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Abstract001

We introduce Dynamic Manifold Evolution002
Theory (DMET), a unified framework that003
models large-language-model generation as a004
controlled dynamical system evolving on a005
low-dimensional semantic manifold. By cast-006
ing latent-state updates as discrete-time Euler007
approximations of continuous dynamics, we008
map intrinsic energy-driven flows and context-009
dependent forces onto Transformer compo-010
nents (residual connections, attention, feed-011
forward networks). Leveraging Lyapunov sta-012
bility theory We define three empirical metrics013
(state continuity, clustering quality, topologi-014
cal persistence) that quantitatively link latent-015
trajectory properties to text fluency, grammati-016
cality, and semantic coherence. Extensive ex-017
periments across decoding parameters validate018
DMET’s predictions and yield principled guide-019
lines for balancing creativity and consistency020
in text generation.021

1 Introduction022

Large Language Models (LLMs) have achieved rev-023

olutionary advances in recent years, from GPT-4024

(OpenAI, 2023), LLaMA-3 (Touvron et al., 2024)025

to Claude (Anthropic, 2024), demonstrating un-026

precedented capabilities in language understand-027

ing and generation. However, despite their abun-028

dant applications, their internal mechanisms remain029

largely opaque, functioning as “black boxes” (Bom-030

masani et al., 2022). This opacity constitutes a031

critical barrier to further improving the reliability,032

interpretability, and safety of LLMs. In particu-033

lar, our understanding of how models organize and034

evolve their latent representations during the gen-035

eration process remains limited—a knowledge gap036

that hinders our ability to effectively address core037

challenges such as hallucinations (Huang et al.,038

2023), inconsistencies (Zheng et al., 2023), and039

semantic drift (Shi et al., 2024).040

Recent research has attempted to unveil the in-041

ternal mechanisms of LLMs through various ana-042

lytical approaches. Methods such as attention visu- 043

alization (Vaswani et al., 2023), feature attribution 044

(Sundararajan et al., 2022), and probing techniques 045

(Liu et al., 2023) have revealed static properties of 046

model representations, while the residual stream 047

analysis by Elhage et al. (2021) and mechanistic 048

interpretability research by Anthropic (2022) have 049

begun to explore the dynamic aspects of cross-layer 050

information propagation. However, these efforts 051

largely provide localized or fragmented perspec- 052

tives, lacking a unified theoretical framework that 053

can describe the temporal evolutionary character- 054

istics of the generation process. Traditional views 055

simplify LLM generation as a concatenation of dis- 056

crete token predictions, neglecting the continuous 057

evolutionary dynamics in the latent space, which 058

limits our understanding of how models gradually 059

refine initial concepts into coherent text. 060

This paper proposes the Dynamic Manifold 061

Evolution Theory (DMET), an innovative mathe- 062

matical framework that reconceptualizes the LLM 063

generation process as a dynamical system evolving 064

on high-dimensional manifolds. Our key insight 065

is that LLM generation is essentially a continu- 066

ous process of latent representation evolution along 067

semantic manifold trajectories, gradually refining 068

macroscopic semantic concepts into specific textual 069

expressions. By integrating dynamical systems the- 070

ory, manifold geometry, and deep learning, DMET 071

provides a rigorous mathematical foundation for 072

understanding and optimizing the dynamics of in- 073

ternal representations in LLMs. 074

The main contributions of this paper are as fol- 075

lows: We propose the Dynamic Manifold Evolu- 076

tion Theory, which, for the first time, conceptual- 077

izes the LLM generation process as a dynamical 078

system evolving on high-dimensional manifolds 079

and establishes a rigorous mathematical link be- 080

tween latent representation evolution and generated 081

text quality. We develop both continuous-time and 082

discretized dynamical system models, provide ex- 083
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plicit mappings to Transformer architectures, and084

