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ABSTRACT

Reinforcement learning (RL) for LLM reasoning has rapidly emerged as a promi-
nent research area, marked by a significant surge in related studies on both algorith-
mic innovations and practical applications. Despite this progress, several critical
challenges remain, including the absence of standardized guidelines for applying
RL techniques and a fragmented understanding of their underlying mechanisms.
In addition, inconsistent experimental settings, variations in training data, and dif-
ferences in model initialization have led to conflicting conclusions, obscuring the
key characteristics of these techniques and creating confusion among practitioners
when selecting appropriate techniques. This paper systematically reviews widely
adopted RL techniques through rigorous reproductions and isolated evaluations
within a unified open-source framework. We analyze the internal mechanisms,
applicable scenarios, and core principles of each technique through fine-grained
experiments, including datasets of varying difficulty, model sizes, and architectures.
Based on these insights, we present clear guidelines for selecting RL techniques
tailored to specific setups and provide a reliable roadmap for practitioners navigat-
ing the RL for the LLM domain. Finally, we show that a minimalist combination
of two techniques can unlock the learning capability of critic-free policies with a
vanilla PPO loss. The results demonstrate that our simple combination consistently
improves performance, surpassing strategies such as GRPO and DAPO.
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Figure 1: Left: The proliferation of RL optimization techniques, coupled with diverse initialized
models and data, has raised barriers to practical adoption. Right: We establish detailed application
guidelines via dissecting internal mechanisms of widely-used tricks, and introduce Lite PPO, a
minimalist two-technique combination that enhances learning capacity in critic-free policies with
vanilla PPO loss. The average accuracy is calculated across six mathematical benchmarks.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Recent breakthroughs in large language models (LLMs) such as OpenAI o1 (Wu et al., 2024) and
DeepSeek R1 (Shao et al., 2024) have positioned reinforcement learning (RL) as a key driver in
unlocking advanced reasoning capabilities in LLMs. This is particularly evident in challenging
reasoning tasks like mathematical problem solving (He et al., 2025b) and code generation (Zhuo
et al., 2025), where RL has demonstrated the potential to elevate LLM performance beyond what
pre-training alone can achieve. Such an emerging trend has sparked widespread interest within the
research community in the direction of "RL for LLM" (or RL4LLM).

However, this rapid progress is shadowed by a lack of usage guidelines (Huang et al., 2024b) and
in-depth understanding of underlying mechanisms. For instance, GRPO (Shao et al., 2024) advocates
group-level normalization for stability, while REINFORCE++ (Hu et al., 2025) favors batch-level.
Moreover, GRPO incorporates variance in normalization, yet Dr. GRPO (Liu et al., 2025b) explicitly
recommends removing variance normalization to prevent bias. Such contradictory and chaotic
phenomena underscore the fragmented understanding and inconsistent recommendations within the
RL4LLM community. A likely cause for the above phenomenon is that the experimental settings,
training data, and initialization of the existing work all have significant differences, which may also
cause deviations in the summary of the conclusions.

Apart from the confusion caused by the intrinsic differences of similar techniques, the numerous
and seemingly orthogonal techniques, including Normalization, Clip, and Overlong Filtering, also
increase the complexity of algorithm application in practice. Practitioners face non-trivial challenges
in identifying an effective combination from a wide range of techniques to unlock the learning
capacity of LLMs in specific scenarios. These ambiguities have naturally triggered a key requirement
of practitioners:

What scenarios are the existing techniques respectively suitable for? Is there a simple and generaliz-
able combination that can be used to enhance policy optimization?

Following established RL analysis practices (Andrychowicz et al., 2020; Engstrom et al., 2020;
Huang et al., 2024b), we systematically evaluate popular RL techniques through reproducible
experiments on a unified open-source framework. Our comprehensive setup spans datasets of varying
difficulty, different model sizes, and multiple model types, supported by over 160 independent RL
training experiments to ensure robust and statistically meaningful conclusions. We also delve into
the theoretical foundations, implementation, and recommended applications of each technique, as
summarized in Figure 1. Our findings show that most RL methods are highly sensitive to factors
like model type, data distribution, reward design, and hyperparameters. Notably, we demonstrate
that combining just two techniques—advantage normalization (group mean, batch std) and token-
level loss aggregation—is sufficient to maximize the potential of critic-free policies with vanilla
PPO loss, outperforming mainstream RL4LLM approaches that rely on extra components. Our key
contributions are:

1. Removing the standard deviation when reward distributions are highly concentrated enhances
the stability and effectiveness of model training. (§4.1.2)

