with all other hyperparameters fixed. As shown in
Table 5, the proposed RollingQ algorithm consistently out-
performs the baseline Vanilla MT by 0.7% - 3.1%. The
results ensure the stability of RollingQ.

Ablation of encoder layers. To ensure that the analysis
and effectiveness of RollingQQ are consistent across different
backbone scales, we conducted an ablation study on Kinetic-
Sound dataset where the performance varied significantly
across different encoder layers. As shown in Table 6, with
encoder layers ranging from 2 4, and 6 and all other hyperpa-
rameters fixed, RollingQ consistently shows improvement
compared to baseline Vanilla MT, verifying its effectiveness.

4.7. Adaptation to Other Backbone

To verify the generalization of our approach, we employed
ResNet18 (He et al., 2016) and transformed the feature maps
into tokens by flattening the temporal and spatial dimensions
following (Carion et al., 2020; Huang et al., 2020). As
shown in Table 7, our method consistently outperforms the
baseline, demonstrating its effectiveness across different
backbones and its potential to extend to various models.

5. Conclusion and Discussion

In this work, we identify the deactivation of cooperation dy-
namics in multimodal Transformer based on the observation
of self-attention fusion layer, perform theoretical analysis
and experimental verifications, and propose the RollingQ
algorithm to restore its dynamic properties.

Future work and limitations. Our theoretical analysis fo-
cuses primarily on a single attention layer, while real-world
Transformer models typically involve multiple layers, where
the dynamics are more complex. Thus, further research is ex-
pected to explore how to better model, analyze, and restore
cooperative dynamics in multi-layer Transformers. Addi-
tionally, our algorithm does not directly enhance the feature
quality of unimodal encoders, which has been effectively
achieved in previous static fusion approaches. Therefore,
combining our method with those previous approaches to
enhance and balance feature quality while addressing the
deactivation issue is an avenue for future exploration.
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A. Assumption and Analysis
A.1. Attention and Average Key Distribution

To holistically and systematically validate our assumption and analysis discussed in Section 3.2, which mainly states that
the modality bias in the multimodal training process triggers a self-reinforcing cycle that leads to inequality in feature
quality and unreasonable attention score, we conduct experiments on more datasets including CREMA-D, Kinetic-Sound,
CMU-MOSEI(A+T), CMU-MOSEI(V+T), UCF-101(Soomro et al., 2012), HMDBS51(Kuehne et al., 2011), whose modality
ranging from audio, RGB, text and optical flows and exhibiting variation in modality sequence length.

As shown in Figure 6, with different combinations of modalities and data set scales, the attribution of the unreasonable
attention score agrees with our previous study. Besides, the visualization of average key distribution, where the noise
input consistently has higher cosine similarity, further validates our assumption and theoretic analysis towards cooperation
dynamics under imbalance multimodal learning.
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Figure 6. The visualization of attention score and average key distribution on CREMA-D, Kinetic-Sound, CMU-MOSEI(V+T), CMU-
MOSEI(A+T), UCF-101, HMDBS51 datasets, including audio (A), RGB (V), text (T) and optical flow (O) modalities. The left figure for
each dataset denotes the average key distribution of different modalities and the red dots represent samples replacing the biased modality
by Gaussian noise. The right figure for each dataset reveals the attention score for each modalities with normal or noise inputs.
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A.2. Gradients Evolution of Unimodal Encoders

To verify the analysis on gradients posted in Section 3.2, we conduct experiments on CREMA-D and Kinetic-Sound
to monitor the gradients of each unimodal encoder. As shown in Figure 7, the gradient of the audio encoder increases
significantly during the mid-stage, when the attention score begins to accumulate in the biased modality. This results in a
noticeable gap between the modalities. As the total loss decreases over time, the gradients of both modalities drop, but their
relative relationship remains. This further validates our theoretical analysis, showing that the biased modality consistently
receives more optimization momentum. The gradient of the weaker modality never exceeds that of the biased modality,
which can be explained by Equations 7 and 8. Since the only difference in gradients for each modality is g Zh and the loss
is the multimodal loss, where “one modality becoming converged” equals ”the multimodal model becomifig converged,”
the total loss becomes very small. This small loss cannot provide enough momentum for the biased modality to optimize
effectively. Hence, the gradient of the biased modality will consistently greater than the weak one.
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Figure 7. The L2-Norm of gradient of the audio encoder and the visual encoder on CREMA-D and Kinetic-Sound datasets.