introduce a comprehensive toolkit for analyzing085

internal state evolution. Leveraging Lyapunov the-086

ory, we prove convergence conditions for latent087

dynamics and establish a theoretical foundation088

connecting semantic consistency of generated text089

with dynamical stability, thereby offering princi-090

pled strategies for mitigating hallucinations and091

inconsistencies. Furthermore, we pioneer geomet-092

ric and topological optimization approaches—such093

as curvature regularization and topology simplifica-094

tion—to address the challenges posed by complex095

high-dimensional geometry and improve the stabil-096

ity of generation. Finally, we validate our theoreti-097

cal framework through extensive experiments and098

advanced visualizations, demonstrating strong cor-099

relations between latent trajectory properties and100

output quality, and highlighting the critical role of101

attractor structures in the generative process.102

The remainder of this paper is organized as fol-103

lows: Section 2 reviews related work and intro-104

duces necessary preliminaries; Section 3 details105

the mathematical foundations and implementation106

methods of the Dynamic Manifold Evolution The-107

ory; Section 4 describes the experimental design108

and analyzes results; and finally, Section 5 sum-109

marizes the main findings of this research and dis-110

cusses directions for future work. Through this111

comprehensive framework, we not only deepen112

our understanding of internal LLM mechanisms113

but also provide theoretical guidance for design-114

ing more reliable and controllable next-generation115

language models.116

2 Related Work117

We ground DMET at the intersection of three re-118

search strands: dynamical systems in deep learning,119

manifold-based representation analysis, and latent120

trajectory modeling in language models.121

Dynamical Systems in Neural Networks In-122

terpreting deep networks as discretized contin-123

uous systems has gained traction since Neural124

ODEs (Chen et al., 2018a), which view residual125

connections as Euler steps. Extensions include126

augmented neural differential equations (Dupont127

et al., 2019) and stability analyses for recurrent and128

feed-forward architectures (Miller and Hardt, 2019;129

Santos et al., 2023; Li et al., 2023). In the language130

domain, Lu et al. (2023) and Patil et al. (2024) ana-131

lyze Transformer dynamics, while Zhang and Xiao132

(2024) frame decoding as a Markov decision pro-133

cess. Unlike these localized or task-specific studies, 134

DMET provides a unified mapping from continu- 135

ous dynamics (with Lyapunov stability) to all core 136

Transformer components. 137

Manifold Geometry and Topology The man- 138

ifold hypothesis posits that high-dimensional 139

representations lie on low-dimensional struc- 140

tures (Roweis and Saul, 2000; Tenenbaum et al., 141

2000). Deep manifold learning methods include 142

Riemannian metric estimation (Arvanitidis et al., 143

2018) and neural tangent space analysis (Chen 144

et al., 2018b). In NLP, latent geometry has been 145

explored via syntactic probes (Hewitt and Man- 146

ning, 2019), linear subspace visualizations (Reif 147

et al., 2019), and hierarchical manifold discovery in 148

GPT (McCoy et al., 2022). Topological tools such 149

as persistent homology (Liu et al., 2024; Dai et al., 150

2023) reveal global structural features. DMET 151

leverages these geometric and topological insights 152

to define dynamic trajectory metrics that directly 153

link manifold structure to generation quality. 154

Latent Trajectory Analysis in Language Mod- 155

els Examining how hidden states evolve during 156

text generation has illuminated RNN behavior (Li 157

et al., 2016; Mardt et al., 2018) and Transformer 158

residual streams (Elhage et al., 2021). Recent 159

work investigates trajectory bifurcations (Rajamo- 160

han et al., 2023) and “thought manifold” evolu- 161

tion (Hernandez-Garcia et al., 2024). However, 162

these analyses typically focus on visualization or 163

specific phenomena. In contrast, DMET systemat- 164

ically models latent evolution as a dynamical sys- 165

tem, quantifies its properties, and empirically cor- 166

