Stochastic force inference via density estimation
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Abstract

Inferring dynamical models from low-resolution temporal data continues to be
a significant challenge in biophysics, especially within transcriptomics where
separating molecular programs from noise remains an important open problem.
We explore a common scenario in which we have access to an adequate amount
of cross-sectional samples at a few time-points, and assume that our samples are
generated from a latent diffusion process. We propose an approach that relies on
the probability flow associated with an underlying diffusion process to infer an
autonomous, nonlinear force field interpolating between the distributions. Given a
prior on the noise model, we employ score-matching to differentiate the force field
from the intrinsic noise. Using relevant biophysical examples, we demonstrate that
our approach can extract non-conservative forces from non-stationary data, that it
learns equilibrium dynamics when applied to steady-state data, and that it can do
so with both additive and multiplicative noise models.

1 Introduction

Learning dynamical models From gene expression in cells [1H3]] to collective motion in animal
groups [4]] to growth in ecological communities []], biological processes undergo stochastic dynamics,
and their steady-states emerge from a competition between intrinsic noise and deterministic forces.
The ability to separate these two contributions from experimental data is crucial to understanding
such dynamics. Instrumentally, such systems can be modeled as diffusion processes for which
the time-continuous evolution of the degree of freedom of interest x € R? obeys an autonomous
stochastic differential equation [6]:

dx = f(x)dt + vV2G(x)dW, (1)

where W is a standard d-dimensional Wiener process, f : R? — R? is the deterministic force,
G : R? — R4 the diffusion coefficient and the equation is written in the Itd convention. This
formulation in terms of stochastic trajectories {x(¢),¢ > 0} is equivalent to a formulation in terms of
the probability density p;(x) given by the Fokker-Planck equation:

Opr(x) = =V - [f(x)pi(x) = V- (D(x)pe(x))], @

where D = GG and the divergence is applied row-wise for any matrix-valued function. Within
this framework, the inverse problem of interest is to estimate f(x) from experimental data given
the knowledge of the diffusion field D(x). In soft-matter and finance, due to the availability of
time-resolved trajectories, this problem has largely been addressed through discretizations of (T))
[7H10]. For the higher dimensional systems encountered when studying gene expression, single-cell
sequencing technologies give access to many cross-sectional samples with low temporal resolution.
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In this scenario, the inverse problem amounts to learning how the probability mass is moved between
empirical distributions at successive time points rather than how one trajectory evolves over time.
Previous attempts to tackle this question have approached it from an optimal transport point of view;
first in a static setting by learning pairwise couplings between successive empirical distributions, and
subsequently in a dynamical setting by learning a time-continuous model connecting distributions at
all times. While static methods couldn’t model time-continuous and non-linear dynamics [11H13]],
their dynamical counterparts lifted these constraints but remained limited to diffusion processes with
additive noise [[16H19]. The ability of multiplicative noise to move, create, and destroy fixed points in
the energy landscape, in particular in the context of biochemical networks [2, 3| [20], motivates the
development of an inference scheme able to handle it.

Equilibrium vs. non-equilibrium Biological systems exhibit a distinctive feature: they operate out
of equilibrium at the molecular level. For instance, irreversible chemical cycles orchestrate various
molecular processes in cells, ranging from the work of molecular motors to phosphorylation cycles,
enzymatic cycles, and RNA transcription regulation [21}, 22]]. The dissipation of chemical energy
within these cycles induces irreversible transitions between distinct molecular states, maintaining
biological systems far from thermodynamic equilibrium. Learning these irreversible cycles is essential
for understanding and predicting the behavior of such processes, but it remains a challenge when
the time resolution of experiments is limited. To illustrate this issue in the framework of diffusion
processes, we consider the problem of estimating the force field f(x) knowing the noise D(x) and
using a large number of samples drawn from the steady-state distribution p(x) of . At steady-state,
the Fokker-Planck equation reduces to:

\Y J(X) =0, 3)
i(x) = (f(x) = V- D(x) — D(x)Vlog p(x)) p(x),

where we assume that D(x) is invertible and we denote j(x) the probability current. An estimate of
the score function s(x) ~ V log p(x) which does not require computation of the partition function
[23]], provides access to a force field £°¢ describing an equilibrium steady-state (with vanishing
currents):

f%9(x) = D(x)s(x) + V- D(x) = f(x) - j(x)/p(x). Q)