B. Implement Details of The RollingQ Algorithm

Rotation time limits for training stability. In Algorithm 1, we calculate and update the rotation matrix whenever the
absolute value of the AIR indicator exceeds its threshold. However, as 5 becomes smaller, and the time required for rotation
increases significantly. Based on our observation, for all dataset the RollingQ algorithm will rotate the query for about 3-5
times. However, the frequently changing query vector will impair training stability, resulting an not optimum performance.
To address this, we set a maximum rotation limit in the RollingQ algorithm to ensure more stable learning. Specifically, the
maximum rotation time is set to 1 for CREMA-D and MOSEI, and to 3 for Kinetic-Sound, which is a larger dataset.

Extension to multi-layer transformer. The RollingQ algorithm and the scenario we discussed are based on a single
attention layer. However, as the number of layers increases in a multi-layer transformer, the situation becomes more complex
than what we’ve analyzed so far. To effectively implement our RollingQ algorithm in such cases, we train the multi-layer
attention model progressively, applying the RollingQ algorithm to a specific layer when it becomes the last attention layer in
the model. For example, in a two-layer transformer fusion block, we train only the first block initially, while temporarily
dropping the second block for several epochs. During this phase, we apply the RollingQ algorithm to the first block’s
attention layer. After a certain number of epochs, we begin training the second block as well. At this point, we apply
the RollingQ algorithm to the attention layer of the second transformer block, since its query can directly influence the
prediction. In a two-layer setup, the query is primarily influenced by the current input, rather than being irrelevant as in the
single-layer case. Therefore, we calculate the rebalance anchor using the expectation of the query, as shown in Equation 10,
and apply the rotation matrix to the query. This rotation moves the query’s distribution toward the anchor region, rather than
leaving it in its original position.
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C. Experiments

C.1. Experimental Setting

Datasets. CREMA-D(Cao et al., 2014), KineticSound(Arandjelovic & Zisserman, 2017), and CMU-MOSEI(Zadeh et al.,
2018) are prominent multimodal datasets for emotion recognition and sentiment analysis. CREMA-D contains 7,442 short
video clips (2-3 seconds) from 91 actors, annotated with six basic emotions through crowd-sourcing. KineticSound features
31 human action classes from the Kinetics dataset, with 10-second clips manually annotated via Mechanical Turk. MOSEI,
the largest of the three, includes over 23,500 sentence-utterance video clips from 1,000+ YouTube speakers, covering 250
topics with aligned language, vision, and sound features. It provides 7-class sentiment annotations and multi-label emotion
intensities across six aspects.

Backbones. Our main experiments are conducted using 4-layer ViT(Dosovitskiy, 2020) with pretrained weights from
ImageNet-21k (Ridnik et al., 2021) as the backbone, with evaluations on the KineticSound and CREMA-D datasets. For
the audio and visual encoder, we adopt a ViT architecture to process multiple frames as input. Following the standard ViT
approach, we extract and flatten patches from the input frames, which are then fed into the transformer layers for feature
extraction. For MOSEI, we adopts vanilla transformer as encoder following settings of (Liang et al., 2021).