relates them with text fluency, grammaticality, and 167

coherence. 168

By unifying continuous-time theory, manifold 169

geometry, and trajectory analysis, DMET offers the 170

first end-to-end framework for interpreting and con- 171

trolling LLM generation dynamics. Our Dynamic 172

Manifold Evolution Theory (DMET) uniquely inte- 173

grates dynamical systems, Lyapunov stability, and 174

manifold learning for a unified interpretation of 175

LLM latent representation evolution. DMET dif- 176

fers from previous works by: (1) modeling repre- 177

sentations as evolving points on dynamic manifolds 178

rather than static vectors; (2) applying differential 179

equations to model continuous evolution; (3) using 180

Lyapunov stability to link representational stability 181

and text quality; and (4) proposing geometric regu- 182

larization for active optimization of latent manifold 183

geometry and topology. 184
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Figure 1: Overview of the DMET framework: latent trajectories evolve on a low-dimensional semantic manifold
under intrinsic energy gradients and context-driven forces, with discrete Transformer layers implementing Euler
steps of this continuous dynamics.

3 Dynamic Manifold Evolution Theory185

(DMET): Methodology186

3.1 Framework Overview187

In this section, we give an overview of the Dy-188

namic Manifold Evolution Theory (DMET): we189

begin by stating its three foundational assumptions,190

then show how these lead to a continuous-time dy-191

namical model, and finally explain how residual192

connections, self-attention, and feed-forward layers193

implement that model in a Transformer.194

3.2 Three Core Assumptions195

Dynamic Manifold Evolution Theory (DMET) fun-196

damentally reinterprets the generation process of197

large language models (LLMs). Unlike traditional198

perspectives that simplify text generation as a se-199

quential prediction of discrete tokens, DMET con-200

ceptualizes it as a continuous trajectory evolution201

within a structured semantic space. This section202

elaborates on the three core assumptions that un-203

derpin this theoretical framework.The Dynamic204

Manifold Evolution Theory (DMET) is grounded205

in three core assumptions that shape our under-206

standing of LLM internal dynamics.We summarize207

DMET’s theoretical foundation in three concise 208

pillars: 209

1. Manifold Structure. The hidden state 210

h ∈ Rd always lies on a much lower- 211

dimensional semantic manifold M ⊂ Rd, 212

with dim(M)≪ d. 213

2. Continuous Evolution. Text generation 214

corresponds to a continuous trajectory h(t) 215

smoothly traversingM over time. 216

3. Attractor Landscape. The manifoldM con- 217

tains multiple attractor basins {Ai}—each 218

representing a coherent semantic state—and 219

h(t) naturally converges into one of these 220

basins. 221

Core Assumptions of DMET. We build DMET 222

on three intertwined hypotheses. First, although 223

LLMs operate in a high-dimensional hidden space 224

Rd, their meaningful representations lie on a much 225

lower-dimensional semantic manifold M ⊂ Rd, 226

capturing the regularities of language. Second, text 227

generation is not a series of independent jumps but 228

a smooth trajectory h(t) that continuously traverses 229
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Figure 2: The curved surface represents the low-
dimensional semantic manifold where latent represen-
tations exist. Rather than occupying the entire high-
dimensional space, meaningful linguistic representa-
tions are constrained to this manifold.

M from an initial state h(0) to a final state h(T ),230

much like a hiker following a well-defined ridge231

rather than a random path. Third,M is shaped by232

multiple attractor basins {Ai}—each correspond-233

ing to a coherent semantic frame—so that once the234

latent state enters an attractor’s domain, it naturally235

converges to a stable region, explaining why LLMs236

generate focused, logically connected passages in-237

stead of disjoint word sequences.238

3.3 Dynamical System Modeling and239

Transformer Mapping240

We model latent evolution as a controlled dynami-241

cal system on the semantic manifold:242

dh(t)

dt
= −∇V

(
h(t)

)
+ g

(
h(t),u(t)