2. Group-level mean and batch-level standard deviation enable further robust normalization.
(§4.1.3)

3. Clip Higher promotes high-quality exploration for aligned models. (§4.2.1)
4. There appears to be a “scaling law” between the performance and the upper bound of the

clipping on the small-sized model. (§4.2.3)
5. Compared to sequence-level loss aggregation, token-level aggregation is effective on base

models but shows limited improvement on aligned models. (§4.3.1)
6. Overlong filtering enhances accuracy and clarity for short-to-medium reasoning tasks but

provides limited benefits for long-tail reasoning. (§4.4.1)
7. Two techniques may unlock learning capacity in critic-free policies based on vanilla PPO

loss. (§5)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

A variety of practical techniques have been introduced to stabilize optimization, reduce variance, and
accelerate the convergence of LLMs on reasoning tasks. We categorize commonly used techniques
as follows: (1) Baseline Design. Baselines are crucial to reduce variance in the estimation of
policy gradients, with recent advances including using the group-mean reward (Shao et al., 2024)
or computing the baseline for each sample as the average gradient estimate from other samples in
the group (Ahmadian et al., 2024; Kool et al., 2019). (2) Clipping Strategies. Clipping controls
excessive policy updates by constraining rewards, advantages, or ratios, and the Clip Ratio Higher
method enhances exploration by relaxing the upper bound in PPO’s ratio clipping (Yu et al., 2025). (3)
Normalization Strategies. Normalization of rewards or advantages stabilizes gradient magnitudes,
with representative methods including Batch-level (Hu et al., 2025), Group-level (Shao et al., 2024;
Ahmadian et al., 2024), and Reward Shift without Standard Deviation (Liu et al., 2025b). (4) Filtering
Strategies. Filtering excludes uninformative or undesirable samples before gradient computation,
including Overlong Filtering for excessive lengths (Yu et al., 2025), Error Max Clip Mask and Right
Min Clip Mask for extreme correctness or errors, and Difficulty Mask to exclude samples outside a
target difficulty range (Yu et al., 2025; Zhang et al., 2025; Chu et al., 2025). (5) Loss Aggregation
Granularity. The formulation of loss aggregation determines each token’s contribution to the overall
objective, with common approaches including Sequence-level Loss and Token-level Loss, the latter
computes per-token advantages to mitigate length bias. (6) Additional Loss Functions. Auxiliary
losses can complement the primary objective and regularize training. KL Loss (Yu et al., 2025; Liu
et al., 2025b) constrains divergence from a reference policy, while SFT Loss (Zhang & Zuo, 2025)
incorporates supervised fine-tuning objectives to preserve alignment. (7) Reward Design. Shaping
the reward function can guide desired output properties, with common strategies including Length
Penalty to discourage overly long outputs, Formatting Reward to promote structured outputs, and
Length-Dependent Accuracy Reward that combines correctness with output length.

3 EXPERIMENTAL DESIGNS

3.1 EXPERIMENTAL SETUP

Training Algorithm: We utilize the open-sourced ROLL framework1 (Wang et al., 2025), an
efficient and scalable platform specifically designed for reinforcement learning optimization in LLMs,
to conduct all experiments. In addition, we adopt the PPO loss (Schulman et al., 2017), with advantage
values computed using the REINFORCE algorithm (Sutton et al., 1999) as the unified RL baseline.
To ensure consistency with prior research, we set the global batch size to 1024 by using a rollout
batch size of 128 and sampling 8 responses per prompt, with a maximum response length of 8192
tokens. The learning rate is set to 1e− 6. For text generation, we use a top_p value of 0.99, a top_k
value of 100, and a temperature of 0.99.

Base Models: To comprehensively evaluate reinforcement learning (RL) techniques across parame-
ter scales, our experiments cover two model sizes: Qwen3-4B and Qwen3-8B. For each model size,
we include both non-aligned pre-trained versions (Qwen3-4B-Base and Qwen3-8B-Base) and aligned
versions, enabling assessment RL gains from different initialization conditions.

0 20 40 60 80 100
Percentage (%)

Hard

Medium

Easy

0 1 2 3 4 5 6 8

Figure 2: Number of correct responses under
8 rollout iterations across datasets.

Training Datasets: To ensure reproducibility and
fairness, we exclusively use open-source datasets for
training, including SimpleRL-Zoo-Data (Zeng et al.,
2025) and Deepmath (He et al., 2025b). To compre-
hensively examine how problem difficulty (e.g., Easy,
Medium, and Hard; detailed in Appendix B.3) affects
the performance of the RL technique, we randomly
sample 5, 000 entries from the datasets. Figure 2
visualizes the difficulty across the training dataset
assessed by GPT-4o (Hurst et al., 2024).

1Open source RL framework: https://github.com/alibaba/ROLL
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Figure 3: Test accuracy over training iterations is compared for different models trained on different
datasets. The shaded regions represent the oscillation amplitude as mean ± (std_multiplier × std),
with curves smoothed using an 11-step moving window and exponential smoothing (α = 0.8).

Evaluation Benchmark: All the experiments are conducted on six math datasets: MATH-
500 (Hendrycks et al., 2021), OlympiadBench (He et al., 2024), MinervaMath (Lewkowycz et al.,
2022), and subsets of standardized examinations (AIME24-25, AMC23). These datasets span a
broad complexity spectrum from basic arithmetic to competition-level mathematics, enabling a
comprehensive evaluation of reasoning capabilities.