Training settings. For the KineticSound datasets, which consist of 10-second video clips, we extract frames at 1 fps and
uniformly sample 3 frames per clip as visual inputs. The audio data is transformed into spectrograms of size 257x1,004
using librosa, with a window length of 512 and an overlap of 353. For CREMA-D, which contains shorter clips, we extract 1
frame per clip and process the audio into spectrograms of size 257x299, maintaining the same window length and overlap.
This approach ensures consistency across datasets while leveraging the strengths of ViT for both visual and audio modalities.
As for CMU-MOSETI dataset, we follow the preprocessing and settings of (Liang et al., 2021), using the extracted feature
provided by (Liang et al., 2021). For training, the batch size is set to 64 for both MOSEI, CREMA-D and KineticSound.
The learning rate is fixed at le-3, and SGD is used as the optimizer. The embedding dimensions are 120 for MOSEI and 768
for CREMA-D and KineticSound, and the cosine annealing scheduler is applied across all settings. Training is initialized
from scratch for MOSEI, while pretrained models are used for CREMA-D and KineticSound, with all models trained for
30 epochs. This comprehensive setup ensures consistency and highlights the adaptability of the ViT backbone to different
datasets and fusion methods.

C.2. Validation with Attention Mask and QUAG Attention

We ablate RollingQ through mask or average attention score inspired by QUAG Attention (Rawal et al., 2023). As shown
in Table 8, when masking one modality, RollingQ outperforms the baseline from 0.2 to 3%. This confirms RollingQ’s
ability to enhance unimodal feature quality. When using averaged attention scores, in CREMA-D (audio-dominant),
vanilla MT exhibits a performance degradation of 2.3% due to over-reliance on audio features. For Kinetic-Sound (relative
balance), vanilla MT’s performance increases by 1.2% since the model learns an unreasonable attention score due to the
self-reinforcing cycle. Conversely, RollingQQ maintains stable performance (with less than 1% drop), demonstrating it’s
leveraging complementary modality information and robustness.

Table 8. Ablation on Kinetic-Sound dataset. Mask V refers to force the attention score of visual modality to O by adding attention mask,
and vice versa. Besides, “uni_A” and "uni_V” refers to the performance of training solely with unimodal model.

Method ‘ Vanilla MT | Vanilla MT+RollingQ ‘ uni_A ‘ uni_V
A (Mask V) 46.6 47.4 (1 0.8) 53.9 -
V (Mask A) 40.3 42.1 (1 1.8) - 57.0
origin 67.0 69.3 - -

Furthermore, to explore how RollingQ influence the intra- and inter-modality interactions learned by model, we explore on
the baseline with transformer fusion blocks and conduct complete QUAG (Rawal et al., 2023) tests (unimodal, crossmodal,
audio-avg, and video-avg) with and without RollingQ. As shown in Table 9, the RollingQ algorithm exhibits more
performance drops around 2.7% to 5.0% across all types of QUAG tests compared to baseline. This indicates that RollingQ
can not only fully leverage both modalities faithfully but also learn comprehensive multimodal interactions.
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Table 10. Results on OOD benchmarks with HMDBS51 as In-Distribution dataset following the preprocessing and settings of Multi-
OOD(Dong et al., 2024). General Entropy (GEN) is used to obtain the confidence for OOD data.

OOD-Dataset HMDB UCF

Metrics/Methods IDAcc 1 FRROS | AUROC 1 IDAcc 1 FRROS | AUROC 1
Vanilla MT 51.6 77.3 64.4 48.7 77.9 70.4
Vanilla MT + RollingQ | 54.0(124) 749 24) 68.6(14.2) | 51.8(13.1) 769 1.0) 73.2(12.8)
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Figure 8. The Lo>-Norm of gradient of the audio encoder and the visual encoder and attention score across modalities on CREMA-D and
Kinetic-Sound datasets.