)
,243

where V is an energy potential encoding semantic244

coherence, and g is a context-driven force from in-245

put u(t). Discretizing via the explicit Euler method246

with step size ∆t gives247

ht+1 = ht + ∆t
[
−∇V (ht) + g(ht,ut)

]
.248

Remarkably, each term aligns with a core Trans-249

former component:250

3.4 Dynamic Metrics (Aligned to251

Assumptions)252

To quantify latent trajectories, we define three met-253

rics directly reflecting our core assumptions:254

Figure 3: Mapping DMET dynamics to Transformer
layers. Detailed derivations and error bounds are pro-
vided in Appendix A.

1. State Continuity (smoothness): 255

C =
1

T

T∑
t=1

∥∥ht − ht−1

∥∥
2
. 256

2. Attractor Clustering Quality (structure): 257

Q =
1

N

N∑
i=1

b(i)− a(i)

max{a(i), b(i)}
, 258

where a(i) and b(i) are intra- and nearest- 259

neighbor cluster distances. 260

3. Topological Persistence (global stability): 261

P =
∑
α

∣∣dα − bα
∣∣, 262

summing the lifespans of topological features 263

(birth bα, death dα). 264

Note: Implementation details—PCA for dimen- 265

sion reduction, k-means clustering for Q, and Vi- 266

etoris–Rips filtration for P—are described in Ap- 267

pendix B. 268

3.5 Theory–Quality Correspondence 269

To bridge the gap between theory and practical 270

application, we posit a central hypothesis: the dy- 271

namic properties of latent trajectories directly de- 272

termine the quality of generated text, manifesting 273

in three critical correspondences—state continu- 274

ity leads to fluency, clustering quality underpins 275

grammaticality, and topological persistence en- 276

sures semantic coherence. These associations are 277

grounded not merely in conjecture, but in rigorous 278

theoretical analysis and linguistic intuition. We 279

elaborate on the mechanisms underlying each re- 280

lationship below.We formalize three propositions 281

linking our dynamic metrics to generation quality: 282
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Proposition 1 (Continuity–Fluency). Higher283

state continuity C implies smoother information284

flow and lower perplexity. Formally, if285

C =
1

T

∑
t

∥ht − ht−1∥2 is large,286

then the KL divergence between successive token287

distributions,288

DKL

(
p(wt|w<t) ∥ p(wt+1|w<t+1)

)
,289

remains small, yielding more fluent text.290

The link between state continuity and textual291

fluency can be understood through the lens of infor-292

mation flow: smooth transitions between adjacent293

latent states enable gradual information blending294

rather than abrupt changes. For example, consider295

the sentence “The clouds drift slowly across the296

sky.” In latent space, the transition from “sky” to297

“clouds” to “drift” is realized as a smooth semantic298

evolution, with natural progression between tokens.299

In contrast, abrupt state transitions may yield inco-300

herent outputs such as “The computers drift slowly301

across the sky.” Thus, state continuity fosters natu-302

ral word choice, syntactic flow, and overall fluency.303

Proposition 2 (Clustering–Grammaticality).304

Stronger attractor separation Q supports robust305

grammatical regimes. If306

Q =
1

N

∑
i

b(i)− a(i)