3.2 BASELINE RESULTS

Impact of Data Difficulty on Training Dynamics We investigate how data difficulty influences
the training dynamics of Qwen3 models. Specifically, we analyze the training convergence patterns
through accuracy trajectories and generalization gaps, across three tiers of complexity (Easy, Medium,
Hard). The detailed learning curves in Figure 3 show that the model exhibits markedly different
accuracy trajectories across training sets of different difficulty levels. When focusing on the differ-
ences in learning efficiency between the unaligned Base model and the aligned model under the same
experimental setting, the aligned models exhibited substantially higher initial accuracy, but additional
learning yielded only modest gains, with accuracy improving by roughly 2%. Additional details
regarding the baseline’s training accuracy and response length can be found in Appendix C.

4 ANALYSIS

4.1 NORMALIZATION

Advantage normalization is a standard technique for stabilizing RL training in language models by
reducing gradient variance (Zheng et al., 2023), yet implementations vary. GRPO (Shao et al., 2024)
and RLOO (Ahmadian et al., 2024; Kool et al., 2019) use group-level normalization to promote
intra-context competition, while REINFORCE++ (Hu et al., 2025) adopts batch-level normalization
to mitigate overfitting and reward hacking in low-diversity settings. Formally, given a prompt x with
K sampled responses and corresponding rewards {rk}Kk=1, and denoting ri as the reward of the i-th
response in a rollout batch of N prompts with K responses each, the group-level and batch-level
normalized advantages are:

Agroup
k =

rk −mean({rj}Kj=1)

std({rj}Kj=1)
Abatch

i =
ri −mean({rj}N∗K

j=1 )

std({rj}N∗K
j=1 )

(1)

4.1.1 ADVANTAGE NORMALIZATION IS SENSITIVE TO REWARD MECHANISMS
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Figure 4: Accuracy comparison of Base models
with different normalization techniques cross Easy
and Hard datasets.

To systematically evaluate the impact of advan-
tage normalization on PPO variants with a value
function using the Monte Carlo return target, we
conducted experiments under a unified training
framework, exploring three settings: no normal-
ization, batch-level normalization, and group-
level normalization. When analyzing the per-
formance in Figure 4, it can be concluded that
both advantage normalization techniques can
significantly influence the model’s convergence
speed, performance stability, and final outcomes.
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Specifically, on both model sizes, group-level normalization consistently achieves more stable training
dynamics and higher final performance compared to both batch-level normalization and no normal-
ization. Batch-level normalization exhibits high sensitivity to reward distribution skew, often leading
to performance collapse under an imbalanced batch situation, where a few outlier samples dominate
the advantage estimates.

4.1.2 IMPACT OF THE STANDARD DEVIATION TERM IN ADVANTAGE NORMALIZATION

Takeaway 1

Removing the standard deviation when reward distributions are highly concentrated (e.g.,
easy training dataset) enhances the stability and effectiveness of model training.

We found when model responses within a prompt group yield highly similar rewards, e.g., when
the responses are almost all correct or all incorrect, the resulting standard deviation becomes ex-
tremely small. In such cases, dividing by this small standard deviation during normalization can
excessively amplify gradient updates, causing the model to overemphasize tasks of extreme difficulty,
a phenomenon similar to “difficulty bias” (Liu et al., 2025b).
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Figure 5: Left: Standard deviation variations during training on easy and hard datasets. Middle and
Right: Test accuracy with and without batch-level standard deviation across easy and hard dataset.

To test whether the standard deviation term is the critical factor driving differences in normalization
performance, we employ the batch-level calculation, which exhibited unstable performance in the
previous section, to calculate the mean of advantage, and conduct ablation experiments on the
standard deviation term. This can be formalized as:

Astd¬

k = rk −mean({rj}Kj=1). (2)

Our experiments reveal that, when training on easy data, the policy quickly converges to consistent
behaviors, resulting in a highly concentrated reward distribution and a rapid decline in standard
deviation. In this scenario, using standard deviation-based advantage normalization can cause the
denominator to become extremely small, excessively amplifying reward and advantage values. This
leads to abnormally large gradients, destabilizes training, and may even cause gradient explosions.
These findings empirically demonstrate that the standard deviation term plays a crucial role in
advantage normalization.

In summary, our experiments and analysis underscore that, in scenarios where reward distributions
are highly concentrated, omitting the standard deviation from advantage normalization effectively
prevents abnormal gradient amplification, thereby improving the stability and robustness of model
training. However, for tasks characterized by inherently higher reward variance, either normalization
approach is generally sufficient to maintain stable optimization.

4.1.3 RECONSTRUCT A ROBUST NORMALIZATION TECHNIQUE

Takeaway 2

Calculating the mean at the local (group) level and the standard deviation at the global (batch)
level enables more robust reward shaping.
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Figure 6: Accuracy comparison of base models
with different standard deviation calculation.

Section 4.1.2 highlights the critical role of stan-
dard deviation in advantage normalization. This
raises the question: is there a more robust and
effective combination of mean and standard de-
viation for reward shaping? To explore this, we
adopted the stable group-level mean calculation
method demonstrated in section 4.1.1, paired
with two approaches for computing the standard
deviation: local (group-level) and global (batch-
level). We then evaluated the performance of
these combinations across two model sizes.