Table 9. QUAG operations (Rawal et al., 2023) on Kinetic-Sound dataset, the more drops indicates the more leverage. uni-A and uni_V
refers to the performance of training solely with unimodal model.
Method baseline baseline+RollingQ | uni_A | uni_V
origin 69.1 70.1 - -
unimodal 67.8 (} 1.3) 63.8 (] 6.3)
crossmodal | 65.5 (| 3.6) 63.8 (] 6.3)
avg-audio | 64.8 (| 4.3) 62.9 (1 7.2)
avg-visual | 65.6 (] 3.5) 62.1 (4 8.0)

53.9 -
- 57.0

C.3. Verification on OOD Benchmarks

OOD is challenging task where test distribution exhibits distribution shifts compared to training distribution. It is a effective
way to further verify the dynamic property of multimodal transformer to adaptively assign attention score. Hence, we
conducts multimodal OOD experiments following (Dong et al., 2024). Both Far-OOD and Near-OOD cases discussed in
(Dong et al., 2024) are involved here to present a comprehensive evaluation. Specifically, we use HMDBS51 for Near-OOD
test and use HMDBS51 and UCF-101 for Far-OOD test.

As shown in Table 10, our RollingQ algorithm outperforms the baseline on all metrics, showing that it can ease the modality
bias with strong generailzation ability and effectively fuse the multimodal feature even for out-of-distribution samples.

C.4. Extension to More Fusion Paradigms

Multimodal transformers are designed under different fusion paradigms such as early fusion, mid fusion and late fusion.
We perform further validation of the effectiveness of our proposed RollingQ algorithm under earlier fusion paradigms.

16



RollingQ: Reviving the Cooperation Dynamics in Multimodal Transformer

N dAttent\on score of each modality when fusion at 2nd layer uAttention scare of each modality when fusion at 3rd layer N dAttention score of each modality when fusion at 4th layer

A A A
\ v "
0.8 0.8 0.8
@ ]
Sos g 06 506
] 3 b
c c c
] =1 5
0.4 £04 £0.4
® ] ]
0.2 0.2 0.2
0.0 0.0l . . 1 00— | | | |
o 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 3000
iter iter iter
Gradient of Each Encoder with when fusion at 2nd layer 10 Gradient of Each Encoder with when fusion at 3rd layer 1o,Cradient of Each Encoder with when fusion at 4th layer
A A A
v v v
8 8 8
6 61 6
E £ E
2 2 2
g <4 Ry
4 4 4
2 2 2
Yo 500 1000 1500 2000 2500 3000 0 ] 500 1000 1500 2000 2500 3000 0 500 1000 1300 2000 2500 3000
iter iter iter

Figure 9. The L>-Norm of gradient of the audio encoder and the visual encoder and attention score across modalities on CREMA-D and
Kinetic-Sound datasets when implement RollingQ.

Table 11. Performance of vanilla multimodal transformer (Vanilla MT) and RollingQ across different fusion layers, where “2nd” refers to

fusion from the 2nd transformer block.
Fusion Layer ‘ Vanilla MT ‘ Vanilla MT + RollingQ

2nd 423 425(102)
3rd 41.1 422 ¢ 1.1)
4th 41.4 43.7(12.3)

Specifically, we adopts the same 4-layer ViT backbone on CREMA-D dataset but start to fuse features from two modalities
by different layer from 2nd, 3rd and 4th layer. Firstly, we monitor the gradient of unimodal encoders and the attention which
are the two driving factors of the self-reinforcing cycle. As shown in Figure 8, the gradient difference declines and the
attention becomes balanced and more unstable as the fusion becomes earlier. Meanwhile, we monitor the gradient and
attention after applying RollingQ. As shown in Figure 9, after applying RollingQ, both the attention score and the gradients
across modalities are closer, indicating the ability of RollingQ to rebalance the feature quality and revive the cooperation
dynamics provided by attention mechanism.

Afterwards, we conduct systematically comparison under different fusion layers. As shown in Table 11, The results reveals
that our method can be applied to earlier fusion paradigms achieving better performance around (2.3% / 1.1% / 0.2%), but
it’s more suitable for late fusion paradigm as we discussed the imbalance phenomenon is not significant under earlier fusion
paradigms.
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