This relation was exploited in the recent study [24]] to learn a coarse-grained (CG) force field in
molecular dynamics using an estimate of the score function s(x). To infer f(x) from , one needs
to estimate the full probability density of the model p(x) as well as the probability currents j(x).
However, at steady-state and with only the knowledge of p(x) and its score there is no constraint,
besides being divergence-free, on j(x). This degeneracy is lifted when trajectory information is
available 25/ 26], but in the absence of this information non-equilibrium currents are only accessible
using data sampled from a non-stationary solution of (2). This issue was observed in early attempts
to learn dynamical models from single-cell RNA-seq data [20}, 27} 28]].

Our contribution In this paper, we develop an inference framework to estimate the force field
f(x) from limited static cross-sectional measurements over time, as illustrated in Fig. [I| Our dataset
consists of empirical distributions (21, ..., 7%) known at successive times ¢; < ... < tg, where:

7(00) S (= xi(t), )

with Vi, the number of measurements available from the marginal p;, (x) at time t;. Our approach
does not presuppose that successive samples form a trajectory of the diffusion process (Ij, but
it reduces to least-square-based force inference methods (akin to [8]]) if trajectory information
is available. We propose a method that simultaneously allows us to (i) learn a continuous-time
dynamical model with an autonomous non-linear force field and (ii) separate the force field from
a known arbitrary noise model. We show that by using non-stationary data our method can learn
non-conservative forces and that it learns equilibrium dynamics when applied to steady-state data.
Furthermore, we show that our method can extract force fields from both additive and multiplicative
noise models, opening promising applications for gene regulatory network inference.
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Figure 1: Force field inference of a diffusion process given cross-sectional samples at a limited
number of time points. We assume that the samples are generated through an underlying diffusion
process with an unknown force field f(x) and a known noise model D(x). We then define a
corresponding approximate probability flow ODE by substituting the score by its continuous-time
analog S(x, t) estimated via score-matching. Using this approximate probability flow ODE we solve
a density fitting problem to learn a force field that best reconstructs the cross-sectional measurements.

2 Related Work

The force inference problem can be conveniently reformulated as a trajectory inference exercise
where the goal is to infer the latent dynamics tracing the cross-sectional measurements. In this section,
we briefly outline related works in the context of trajectory inference.

Deterministic transport Most approaches proposed to solve the problem of trajectory inference
have taken an optimal transport (OT) route: recovering latent dynamics that obey the principle of
least-effort. These approaches learn a deterministic map that solves a Monge-Kantarovich problem
between each pair of successive snapshots [11H13]] resulting in a time-discontinuous solution. This
constraint was later relaxed using a neural ODE [29] approximating the Benamou-Brenier formulation
of OT as regularized continuous normalizing flow [16]. Although OT-inspired transport flow maps
are very attractive, they restrict the force fields to be curl-free and are thereby constrained to learn
only equilibrium dynamics.

Stochastic transport with additive noise Although successfully applied to data [[12, [15], OT
approaches also can’t infer or accommodate stochastic dynamics. In this direction, the Schrodinger
bridge (SB) framework aims to find the most likely diffusion process with additive noise connecting
a pair of successive snapshots. The SB formulation can be mapped on an entropically-regularized
optimal transport problem [[14}[19]], and therefore inherits the limitation of the solution being time-
discontinuous. The studies [[17, [18] tackle this issue by constructing a constant estimator for the
distribution over trajectories of a diffusion process with constant additive noise.

Towards general noise models Despite the success of SB-inspired methods, they are usually
limited to additive noise models. Approaches based on Neural SDEs are less constrained than
SB-inspired methods and offer flexibility to handle arbitrary noise models. However, they suffer
from issues related to robustness and overfitting [30] originating from the need to solve SDEs during
optimization. In this paper, leveraging the probability flow ODE [31] and score matching methods
[231132], we reformulate the neural SDE approach of [28]] into a neural ODE, and show its ability to
extract a non-conservative force fields from arbitrary noise models.