The results, presented in Figures 6, reveal that global-level calculation exhibits a clear advantage. We
attribute this to the batch-level standard deviation providing stronger normalization by effectively
reducing gradient magnitudes, thereby preventing excessive policy updates. This approach aligns
more effectively with the biased reward signals common in sparse rewards and coarse-grained
advantage fitting, resulting in more stable and robust learning behavior. Furthermore, our experimental
results support a claim from Hu et al. (2025) that batch-level normalization, or even subtracting the
local mean and dividing by the batch standard deviation in certain scenarios, performs better.

4.2 CLIP-HIGHER

The Clip mechanism, while improving PPO training stability (Huang et al., 2024a), can cause issues
in LLM-based text generation by overly suppressing low-probability tokens (Yu et al., 2025), leading
to entropy collapse—where model output becomes overly deterministic and loses diversity (Jin
et al., 2024). This reduction in entropy reinforces high-probability patterns and shrinks exploration,
impairing performance on tasks requiring novel reasoning.

JDAPO(θ) = (ri,t(θ), 1− εlow, 1 + εhigh). (3)

Here, a greater upper bound εhigh enables more exploration for low-probability tokens, mitigating
entropy collapse. However, there’s limited analysis on when and how to set this upper bound
effectively. In this section, we address these gaps with targeted experiments and recommendations.
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Figure 7: Entropy comparison across different models with Clip-Higher. A higher clip upper bound
can mitigate the entropy drop in aligned models.

4.2.1 IN WHICH SETTINGS SHOULD WE CLIP HIGHER

Takeaway 3

For models with stronger fundamental reasoning abilities, increasing the clip higher parameter
is more likely to facilitate exploration of better solution paths.

As illustrated in Figure 7, experimental results indicate that the impact of increasing the upper
clipping bound εhigh is model-dependent. For the base models, adjusting the upper clipping value
yields minor effects on policy entropy. In contrast, aligned models exhibit a markedly different
response: raising the upper clipping bound notably slows the entropy collapse, leading to consistent
performance improvements in downstream evaluation metrics.

This disparity is mainly due to the base models’ low clipping rate (around 0.003), which results in
minimal policy updates and limited exploration because of their simple policy expressiveness. As a
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result, increasing the clipping upper bound has little effect on learning outcomes. In contrast, aligned
models demonstrate improved reasoning and generalization abilities due to advanced post-training
techniques (Yang et al., 2025). Figure 18 in Appendix D, illustrates that, compared to base models,
aligned models initially have fewer high-probability tokens. Therefore, a higher clipping upper
bound reduces token probability disparity and mitigates entropy collapse. It expands the range of
permissible policy updates, promoting more diverse action sampling and enhanced exploration during
training. This mechanism maintains higher entropy while increasing the likelihood of finding optimal
solutions, as shown by improved evaluation metrics.

4.2.2 ANALYZING THE EFFECTIVENESS OF CLIP-HIGHER FROM A LINGUISTIC PERSPECTIVE

Takeaway 4

Traditional clipping may constrain innovative reasoning structure generation. Clipping
higher allows the model to explore a broader range of discourse reasoning structures.

Building on our token-level demonstration of Clip-Higher’s behavior in section 4.2.1, we now analyze
its impact on reasoning logic through token-level linguistics. As shown in Figure 20 in Appendix D,
an upper bound of 0.2 imposes strict constraints on policy updates, primarily affecting connective
tokens like therefore”, if ”, and “but” by limiting large probability deviations. This leads to fewer
opportunities for the model to generate innovative or diverse logical structures. By increasing the
upper bound to 0.28, the model gains more flexibility, resulting in fewer tokens being clipped and
a shift in clipping focus toward high-frequency function words such as “is”, “the”, and “,”. This
encourages richer reasoning paths while ensuring sentence stability through selective clipping of
common function words.

4.2.3 HOW TO SET THE UPPER BOUND FOR ADVANTAGE CLIPPING

Takeaway 5

There appears to be a “scaling law” between the performance and the upper bound of the
clipping on the small-sized model, which does not exist on larger models.
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Figure 8: Test accuracy of aligned models (trained
on medium data) with various clipping upper
bounds.

Section 4.2.1 shows that Clip-Higher improves
aligned models. While most works use the de-
fault clip upper bound of 0.28 (Yu et al., 2025),
we believe that different models have differ-
ent preferences for this parameter. To verify
this conjecture, we uniformly evaluate different
clip upper bounds ranging from 0.2 to 0.32 on
two model sizes. As shown in Figure 8, the
4B model improves progressively with higher
bounds, peaking at 0.32. In contrast, the 8B
model performs best at 0.28, with no consistent
gain beyond that.

