Measuring and Controlling Solution Degeneracy
across Task-Trained Recurrent Neural Networks

Ann Huang'-?3, Satpreet H. Singh?3, Flavio Martinelli*>>*, Kanaka Rajan?>
'Harvard University ~ 2Harvard Medical School ~ ®*Kempner Institute ~ “*EPFL

annhuang@g.harvard.edu

Abstract

Task-trained recurrent neural networks (RNNs) are widely used in neuroscience
and machine learning to model dynamical computations. To gain mechanistic
insight into how neural systems solve tasks, prior work often reverse-engineers
individual trained networks. However, different RNNSs trained on the same task and
achieving similar performance can exhibit strikingly different internal solutions, a
phenomenon known as solution degeneracy. Here, we develop a unified framework
to systematically quantify and control solution degeneracy across three levels:
behavior, neural dynamics, and weight space. We apply this framework to 3,400
RNNS trained on four neuroscience-relevant tasks—flip-flop memory, sine wave
generation, delayed discrimination, and path integration—while systematically
varying task complexity, learning regime, network size, and regularization. We
find that higher task complexity and stronger feature learning reduce degeneracy in
neural dynamics but increase it in weight space, with mixed effects on behavior. In
contrast, larger networks and structural regularization reduce degeneracy at all three
levels. These findings empirically validate the Contravariance Principle and provide
practical guidance for researchers seeking to tune the variability of RNN solutions,
either to uncover shared neural mechanisms or to model the individual variability
observed in biological systems. This work provides a principled framework for
quantifying and controlling solution degeneracy in task-trained RNNs, offering
new tools for building more interpretable and biologically grounded models of
neural computation.

1 Introduction

Recurrent neural networks (RNNs) are widely used in machine learning and computational neuro-
science to model dynamical processes. They are typically trained with standard nonconvex optimiza-
tion methods and have proven useful as surrogate models for generating hypotheses about the neural
mechanisms underlying task performance [1, 2, 3, 4, 5, 6]. Traditionally, the study of task-trained
RNNSs has focused on reverse-engineering a single trained model, implicitly assuming that networks
trained on the same task would converge to similar solutions—even when initialized or trained
differently. However, recent work has shown that this assumption does not hold universally, and
the solution space of task-trained RNNs can be highly degenerate: networks may achieve the same
level of training loss, yet differ in out-of-distribution (OOD) behavior, internal representations, neural
dynamics, and connectivity [7, 8, 9, 10, 11, 12, 13]. For instance, [8] found that while trained RNNs
may share certain topological features, their representational geometry can vary widely. Similarly,
[7] showed that task-trained networks can develop qualitatively distinct neural dynamics and OOD
generalization behaviors.

These findings raise fundamental questions about the solution space of task-trained RNNs: What
factors govern the solution degeneracy across independently trained RNNs? When the solution
space of task-trained RNNSs is highly degenerate, to what extent can we trust conclusions drawn from
a single model instance? While feedforward networks have been extensively studied in terms of how

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

weight initialization and stochastic training (e.g., mini-batch gradients) lead to divergent solutions,
RNNs still lack a systematic and unified understanding of the factors that govern solution degeneracy
[14, 15,16, 17,18, 19, 20, 21, 22, 23]. Cao and Yamins [24] proposed the Contravariance Principle,
which posits that as the computational objective (i.e., the task) becomes more complex, the solution
space should become less dispersed—since fewer models can simultaneously satisfy the stricter
constraints imposed by harder tasks. While this principle is intuitive and compelling, it has thus far
remained largely theoretical and has not been directly validated through empirical studies.

In this paper, we introduce a unified frame-
work for quantifying solution degeneracy

at three levels: behavior, neural dynam- Factors controlling solution degeneracy

ics, and weight space (Figure 1). Lever- Task Solution degeneracy .

. . . complexity Network size
aging this framework, we isolate four Behavioral
key factors that control solution degen- \ G degeneracy
eracy—taslf complexity, learning regime, 7 2 Dynamical
network width, and structural regulariza- 2O & gegeneracy \
tion. We apply this framework ina large- Learning | % | @ @) Weight S ——
scale experiment, training 50 indepen- regime & ¥/ \&8/ degeneracy = | regularization

dently initialized RNNs on each of four
neuroscience-relevant tasks. By system-

atically varying task complexity, learning
regime, network width, and regulariza- Figure 1: Key factors shape degeneracy across behav-

tion, we map how each factor shapes de- ior, dynamics, gnd Weights. Schematig of our fra}me—
generacy across behavior, dynamics, and work for analyzing solution degeneracy in task—trall}ed
weights. We find that as task complexity RNNS. We evalyate how task complex1.ty, .lear.mng
increases—whether via more input—output egime, network size, and structural regularlzanon influ-
channels, higher memory demand, or aux- ©Nnce degeneracy at three levels: l?ehaw.or (network out-
iliary objectives, or as networks undergo puts), neural dyqamlcs (state trajectories), and weight
stronger feature learning—their neural dy- Space (connectivity).

namics become more consistent, while

their weight configurations grow more variable. In contrast, increasing network size or impos-
ing structural regularization during training reduces variability at both the dynamics and weight levels.
At the behavioral level, each of these factors reliably modulates behavioral degeneracy; however, the
relationship between behavioral and dynamical degeneracy is not always consistent.

Table 1 summarizes how task complexity, learning regime, network size, and regularization affect
degeneracy across levels. In both machine learning and neuroscience, the desired level of degeneracy
may vary depending on the specific research questions being investigated. This framework offers
practical guidance for tailoring training to a given goal—whether encouraging consistency across
models [25], or promoting diversity across learned solutions [26, 27, 28].

Our key contributions are as follows:

* A unified framework for analyzing solution degeneracy in task-trained RNNs across behavior,
dynamics, and weights.

* A systematic sweep of four factors—task complexity, feature learning, network size, and regular-
ization—and a summary of their effects across levels (Table 1), with practical guidance for tuning
consistency vs. diversity [25, 26, 27, 28].

* A double dissociation: task complexity and feature learning yield contravariant effects on weights
vs. dynamics, while network size and regularization yield covariant effects. Here, contravariant
means that a factor decreases degeneracy at one level (e.g., dynamics) while increasing it at another
(e.g., weights), whereas covariant means both levels change in the same direction.

2 Methods

2.1 Model architecture and training procedure

We use discrete-time nonlinear vanilla recurrent neural networks (RNNs), defined by the update
rule: h; = tanh (Wph,_1 + W,x; + b) where h; € R” is the hidden state, x; € R™ is the input,
W, € R"*™ and W, € R" ™ are the recurrent and input weight matrices, and b € R" is a bias

vector. A learned linear readout is applied to the hidden state to produce the model’s output at each
time step. Networks are trained with Backpropagation Through Time (BPTT) [29], which unrolls the
RNN over time to compute gradients at each step. All networks are trained using supervised learning
with the Adam optimizer without weight decay. Learning rates are tuned per task (Appendix B).
For each task, we train 50 RNNs with 128 hidden units. Weights are initialized from the uniform
distribution ¢ (—1/+/n, 1/+/n) and hidden states are initialized to be zeros.

In all experiments, we train networks until them reach a near-asymptotic, task-specific mean-squred
error (MSE) threshold on the training set (see Appendix B), after which we allow a patience period of
3 epochs and stop training to measure degeneracy. This early-stopping criterion ensures that networks
trained on the same task achieve comparable final losses before any degeneracy analysis.

2.2 Task suite for diagnosing solution degeneracy

We selected a diverse set of four tasks designed to elicit distinct neural dynamics commonly studied in
neuroscience. The N-Bit Flip-Flop task captures pattern recognition and memory retrieval processes,
analogous to Hopfield-type attractor networks that store discrete binary patterns and retrieve them
from partial cues [30, 31]. The Delayed Discrimination task models working memory maintenance
in classic delayed-response paradigms [32, 33]. The Sine Wave Generation task represents pattern
generation, analogous to Central Pattern Generators (CPGs) that produce self-sustaining rhythmic
outputs underlying motor control [34], as well as oscillatory activity observed in motor cortex during
movement [35]. Finally, the Path Integration task is inspired by hippocampal and entorhinal circuits
that build a cognitive map of the environment to track position by integrating self-motion cues [36].
These tasks have also been used in prior benchmark suites for neuroscience-relevant RNN training
[37, 38, 8], underscoring their broad relevance for studying diverse neural computations. Below, we
briefly describe the task structure and the typical dynamics required to solve each one.

A N-Bits Flip Flop Delayed Discrimination Sine Wave Generation Path Integration

B s (Xee1, Y
output 1 f, fo%V v 1\ output (]
S DR T A T A ¥
. f‘JH : H (%, %0
W input 2 A4 — VS I input
VL output2 output T

. .S . o
& o o
o€ : s .10
2 O o o
. 14 o

PC2 (VarExp: 0.20)

3] 7 H
PC1 (VarExp: 0.77)

Figure 2: Our task suite spans memory, integration, pattern generation, and decision-making.
Task schematics and representative network trajectories projected onto the top principal components
are shown in (A)—(B). The four tasks are: N-Bit Flip-Flop: The network must remember the
last nonzero input on each of N independent channels. Delayed Discrimination: The network
compares the magnitude of two pulses, separated by a variable delay, and outputs their sign difference.
Sine Wave Generation: A static input specifies a target frequency, and the network generates the
corresponding sine wave over time. Path Integration: The network integrates velocity inputs to
track position in a bounded 2D or 3D arena (schematic shows 2D case).

N-Bit Flip-Flop Task Each RNN receives N independent input channels taking values in
{-1,0,+1}, which switch with probability pswich. The network has N output channels that must
retain the most recent nonzero input on their respective channels. The network dynamics form 2V
fixed points, corresponding to all binary combinations of {—1, 41} The output range of this task
is [—1, 1] and we apply an early-stopping training MSE threshold at 0.001.

Delayed Discrimination Task The network receives two pulses of amplitudes fi, fo € [2,10],
separated by a variable delay ¢ € [5, 20] time steps, and must output sign(f> — f1). In the N-channel
variant, comparisons are made independently across channels. The network forms task-relevant fixed

points to retain the amplitude of f; during the delay period. The output range of this task is [—1, 1]
and we apply an early-stopping training MSE threshold at 0.01.

Sine Wave Generation The network receives a static input specifying a target frequency f €
[1,30] and must generate the corresponding sine wave sin(27 ft) over time. We define N, target
frequencies, evenly spaced within the range [1, 30], and use them during training. In the N-channel
variant, each input channel specifies a frequency, and the corresponding output channel generates
a sine wave at that frequency. For each frequency, the network dynamics form and traverse a limit
cycle that produces the corresponding sine wave. The output range of this task is [—1,1] and we
apply an early-stopping training MSE threshold at 0.05.

Path Integration Task Starting from a random position in 2D, the network receives angular direction
0 and speed v at each time step and updates its position estimate. In the 3D variant, the network takes
as input azimuth 6, elevation ¢, and speed v, and outputs updated (z, y, z) position. The network
performs path integration by accumulating velocity vectors based on the input directions and speeds.
After training, the network forms a map of the environment in its internal state space. The output
range of this task is [—5, 5] and we apply an early-stopping training MSE threshold at 0.05.

In our task suite, trained RNNs develop distinct stable dynamical objects: fixed-point (N-Bit Flip
Flop, Delayed Discrimination), limit cycle (Sine Wave Generation), and attractor manifold (Path
Integration). In Appendix E, we extend our task suite to include a next-step prediction task on the
Lorenz 96 chaotic attractors [39], where networks exhibit chaotic dynamical regime.

2.3 Multi-level framework for quantifying degeneracy
2.3.1 Behavioral degeneracy

We define a novel metric for behavioral degeneracy as the variability in network responses to out-of-
distribution (OOD) inputs. We quantify OOD performance as the mean squared error of all converged
networks that achieved near-asymptotic training loss under a temporal generalization condition. For
the Delayed Discrimination task, we doubled the delay period. For all other tasks, we doubled the
length of the entire trial to assess generalization under extended temporal contexts. Behavioral degen-

. _ 2
eracy is defined as standard deviation of the OOD losses: coop = \/ + Zfil (E(C%D - EOOD) ,

where Loop is the mean OOD loss. While we focus primarily on the temporal generalization
condition for behavioral degeneracy since it directly probes RNNs’ sequence processing capacities
and their ability to generalize across extended temporal horizons, the same metric can be readily
applied to other OOD conditions, such as input noise or external perturbations. In the rest of the
paper, we use the term behavioral degeneracy [temporal generalization] to explicitly indicate the
OOD condition being tested.

2.3.2 Dynamical degeneracy

We use Dynamical Similarity Analysis (DSA) [40] to compare the neural dynamics of task-trained
networks through pairwise analyses. While previous comparison methods mostly focus on geometry
of the data [41, 42, 43, 44], RNNs implement computations through time-varying trajectories rather
than static representations, and two RNNs exhibiting similar representational geometry can implement
distinct dynamical computations, and vise versa. DSA compares the topological structure of the
neural dynamics and has been shown to be more robust to noise and better at identifying behaviorally
relevant differences than geometry-based comparison method [45]. For a pair of networks X and
Y, DSA projects their time series of activities to a higher-dimensional space and identifies a linear
dynamic operator for each system via next-step prediction. The DSA distance between two systems
is then computed by minimizing the Frobenius norm between the operators, up to an orthogonal
transformation (rotation and reflection):

dpsa(Az, Ay) = ngl(ln) HAx - OAyCHlHF’

where O(n) is the orthogonal group. We define dynamical degeneracy as the average DSA distance
across all network pairs. Additional details on the DSA metric are provided in Appendix F. We
note that scale of the DSA distance used to quantify dynamical degeneracy can depend on the
choice of DSA hyperparameters. To ensure fair comparison across conditions, we keep all DSA

hyperparameters fixed for RNNs trained on the same task. To assess if the neural dynamics across
different trained networks are statistically different, we also establish a null distribution by comparing
neural trajectories sampled from the same underlying network, see Appendix F.3 for details.