3 Methods

Probability flow ODE We consider the SDE in , for which the probability density p;(x) evolves
according to the Fokker-Planck equation (2)). It can be shown [31}[33]] that there exists a corresponding
deterministic process whose trajectories share the same marginal probability density as the SDE



described in (T).
dx = [f(x) — V-D(x) — D(x)V log p:(x)] dt, with x(0) ~ po(x), (6)

where po(x) is the distribution at initial time. With knowledge of the noise model D(x) and an
autonomous force field f(x), the solution path of the ODE @ connects the empirical distributions
(1, ..., 0%). However, this requires an estimate of the score V log p;(x) that can be computed from
the cross-sectional samples at the observed time points.

Score estimation We use score matching [23]] to estimate the score using samples from the cross-
sectional measurements. It amounts to solving the following optimization problem:

K

- . 1
§ = argmin Z A(tk)Ep,, [tr (Vs(x,tx)) + §||S(X7 3], 7
S k=1

where \ : [t,tx] — RY is a positive weighting function. We parameterize the score s(x, t) : R? —
R? using a fully connected neural network, and use sliced score matching [32] to estimate score
in high dimensions. During training the weights A are automatically tuned based on the variance
normalizing strategy proposed in [34]]. The time-continuous score §(x, t), estimated by solving the
optimization problem in (7)), is used to define the approximate probability flow ODE:

dx = [f(x) — V- D(x) — D(x)s(x, t)]dt. (8)

Using this ODE we can now learn the force field that best reconstructs the cross-sectional measure-
ments (71, ..., %) given the noise model D(x).

Force field inference via density fitting Using the approximate probability flow ODE (8] and the
force field f(x), one can evolve samples {x;(¢x), 1 < i < Ny} to any future time. Our inference task
therefore reduces to a density fitting problem that learns a force field fy(x) connecting through the
probability flow ODE the empirical distributions at successive time points:

K Ni_1

A 1
0 = arg min t.ﬁAk,f/k’withAkdéf' S(x — x;(tg 9
8 g:lv( k)L (g, %) o = N ;:1 ( (tk)) ©)

s.t. ii(tk) = Xi(tk—l) + /t’C

te—1

<f9(Xi) -V D(Xl) — D(xi)é(xi, 7')>d7' (10)

Vi€ {1,...,Nu_1},

where L is a loss function that minimizes the distance between 1y and the empirical measure v, and
7 is a positive weighting function. Although there exist several approaches to compute the distance
between measures like Maximum Mean Discrepancy (MMD), or [35]], Kullback-Leibler divergence,
we rely on the Sinkhorn divergence [36] for the density fitting problem. The latter approach leverages
the geometry of Optimal Transport and the favorable high-dimensional sample complexity of MMD.
We also note that, if the particle trajectories are known, the loss £ reduces to computing the Euclidean
distance and the inference problem is similar to least-square-based force inference methods [S]].

Training Both the score s(x, t) and the non-linear field f(x) are parameterized by fully connected
neural networks with Sine activations [37]]. The score network takes as input the sample x and time ¢
and outputs the time-continuous score estimate, whereas the force field network takes as input only
the sample x. In the density fitting problem described in (9)), we discretize the probability flow ODE
using the explicit Euler method during training and backpropagate gradients through the solver steps.
We use Adam Optimizer to train our neural networks.

4 Results

To benchmark our force field inference approach we tested two diffusion models: one with additive
noise, non-reciprocal linear interactions, and anisotropic diffusion, and one chemical reaction system
exhibiting bistability driven by multiplicative noise. To generate samples from these diffusion
processes we discretize the SDEs in (I)) using the Euler-Maruyama scheme:

x(t + 0t) = x(t) + 5t £(x(t)) + /26tD(x)¢, (11)
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Figure 2: Non-equilibrium 6D Ornstein-Uhlenbeck process. (A) Equilibrium force £°4(x) inferred
from stationary distribution. The background watercolor corresponds to the density field estimated
from the samples. (B) The inferred force field (red arrows) overlaid on the exact force field (black
arrows). (C) Inferred force field vs. exact force field (1st and 3rd components). (D) Relative
Mean-Squared Error (RMSE) = ||y — £||3/]/f||3 as a function of time. The force field is inferred
from cross-sectional samples taken before a specific point in time, indicated by a dashed line. (E)
Comparison of interaction matrices obtained from inference with stationary data (E2), non-stationary
data (E3), non-stationary data + noise model (E4), with the interaction matrix €2 of the true process
(E1).

where ¢ is a vector of independent normal random variables with zero mean and unit variance. We
run multiple realizations of the discretized SDE with time-step §t to generate empirical distributions
at a given time.