4.3 LOSS AGGREGATION

The strategy of loss aggregation directly determines the contribution of each sample or token to the
overall gradient during optimization (Liu et al., 2025a). Common strategies include token-level and
sequence-level aggregation. The sequence-level aggregation adopted by GRPO (Shao et al., 2024)
first averages the loss across all tokens within each sample, then averages these per-response losses
across the batch, thereby assigning equal weight to each response regardless of its length. However,
Yu et al. (2025) highlights a flaw in this method: longer responses possess a diminished influence
per token on the total loss, hindering the model’s ability to learn effectively from longer, complex
responses. This can reduce the model’s capacity to learn from long, complex answers, and may bias
optimization toward brevity, since shorter correct responses receive larger gradient updates, while
longer incorrect responses are insufficiently penalized (Liu et al., 2025b).
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4.3.1 DOES TOKEN-LEVEL LOSS AGGREGATION SUIT ALL SETTINGS?

Takeaway 6

Compared to sequence-level calculation, token-level loss proves to be more effective on Base
models, while showing limited improvement on Instruct models.
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Figure 9: Accuracy comparison between sequence-
level loss and token-level loss. Results are reported
on both Medium and Hard Datasets.

To systematically evaluate loss aggregation
strategies, we compare sequence-level and
token-level loss aggregation on both base and
aligned versions of Qwen3-8B. As illustrated in
As shown in Figure 9, token-level loss improves
convergence and peak accuracy for base models
by balancing token contributions, particularly
on challenging data. In contrast, this advantage
disappears in aligned models, where sequence-
level aggregation achieves better convergence
speed and final performance. Analysis suggests
that aligned models already exhibit stable rea-
soning, making fine-grained token weighting unnecessary or harmful. In these cases, sequence-level
aggregation better preserves the structure and consistency of high-quality, aligned outputs. These
findings highlight that optimal aggregation is model-dependent: token-level suits base models;
response-level is preferable for instruction-tuned ones.

4.4 OVERLONG FILTERING

To improve efficiency, LLMs often use fixed maximum generation lengths for truncation (Chen et al.,
2025; Team et al., 2025). However, this may truncate multi-step reasoning early in training, causing
incomplete outputs to be mislabeled as negatives and introducing harmful noise. Overlong filtering
(Yu et al., 2025) mitigates this by masking rewards of over-length responses, preserving robustness
and reasoning quality (He et al., 2025a). Yet, its sensitivity to mask thresholds remains underexplored,
leaving optimal settings unclear.

0 200 400 600 800

50
55
60
65
70

Ac
cu

ra
cy

(%
)

8k

0 200 400 600 800
48
52
56
60
64
68

16k

0 200 400 600 800
48
52
56
60
64
68

20k

1.0
1.2
1.4
1.6
1.8

1.2

1.6

2.0

2.4

2.8

1.2
1.8
2.4
3.0
3.6

Re
sp

on
se

 L
en

gt
h(

K)

w/o overlong filtering (Acc) w/ overlong filtering (Acc) w/o overlong filtering (Res) w/ overlong filtering (Res)

Figure 10: Total test accuracy and response length of Qwen3-8B-Base over training iterations under
different maximum generation lengths.

4.4.1 WHEN TO USE THE OVERLONG FILTERING

Takeaway 7

Overlong filtering shows limited effectiveness on long-tail reasoning tasks; however, it can
enhance the accuracy and clarity of responses in medium and short-length reasoning tasks.

The results in Figure 10 shows that overlong filtering improves learning at a short threshold (8k),
but benefits diminish at 20k. Response length analysis reveals the cause: under 20k, filtered models
generate longer outputs than the vanilla policy; at 8k, responses become shorter. As Figure 11
(Left) shows, in the 20k setting, frequent clipping occurs due to repetition or non-termination—signs
of degenerate generation—indicating the mask removes unproductive outputs. In contrast, the 8k
threshold also filters extended but valid reasoning, encouraging conciseness and reducing verbosity.
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Figure 11: Left: Repeat ratios for correct (reward = 1) and incorrect (reward = 0) generations under
varying maximum generation lengths. Right: Repeat ratios in truncated samples with vs. without
overlong filtering. Repetition rate statistics are provided in Appendix E.1.

As illustrated in Figure 11 (Right), during RL training, the proportion of "repetitive but unable to
terminate" overlong samples increases, indicating degraded EOS modeling and leading to output
redundancy and termination failures. With the overlong mask, this proportion drops and remains low,
enabling the model to better distinguish "generation completed" from "truncated" samples, avoiding
invalid learning. More importantly, the mechanism helps policies accurately model termination,
preventing them from mistakenly penalizing unfinished outputs as negative examples.

5 A SIMPLE COMBINATION: LITE PPO
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Figure 12: Test accuracy of non-aligned models trained via three RL methods, i.e., Lite PPO (ours),
GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025).

Building on the in-depth mechanism analysis, we derive two practical guidelines for non-aligned
models: (i) For small and medium-sized base models, advantage normalization (Section 4.1.3)
significantly boosts performance by transforming sparse rewards into robust signals via group-mean
and batch-std normalization. (ii) Token-level loss aggregation is also highly effective, as shown in
Section 4.3.1, particularly for base model architectures.