We focus on comparing neural dynamics because RNNs implement computations through time-
evolving trajectories rather than static input representations. In addition, we assess representational
degeneracy using Singular Vector Canonical Correlation Analysis (SVCCA) [41]. As shown in
Appendix G, the four factors that influence dynamical degeneracy do not impose the same constraints
on representational degeneracy.

2.3.3 Weight degeneracy

We quantify weight-level degeneracy via a permutation-invariant version of the Frobenius norm,
defined as:
dPIF(WhWQ) = min HW1 — PTWQPHF
PcP(n)

where W7 and W, are the recurrent weight matrices for a pair of RNNs, P(n) is the set of
permutation matrices of size n X n, and || - || r denotes the Frobenius distance. See Appendix F.2 for
additional details. For comparing dp;r computed on networks of different sizes, we normalize the
above norm by the number of parameters in the weight matrix.

3 Results

3.1 Task complexity modulates degeneracy across levels

To investigate how task complexity influences dynamical degeneracy, we varied the number of
independent input—output channels. This increased the representational load by forcing networks to
solve multiple input-output mappings simultaneously. To visualize how neural dynamics vary across
networks, we applied two-dimensional Multidimensional Scaling (MDS) to their pairwise distances.
As task complexity increased, network dynamics became more similar, forming tighter clusters in
the MDS space (Figure 3A). This contravariant relationship between task complexity and dynamical
degeneracy was consistent across all tasks (Figure 3B). Higher task demands constrain the space of
viable dynamical solutions, leading to greater consistency across independently trained networks.

A 3BFF B N-BFF Delayed Discrim. Sine Wave Gen. Path Integr.

o 1)
005 #’ N5 0.10 044 0.154 01254
o, - N\ 0100
' 0.10) M
034 0,075

3
‘oo o
wikosy F
3BFF 8BFF 16BFF 32BFF 2channels 3channels 4 channels 2 channels 3 channels 4 channels 20 3D

MDS 2
Dynamical
Degeneracy
o
°
g

8BFF

x10~ x10™ x10"°

x10°
149 1,650
1.0
134 1,625
1.6004
0.8+

‘ 3BFF 8BFF 16BFF 32BFF 2channels 3channels 4 channels 2 channels 3 channels 4 channels 2D 3D
"
x10

¢
9

©

16BFF

Weight
Degeneracy

N

MDS 2

Behavioral
Degeneracy

0.0084 0.0350
32BFF

o

0.204
0.006- 0.03254

Moo N
o o

MDS 2

0.0300 0157

0.004
T T T ' T T T T T u T T
o1 3BFF 8BFF 16BFF 32BFF 2 channels 3 channels 4 channels 2 channels 3 channels 4 channels 2D 3D

o1 oo
MDS 1

Figure 3: Higher task complexity reduces dynamical and behavioral degeneracy, but increases
weight degeneracy. (A) Two-dimensional MDS embedding of network dynamics shows that inde-
pendently trained networks converge to more similar trajectories as task complexity increases. (B)
Dynamical, (C) weight, and (D) behavioral degeneracy [temporal generalization] across 50 networks
as a function of task complexity. Shaded area indicates 1 standard error.

At the behavioral level, networks trained on more complex tasks consistently showed lower variability
in their responses to OOD test inputs (Figure 3D) in the temporal generalization condition. This
finding suggests that increased task complexity, by reducing dynamical degeneracy, also leads
to more consistent and less degenerate behavior on the temporal generalization condition across
networks. Together, the results at the behavioral and dynamical levels support the Contravariance
Principle, which posits an inverse relationship between task complexity and the dispersion of network
solutions [24].

At the weight level, we found that pairwise distances between converged RNNs’ weight matrices
increased consistently with task complexity (Figure 3C). This likely reflects increased dispersion of
local minima in weight space for harder tasks. This interpretation is consistent with prior work on
mode averaging and loss landscape geometry in feedforward networks, showing that harder tasks
tend to yield increasingly isolated minima, separated by steeper barriers [46, 47, 48, 49, 50, 51, 52].
A complementary perspective comes from [53], who introduced the intrinsic dimension—the lowest-
dimensional weight subspace that still contains a solution—which can serve as a proxy for task
complexity. As task complexity increases, the intrinsic dimension of the weight space expands and
each solution occupies a thinner slice of a higher-dimensional space, leading to minima that lie further
apart. In Section 3.2, we propose an additional mechanism: an interaction between task complexity
and the network’s learning regime that further amplifies weight-space degeneracy.

3.1.1 Additional axes of task complexity

In earlier experiments, we A Changing memory demand C No Aux Loss
controlled task complexity = 30200 551" =7
. © a < ©0.006
by varying the number of £ éwﬂ\\‘ 5, 5 2o
. . co 29 < 00
independent input—output 8 0 TE T BEow
channels, effectively dupli- T 2 3 4 0 2 30 4 0 2 B 4
. h k dl Number of delay steps Number of delay steps Number of delay steps
Catm_g the task across - B Adding auxiliary loss
mensions. Here, we explore o 10 _ » 00 ,
: 33 0% Z 21 g8 a4
two alternative approaches: 28 £8 5 o B wfot
. . N = =% 2.0 @ e 2 8
increasing the task’s mem- g% 020 25 » é%om- A
. _ 8 g S b 2% e
Ory demand and addlng aux No Aux Loss Aux Loss No Aux Loss Aux Lot No Aux Loss Aux Loss ;0;2 0 'zoﬁh

iliary objectives. ot
Changing memory de- Figure 4: Increasing memory demand or adding auxiliary loss
mand. Of the four tasks, changes task complexity, which in turn modulates degeneracy. In
only Delayed Discrimi- the Delayed Discrimination task, both manipulations reduce dynamical
nation requires extended and behavioral degeneracy [temporal generalization] while increasing
memory, as its performance weight degeneracy. The auxiliary loss also induces additional line
depends on maintaining attractors in the network’s dynamics, as shown in (C).

the first stimulus across a

variable delay. See Appendix D for a quantification of each task’s memory demand. We increased the
memory load in Delayed Discrimination by lengthening the delay period. This manipulation reduced
degeneracy at the dynamical and behavioral levels but increased it at the weight level, mirroring the
effect of increasing task dimensionality (Figure 4A).

Adding auxiliary loss. We next examined how adding an auxiliary loss affects solution degeneracy
in the Delayed Discrimination task. Specifically, the network outputs both the sign and the magnitude
of the difference between two stimulus values (fo — f1), using separate output channels for each.
This manipulation added a second output channel and increased memory demand by requiring the
network to track the magnitude of the difference between incoming stimuli. Consistent with our
hypothesis, this manipulation reduced dynamical and behavioral degeneracy [temporal generalization]
while increasing weight degeneracy (Figure 4B). Crucially, the auxiliary loss induced additional
line attractors in the network dynamics, further structuring internal trajectories and aligning neural
responses across networks (Figure 4C). While the auxiliary loss increases both output dimensionality
and temporal memory demand, we interpret its effect holistically as a structured increase in task
complexity.

3.2 Feature learning
3.2.1 Task complexity scales feature learning

In deep learning theory, neural networks can either solve tasks using their random features at
initialization, or adapt their weights and internal features to capture task specific structure [54, 55, 56,
57]. These are referred to as the lazy learning regime, where weights and internal features remain
largely unchanged during training, and the rich learning, or feature learning regime, where networks
reshape their hidden representations and weights to capture task-specific structure [54, 58, 59, 55].
As the complexity of a task grows, the initial random features no longer suffice to solve it, pushing the
network beyond the lazy regime and into feature learning, where weights and internal representations

adapt more substantially. [60, 61]. If more complex task variants, like those in Section 3.1, truly
induce greater feature learning, then networks should adapt more from their initializations and traverse
a greater distance in the weight space, resulting in more dispersed final weights.

We therefore hypothesize that
the increased weight degener-

. N-BFF Delayed Discrim. Sine Wave Gen. Path Integr.
acy observed in harder tasks «10~ i X 10" i
reflects stronger feature learn- is 1401 I 1207 24454
ing within the network. Totest £~ 1.36 1.12
C o S.0] = 2.430
this idea, we measured feature 230 1324 I o4
learning strength in networks T Tle 24154k
trained on different task variants = ¢.244= 0.045 4 I =
X g I 0.0075 - 0.454
using two complementary met- ¥ g 464 - 00304+ - 0.00504 0,304
rics [62, 58]: Weight-change <
) : g g X 0.081 0.015 0.0025 0.15-
norm: |[Wp — Wy || ., where
larger values indicate stronger ERRCY:S 2 & 13 k& 09

feature learning. Kernel align- Number of independent input-output channels

ment (KA): The geometry of
learning under gradient descent
can be described by the neu-
ral tangent kernel (NTK), which
captures how weight updates af-
fect the network outputs. The
NTK is defined by K = V-4 | Vi) where ¢ denotes the network output. KA measures the direc-

(T) g (0)
tional change of the NTK before and after training: KA(K(T), K(O)) (KT K

ED L EO]
KA indicates greater NTK rotation and thus stronger feature learning.

Figure 5: More complex tasks drive stronger feature learning
in RNNs. Increased input—output dimensionality leads to higher
weight-change norms (|| AW ||) and lower kernel alignment (KA).
Error bars indicate £1 standard error.

. Lower

We find that more complex tasks consistently drive stronger feature learning and greater dispersion in
weight space, as reflected by increasing weight-change norm and decreasing kernel alignment across
all tasks (Figure 5).

3.2.2 Controlling feature learning reshapes degeneracy across levels

Our earlier results show that harder tasks induce stronger feature learning, which in turn shapes
the dispersion of solutions in the weight space. To test whether feature learning causally affects
degeneracy, we used a principled network parameterization known as maximum update parameteri-
zation (uP), which allows stable feature learning across network widths, even in the infinite-width
limit [57, 54, 56, 55]. In this setup, a single hyperparameter () controls the strength of feature
learning: higher v values induce a richer feature-learning regime. Under this parameterization, the
network update rule, initialization, and learning rate are scaled with respect to network width N.

For the Adam optimizer, the output is scaled as f(t) = A%NVVreadom(b(h(t)). The hidden state update

is scaled as h(t + 1) — h(t) = 7 (—h(t) + & Jd(h(t)) + Uz(t)), where J;; ~ N(0, N) are the
recurrent weights and ¢ is the tanh nonlinearity. The learning rate scales as n = yn. A detailed
explanation of pP and its relationship to the standard parameterization is in Appendix K and L.
For each task, we trained networks with multiple v values and confirmed that larger -y consistently
induces stronger feature learning, as evidenced by increased weight-change norm and decreased
kernel alignment (Appendix M).

We observed that stronger feature learning reduced degeneracy at the dynamical level but increased it
at the weight level. We see that when + is high, networks tend to learn similar task-specific features
and converge to consistent dynamics and behavior. In contrast, lazy networks (with small) rely on
their initial random features, leading to more divergent solutions across seeds—even though their
weights move less overall (Figure 6). This finding aligns with prior work in feedforward networks,
where feature learning was shown to reduce the variance of the neural tangent kernel across converged
models [60]. At the behavioral level, however, increasing feature-learning strength leads networks
to overfit the training distribution (Appendix J.2). We hypothesize that stronger feature learning
exacerbates overfitting, increasing both average OOD loss and the variability of OOD behavior
across models (Figure 6) [63, 64, 65, 66]. Although stronger feature learning increases behavioral
degeneracy [temporal generalization], this may partially reflect overfitting to the training distribution,

3-BFF Delayed Discrim. Sine Wave Gen. Path Integr.
—_
88 %% 0.125- 0.068
= 0.20
© c
cg 0.1201 0.066
& © 0057 0.154
o 0T 1 1 1 T T T T T T T 0T r _____ Tr
> 0.24+
8 0.14
£ § 0-1300 0.4
05 0.23
[-
= 30‘1275 0.3 0.13
o T T T B I R
>
® R 0.124
£ 3 000010 00035 0.06+
S 0
85 0.0030- 0.04- 0404
"§ £90.00005 -
o =] T T T T 0.0025 T T T T 0.02- T T T T
05 1 3 1 2 3 4 01 05 1 2 6 7 8
Y 14 Y 14

Figure 6: Stronger feature learning reduces dynamical degeneracy but increases weight and
behavioral degeneracy. Panels show degeneracy at the dynamical, weight, and behavioral levels
(top to bottom). Shaded area indicates 4-1 standard error.

an effect we highlight in Appendix J.2. Clarifying the mechanistic link between dynamical and
behavioral degeneracy [temporal generalization] remains an important direction for future work.
In Appendix I, we demonstrate that the observed effects of feature learning on degeneracy both
interpolates smoothly within the range of v values and extrapolates beyond the range reported in

Figure 6.

3.3 Larger networks yield more consistent solutions across levels

3-BFF Delayed Discrim. Sine Wave Gen. Path Integr.
5 §0_054— 0424
=0 J 0.072
% 2 4.052- 0.235
Py 0.1
28 0.234 0.070+
0 0.050 T T T T T T T T T T
> 0.4
-8 : 0.20
£ go_mo— 0.2
S S 0.154
= 8.)0.075' 0.2
o 0.101 0.1
D T T T T
573 0.004 0.09 0.35
5 @ 0.00030
< 0
%< 0.003 4
[- 0.30
< $0.00028+ 0.08+
o [
D T T T T T T T T T
64 128 256 64 128 256 64 128 256 64 128 256
Network width Network width Network width Network width

Figure 7: Larger networks reduce degeneracy across weight, dynamics, and behavior. After
controlling for feature learning strength (v = 1 held constant across network widths), wider RNNs
yield more consistent solutions across all three levels of analysis. Panels show degeneracy at the
dynamical, weight, and behavioral levels (top to bottom). Shaded area indicates £1 standard error.