Non-equilibrium Ornstein-Uhlenbeck process We consider a 6-dimensional Ornstein-Uhlenbeck
process with diffusion and interaction terms chosen to break the detailed balance and create irre-
versible phase-space currents at steady state [6]:

dx = —Qxdt + V2DdW, (12)

where €2 is the interaction matrix, D the diffusion term (symmetric positive semi-definite matrix) and
‘W a standard 6-dimensional Wiener process. We consider the non-symmetric interaction matrix and
the anisotropic diffusion matrix used as a benchmark for a trajectory-based force inference method
in [8]. We run 5000 realizations of the process to generate empirical distributions with ¢ = 0.01
and for inference, we use distributions sampled at At = 0.1 with K = 20. First, we estimate the
score via sliced score matching [32]] using a neural network with 3 hidden layers containing 20 nodes
each. The force field network is modeled using a neural network with 2 hidden layers containing
10 nodes per layer. In Fig. 2] we illustrate how our framework enables accurate reconstruction of
the force field from a few time snapshots of the empirical distributions, and in particular how it
captures the non-reciprocal interactions, which manifest themselves as spirals in the 2-dimensional
projections of Fig2B. On the contrary, we see in Fig[2JA that our approach captures just reciprocal
(symmetric) interactions when applied to stationary data and learns a radial vector field instead. Given
the autonomous nature of the inferred non-linear field, we can predict beyond the training horizon as
shown in Fig2D.
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Figure 3: Non-equilibrium 2D Ornstein-Uhlenbeck process whith harmonic trapping at the
origin where f(x) = —Qx + ae~* /27" x, where @ = (% 3). (A) Equilibrium force £°4(x)
inferred from stationary data. (B) The inferred force field (red arrows) overlaid on the exact force
field (black arrows). (C) RMSE versus sampling rate At ~ 1/N}, for different diffusion coefficients.
We ran 1000 realization of the process with 6¢ = 0.001 as per the discretization in (TI)) with
a = 10,0 = 2, and sample empirical distributions with At = {0.025,0.05,0.1,0.2} during
inference. The score was estimated with a neural network with 4 hidden layers containing 10 nodes
each. The force field is inferred via a neural network with 2 hidden layers and 10 nodes per layer.

Once the force field is inferred, we can then compute the interaction matrix as the Jacobian of the
estimated force field:

3<x>=<§fl gf) Q@ - S Ax(0)

where (...) represents the average over all measured cross-sectional samples. Since the force field is
parameterized by a neural network, we can use backpropagation to evaluate the Jacobian. We see

using (9) that at steady-state the equilibrium interaction matrix recovered Q¢ reads:
Q°4 ~ DV log p(x). (13)

From this equation, we can see that in the presence of anisotropic diffusion, the equilibrium interaction
matrix is non-symmetric. In Fig. 2E2 we illustrate this fact as the interaction matrix learned on
stationary data (and thus corresponding to vanlshmg phase-currents) is non-symmetric. Importantly,

and in agreement with the results shown Fig. [2A-B, the estimated equilibrium matrix Q°9 is an
inaccurate reconstruction of the true interaction matrix €2 as shown in Fig.2E1 and [2E2. Following
this observation, we show in Fig. [2E3 that inferring on non-stationary data without noise prior (D
= 0, akin to TrajectoryNet [[16]) does not permit a faithful reconstruction of €2, and that only our
complete inference scheme in Fig. 2E4 can accurately infer the interaction matrix.