Therefore, we integrate both techniques, called Lite PPO, into non-aligned models that use the vanilla
PPO loss without the critic. As shown in Figure 17, Lite PPO outperforms GRPO and DAPO, a
technique-heavy method with Group-level Normalization, Clip-Higher, Overlong Reward Shaping,
Token-level Loss, Dynamic Sampling. Specifically, Lite PPO exhibits a stable upward trend on
non-aligned models, while other policies collapse after peaking. This advantage arises from the
normalization in Takeaway 2, which mitigates interference from homogeneous reward distributions
in mixed datasets. Additionally, this gain stems from adopting token-level loss aggregation, which is
more effective for base models.

6 CONCLUSION

We present a systematic evaluation of RL techniques for LLMs under a unified framework, addressing
fragmentation in methodology and practice. By analyzing normalization, clipping, and filtering,
we reveal that simplicity outperforms complexity: Lite PPO, combining only two core techniques,
surpasses heavily engineered algorithms. Our findings highlight the importance of context-aware
design and challenge the trend of over-complication in RL4LLM. We provide actionable guidelines
for technique selection and advocate for standardized, reproducible practices that balance theoretical
soundness with practical efficiency.
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A LLM USAGE STATEMENT

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.

B DETAILED EXPERIMENTAL SETUP

B.1 PARAMETERS

We employ ROLL, a user-friendly and efficient open-source reinforcement learning framework, to
implement our pipeline. Subsequently, the key parameters observed during the training process are
presented as follows. See our code config file for more details on the parameters.

B.2 PROMPT

In this work, we incorporate the following instruction into the system prompt to encourage the model
to better demonstrate its reasoning process: “Please reason step by step, and put your final answer
within \boxed{}.” This setting is designed to guide the model to perform step-by-step reasoning
and explicitly present the final answer in the form of \boxed{}, thereby enhancing the clarity and
readability of the output.

B.3 TRAINING DATASETS

To ensure reproducibility and fairness, we exclusively use open-source datasets for training, including
SimpleRL-Zoo-Data (Zeng et al., 2025) and Deepmath (He et al., 2025b). To comprehensively
examine how problem difficulty affects the RL technique’s performance, we randomly sample from
the datasets, removing an excessive proportion of examples whose ground-truth label is simply “True”
or “False”. This adjustment addresses the ostensible positive phenomenon, where models produce
correct binary answers from erroneous reasoning chains, thereby introducing noisy supervision that
compromises training quality (please refer to Appendix E.2 for case studies).

• Easy Data : We randomly sample 5, 000 entries from SimpleRL-Zoo-Data-Easy, which
consists of problems drawn from GSM8K and MATH-500-level1.

• Medium Data: We select the 5, 000 easiest examples from the DeepMath-103k dataset,
based on their assigned difficulty annotations.

• Hard Data: We randomly sample 5, 000 entries from DeepMath-103k, with sampling
probability proportional to each entry’s assigned difficulty level.
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seed: 42
max_steps: 500
save_steps: 20
logging_steps: 1
eval_steps: 1

rollout_batch_size: 128
prompt_length: 1024
response_length: 8000

ppo_epochs: 1
adv_estimator: "reinforce"
init_kl_coef: 0.0
async_generate_level: 1

actor_train:
training_args:

learning_rate: 1.0e-6
weight_decay: 0
per_device_train_batch_size: 4
gradient_accumulation_steps: 32
# warmup_ratio: 0.1
warmup_steps: 50
num_train_epochs: 50

...

actor_infer:
generating_args:

max_new_tokens: ${response_length}
top_p: 0.99
top_k: 100
num_beams: 1
temperature: 0.99
num_return_sequences: 8

...

C DETAILED EXPERIMENTAL RESULTS

Overview of training accuracy and response length
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Figure 13: Test accuracy and response length of four model variants: Qwen3-4B-Base,
Qwen3-8B-Base, Qwen3-4B, and Qwen3-8B across different data difficulty.

As shown in Figure 16, when using Qwen3-8B-Base as the initial model, more competitive results
can be obtained on the benchmark using training datasets of different difficulty levels.
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Figure 14: Middle 2 rows: Accuracy over training iterations of Base models. The first row presents
results of Qwen3-4B-Base. The second row shows results of Qwen3-8B-Base. Bottom 2 rows:
Accuracy over training iterations of aligned models. The first row presents results of Qwen3-4B,
while the second row shows results of Qwen3-8B.

D CASE STUDY OF CLIP HIGHER

We present a comparison of token distributions between the base model and the aligned model.

As shown in Figure 18, compared to the base model, the aligned model has very few preferred tokens
with high probability in the initial stage. Therefore, a higher clipping upper bound can effectively
bridge the probability gap between tokens and alleviate the entropy collapse. For these models,
raising the upper bound expands the permissible range of policy updates, which in turn facilitates
more diverse action sampling and enhances exploratory behavior during training. This mechanism
preserves higher entropy while simultaneously increasing the probability of identifying optimal
solutions, as evidenced by improved evaluation metrics.