Prior work in machine learning and optimization shows that over-parameterization improves conver-
gence by helping gradient methods escape saddle points [67, 68, 69, 70, 71, 72, 16]. We therefore
hypothesized that larger RNNs would converge to more consistent solutions across seeds. How-
ever, increasing width also tends to push models towards the lazy regime, where feature learning
is suppressed [73, 59, 54, 55, 56]. To disentangle these competing effects, we again use the pP
parameterization, which holds feature learning strength constant (via fixed) while scaling width.
Although larger networks may yield more consistent solutions via self-averaging, this outcome is
not guaranteed without controlling for feature learning. In standard RNNs, increasing width often

Table 1: Summary of how each factor affects solution degeneracy. Arrows indicate the direction
of change for each level as the factor increases. Contravariant factors shift dynamic and weight
degeneracy in opposite direction; covariant factors shift them in the same directions.

Factor Dynamics Weights Behavior
Higher Task complexity (contravariant) J 0 J
More Feature learning (contravariant) 4 1 1
Larger Network size (covariant) J J J
Regularization (covariant) J J J

induces lazier dynamics, which can paradoxically increase dynamical degeneracy rather than reduce
it. The u P setup enables us to isolate the size effect cleanly.

Across all tasks, larger networks consistently exhibit lower degeneracy at the weight, dynamical, and
behavioral levels, producing more consistent solutions across random seeds (Figure 7). Our dense
sweep over 12 intermediate network sizes from 32 to 512 on the 3-Bits Flip Flop task in Appendix
[further confirms the observed effect of network width on degeneracy. This pattern aligns with
findings in vision and language models, where wider networks converge to more similar internal
representations [74, 75, 41, 76, 77, 65]. In recurrent networks, only a few studies have investigated
this “convergence-with-scale” effect using representation-based metrics [74, 78]. Our results extend
these findings by (1) focusing on neural computations across time (i.e., neural dynamics) rather than
static representations, and (2) demonstrating convergence-with-scale across weight, dynamical, and
behavioral levels in RNNs.

3.4 Structural regularization reduces solution degeneracy

Low-rank and sparsity constraints are widely Low-Rank Regularization ~ Sparsity Regularization

used structural regularizers in neuroscience- § § %25 025+

inspired modeling and efficient machine learn- § £ .2+

ing [4, 79, 80, 81, 82]. A low-rank penalty com- §§> 0204

presses the weight matrices into a few dominant ' ' ' ' ' ' '
modes, while an ¢; penalty drives many param- . x10” x10~°

eters to zero and induces sparsity. In both cases, = 8 47 40

task-irrelevant features are pruned, nudging in- 8 £ 50

dependently initialized networks toward more = §’ . . 207 . .
consistent solutions on the same task. To test 0 2 0 2

this idea, we augmented the task loss with either — _ . 1e-3 1e-3

a nuclear-norm penalty on the recurrent weights g g 50- 504

L = Lok + Aank >j_y i, Where o; are the 8§

singular values of the recurrent matrix, or an & & 251, : . ; 251 : : : ;
¢, sparsity penalty: £ = Ly + Mg, ZZ |wz‘ 0 1le™ 5e~° le™ 0 1e7® 3e7% 5e-°

Regularization Strength ~ Regularization Strength

We focused on the Delayed Discrimination task
to control for baseline difficulty, and observe

that both regularizers consistently reduced de-
generacy across all levels. Similar effects hold
in other tasks (Appendix O, Figure 8) and in-

Figure 8: Low-rank and sparsity regularization
reduce solution degeneracy across all levels. On
the Delayed Discrimination task, both regularizers

termediate regularization strengths (Appendix I lower degeneracy in dynamics, weights, and be-
). havior. Shaded area indicates 1 standard error.

4 Discussion

In this work, we introduced a unified framework for quantifying solution degeneracy in task-trained
recurrent neural networks (RNNSs) at three complementary levels: behavior, neural dynamics, and
weights. We systematically varied four factors within our generalizable framework: (i) task com-
plexity (via input—output dimensionality, memory demand, or auxiliary loss), (ii) feature learning
strength, (iii) network size, and (iv) structural regularization. We then evaluated their effects on
solution degeneracy across a diverse set of neuroscience-relevant tasks.

Two consistent patterns emerged from this analysis. First, increasing task complexity or boosting
feature learning produced a contravariant effect: dynamical degeneracy decreased while weight
degeneracy increased. Second, increasing network size or applying structural regularization reduced
degeneracy at both the weight and dynamical levels—that is, a covariant effect. Here, covariant
and contravariant refer to the relationship between weight and dynamic degeneracy—not whether
degeneracy increases or decreases overall. For example, task complexity and feature learning reduce
dynamical degeneracy but increase weight degeneracy, whereas network size and regularization
reduce both.

We also observed that the relationship between dynamical and behavioral degeneracy depends on the
varying factor. For instance, stronger feature learning leads to more consistent neural dynamics on
the training task but greater variability in OOD generalization This suggests that tightly constrained
dynamics on the training set do not guarantee more consistent behavior on OOD inputs. This
highlights the need for further empirical and theoretical work on how generalization depends on
the internal structure of task-trained networks [83, 84, 85]. This divergence highlights a key open
question: how much of behavioral consistency generalizes beyond training-aligned dynamics, and
what task or network factors drive this decoupling?

These knobs allow researchers to tune the level of degeneracy in task-trained RNNss to suit specific
research questions or application needs. For example, researchers may want to suppress degeneracy
to study common mechanisms underlying a neural computation. Conversely, to probe individual
differences, they can increase degeneracy to expose solution diversity across independently trained
networks [86, 87, 88, 89]. Our framework also supports ensemble-based modeling of brain data.
By comparing dynamical and behavioral degeneracy across trained networks, it may be possible to
match inter-individual variability in models to that observed in animals—helping capture the full
distribution of task-solving strategies [90, 91, 92, 93].

Although our analyses use artificial networks, several of the mechanisms we uncover may translate
directly to experimental neuroscience. For example, introducing an auxiliary sub-task during behav-
ioral shaping—mirroring our auxiliary-loss manipulation—could constrain the solution space animals
explore, thereby reducing behavioral degeneracy [94]. Finally, our contrasting findings motivate
theoretical analysis—e.g., using linear RNNs—to understand why some factors induce contravariant
versus covariant relationships across behavioral, dynamical, and weight-level degeneracy.

In summary, our work takes a first step toward addressing this classic puzzle in task-driven modeling:
What factors shape the variability across independently trained networks? We present a unified
framework for quantifying solution degeneracy in task-trained RNNGs, identify the key factors that
shape the solution landscape, and provide practical guidance for controlling degeneracy to match
specific research goals in neuroscience and machine learning.

Limitations and future directions. This work considers networks equivalent if they achieve similar
training loss. Future work could extend the framework to tasks with multiple qualitatively distinct
solutions, to examine whether specific factors bias the distribution of networks across those solutions.
Another open question is the observed decoupling between dynamical and behavioral degeneracy:
how much of behavioral consistency generalizes beyond training-aligned dynamics, and what task or
network factors drive this divergence.

5 Acknowledgments

We acknowledge funding from NIH (RF1DA056403, UOINS136507), James S. McDonnell Founda-
tion (220020466), Simons Foundation (Pilot Extension-00003332-02, McKnight Endowment Fund,
CIFAR Azrieli Global Scholar Program, NSF (2046583), Harvard Medical School Neurobiology
Lefler Small Grant Award, Harvard Medical School Dean’s Innovation Award, Alice and Joseph
Brooks Fund Postdoctoral Fellowship, and Kempner Graduate Fellowship. This work has been made
possible in part by a gift from the Chan Zuckerberg Initiative Foundation to establish the Kempner
Institute for the Study of Natural and Artificial Intelligence at Harvard University.

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

David Sussillo. Neural circuits as computational dynamical systems. Current opinion in
neurobiology, 25:156-163, 2014.

Kanaka Rajan, Christopher D Harvey, and David W Tank. Recurrent network models of
sequence generation and memory. Neuron, 90(1):128-142, 2016.

Omri Barak. Recurrent neural networks as versatile tools of neuroscience research. 46:1-6.
ISSN 09594388. doi: 10.1016/j.conb.2017.06.003. URL https://linkinghub.elsevier.
com/retrieve/pii/S0959438817300429.

Francesca Mastrogiuseppe and Srdjan Ostojic. Linking connectivity, dynamics, and com-
putations in low-rank recurrent neural networks. Neuron, 99(3):609—623.e29, 2018. doi:
10.1016/j.neuron.2018.07.003.

Saurabh Vyas, Matthew D Golub, David Sussillo, and Krishna V Shenoy. Computation
through neural population dynamics. Annual Review of Neuroscience, 43:249-275, 2020.

Laura N. Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation
in recurrent networks utilizes shared dynamical motifs. Nature Neuroscience, 27(7):1349—
1363, July 2024. ISSN 1097-6256, 1546-1726. doi: 10.1038/s41593-024-01668-6. URL
https://www.nature.com/articles/s41593-024-01668-6.

Elia Turner, Kabir V Dabholkar, and Omri Barak. Charting and navigating the space of
solutions for recurrent neural networks. Advances in Neural Information Processing Systems,
34:25320-25333, 2021.

Niru Maheswaranathan, Alex H. Williams, Matthew D. Golub, Surya Ganguli, and David
Sussillo. Universality and individuality in neural dynamics across recurrent networks. In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

Bariscan Kurtkaya, Fatih Dinc, Mert Yuksekgonul, Marta Blanco-Pozo, Ege Cirakman, Mark
Schnitzer, Yucel Yemez, Hidenori Tanaka, Peng Yuan, and Nina Miolane. Dynamical phases
of short-term memory mechanisms in rnns, 2025. URL https://arxiv.org/abs/2502.
17433.

Marino Pagan, Vincent D. Tang, Mikio C. Aoi, Jonathan W. Pillow, Valerio Mante, David
Sussillo, and Carlos D. Brody. Individual variability of neural computations underlying
flexible decisions. Nature, 639(8054):421-429, March 2025. ISSN 0028-0836, 1476-
4687. doi: 10.1038/s41586-024-08433-6. URL https://www.nature.com/articles/
s41586-024-08433-6.

David G. Clark, L.F. Abbott, and Haim Sompolinsky. Symmetries and Con-
tinuous Attractors in Disordered Neural Circuits. bioRxiv, 2025. doi: 10.
1101/2025.01.26.634933. URL https://www.biorxiv.org/content/early/2025/
01/26/2025.01.26.634933. Publisher: Cold Spring Harbor Laboratory _eprint:
https://www.biorxiv.org/content/early/2025/01/26/2025.01.26.634933 full.pdf.

Janne K. Lappalainen, Fabian D. Tschopp, Sridhama Prakhya, Mason McGill, Aljoscha
Nern, Kazunori Shinomiya, Shin-ya Takemura, Eyal Gruntman, Jakob H. Macke, and
Srinivas C. Turaga. Connectome-constrained networks predict neural activity across the
fly visual system. Nature, 634(8036):1132-1140, October 2024. ISSN 0028-0836, 1476-
4687. doi: 10.1038/s41586-024-07939-3. URL https://www.nature.com/articles/
s41586-024-07939-3.

Keith T. Murray. Phase codes emerge in recurrent neural networks optimized for modular
arithmetic, 2025. URL https://arxiv.org/abs/2310.07908.

Abhranil Das and Ila R Fiete. Systematic errors in connectivity inferred from activity in
strongly recurrent networks. Nature Neuroscience, 23(10):1286-1296, 2020.

11

https://linkinghub.elsevier.com/retrieve/pii/S0959438817300429
https://linkinghub.elsevier.com/retrieve/pii/S0959438817300429
https://www.nature.com/articles/s41593-024-01668-6
https://arxiv.org/abs/2502.17433
https://arxiv.org/abs/2502.17433
https://www.nature.com/articles/s41586-024-08433-6
https://www.nature.com/articles/s41586-024-08433-6
https://www.biorxiv.org/content/early/2025/01/26/2025.01.26.634933
https://www.biorxiv.org/content/early/2025/01/26/2025.01.26.634933
https://www.nature.com/articles/s41586-024-07939-3
https://www.nature.com/articles/s41586-024-07939-3
https://arxiv.org/abs/2310.07908

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

Elia Turner and Omri Barak. The simplicity bias in multi-task rnns: shared attractors, reuse of
dynamics, and geometric representation. Advances in Neural Information Processing Systems,
36, 2024.

Flavio Martinelli, Berfin Simsek, Wulfram Gerstner, and Johanni Brea. Expand-and-cluster:
Parameter recovery of neural networks, 2024. URL https://arxiv.org/abs/2304.12794.

Flavio Martinelli, Alexander Van Meegen, Berfin Simsek, Wulfram Gerstner, and Johanni
Brea. Flat channels to infinity in neural loss landscapes, 2025. URL https://arxiv.org/
abs/2506.14951.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape
perspective. arXiv preprint arXiv:1912.02757, 2019.

Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe. Qualitatively characterizing neural
network optimization problems, 2015. URL https://arxiv.org/abs/1412.6544.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets, 2018. URL https://arxiv.org/abs/1712.09913.

Stanistaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in sgd, 2018. URL https:
//arxiv.org/abs/1711.04623.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient
descent into wide valleys, 2017. URL https://arxiv.org/abs/1611.01838.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neu-
ral network representations revisited, 2019. URL https://arxiv.org/abs/1905.00414.

Rosa Cao and Daniel Yamins. Explanatory models in neuroscience, part 2: Functional
intelligibility and the contravariance principle. Cognitive Systems Research, 85:101200, 2024.

D Kepple, Rainer Engelken, and Kanaka Rajan. Curriculum learning as a tool to uncover
learning principles in the brain. In International Conference on Learning Representations,
2022.

Samuel Liebana Garcia, Aeron Laffere, Chiara Toschi, Louisa Schilling, Jacek Podlaski,
Matthias Fritsche, Peter Zatka-Haas, Yulong Li, Rafal Bogacz, Andrew Saxe, and Armin Lak.
Striatal dopamine reflects individual long-term learning trajectories, December 2023. URL
http://biorxiv.org/lookup/doi/10.1101/2023.12.14.571653.

Valeria Fascianelli, Aldo Battista, Fabio Stefanini, Satoshi Tsujimoto, Aldo Genovesio, and
Stefano Fusi. Neural representational geometries reflect behavioral differences in monkeys and
recurrent neural networks. Nature Communications, 15(1):6479, August 2024. ISSN 2041-
1723. doi: 10.1038/s41467-024-50503-w. URL https://www.nature.com/articles/
s41467-024-50503-w.

A Pan-Vazquez, Y Sanchez Araujo, B McMannon, M Louka, A Bandi, L Haetzel, International
Brain Laboratory, JW Pillow, ND Daw, and IB Witten. Pre-existing visual responses in a
projection-defined dopamine population explain individual learning trajectories, 2024. URL
https://europepmc.org/article/PPR/PPR811803.

Paul J] Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550-1560, 1990.

John J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences of the United States of America, 79
(8):2554-2558, 1982.

Ignacio Jarne. Exploring flip flop memories and beyond: training recurrent neural networks
with key insights. Frontiers in Systems Neuroscience, 2024.

12

https://arxiv.org/abs/2304.12794
https://arxiv.org/abs/2506.14951
https://arxiv.org/abs/2506.14951
https://arxiv.org/abs/1412.6544
https://arxiv.org/abs/1712.09913
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/1611.01838
https://arxiv.org/abs/1905.00414
http://biorxiv.org/lookup/doi/10.1101/2023.12.14.571653
https://www.nature.com/articles/s41467-024-50503-w
https://www.nature.com/articles/s41467-024-50503-w
https://europepmc.org/article/PPR/PPR811803

(32]

(33]

(34]

[35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

Shintaro Funahashi, Charles J. Bruce, and Patricia S. Goldman-Rakic. Mnemonic coding of
visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2):
331-349, 1989.

Patricia S. Goldman-Rakic. Cellular basis of working memory. Neuron, 14(3):477-485, 1995.

Eve Marder and Dirk Bucher. Central pattern generators and the control of rhythmic movement.
Current Biology, 11(23):R986-R996, 2001.

Mark M. Churchland, John P. Cunningham, Matthew T. Kaufman, Justin D. Foster, Paul
Nuyujukian, Stephen I. Ryu, and Krishna V. Shenoy. Neural population dynamics during
reaching. Nature, 487(7405):51-56, 2012.

Bruce L. McNaughton, Francesco P. Battaglia, Ole Jensen, Edvard 1. Moser, and May-Britt
Moser. Path integration and the neural basis of the ‘cognitive map’. Nature Reviews Neuro-
science, 7:663-678, 2006.

Guangyu R. Yang, Madhura R. Joglekar, H. Francis Song, William T. Newsome, and Xiao-Jing
Wang. Task representations in neural networks trained to perform many cognitive tasks. Nature
Neuroscience, 2019.

Mihir Khona, Shreyas Chandra, James J. Ma, and Ila R. Fiete. Winning the lottery with neural
connectivity constraints: Faster learning across cognitive tasks with spatially constrained
sparse rnns. Neural Computation, 35(11), 2023. doi: 10.1162/neco_a_01613.

Edward N. Lorenz. Predictability: A problem partly solved. In ECMWF Seminar on Pre-
dictability, 4-8 September 1995, Reading, U.K., 1996. European Centre for Medium-Range
Weather Forecasts.

Mitchell Ostrow, Adam Eisen, Leo Kozachkov, and Ila Fiete. Beyond Geometry: Comparing
the Temporal Structure of Computation in Neural Circuits with Dynamical Similarity Analysis,
October 2023. URL http://arxiv.org/abs/2306.10168. arXiv:2306.10168 [cs, g-bio].

Maithra et al. Raghu. Svcca: Singular vector canonical correlation analysis for deep learning
dynamics. In NeurIPS, 2017.

Nikolaus Kriegeskorte, Marieke Mur, and Peter Bandettini. Representational similarity analysis
— connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2:4,
2008. doi: 10.3389/neuro.06.004.2008.

Alex H. Williams, Erin Kunz, Simon Kornblith, and Scott W. Linderman. Generalized Shape
Metrics on Neural Representations, January 2022. URL http://arxiv.org/abs/2110.
14739. arXiv:2110.14739 [cs, stat].

Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B. Issa,
Kohitij Kar, Pouya Bashivan, James Prescott-Roy, Kailyn Schmidt, Daniel L. K. Yamins,
and James J. DiCarlo. Brain-score: Which artificial neural network for object recognition is
most brain-like? bioRxiv, 2020. doi: 10.1101/407007. URL https://www.biorxiv.org/
content/10.1101/407007v2.

Quentin Guilhot, Michat J Wéjcik, Jascha Achterberg, and Rui Ponte Costa. Dynamical
similarity analysis uniquely captures how computations develop in RNNs, 2025. URL https:
//openreview.net/forum?id=pXPIQsV1St.

Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe. Qualitatively characterizing neural
network optimization problems. In International Conference on Learning Representations
(ICLR), 2015. arXiv:1412.6544.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear

mode connectivity and the lottery ticket hypothesis. In Proceedings of the 37th International
Conference on Machine Learning (ICML), pages 3259-3269. PMLR, 2020.

13

http://arxiv.org/abs/2306.10168
http://arxiv.org/abs/2110.14739
http://arxiv.org/abs/2110.14739
https://www.biorxiv.org/content/10.1101/407007v2
https://www.biorxiv.org/content/10.1101/407007v2
https://openreview.net/forum?id=pXPIQsV1St
https://openreview.net/forum?id=pXPIQsV1St

[48] James R. Lucas, Juhan Bae, Michael R. Zhang, Stanislav Fort, Richard Zemel, and Roger B.
Grosse. On monotonic linear interpolation of neural network parameters. In Proceedings of
the 38th International Conference on Machine Learning (ICML), pages 7168-7179. PMLR,
2021.

[49] Stanislav Fort and Stanislaw Jastrzebski. Large scale structure of neural network loss land-
scapes. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

[50] Alessandro Achille, Giovanni Paolini, and Stefano Soatto. Where is the information in a deep
neural network? CoRR, abs/1905.12213, 2019.

[51] Xingyu Qu and Samuel Horvath. Rethink model re-basin and the linear mode connectivity.
arXiv preprint arXiv:2402.05966, 2024.

[52] Andrew Ly and Pulin Gong. Optimization on multifractal loss landscapes explains a diverse
range of geometrical and dynamical properties of deep learning. Nature Communications, 16
(3252), 2025. doi: 10.1038/s41467-025-58532-9.

[53] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic
dimension of objective landscapes. CoRR, abs/1804.08838, 2018.

[54] Léon Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-
ming. Advances in Neural Information Processing Systems, 32:2938-2950, 2019.

[55] Bryan Woodworth, Suriya Gunasekar, Jason D. Lee, Nathan Srebro, Srinadh Bhojanapalli,
Rina Khanna, Aaron Chatterji, and Martin Jaggi. Kernel and rich regimes in deep learning.
Journal of Machine Learning Research, 21(243):1-48, 2020.

[56] Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature
and lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and
Experiment, 2020(11):113301, 2020. doi: 10.1088/1742-5468/abc4de.

[57] Blake Bordelon and Cengiz Pehlevan. Self-Consistent Dynamical Field Theory of Kernel
Evolution in Wide Neural Networks, October 2022. URL http://arxiv.org/abs/2205.
09653. arXiv:2205.09653 [stat].

[58] Thomas George, Guillaume Lajoie, and Aristide Baratin. Lazy vs hasty: Linearization
in deep networks impacts learning schedule based on example difficulty. arXiv preprint
arXiv:2209.09658, 2022. URL https://arxiv.org/abs/2209.09658.

[59] Jaehoon Lee, Yuval Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and
Jascha Sohl-Dickstein. Wide neural networks of any depth evolve as linear models under
gradient descent. In Advances in Neural Information Processing Systems, volume 32, pages
8572-8583, 2019.

[60] Blake Bordelon and Cengiz Pehlevan. Dynamics of finite width Kernel and prediction
fluctuations in mean field neural networks”. Journal of Statistical Mechanics: Theory and
Experiment, 2024(10):104021, October 2024. ISSN 1742-5468. doi: 10.1088/1742-5468/
ad642b. URL https://iopscience.iop.org/article/10.1088/1742-5468/ad642b.

[61] Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the
transition from lazy to rich training dynamics. arXiv preprint arXiv:2310.06110, 2023. URL
https://arxiv.org/abs/2310.06110.

[62] Yuhan Helena Liu, Aristide Baratin, Jonathan Cornford, Stefan Mihalas, Eric Shea-Brown,
and Guillaume Lajoie. How connectivity structure shapes rich and lazy learning in neural
circuits. arXiv preprint arXiv:2310.08513, 2023. doi: 10.48550/arXiv.2310.08513. URL
https://arxiv.org/abs/2310.08513.

[63] Yamini Bansal, Preetum Nakkiran, and Boaz Barak. Revisiting model stitching to compare

neural representations. arXiv preprint arXiv:2106.07682,2021. URL https://arxiv.org/
abs/2106.07682.

14

http://arxiv.org/abs/2205.09653
http://arxiv.org/abs/2205.09653
https://arxiv.org/abs/2209.09658
https://iopscience.iop.org/article/10.1088/1742-5468/ad642b
https://arxiv.org/abs/2310.06110
https://arxiv.org/abs/2310.08513
https://arxiv.org/abs/2106.07682
https://arxiv.org/abs/2106.07682

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

Sunny Duan, Loic Matthey, André Saraiva, Nicholas Watters, Christopher P. Burgess,
Alexander Lerchner, and Irina Higgins. Unsupervised model selection for variational dis-
entangled representation learning. arXiv preprint arXiv:1905.12614, 2020. URL https:
//arxiv.org/abs/1905.12614.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation
hypothesis. arXiv preprint arXiv:2405.07987, 2024. URL https://arxiv.org/abs/2405.
07987.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning:
Do different neural networks learn the same representations? arXiv preprint arXiv:1511.07543,
2016. URL https://arxiv.org/abs/1511.07543.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Informa-
tion Processing Systems 29, pages 586-594, 2016.

Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks. CoRR,
abs/1704.08045, 2017.

Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
global minima of deep neural networks. CoRR, abs/1811.03804, 2018.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. In Proceedings of the 36th International Conference on Machine
Learning, pages 242-252, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep relu networks. CoRR, abs/1811.08888, 2018.

Berfin Simsek, Frangois Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram
Gerstner, and Johanni Brea. Geometry of the loss landscape in overparameterized neural net-
works: Symmetries and invariances, 2021. URL https://arxiv.org/abs/2105.12221.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems,
volume 31, 2018.

Ari S. Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in
neural networks with canonical correlation. In NeurIPS, 2018.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of
neural network representations revisited. In ICML, 2019.

Fred Wolf, Rainer Engelken, Maximilian Puelma-Touzel, Juan Daniel Flérez Weidinger, and
Andreas Neef. Dynamical models of cortical circuits. 25:228-236. ISSN 09594388. doi:
10.1016/j.conb.2014.01.017. URL https://linkinghub.elsevier.com/retrieve/pii/
S50959438814000324.

Felix et al. Klabunde. Contrasim — analyzing neural representations based on contrastive
learning. In ICLR, 2024.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the
same things?

uncovering how neural network representations vary with width and depth. In International
Conference on Learning Representations (ICLR), 2021. URL https://openreview.net/
forum?id=KJNcAkY8tY4. Poster.

Manuel Beiran, Alexis Dubreuil, Adrian Valente, Francesca Mastrogiuseppe, and Srdjan
Ostojic. Shaping dynamics with multiple populations in low-rank recurrent networks. arXiv
preprint arXiv:2007.02062, 2020. doi: 10.48550/arXiv.2007.02062.

Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381(6583):607-609, 1996. doi: 10.1038/
381607a0.

15

https://arxiv.org/abs/1905.12614
https://arxiv.org/abs/1905.12614
https://arxiv.org/abs/2405.07987
https://arxiv.org/abs/2405.07987
https://arxiv.org/abs/1511.07543
https://arxiv.org/abs/2105.12221
https://linkinghub.elsevier.com/retrieve/pii/S0959438814000324
https://linkinghub.elsevier.com/retrieve/pii/S0959438814000324
https://openreview.net/forum?id=KJNcAkY8tY4
https://openreview.net/forum?id=KJNcAkY8tY4

[81]

[82]

[83

—_

[84

[}

[85]

[86]

[87]

[88]

[89]

(90]

[91]

[92]

(93]

[94]
[95]

[96]

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections
for efficient neural networks. In Advances in Neural Information Processing Systems, pages
1135-1143, 2015. doi: 10.48550/arXiv.1506.02626.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.
In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics,
volume 15, pages 315-323, 2011.