We evaluate our method’s effectiveness in inferring non-linear fields in a 2D OU process with
harmonic trapping. In Fig.[d] we show the reconstructed force field and also investigate the impact
of sampling rate and diffusion constant on inference accuracy, noting a decline in accuracy with
increased diffusion coefficients and reduced sampling rates.

Stochastic chemical kinetics Multiplicative noise is ubiquitous in biological processes whose
properties emerge from birth-death dynamics [6]]. To illustrate the ability of our method to deal
with this type of system, we consider the Schlégl model, a canonical chemical reaction system that
exhibits bistability:

A42X 253X, B2 x, (14)
kz k4

where species A and B are kept at a constant concentration, denoted a and b respectively. We can
describe the stochastic evolution of this process using a Chemical Master Equation (CME) [6], which
extends the deterministic law of mass-action to account for fluctuations in copy numbers of each
species. Denoting z the concentration of species X, the CME can be approximated by a Chemical
Langevin Equation (CLE) [38]:

1
dx = [u(z) — v(z)] dt + ﬁ\/u(a:) + v(x)dW, (15)
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Figure 4: Stochastic chemical kinetics. (A) Cross-sectional empirical distributions are shown at
times ¢ = {4, 6, 8}. (B) Comparison between the force field jointly inferred with diffusion term (red)
and without the noise model specified (D = 0, blue). (C) Diffusion term jointly inferred with the
force field.

where W is a standard Wiener process and V' is the volume of the system. According to the
law of mass-action applied to (I4), the volumetric growth and decay rates of X are, respectively,
w(x) = krax? + k3b and v(x) = ko + kyqx. At this level of coarse-graining the fluctuations in
the concentration of X are directly prescribed by the volumetric rates v and v. This observation is
especially true in gene regulatory networks which are well described by high-dimensional CLEs [39],
or simplifications of it [40]].

In this example, we rely on the functional correspondence between the force field (u — v) and
diffusion (u + v), to infer both. The approximate probability flow associated with is given as

&= (- 570 - 1+ 570 - g o) + o] ). a6

The simulation data is generated for the choice of parameters k; = 0.3,k = 0.02, ks = 1.2, k4 =
1,a=1,b=1,and V = 20 with 6t = 0.01. We ran 1000 realizations of the process to generate
K = 20 distributions separated by At = 0.2. The score was estimated via score matching (7) using
a neural network with 2 hidden layers and 10 nodes per layer. The volumetric growth rate u(x) and
the decay rate v(z) are modeled as the outputs of a single neural network with concentration z as
input, with 3 hidden layers and 10 nodes per layer. The neural network is then optimized based on
the approximate probability flow (I6)) to solve the density fitting problem. In Fig.[d] we demonstrate
that a few cross-sectional snapshots are sufficient to quantitatively infer both the force and diffusion
field. We train our force model on data far from steady state and thus we only capture one stationary
point in the force field as shown in Fig. [dB. We also provide a comparison with the TrajectoryNet
[L6]-like approach where the knowledge about the noise is ignored and, therefore, fails to identify the
true force field. This clearly highlights the non-negligible role of multiplicative noise in chemical
reaction networks, and how our inference framework can be used to distinguish the force field from
intrinsic noise.

5 Discussion

In this paper, we developed a force-field inference approach for diffusion processes using cross-
sectional samples given at a limited number of time points. We demonstrate our method on bio-
physically relevant examples, and we show that our approach successfully identifies both linear and
non-linear non-conservative force fields from non-stationary data, while it recovers the correspond-
ing equilibrium dynamical model when applied to steady-state data. Additionally, in CLEs where
fluctuations are prescribed by the underlying force field, we can jointly infer both the force field and
the diffusion term. Unlike most trajectory inference methods, our approach allows simultaneously to
(i) learn potentially nonlinear dynamical models consistent with cross-sectional measurements at all
times and (ii) investigate the effect of arbitrary noise models, and in particular multiplicative models.

Future work should (i) investigate the effect of sampling rate and measurement noise on the accuracy
of the inference scheme, (ii) extend the study on the joint inference of the force field and diffusion
to realistic gene regulatory networks where noise is frequently ignored or assumed to be additive,
conflicting with the ubiquitous presence of multiplicative noise in biological systems [2, 3, [20].
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