Building on our token-level demonstration of Clip-Higher’s behavior in section 4.2.1, we now analyze
its impact on reasoning logic through token-level linguistics. As illustrated in Figure 20, setting an
upper bound to 0.2 imposes stringent constraints on policy updates by limiting substantial probability
deviations for individual tokens. Under these stricter conditions, our analysis reveals that clipping
predominantly affects connective tokens such as “therefore”, “if ”, and “but”. These tokens frequently
appear at the beginnings of sentences, serving as key semantic markers or transition words within
dialog generation. Such connectors often introduce new directions in reasoning. However, their
probability ratios between updated and old policies frequently exceed clipping thresholds, triggering
aggressive suppression in PPO optimization. While this traditional clipping ensures stability in
the overall token distribution, it may restrict the model’s capacity to generate innovative or diverse
argumentative reasoning structures by limiting flexibility in the use of discourse-level connectives.
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4B-Base model with different standard deviation calculation
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Figure 15: Accuracy comparison of Base models with different standard deviation calculation. Top 2
rows: Accuracy of Qwen3-4B-Base with different standard deviation calculation. The first row
uses the easy training dataset, while the second row uses the hard training dataset. Bottom 2 rows:
Accuracy comparison of Qwen3-8B-Base with different standard deviation calculation.The first
row uses the easy training dataset, while the second row uses the hard training dataset.
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Figure 16: Test accuracy of sample-level loss and token-level loss on medium and extremely hard
datasets.

E OVERLONG FILTER

E.1 REPEAT RATIO

To further investigate the mechanism by which the overlong filter on the aligned model, we adopted
a rule-based approach to efficiently identify whether overlong samples are caused by the inability
to control the end-of-sequence (EOS) token, resulting in repetitive generation without termination.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Qwen3-4B-Base model

0 250 500 750
40
48
56
64
72
80

Ac
cu

ra
cy

 (%
)

Ea
sy

Math500

0 250 500 750
24
30
36
42
48

OlympiadBench

0 250 500 750
24

32

40

48

56
AMC23

0 250 500 750
16
20
24
28
32
36

Minerva Math

0 250 500 750

6
9

12
15
18

AIME24

0 250 500 750

4
8

12
16
20

AIME25

0 100 200 300 400
Step

48

56

64

72

Ac
cu

ra
cy

 (%
)

H
ar

d

Math500

0 100 200 300 400
Step

28
32
36
40
44

OlympiadBench

0 100 200 300 400
Step

30
35
40
45
50
55 AMC23

0 100 200 300 400
Step

16
20
24
28
32
36

Minerva Math

0 100 200 300 400
Step

4
6
8

10
12
14

AIME24

0 100 200 300 400
Step

3

6

9

12

15
AIME25

GRPO DAPO Lite PPO

Qwen3-8B-Base model

0 250 500 750

54
60
66
72
78

Ac
cu

ra
cy

 (%
)

Ea
sy

Math500

0 250 500 750
25
30
35
40
45

OlympiadBench

0 250 500 750
30
36
42
48
54

AMC23

0 250 500 750
16
20
24
28
32
36

Minerva Math

0 250 500 750
6
8

10
12
14
16

AIME24

0 250 500 750
4

8

12

16

20
AIME25

0 150 300 450 600
Step

48
56
64
72
80

Ac
cu

ra
cy

 (%
)

H
ar

d

Math500

0 150 300 450 600
Step

30
36
42
48
54

OlympiadBench

0 150 300 450 600
Step

32
40
48
56
64

AMC23

0 150 300 450 600
Step

16
20
24
28
32
36

Minerva Math

0 150 300 450 600
Step

4
8

12
16
20
24

AIME24

0 150 300 450 600
Step

5
10
15
20
25

AIME25

GRPO DAPO Lite PPO

Figure 17: Test accuracy of non-aligned models trained via three RL methods, i.e., Lite PPO (ours),
GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025).
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Figure 18: Predicted probability distributions of Qwen3-4B-Base (left) and Qwen3-4B (right)
under two clipping upper bound ∈ {0.20, 0.28}.

Specifically, we trace backward from the truncation point to locate repeated content. For samples that
exceed a predefined threshold, we classify them as "no-stop repetition" anomalies. By calculating the
ratio of repeated samples to all overlong samples, known as the repeat ratio, we quantify the model’s
capability at the current step to model termination behavior in sequence generation.

E.2 EXAMPLES OF OSTENSIBLE POSITIVE PHENOMENA

As demonstrated in Figure 11 in the main text, we observe that models with weaker capabilities tend
to continue generating content aimlessly even after correctly reasoning and providing the correct
answer, until exceeding the output length limit. Such false positives, although receiving a reward
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Figure 19: Predicted probability distributions of Qwen3-8B-Base (left) and Qwen3-8B (right)
under two clipping upper bound ∈ {0.20, 0.28}.

Question: Point $M(3,7)$ is the midpoint of $\overline{AB}$. If point $A$ has coordinates $(9,3)$, what is the sum of the coordinates of point $B$?

high clip=0.20

high clip=0.28

Figure 20: Left: A case study under the same prompt across various clipping upper bounds. Right:
The trigger differences of various upper bounds at the top 20 tokens with the highest clip frequencies.

of 1 through rule-based evaluation, introduce noise into the model during training. We present a
representative case for illustration, as shown in Figure 21.