Qianyi Li, Ben Sorscher, and Haim Sompolinsky. Representations and generalization in
artificial and brain neural networks. Proceedings of the National Academy of Sciences, 121
(27):€2311805121, 2024. doi: 10.1073/pnas.2311805121.

Uri Cohen, SueYeon Chung, Daniel D. Lee, and Haim Sompolinsky. Separability and geometry
of object manifolds in deep neural networks. Nature Communications, 11:746, 2020. doi:
10.1038/s41467-020-14578-5.

Ben Sorscher, Surya Ganguli, and Haim Sompolinsky. Neural representational geometry
underlies few-shot concept learning. Proceedings of the National Academy of Sciences, 119
(43):¢2200800119, 2022. doi: 10.1073/pnas.2200800119.

Xavier Bouthillier, Pierre Delaunay, Mirko Bronzi, Assya Trofimov, Brennan Nichyporuk,
Justin Szeto, Nazanin Mohammadi Sepahvand, Edward Raff, Kanika Madan, Vikram Voleti,
et al. Accounting for variance in machine learning benchmarks. Proceedings of Machine
Learning and Systems, 3:747-769, 2021.

Katharina Morik. Sloppy modeling. Knowledge representation and organization in machine
learning, pages 107-134, 2005.

Rubing Yang, Jialin Mao, and Pratik Chaudhari. Does the data induce capacity control in deep
learning? In International Conference on Machine Learning, pages 25166-25197. PMLR,
2022.

Satpreet H Singh, Floris van Breugel, Rajesh PN Rao, and Bingni W Brunton. Emergent
behaviour and neural dynamics in artificial agents tracking odour plumes. Nature Machine
Intelligence, 5(1):58-70, 2023.

Ignacio Negron-Oyarzo, Nelson Espinosa, Marcelo Aguilar-Rivera, Marco Fuenzalida, Fran-
cisco Aboitiz, and Pablo Fuentealba. Coordinated prefrontal-hippocampal activity and naviga-
tion strategy-related prefrontal firing during spatial memory formation. Proceedings of the
National Academy of Sciences, 115(27):7123-7128, 2018. doi: 10.1073/pnas.1720117115.

Zoe C. Ashwood, Nicholas A. Roy, Iris R. Stone, International Brain Laboratory, Anne E. Urai,
Anne K. Churchland, Alexandre Pouget, and Jonathan W. Pillow. Mice alternate between
discrete strategies during perceptual decision-making. Nature Neuroscience, 25:201-212,
2022. doi: 10.1038/s41593-021-01007-z.

Fanny Cazettes, Luca Mazzucato, Masayoshi Murakami, Jodo P. Morais, Elisabete Augusto,
Alfonso Renart, and Zachary F. Mainen. A reservoir of foraging decision variables in the
mouse brain. Nature Neuroscience, 26:840-849, 2023. doi: 10.1038/s41593-023-01305-8.
Marino Pagan, Vincent D. Tang, Mikio C. Aoi, Jonathan W. Pillow, Valerio Mante, David
Sussillo, and Carlos D. Brody. Individual variability of neural computations underlying flexible
decisions. Nature, 639:421-429, 2025. doi: 10.1038/s41586-024-08433-6.

BR Howard. Control of variability. ILAR journal, 43(4):194-201, 2002.

Peter J Schmid. Dynamic mode decomposition and its variants. Annual Review of Fluid
Mechanics, 54(1):225-254, 2022.

Peter H. Schonemann. A generalized solution of the orthogonal procrustes problem. Psy-
chometrika, 31(1):1-10, Mar 1966. doi: 10.1007/BF02289451.

16

[97]

(98]

[99]

[100]

[101]

[102]

Chris Ding, Tao Li, and Michael I. Jordan. Nonnegative matrix factorization for combinatorial
optimization: Spectral clustering, graph matching, and clique finding. In Proceedings of the
Eighth IEEE International Conference on Data Mining (ICDM ’08), pages 183—192. IEEE,
2008. doi: 10.1109/ICDM.2008.130.

Fanwang Meng, Michael G. Richer, Alireza Tehrani, Jonathan La, Taewon David Kim, P. W.
Ayers, and Farnaz Heidar-Zadeh. Procrustes: A python library to find transformations
that maximize the similarity between matrices. Computer Physics Communications, 276:
108334, 2022. doi: 10.1016/j.cpc.2022.108334. URL https://www.sciencedirect.com/
science/article/pii/S0010465522000522.

Ryan N Gutenkunst, Joshua J Waterfall, Fergal P Casey, Kevin S Brown, Christopher R Myers,
and James P Sethna. Universally sloppy parameter sensitivities in systems biology models.
PLoS computational biology, 3(10):e189, 2007.

Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large
neural networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.
doi: 10.48550/arXiv.2203.03466. Accepted at NeurIPS 2021.

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning
in infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023. doi: 10.48550/
arXiv.2310.02244. Accepted at ICLR 2024.

Kenneth D Miller and Francesco Fumarola. Mathematical equivalence of two common forms
of firing rate models of neural networks. Neural computation, 24(1):25-31, 2012.

17

https://www.sciencedirect.com/science/article/pii/S0010465522000522
https://www.sciencedirect.com/science/article/pii/S0010465522000522

A Task details

A.1 N-Bit Flip Flop

Appendix

Task Parameter Value
Probability of flip 0.3
Number of time steps 100
A.2 Delayed Discrimination
Task Parameter Value
Number of time steps 60
Max delay 20
Lowest stimulus value 2
Highest stimulus value 10
A.3 Sine Wave Generation
Task Parameter Value
Number of time steps 100
Time step size 0.01
Lowest frequency 1
Highest frequency 30
Number of frequencies 100
A.4 Path Integration
Task Parameter Value
Number of time steps 100
Maximum speed (Umax) 04
Direction increment std (fgq / ¢sa) /10
Speed increment std 0.1
Noise std 0.0001
Mean stop duration 30
Mean go duration 50
Environment size (per side) 10

18

B Training details

B.1 N-Bit Flip Flop

Training Hyperparameter Value

Optimizer Adam
Learning rate 0.001
Learning rate scheduler None
Max epochs 300
Steps per epoch 128
Batch size 256
Early stopping threshold 0.001
Patience 3
Time constant (uP) 1

B.2 Delayed Discrimination

Training Hyperparameter Value

Optimizer Adam

Learning rate 0.001

Learning rate scheduler CosineAnnealingWarmRestarts
Max epochs 500

Steps per epoch 128

Batch size 256

Early stopping threshold 0.01

Patience 3

Time constant (uP) 0.1

B.3 Sine Wave Generation

Training Hyperparameter Value

Optimizer Adam
Learning rate 0.0005
Learning rate scheduler None
Max epochs 500
Steps per epoch 128
Batch size 32
Early stopping threshold 0.05
Patience 3
Time constant (uP) 1

19

B.4 Path Integration

Training Hyperparameter Value
Optimizer Adam
Learning rate 0.001
Learning rate scheduler ReduceLLROnPlateau
Learning rate decay factor 0.5
Learning rate decay patience 40
Max epochs 1000
Steps per epoch 128
Batch size 64
Early stopping threshold 0.05
Patience 3
Time constant (p.P) 0.1

C Task performance of trained networks

In all experiments, we train networks until them reach a near-asymptotic, task-specific mean-
squred error (MSE) threshold (0.001 for N-BFF, 0.01 for Delayed Discrimination, and 0.05 for
Sine-Wave Generation and Path Integration), after which we allow a patience period of 3 epochs and
stop training to measure degeneracy. This early-stopping criterion ensures that networks trained on
the same task/condition achieve comparable final losses before any degeneracy analysis.

To quantify the residual variation, we report the coefficient of variation (CV) of the final training
loss across seeds for each condition, expressed as % of the mean. Header labels match the x-axis
levels used in the main-text figures. Final losses cluster tightly near small values of the loss threshold,
so even a double-digit CV translates to very small absolute variation. For example, a 10% CV at
an MSE of 0.001 implies an s.d. of 10~%; at 0.01 it’s 10~3. Additionally, the networks converged
well on a global scale. Across our experiments, the mean MSE after training is under 2% of the
mean MSE at initialization, indicating that training has converged well. Individual values: 0.059%
(N-BFF), 1.6% (Delayed Discrimination), 0.32% (Sine-Wave Generation), 0.94% (Path Integration).
CV can look large when the mean is tiny (the denominator is small). For example, a 16% CV on
Sine-Wave Generation task corresponds to 0.05% of the initialization loss, which is consistent with
minor differences due to the stochastic gradients rather than under-training.

These variability values are also not monotonic in any factor and sometimes move opposite to the
degeneracy trends, arguing against a loss-dispersion confound to solution degeneracy.

Table 2: Coefficient of variation (CV) of the final training loss across 50 networks for each task
complexity level.

Task Complexity Levell Level2 Level3 Level4

N-BFF 6.30% 4.60% 9.30% 3.50%
Delayed Discrim. 15.90% 8.40% 9.50% —
Sine Wave Gen. 9.94% 9.20% 8.70% —
Path Integr. 9.16% 2.85% — —

Table 3: Coefficient of variation (CV) of the final training loss across 50 networks for each feature
learning strength ()

Feature Learning Strength Y1 Y2 Y3 Ya
N-BFF 970% 9.10% 13.40% 11.70%
Delayed Discrim. 870% 12.60% 11.70% 12.30%
Sine Wave Gen. 350% 3.90% 10.90% 11.70%
Path Integr. 540% 5.20% 6.20% —

20

Table 4: Coefficient of variation (CV) of the final training loss across 50 networks for each network
width.

Network Width 64 units 128 units 256 units

N-BFF 3.80% 4.20% 3.50%
Delayed Discrim. 3.30% 3.00% 3.20%
Sine Wave Gen. 17.80% 16.60% 16.40%
Path Integr. 5.10% 5.40% 5.90%

Table 5: Coefficient of variation (CV) of the final training loss across 50 networks for each L1
regularization strength.

L1 Regularization A1 A2 As Aa
N-BFF 2.10% 6.90% 1.10% —
Delayed Discrim. 1590% 14.50% 16.70% 14.90%
Sine Wave Gen. 1040% 11.10% 11.10% —
Path Integr. 9.00% 7.10% 3.00% —

Table 6: Coefficient of variation (CV) of the final training loss across 50 networks for each rank
regularization strength.

Rank Regularization A1 A2 As As
N-BFF 2.10% 7.20% 4.30% —
Delayed Discrim. 1590% 16.90% 13.60% 12.10%
Sine Wave Gen. 13.90% 14.30% 15.90% —
Path Integr. 7.70% 7.90% 6.70% —

D Memory demand of each task

In this section, we quantify each task’s memory demand by measuring how far back in time its inputs
influence the next output. Specifically, for each candidate history length h, we build feature vectors

(h)

— . h din+dou
Sy _[mt—h-i-lv'"axh yt] e R t7

and train a two-layer MLP to predict the subsequent target y;, ;. We then evaluate the held-out
mean-squared error MSE(h), averaged over multiple random initializations. We identify the smallest
history length ~A* at which the error curve plateaus or has a minimum, and take h* as the task’s
intrinsic memory demand.

From the results, we can see that the N-Bits Flip-Flop task requires only one time-step of mem-
ory—exactly what’s needed to recall the most recent nonzero input in each channel. The Sine Wave
Generation task demands two time-steps, reflecting the need to track both phase and direction of
change. Path Integration likewise only needs one time-step, since the current position plus instanta-
neous velocity and heading suffice to predict the next position. Delayed Discrimination is the only
memory-intensive task: our method estimates a memory demand of 25 time-steps, which happens
to be the time interval between the offset of the first stimulus and the onset of the response period,
during which the network needs to first keep track of the amplitude of the first stimulus and then its
decision.

21

3 Bits Flip Flip Delayed Discrimination Sine Wave Generation Path Integration

0% 0% 08

085 yd . 085 0.7
“ » 0.032

4080 /s

Jors y Jos Zoon

3 Son q 3 Soon
s e / So3 3
065 \ / * Soms

085 / — \ / 02 —

/ s 0.60 \ o
v o1 oo
055 > &
5 1 9 17 25 B a1 1 H 0022
History Length

3
History Length 1 4 5

3 3
History Length History Length

Figure 9: Memory demand of each task. The held-out mean-squared error MSE(h) of a two-layer
MLP predictor is plotted against history length h. The intrinsic memory demand h*, defined by the
plateau or minimum of each curve, is 1 for the N-Bits Flip-Flop and Path Integration tasks, 2 for Sine
Wave Generation, and 25 for Delayed Discrimination—matching the inter-stimulus delay interval in
that task.

E Solution degeneracy in chaotic RNNs

Our original task suite comprises neuroscience-motivated tasks that produce stable-attractors: fixed-
point (N-Bit Flip Flop, Delayed Discrimination), limit cycle (Sine Wave Generation), and attractor
manifold (Path Integration). To further demonstrate that the observed effect of the four factors on
degeneracy extend to RNNs with chaotic activity, here we add a chaotic attractor task and verified
that the effects of all four factors on dynamical and weight degeneracy are consistent with Table 1.

Lorenz 96 Attractor Dataset We simulated trajectories from the Lorenz 96 dynamical system
[39], defined by

dx;)
ditl = @41 — Ti—2)im1 —x; + F, i=1,...,N,

with cyclic boundary conditions z_; = xny_1, To = Ty, Tn+1 = x1. The external forcing
parameter was set to ' = 8.0, a standard choice that induces chaotic dynamics.

To generate the dataset, we numerically integrated the system for N = 16, 24, and 32 dimensions.
Each simulation used a time step of Atz = 0.01 and produced 15000 time points after discarding an
initial transient of 1000 steps to remove non-stationary behavior. Initial conditions were sampled as
small random perturbations around the fixed point z; = F:

5,171(0) :F+0.1Ei, E; NN(O,].)

For each condition, we trained 50 RNNs on next-step prediction until the networks achieve a near-
asymptotic MSE loss at 0.0005. After training, the average Lyapunov exponent of RNNs trained on
the Lorenz 96 attractor with 16 dimensions is 12.58 &£ 0.74, indicating chaotic neural dynamics.

RNN Hidden State Lorenz 96 Attractor

PC3
PC3

PC1 PC1

Figure 10: RNN recurrent activities and Lorenz 96 attractor (/N = 16) trajectories projected onto
their respective top 3 principle components.

22

4
Iy
&
-

Task Complexity

0.28004

0.27754

0.2750

0.27254

Feature Learning Strength

0.280
0.275
0.270
0.265
0.260

Network Width

Regularization Strength
0.25

Dynamical
Degeneracy
g

o
i
]
s
h

0.2700 0.255

o
o
@
&

16 24 32 4 5 10 20 128 256 512
3 3 3
x10 x10 %10 x10
> 115 220 120
E L 410 100
1 2004
.% 2 100
= :J.)J 1.05 180+ 50
160 80
O 1.00
1404
, , ; , 60 : ot ? ? ?
16 24 . . .32 4 5 10 20 128 256 512 0 5e-5 1e-4 Se-4
Lorenz attractor dimensionality Y Network width Rank regularization strength

Figure 11: Varying the four factors on Lorenz 96 next-step prediction task changes solution degeneracy
across the dynamical and weight level in a way that is consistent with Table 1.

F Additional details on the degeneracy metrics

F.1 Dynamical Degeneracy

Briefly, DSA proceeds as follows: Given two RNNs with hidden states h; () € R™ and hy(t) € R”,
we first generate a delay-embedded matrix, H; and Hy of the hidden states in their original state
space. Next, for each delay-embedded matrix, we use Dynamic Mode Decomposition (DMD) [95]
to extract linear forward operators A; and A of the two systems’ dynamics. Finally, a Procrustes
distance between the two matrices A and A is used to quantify the dissimilarity between the two
dynamical systems and provide an overall DSA score, defined as:

dProcrustes(Ala AQ) = QrenOu(ln) ||A1 - QA2Q_1”F

where Q is a rotation matrix from the orthogonal group O(n) and || - || ¢ is the Frobenius norm. This
metric quantifies how dissimilar the dynamics of the two RNNs are after accounting for orthogonal
transformations. We quantify Dynamical Degeneracy across many RNNs as the average pairwise
distance between pairs of RNN neural-dynamics (hidden-state trajectories).

After training, we extract each network’s hidden-state activations for every trial in the training set,
yielding a tensor of shape (trials X time steps x neurons). We collapse the first two dimensions and
yield a matrix of size (trials x time steps) x neurons. We then apply PCA to retain the components
that explain 99% of the variance to remove noisy and low-variance dimensions of the hidden state
trajectories. Next, we perform a grid search over candidate delay lags, with a minimum lag of 1
and a maximum lag of 30, selecting the lag that minimizes the reconstruction error of DSA on the
dimensionality reduced trajectories. Finally, we fit DSA with full rank and the optimal lag to these
PCA-projected trajectories and compute the pairwise DSA distances between all networks.

F.2 Weight degeneracy

We computed the pairwise distance between the recurrent matrices from different networks using
Two-sided Permutation with One Transformation [96, 97] function from the Procrustes Python
package [98].

F.3 Establishing a null distribution for dynamical and weight degeneracy

The DSA scores that we used to define the dynamical degeneracy are inherently context-dependent.
Specifically, the absolute scale of DSA distances can vary with hyperparameters, particularly the
delay embedding dimension and the rank used in DSA, because the underlying Procrustes analysis
between two dynamics matrices relies on the Frobenius norm, which in turn depends on the dimension
of the dynamic operator being compared. Following the procedure described in the original DSA
paper, we fixed these hyperparameters across all groups within each task to ensure fair comparison.

To further validate the interpretation of DSA values, we computed null distributions of the DSA scores,
i.e. the distribution of DSA scores when sampled neural activities come from identical networks. For

23

each of the 50 networks analyzed in Figure 3B, we randomly split the sampled neural trajectories from
the same network into two subsets and computed DSA distances between them. This procedure yields
a distribution of DSA scores expected from identical dynamical systems, which serves as a reference
noise floor. The 95% confidence intervals (CIs) for these null distributions are reported below (header
labels such as "Level 1” correspond to the task-complexity levels shown in the main-text figures).
These Cls are, on average, an order of magnitude smaller than the computed dynamical degeneracy,
indicating that the observed differences between networks trained from different initializations are
statistically significant.

Table 7: Establishing a null distribution for dynamical degeneracy: 95% confidence intervals of null
DSA scores computed by comparing trajectories from the same network. Cls are on average an order
of magnitude smaller than across-network distances.

Task Complexity Level 1 Level 2 Level 3 Level 4

N-BFF [0.011, 0.013] [0.009,0.016] [0.008, 0.013] [0.006, 0.009]
Delayed Discrimination [0.039, 0.064] [0.014, 0.076] [0.025, 0.032] —
Sine Wave Generation [0.057,0.102] [0.054,0.081] [0.048, 0.073] —
Path Integration [0.023,0.037] [0.010, 0.018]

For the PIF distance we used to define weight degeneracy, we similarly established a noise floor
by randomly permuting each trained network’s recurrent weight matrix and computing the distance
between the permuted and original matrices. The PIF metric reliably recovers a PIF distance of O
under this null setting, confirming its robustness to noise and the meaningfulness of the reported
cross-network PIF differences.

G Representational degeneracy

We further quantified solution degeneracy at the representational level—that is, the variability in
each network’s internal feature space when presented with the same input dataset—using Singular
Vector Canonical Correlation Analysis (SVCCA). SVCCA works by first applying singular value
decomposition (SVD) to each network’s activation matrix, isolating the principal components that
capture most of its variance, and then performing canonical correlation analysis (CCA) to find
the maximally correlated directions between the two reduced subspaces. The resulting canonical
correlations therefore measure how similarly two networks represent the same inputs: high average
correlations imply low representational degeneracy (i.e., shared feature subspaces), whereas lower
correlations reveal greater divergence in what the models learn. We define the representational
degeneracy (labeled as the SVCCA distance below) as

drepr(Ax7Ay) =1 - SVCCA(A;“Ay)

We found that as we vary the four factors that robustly control the dynamical degeneracy across
task-trained RNNss, the representational-level degeneracy isn’t necessarily constrained by those same
factors in the same way. In RNNs, task-relevant computations are implemented at the level of
network’s dynamics instead of static representations, and RNNs that implement similar temporal
dynamics can have disparate representaional geometry. Therefore, it is expected that task complexity,
learning regime, and network size change the task-relevant computations learned by the networks
by affecting their neural dynamics instead of representations. DSA captures the dynamical aspect
of the neural computation by fitting a forward operator matrix A that maps the network’s activity at
one time step to the next, therefore directly capturing the temporal evolution of neural activities. By
contrast, SVCCA aligns the principal subspaces of activation vectors at each time point but treats
those vectors as independent samples—it never examines how one state evolves into the next. As a
result, SVCCA measures only static representational similarity and cannot account for the temporal
dependencies that underlie RNN computations. Nonetheless, we expect SVCCA might be more
helpful in measuring the solution degeneracy in feedforward networks.

24

Task Complexity

Path Integration

3BFF Delayed Discrimination Sinewave
g g 0.82 8 0.9575 3
209 2 2 207
3 = = s
2 2080 2 0.9550]
< < < <
0.6
gos Sors 8 0.9525 8
> > > >
2} 2] n 12
T T T T T T T T T T T
3BFF 8BFF 16BFF 32BFF 2 channels 3 channels 4 channels 2 channels 3 channels 4 channels 2D 3D
Task Variant Task Variant Task Variant Task Variant
Feature Learning
3BFF Delayed Discrimination Sinewave Path Integration
076 @ o 04900 2 0.56
2 S 052 8 g
8 8 & 04875 8
S04 3 2 3055
e S 051 3 0.4850 2
3 3 3 gos4
> 072 = 0.50 0.4825 >
w wn 2]
T T T T T T T T T T T T T T T
0.5 1 2 3 1 2 3 4 0.1 0.5 1 2 6 7 8
Y Y Y Y
Network Size
3BFF Delayed Discrimination Sinewave Path Integration
° ° 0490 o
o S S © 0510
5070 o052 5 5
3 £ 3 0488 g 0505
gom 3 3 3
g g 0.50 g g 0.500
@ 0.72 . : . » . . ; © 0.486 - . . ® 0.495 . . T
64 128 256 64 128 256 64 128 256 64 128 256
Network width Network width Network width Network width
Low-rank Regularization
3BFF Delayed Discrimination Sinewave Path Integration
8 0.745 g 082 8 8
5 s 50560 s
° ° ° »
20740 2080 20555 2 087
O O O I5]
S S S s
@ 0.735 @ & 0550 % 0.56
T T T T T T T T T
0 le™® 5e~° 0 le® 5e® 1le™* 0 le”’ 5e~7 le™® le™® le™*
Regularization strength Regularization strength Regularization strength Regularization strength
Sparsity (L1) Regularization
3BFF Delayed Discrimination Sinewave Path Integration
8 0.800 g° 8 8
s s o575 5056
3 0775 5080 3 3
< < < <
Q Q Q0,570 9 0.54
S 0750 Qo078 S S
n »n [} »n
T T T T T T T T T T T T T
0 le7® 5e~® 0 le~® 3e® 5e~® 0 5e7 le~® le~® le™® le™*
Regularization strength

Regularization strength

Regularization strength Regularization strength

Figure 12: Representational degeneracy, as measured by the average SVCCA distance between
networks, does not necessarily change uniformly as we vary task complexity, feature learning

strength, network size, and regularization strength.

25

H Task complexity effect on degeneracy in Gated RNNs

To examine whether the observed trends in dynamical and weight degeneracy generalize beyond
vanilla RNNs, we conducted additional experiments using gated recurrent units (GRUs). Note
that prior work suggests that architectural choices influence the geometry but not the ropology of
neural dynamics, which is primarily shaped by task structure [99]. Meanwhile, the Dynamical
Similarity Analysis (DSA) metric we employ to quantify dynamical degeneracy is designed to
precisely capture the topological organization of neural dynamics while remaining invariant to
geometric transformations [40].

As a preliminary test, we trained GRUs on the Sine Wave Generation task while systematically
varying task complexity by changing the number of input—output channels. Consistent with our
findings in vanilla RNNs, increasing task complexity led to a decrease in dynamical degeneracy
and a rise in weight degeneracy.

§ Dynamical Degeneracy Weight Degeneracy

pae o

2025 $ 0.004

[} c

5 I}

a 5

g S

'€ 0.20 -5.’ 0.002

] ()

g\ T T ; T T

o 1 2 3 1 2 3
Number of Channels Number of Channels

Figure 13: Increasing task complexity in the Sine Wave Generation task produces the same effect on
dynamical and weight degeneracy in both vanilla RNNs and GRUs.

I Dense sweep on feature learning, network width, and regularization
strength

it is important to know whether the degeneracy trends generalize to intermediate values and beyond
the ranges reported in the main paper. To test this, we used 3-BFF as an example and ran a dense
sweep both interpolating within and extrapolating beyond the ranges shown in Figs. 3 and 6-8. We
demonstrate that cross dynamical and weight levels, the degeneracy trends remain consistent and
interpolate smoothly across these intermediate values.

Feature Learning Strength Network Width Rank Regularization Strength

0.065+

0.068

Dynamical Degeneracy
o o
o o
o ~
Dynamical Degeneracy
o
°
S
o
1
Dynamical Degeneracy
o o o
o o o
I3 = R
o o N

T T T T T T T T T T T T T T T T T T T T
P A . S AV I S A RS ISR AAA OO H H 6 b o
AR AN IR WS H VS VLS SN
So o ~N~NNNNGD DY v\v\\q{:\/ﬂ)v@ h@/\%q@(}/@v@%@b@/\@%@\@
Y Network width Rank regularization
-3
>
3 0.1350 §0_25_ § %10
 0.1325 5 2 0.90
S 2 0.204 2
o) [@
© 0.1300 54 0.85
° B3 0.15 ©
5,0.1275 50.10_ 5080
(] (] ([
;0-1250 ; ; T T T T T T T T T T
T YN0 YDy OO TP IO DO OO
- AAAN D O DO O O O ¢
SIS I NN o g@gq§$§$$§§$ @QJ/\QIQG%QJ»@@@@@:\@%QI\G
y Network width Rank regularization

Figure 14: Feature learning, network width, and regularization strength’s effect on degeneracy over a
denser sweep of conditions on the 3-Bits Flip Flop task.

26

J Detailed characterization of OOD generalization performance

In addition to showing the behavioral degeneracy in the main text, here we provide a more detailed
characterization of the OOD behavior of networks by showing the mean versus standard deviation,
and the distribution of the OOD losses.