F DETAILED PRELIMINARIES

F.1 PROXIMAL POLICY OPTIMIZATION (PPO)

Proximal Policy Optimization (PPO)(Schulman et al., 2017) is a widely used actor-critic algorithm
grounded in the policy gradient framework. It improves the stability of policy learning by optimizing
a clipped surrogate objective that restricts the divergence between the new and old policies during
training. The PPO objective is:

JPPO(θ) = E[q∼P (Q), o∼πθold
(O|q)]

1

|o|

|o|∑
t=1

min

(
πθ(ot|q, o<t)

πθold(ot|q, o<t)
At, clip

(
πθ(ot|q, o<t)

πθold(ot|q, o<t)
, 1−ϵ, 1+ϵ

)
At

)
,

(4)

where πθ and πθold denote the current and old policy models, respectively. q and o represent the
sampled question and output sequence, with ot as the t-th token in o. ϵ is a clipping hyperparameter
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Given an angle \( \theta = \frac{2\pi}{5} \), we must prove the equation \( 2\cos(2\theta) + 2\cos(\theta) + 1 = 0 \).

First, use the double-angle identity for cosine, which states that \( \cos(2\theta) = 2\cos^2(\theta) - 1 \):

Substitute this into the given equation:
\[ 2\cos(2\theta) + 2\cos(\theta) + 1 = 2(2\cos^2(\theta) - 1) + 2\cos(\theta) + 1. \]

......

Therefore, the initial equation \( 2\cos(2\theta) + 2\cos(\theta) + 1 = 0 \) holds true for \( \theta = \frac{2\pi}{5} \). Thus, the answer is:
\[ \boxed{0}. \]

We have just shown step by step that the equation \( 2\cos(2\theta) + 2\cos(\theta) + 1 = 0 \) holds true for \( \theta = \frac{2\pi}{5} 
\), with final affirmation that \( \boxed{0} \) is the appropriate answer.

Do you have any other questions?
\\(user
Next, prove that \( \cos(\frac{2\pi}{5}) \) is a root of the quartic polynomial \( x^4 + x^3 - 6x^2 - x + 1 = 0 
\).[/turn][turn]\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n \n 
\n\n\n\n\n\n \n \n\n\n\n\n\n \n \n\n\n\n\n\n \n \n\n\n\n\n\n\n\n\n 

......

Figure 21: An ostensible positive case, which cannot be terminated after the answer is given at the
end of inference.

for stabilizing updates. At is the advantage at step t, typically estimated via Generalized Advantage
Estimation (GAE) (Schulman et al., 2018). The objective encourages the new policy to improve
advantage-weighted probabilities while constraining changes within a trust region.

F.2 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

Group Relative Policy Optimization (GRPO), proposed in DeepSeekMath (Shao et al., 2024), elimi-
nates the value function (critic) and instead estimates the advantage by normalizing rewards within a
group of sampled responses for the same prompt. Specifically, for a prompt x with G responses and
associated rewards {ri}Gi=1, the group-normalized advantage is given by:

Âi,t =
ri −mean({ri}Gi=1)

std({ri}Gi=1)
. (5)

The effectiveness of the above normalization method can be understood from the perspective of
reward shaping. By emphasizing the differences among candidate outputs for the same prompt, it
effectively preserves the reliability of the gradient signal, even in sparse reward settings (Hu et al.,
2020). Instead of adding a KL penalty to the reward, GRPO directly regularizes by directly adding the
KL divergence between the trained policy and the reference policy to the loss. The overall surrogate
objective is:

JGRPO(θ) = E[q∼P (Q), {oi}G
i=1∼πθold

(O|q)]

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

(
ri,t(θ) Âi,t, clip (ri,t(θ), 1−ϵ, 1+ϵ) Âi,t

)
− βDKL [πθ ∥πref ]

}
,

(6)

where ri,t(θ) =
πθ(oi,t|q,oi,<t)

πθold
(oi,t|q,oi,<t)

, ϵ and β are hyper-parameters, and DKL denotes the KL divergence
between the learned policy and a reference policy πref .

F.3 DECOUPLED CLIP AND DYNAMIC SAMPLING POLICY OPTIMIZATION (DAPO)

Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO) (Yu et al., 2025) is a recent RL
method designed to address the unique challenges in LLM reasoning. For each question q with gold
answer a, DAPO samples a group of G outputs {oi}Gi=1 from the old policy, computes their rewards,
and maximizes the following surrogate objective:
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JDAPO(θ) = E[(q,a)∼D, {oi}G
i=1∼πθold

(·|q)]

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

{
min

(
ri,t(θ) Âi,t, clip (ri,t(θ), 1−ϵlow, 1+ϵhigh) Âi,t

)}
,

(7)
where Âi,t is the group-normalized advantage. In addition, DAPO decouples the upper and lower
clipping ranges (ϵlow, ϵhigh) to better support exploration, dynamically filters out samples where all
responses are correct or incorrect, aggregates losses at the token level, and applies special reward
shaping for overlong or truncated responses.
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