J.1 Changing task complexity

1e-5 3BFF 1e-3 Delayed Discrim. 1e-2 Sine Wave Gen. 1e-1 Path Integr.
® @ ® 2 channels ® @ 2channels 2410 ® 2 channels
8 3 channels 34 3 channels 224 3 channels
74 @® 4channels ©® 4channels
204
6
) © 64 © 324 © 1.8+
@® 3channels
164
e 8 channels 5+
@® 16channels 3.04 144
2 32 channels 44 ° ° 124
T T T T T T T T T T T T T T T
3.0 32 34 28 30 32 34 1.35 1.40 1.45 1.50 0.9 1.0 1.1 12
u le-4 u 1e-2 u o1 u
18 214 124
16 184 12
14 . 104 . 10
312 3 g g 2 84
g 10 & 12 g 3
g g z 6 g 6
g 8 g 9 8 £
[<o [4
4 2 24
2 31
0-— T T 0 T T T 0 T T T 0-7 T T
2 3 4 2 4 6 1.0 1.5 20 0.5 1.0 15
00D Loss %107 0OD Loss x1072 OOD Loss %107 0O0D Loss

Figure 15: Detailed characterization of the OOD performance of networks while changing task
complexity.

J.2 Changing feature learning strength

14-le- 3BFF 1e-3 Delayed Discrim. 1e-2 Sine Wave Gen. 1e-1 Path Integr.
® y-05 36+ ® vy=01 124 ® v=6
124 y=1 il 6 y=05 y=7
o y=2 o v=1 ® y=8
1.0 y=3 324 L4 5 =2 ° 14
© [© ° o
0.8 304 ° v:; 4 0
v=
061 8 ® v=3 3
26+ y=4 09
" ; 5 3 T2 .1'3 14 15 16 ne—, y — v T y
4 5 7 : ‘ 1.0 15 20
u 1e-4 u 1e-2 u 20 20 22 24 26
12 124 21 12
10 104 1 10
1
g 8 g 8 ™ z 8
g g 212 g
3 64 S 64 3 £
2 g g9 g
4 = aq < c oy
2 2 s ,
0 T T T T 0
2 4 6 8 1 15 20 25 i ° i 2 3 0 20 s o
O0DLess x10 OODLoss x107 00D Loss x10”" 00D Loss

Figure 16: Detailed characterization of the OOD performance of networks while changing feature
learning strength. Across Delayed Discrimination, Sine Wave Generation, and Path Integration tasks,
networks trained with larger v — and thus undergoing stronger feature learning — exhibit higher mean
OOD generalization loss together with higher variability, potentially reflecting overfitting to the
training task.

27

J.3 Changing network size

e 3BFF _1e-3 Delayed Discrim. 1e-2 Sine Wave Gen.
° ® 64units ® 64 unis ® omde
® 128 units ® 128 units 875
3.0+ ® 256 units 354 @ 256 units ®
850
4 [)
29 304 © 825 ®
284 ° 8.00 @ 64units
254 775 ® 128units
® 256 units
274 . . .] e ; : 7.50 T T T
87 88 89 90 91 16 18 20 1.05 110 115
o 1e-3 1e-2 H Te-1
12
10
10
g &
g g 6l
g g
s L 4
24
0

85 9.0

OOD Loss

9.5
x10

-3

15 2.0 25 3.0

x107

OOD Loss

2 3
00D Loss x10”"

1e-1 Path Integr.
34)
32
3.0
® 64 units
28 ® 128units
256 unit
) ° [] units
6 T T T T
255 260 265 270 275
u

Frequency
oN s o ® O

25 30 35

OOD Loss

Figure 17: Detailed characterization of the OOD performance of networks while changing network

size.

J.4 Changing regularization strength

J4.1 Low-rank regularization

3-BFF.

1e-4 1e-3 Delayed Discrim.
[]
201 ® 2=0 ol ® A=0 L
® A=1le™® ® A=1le™
184 ® A=5e° 51 ® A=5e7
© A=1le™
o o
16 o 44
[]
14 1 e
[) 240
T T T T T T
1.0 12 14 16 3 4
o 1e-3 M 1e-3
16 32
14 28
12 3‘24-
gw $ 204
El
% 8 5'16—
£ i 12
4
2
0
1.0 15 20 1 2 3
00D Loss x10™ 00D Loss %1072

1e-2 Sine Wave Gen.

325
300
275 [J
°
250
® A=0
225 ® A=le”
A=5e”’
200 ° . (] :
32 34 36
H 1e-2
16
14
12 -
210 g
2 E
g8 g
& 6 s
4
2
0
0.0 0.5 1.0
00D Loss x107"

1e-2 Path Integr.
554 @ A=1le™®
® A=le” °
et
50 ® A=le
o
45
40
[]
33 34 35 36 37
] 1e-1

4
00D Loss x107"

5

Figure 18: Detailed characterization of the OOD performance of networks while changing low-rank

regularization strength.

28

J.4.2 Sparsity (L1) regularization

1e-4 3BFF 1e-3 Delayed Discrim. 1e-2 Sine Wave Gen. 1e-1 Path Integr.
201 @ A=o0 ® 1l e a0 25 ® 2=0 L ® A=le®
A=1e-¢ A=le® A=5e7 12 A=1e™S
151 @ A=5e® 54 @ A=3e"° 244 ® A=1le™® 104 ® A=1e o
A=5e7°
510 o4 ©,3 ®o08
3 06
0.5 22 -
[,
2 .
001® 214@ *41e
T T T T T T T T T T T y T T T
00 05 1.0 15 2 3 4 30 32 34 36 38 3 4 5
u 1e-3 I 1e-3 %] 1e-2 M 1e-1
8
3 2 10
42 28 7
536 72 >6 = s
g% §20 g g6
g2 316 24 E
g g g z
=18 12 T3 24
12 8 2
6 4 1 2
0 0- T T T
00 05 10 15 20 . 2 3 %% o2 o2 o5 o8 1o 3 4 6 H
00D Loss x10 00D Loss %1072 00D Loss x10”" 00D Loss x10”"

Figure 19: Detailed characterization of the OOD performance of networks while changing sparsity

(L1) regularization strength.

K A short introduction to Maximal Update Parameterization (.. P)

Under the NTK parametrization, as the network width goes to infinity, the network operates in the
lazy regime, where its functional evolution is well-approximated by a first-order Taylor expansion
around the initial parameters [73, 59, 54, 55]. In this limit feature learning is suppressed and training

dynamics are governed by the fixed Neural Tangent Kernel (NTK).

To preserve non-trivial feature learning at large width, the Maximal Update Parametrization (uP)
rescales both the weight initialisation and the learning rate. p P keeps three quantities width-invariant
at every layer—(i) the norm/variance of activations (ii) the norm/variance of the gradients, and (iii)

the parameter updates applied by the optimizer [100, 101, 56, 57].

For recurrent neural networks, under Stochastic Gradient Descent (SGD), the network output, initial-

ization, and learning rates are scaled as

L

1
Oth=—h — Jdh
t +\/N (b()a

7sGD = 1o 73 N.

Jij ~ N(0,1),

Under Adam optimizer, the network output, initialization, and learning rates are scaled as

I

dh=—h + - THR), Ty~ NON)

T]Adam = 7J0 Y0-

L. Theoretical relationship between parameterizations

)

ey

(@)
3

“

&)
(6)

We compare two RNN formalisms used in different parts of the main manuscript: a standard discrete-
time RNN trained with fixed learning rate and conventional initialization, and a uP-style RNN trained

with leaky integrator dynamics and width-aware scaling.

In the standard discrete-time RNN, the hidden activations are updated as
h(t+1) = ¢(Wrh(t) + Wyz(t)),

29

In P RNNSs, the hidden activations are updated as

h(t+1) — h(t) = 7(—h(t) + %J¢(h(t)) + Ux(t))

When 7 =1,
h(t+1) — h(t) = —h(t) + %qu(h(t)) +U()

h(t+1) = %qu(h(t)) +U(1)

Aside from the overall scaling factor, the difference between the two parameterizations lies in the
placement of the non-linearity:

» Standard RNN: ¢ is applied post-activation, i.e. after the recurrent and input terms are
linearly combined,

* uP RNN: ¢ is applied pre-activation; i.e. before the recurrent weight matrix, so the hidden
state is first non-linearized and then linearly combined

Miller and Fumarola [102] demonstrated that two classes of continuous-time firing-rate models
which differ in their placement of the non-linearity are mathematically equivalent under a change of
variables:

v-model Ti% = v+ I(t)+Wf(v)

r-model: T% =—r+ f(Wr+1(t))

with equivalence holding under the transformation v(t) = Wr(t) 4+ I(t) and I(t) = I(t) + T,
assuming matched initial conditions.

Briefly, they show that W1 + I evolves according to the v-equation as follows:

v(t) =Wr(t) + 1(t)

dv d
i £(Wr(t) +1(t))
dr dI
Wt
1 dI
=W < (—r+f(Wr+I))> +—
T dt
dv dI
T —WT—FWf(WT-FI)—FTE
dI
= —(U—I)—O—Wf(v)—kra
dI
:—v—|—I+7‘E—|—Wf(U)
d _
Tdi; = v+ I(t) + Wf(v)

This mapping applies directly to RNNs viewed as continuous-time dynamical systems and helps
relate v-type pP-style RNNSs to standard discrete-time RNNs. It suggests that the uP RNN (in v-type
form) and the standard RNN (in r-type form) can be treated as different parameterizations of the same
underlying dynamical system when:

* Initialization scales are matched

* The learning rate is scaled appropriately with v

30

* Output weight norms are adjusted according to width

In summary, while a theoretical equivalence exists, it is contingent on consistent scaling across all
components of the model. In this manuscript, we use the standard discrete-time RNNs due to its
practical relevance for task-driven modeling community, while switching to P to isolate the effect
of feature learning and network size. Additionally, we confirm that the feature learning and network
size effects on degeneracy hold qualitatively the same in standard discrete-time RNNs, unless where
altering network width induces unstable and lazier learning in larger networks (Figure P and Q).

M Verifying larger v reliably induces stronger feature learning in ;. P

In P parameterization, the parameter -y interpolates between lazy training and rich, feature-learning
dynamics, without itself being the absolute magnitude of feature learning. Here, we assess feature-
learning strength in RNNs under varying 7y using two complementary metrics:

Weight-change norm which measures the magnitude of weight change throughout training. A larger
weight change norm indicates that the network undergoes richer learning or more feature learning.

Wz — Wollp
N 7
where N is the number of parameters in the weight matrices being compared.

Kernel alignment (KA), which measures the directional change of the neural tangent kernel (NTK)
before and after training. A lower KA score corresponds to a larger NTK rotation and thus stronger
feature learning.

Tr(K(f)K(O))
KD 1O,

KA(KW, K(©) K = Vwi Vwi.

We demonstrate that higher v indeed amplifies feature learning inside the network.
M.1 N-BFF

Per-seed weight change Mean + SE
. 0.106
0.105

0.104

0.103

Y
Mean + SE
0.304

0.28
0.26
0.244
0.224

0.204

0.154

Y 14

Figure 20: Weight change norm and kernel alignment for networks trained on the 3-Bits Flip Flop
task as we vary . On the left panels, we show the per-seed metrics where connected dots of the same
color are networks of identical initialization trained with different y. On the right panels, we show
the mean and standard error of the metrics across 50 networks. For larger v, the weights move further
from their initializations as shown by the larger weight change norm, and their NTK evolves more
distinct from the network’s NTK at initialization as shown by the reduced KA. Both indicate stronger
feature learning for networks trained under larger ~.

31

M.2 Delayed Discrimination

Per-seed weight change Mean + SE
0.35
_0.35-
o 0.30
= 0.30 i
|
~ 0.25 0.25
=3
T 0.204 0.20
T T T T T T T T
1 2 3 4 1 2 3 4
Y Y
08 Per-seed kernel alignment Mean + SE

KA(K(T), K(O))

Y

Figure 21: Stronger feature learning for networks trained under larger v on the Delayed Discrimination
task.

M.3 Sine Wave Generation

Per-seed weight change Mean + SE
0.114
:0A115- 0.1124
o
gl 0.1104
0.110
= 0.108
=
0.105- 0.106
T 0.104 13 T T T
0.1 0.1 0.5 1 2
Y
Mean + SE
0.154 0.10
3 0.08
X 0.10
S 0.06
X 4
S 0.054 0.04
0.02
0.00 T T T T
0.1 0.5 2
Y

Figure 22: Stronger feature learning for networks trained under larger -y on the Sine Wave Generation
task.

32

M.4 Path Integration

Per-seed weight change Mean + SE
0.240+

) 02354
0.230
0.225+
0.220

0.215

o
o0 -

0.58

0.56

0.54

0.524

Figure 23: Stronger feature learning for networks trained under larger « on the Path Integration task.

N Verifying .. P reliably controls for feature learning across network width

Here, we only use Kernel Alignment to assess the feature learning strength in the networks since
the unnormalized weight-change norm ||[Wp — W || - scales directly with matrix size (therefore
network size) and there exists no obvious way to normalize across different dimensions. In our earlier
analysis where we compared weight-change norms at varying -, network size remained fixed, so those
Frobenius-norm measures were directly comparable. We found that, for all tasks except Delayed
Discrimination, the change in mean KA across different network sizes remains extremely small (less
than 0.1), which demonstrates that ;¢ P parameterization with the same ~y has effectively controlled
for feature learning strength across network sizes. On Delayed Discrimination, the networks undergo
slightly lazier learning for larger network sizes. Nevertheless, we still include Delayed Discrimination
in our analyses of solution degeneracy to ensure our conclusions remain robust even when uP can’t
perfectly equalize feature-learning strength across widths. As shown in the main paper, lazier learning
regime generally increases dynamical degeneracy; yet, larger networks which exhibit lazier learning
in the N-BFF task actually display lower dynamical degeneracy. This reversed trend confirms that the
changes in solution degeneracy arise from network size itself, not from residual variation in feature
learning strength.

N.1 N-BFF
Per-seed kernel alignment Mean + SE
0.30
S
X 025
E) /
g 0.20
0.15
T T T T T T
64 128 256 64 128 256
Network width Network width

Figure 24: Kernel alignment (KA) for different network width on the 3 Bits Flip-Flop task. (Lower
KA implies more feature learning.)

33

N.2 Delayed Discrimination

Per-seed kernel alignment Mean + SE
0.50
~05 0.45
e
¥. 0.4 0.40
S
X 03 0.35
§ 0.2 0.30
T T 025 T T T
64 128 256 64 128 256
Network width Network width

Figure 25: Kernel alignment for different network width on the Delayed Discrimination task.

N.3 Sine Wave Generation

Per-seed kernel alignment Mean + SE

0.05

é’? 0.06 0.04

X

£ 004 0.03

~ 0.02

I 0.02
0.01

o

o

=]
=]
o
o

T T A T T T
64 128 256 64 128 256
Network width Network width

Figure 26: Kernel alignment for different network width on the Sine Wave Generation task.

N.4 Path Integration

Per-seed kernel alignment Mean + SE
é‘ 0.8
4
= t0.7
X
§ 0.6
0.5
T T T T T
64 128 256 64 128 256
Network width Network width

Figure 27: Kernel alignment for different network width on the Path Integration task.

34

O Regularization’s effect on degeneracy for all tasks

In addition to showing regularization’s effect on degeneracy in Delayed Discrimination task in the
main paper, here we show that heavier low-rank regularization and sparsity regularization also reliably
reduce solution degeneracy across neural dynamics, weights, and OOD behavior in the other three
tasks.

0.1 Low-rank regularization

3-BFF Sine Wave Gen. Path Integr.
T O
E go 1004 0.2350 0.1445
c
gg 0.2345 0.1440
& 800957
@] T T T L Y R B
39 2_1e—4 1e-3 1e-3
=z O 1.10
20
]
@ 904
= gg 0 1.09-
)] T T L L
1e—4 1e-2 1e-2
% 8204 64
oD
26
o5 5
< g1.5—
20
] o
0 le’7 5e~’ le® le~® le™*
Regularlzatlon Strength Regularization Strength Regularization Strength

Figure 28: Low-rank regularization reduces degeneracy across neural dynamics, weight, and OOD
behavior on the N-BFF, Sinewave Generation, and Path Integration task.

0.2 Sparsity regularization

3-BFF Sine Wave Gen. Path Integr.
0.2345
0.1444
0.2340 4
0.143+
1e-4
1.14
1.0
\ 08-\\‘ 1.0
0.6
T T
T 1

0.104

o

o

[e5]
1

/

Dynamical
Degeneracy

s
)i
w
-

e-3

Weight
Degeneracy
TS

(&
1

1e-2 1

N
1

0.5+

3

o
1

%
S

Behavioral
Degeneracy

T
0 Se’7 le~® le=® le=3 le™*
Regularization Strength Regularization Strength Regularization Strength

Figure 29: Sparsity regularization reduces degeneracy across neural dynamics, weight, and OOD
behavior on the N-BFF, Sinewave Generation, and Path Integration task.

35

P Test feature learning effect on degeneracy in standard parameterization

While pP lets us systematically vary feature-learning strength to study its impact on solution
degeneracy, we confirm that the same qualitative pattern appears in standard discrete-time RNNs:
stronger feature learning lowers dynamical degeneracy and raises weight degeneracy (Figure 30).

To manipulate feature-learning strength in these ordinary RNNs we applied the ~-trick—scaling the
network’s outputs by y—and multiplied the learning rate by the same factor. With width fixed, these
two operations replicate the effective changes induced by pP. Figure 31 shows that this combination
reliably tunes feature-learning strength. Besides weight-change norm and kernel alignment, we also
report representation alignment (RA), giving a more fine-grained view of how much the learned
features deviate from their initialization [62]. Representation alignment is the directional change of
the network’s represenational dissimilarity matrix before and after training, and is defined by

Tr(R(T)R(O))

i S R:=H'H
RO RO ’

RA(R™, R©)

A lower RA means more change in the network’s representation of inputs before and after training,
and indicates stronger feature learning.

- N-BFF Delayed Discrim. Sine Wave Gen. Path Integr.
B 0.21
g S ol 0.245 0.150
S 5 0.240
& o0 0201 0.235- 0.1481
L L
o) ° 0.001375
£ $0.001001 0.0024 0.00137 '
28 ' 0.0012- 0.001350 1
g @ 0.00095 : 0.0013254
S :
3 0.0011 1
8 0.001- T
05 1 2 3 1 2 3 4 01 05 1 2 6 7 8
Y Y 14 Y

Figure 30: Stronger feature learning reliably decreases dynamical degeneracy while increasing weight
degeneracy in standard discrete-time RNNs.

36

NBFF

Per-seed weight change

Weight change mean + SE
o

Delayed Discrim.

Per-seed weight change

Weight change mean + SE

x10 X1 x10 x10
1.004
= 1.000 = 1.0
= 0.984 < 1.0
1 0.975 |
£ =
= 0.9501 0.96+ = 05 05
T T T T T T T T
05 1 2 3 0.5 1 2 3 ,1 é :" .i 5 é 4'
Per-seed kemel alignment 064 Kemel alignment mean + SE Per-seed kernel alignment Kernel alignment mean + SE
= ' e R 0.20-
g 5
< S
g o 04 hd 0.15
g £ o
X X
< g 0.10
. = 0.24
T T T T T T T
05 1 2 3 0.5 1 2 3 ‘YI é :'3 i
Per-seed repr. alignment Repr. alignment mean + SE Repr. alignment mean + SE
é‘ 0.84 0.84 = 0.6+
s & 04
£ 064 0.6 S 051
5 L) @ 0.
3 0.4+
= 0.4+ 0.4+ =S
T T T T T T . . . e
05 1 2 3 0.5 1 2 3 1 2 3 4
Y Y 1%
Sine Wave Gen. Path Integr.
Weight change mean + SE Per-seed weight change Weight change mean + SE
Per-seed weight change x10™° x10™° x10™°
0.001754 §
= 115+ = 1.204
= 0001504 s
! 110 11
£ 0.00125 S 1159
= 1.05 =,
0.00100+ T T T T T T T T T T T
0.1 0.5 1 2 0.1 05 1 2 6 7 8
Per-seed kernel alignment Kernel alignment mean + SE Kernel alignment mean + SE
__0.75 0.754 _
s 3 0. 030
X 050 0.50 X
S S 0.25
< Xo.
g 0251 0.25 g 0204
T T T
0.1 05 1 2 0.1 0.5 1 2 6 7 8
Per-seed repr. alignment Repr. alignment mean + SE Repr. alignment mean + SE
0.924
g g 0.90+
< 1,01 1014 < 0.90 :
E E
% % 0.88
= 100 @ —= ® ‘ 1.004 = 0.854 0.864
T T T T T T T T T T T
0.1 0.5 1 2 0.1 05 1 2 6 7 8
Y Y Y

Figure 31: Larger -y reliably induces stronger feature learning in standard discrete-time RNNs.

37

Q Test network size effect on degeneracy in standard parameterization

When we vary network width, both the standard parameterization andu P parameterization display
the same overall pattern: larger networks exhibit lower dynamical and weight degeneracy. An
exception arises in the 3BFF task, where feature learning becomes unstable and collapses in the wider
models. In that setting we instead see higher dynamical degeneracy, which we suspect because the
feature learning effect (lazier learning leads to higher dynamical degeneracy) dominates the network

size effect.

- N-BFF Delayed Discrim. Sine Wave Gen. Path Integr.
=3 0.215]
RS 0.1505
% 5 0.235
55 0.15 0.210 0.230 - 0.1500
s D
a 8 0.10- T T T 0.225+ T T T T T T
>
=8 0003 0,003 00050
=) qc) 0.002 0.002 0.0024
25 0.0025
= 20.0014 0.001- 0.001-
a T T T T T T T T T
64 128 256 64 128 256 64 128 256 64 128 256
Network Size Network Size Network Size Network Size

Figure 32: Larger network sizes lead to lower dynamical and weight degeneracy, except in the case
where feature learning is unstable across width (in N-BFF).

NBFF

Per-seed kernel alignment

Kernel alignment mean + SE

Delayed Discrim.

Per-seed kernel alignment

Kernel alignment mean + SE

0.44 4 4
N _ 06 e 06
< 034 o034 o. 0.4
= g
0.1 . 0.0
T T T T T T T T T T T T
128 256 64 128 256 64 128 256 128 256
0.8+ Per-seed repr. alignment Repr. alignment mean + SE 08 Per-seed repr. alignment 08 Repr. alignment mean + SE
5 0.7 0.7 2
%= % 0. 0.6+
= 06+ 0.6 P o———_'_.
< ¢ x o, 0.4
305 054 3
4 <
044 044 0.2 0.2
T T T T T T T T T T T T
64 128 256 64 128 256 64 128 256 64 128 256
Network Size Network Size Network Size Network Size
Sine Wave Gen. Path Integr.
Per-seed kernel alignment Kemel alignment mean + SE Per-seed kernel alignment Kernel alignment mean + SE
~0. 0.2 —
=) S
% g
=0 0.14 ;{
x | * o
go. 0.0 ‘5
v T T T T T T T T
64 128 256 64 128 256 64 128 256 64 128 256
Per-seed repr. alignment Repr. alignment mean + SE Repr. alignment mean + SE
— ~ 1.00
S 1.054 1.054 S
S [
g 10900 100 ¢———————e E-oga- "
< <
0.954 0.954
& &
0,904, . — 090, . . 0961 . . .
64 128 256 64 128 256 64 128 256

Network Size

Network Size

Network Size

Network Size

Figure 33: When changing network width in standard discrete-time RNNGs, feature learning strength
remains stable across width except in N-BFF, where notably lazier learning happens in the widest

network.

38

R Disclosure of compute resources

In this study, we conducted 50 independent training runs on each of four tasks, systematically
sweeping four factors that modulate solution degeneracy—task complexity (15 experiments), learning
regime (15 experiments), network size (12 experiments), and regularization strength (26 experiments),
resulting in a total of 3400 networks. Each experiment was allocated 5 NVIDIA V100/A100 GPUs, 32
CPU cores, 256 GB of RAM, and a 4-hour wall-clock limit, for a total compute cost of approximately
68 000 GPU-hours.

39

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction are accurate descriptions
on the data and result presented in the rest of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed the limitations and further directions of the paper in the
Discussion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

40

Answer: [NA]

Justification: We will be exploring an theoretical validation of the result that strong feature
learning induces lower dynamical degeneracy and higher weight degeneracy in linear RNNs
in a follow-up paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we have described the network equation, task details, training procedures,
and all hyperparameter choices both in the main text and in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

41

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code is attached as part of the supplemental materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we have provided training and test details, the optimizers, and all the
choices of the hyperparameters in the Method section of the paper and in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have included standard error in all figures where the goal is to demon-
strate that a given quantity—whether degeneracy, weight change norm, or kernel align-
ment—differs significantly across varying levels of task complexity, feature learning strength,
network size, and regularization.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

42

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, we have described the experiments compute resources in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on scientific and methodological contributions—namely, a
framework for measuring and controlling solution degeneracy in RNNs and its implications
for computational neuroscience. As such models are typically used as a hypothesis genera-
tion tool for the potential neural mechanisms underlying certain computations, we do not
foresee immediate applications that would raise negative social impacts.

43

https://neurips.cc/public/EthicsGuidelines

11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: In this paper, we study the solution landscape of RNNss trained on neuroscience-
inspired tasks, which lacks such risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our task implementation and the metrics we use to compare independently
trained RNN’s involve reuse of code published with previous paper. We have properly cited
the paepr that produced the code package.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

44

13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have attached our code as part of the supplemental materials and have
provided documentations on how to run it.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

45

paperswithcode.com/datasets

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

46

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methods
	Model architecture and training procedure
	Task suite for diagnosing solution degeneracy
	Multi-level framework for quantifying degeneracy
	Behavioral degeneracy
	Dynamical degeneracy
	Weight degeneracy

	Results
	Task complexity modulates degeneracy across levels
	Additional axes of task complexity

	Feature learning
	Task complexity scales feature learning
	Controlling feature learning reshapes degeneracy across levels

	Larger networks yield more consistent solutions across levels
	Structural regularization reduces solution degeneracy

	Discussion
	Acknowledgments
	Task details
	N-Bit Flip Flop
	Delayed Discrimination
	Sine Wave Generation
	Path Integration

	Training details
	N-Bit Flip Flop
	Delayed Discrimination
	Sine Wave Generation
	Path Integration

	Task performance of trained networks
	Memory demand of each task
	Solution degeneracy in chaotic RNNs
	Additional details on the degeneracy metrics
	Dynamical Degeneracy
	Weight degeneracy
	Establishing a null distribution for dynamical and weight degeneracy

	Representational degeneracy
	Task complexity effect on degeneracy in Gated RNNs
	Dense sweep on feature learning, network width, and regularization strength
	Detailed characterization of OOD generalization performance
	Changing task complexity
	Changing feature learning strength
	Changing network size
	Changing regularization strength
	Low-rank regularization
	Sparsity (L1) regularization

	A short introduction to Maximal Update Parameterization (P)
	Theoretical relationship between parameterizations
	Verifying larger reliably induces stronger feature learning in P
	N-BFF
	Delayed Discrimination
	Sine Wave Generation
	Path Integration

	Verifying P reliably controls for feature learning across network width
	N-BFF
	Delayed Discrimination
	Sine Wave Generation
	Path Integration

	Regularization's effect on degeneracy for all tasks
	Low-rank regularization
	Sparsity regularization

	Test feature learning effect on degeneracy in standard parameterization
	Test network size effect on degeneracy in standard parameterization
	Disclosure of compute resources