max{a(i), b(i)}
307

is high, then the model remains within consistent308

syntactic attractors, reducing grammatical errors.309

Attractor structures in latent space can be in-310

terpreted as stable representations of grammat-311

ical states. High clustering quality indicates312

that such grammatical regimes are clearly sepa-313

rated, allowing the model to reliably identify and314

maintain correct syntax. For instance, syntactic315

rules—such as subject-verb agreement or tense con-316

sistency—manifest as stable attractors; initiating317

a “If...then...” structure triggers a specific attrac-318

tor, guiding the model to complete a well-formed319

conditional sentence. Distinct attractor boundaries320

prevent the model from abruptly switching gram-321

matical frameworks (e.g., from declarative to inter-322

rogative), or mixing tenses within a sentence.323

Proposition 3 (Persistence–Coherence).324

Greater topological persistence P ensures stable325

global structure and semantic coherence. When326

P =
∑
α

|dα − bα|327

is large, thematic loops and topic transitions remain 328

well-connected, preventing abrupt topic shifts. 329

Topological persistence captures the global sta- 330

bility of manifold organization, particularly the 331

prominence of loops, connecting paths, and se- 332

mantic “regions.” Consider an article on climate 333

change, which might cover diverse subtopics such 334

as scientific evidence, policy responses, and soci- 335

etal impacts. In latent space, these subtopics form 336

distinct “semantic zones,” and high topological per- 337

sistence ensures that stable paths connect these 338

zones—allowing smooth thematic transitions and 339

preserving overall document coherence. In con- 340

trast, low persistence may yield abrupt topic shifts 341

or logical discontinuities.Notably, the H1 homol- 342

ogy group (representing persistent cycles) is closely 343

tied to argumentative closure and logical complete- 344

ness in text. Persistent cycles facilitate the return 345

of arguments to central themes, enabling essays to 346

form closed, self-consistent reasoning structures 347

rather than fragmenting into disconnected parts. 348

3.6 Summary 349

DMET provides a unified framework by casting 350

LLM generation as a controlled dynamical system 351

on a semantic manifold; it introduces quantitative 352

metrics—state continuity, attractor clustering, and 353

topological persistence—that offer concrete, mea- 354

surable lenses on latent evolution; it maps these 355

dynamics to Transformer components, where resid- 356

ual connections implement inertia, self-attention 357

provides contextual force, and feed-forward layers 358

approximate gradient flow; and it delivers prac- 359

tical value by demonstrating that correlations be- 360

tween latent dynamics and text quality can guide 361

decoding parameter tuning to achieve improved 362

fluency, grammaticality, and coherence. Our mani- 363

fold and attractor assumptions may fail under high- 364

dimensional noise or in very long sequences where 365

semantic drift accumulates. In such cases, trajec- 366

tories can wander off M or traverse spurious at- 367

tractors. Future work includes adapting DMET 368

to non-Transformer architectures (e.g., diffusion- 369

based generators), and modeling advanced decod- 370

ing strategies (e.g., beam search, mixture sam- 371

pling) by incorporating multi-step lookahead forces 372

g(h, {ut+1, . . . }). 373
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4 Experiments and Analysis374

4.1 Experimental Setup375

4.1.1 Models and Data376

We use the DeepSeek-R1 Transformer as our base377

model. For each decoding configuration, we gener-378

ate 10 continuations of 100 tokens each from the379

prompt:380

"The future of AI is"381

This yields a total of 400 samples across all settings.382

Hidden states are extracted from every layer of the383

model at each token step.384

4.1.2 Decoding Parameter Grid385

We sweep the temperature τ over 10 values from386

0.1 to 2.0 and the nucleus (top-p) threshold over387

{0.3, 0.6, 0.8, 1.0}, resulting in 40 unique configu-388

rations.389

4.1.3 Validation Pipeline390

Algorithm 1 summarizes our pipeline for comput-391

ing the four latent-dynamics metrics from each392

generated sequence.393

Algorithm 1 Latent Dynamical System Validation

Require: Transformer model M , input text x
Ensure: Dynamics metrics {δ,J , s, ρ}

1: H← GetHiddenStates(M,x)
2: δ ← ComputeDistances(H)
3: J ← DetectJumps(δ)
4: V← ReduceDim(H)
5: s← ClusterStates(V)
6: ρ← ComputePersistence(V)
7: return {δ,J , s, ρ}

4.2 Evaluation Metrics394

We evaluate both latent dynamics and text-395

quality using a three-tiered framework. For396

dynamic metrics, we measure state continuity397

as C = 1
T

∑T
t=1 ∥ht − ht−1∥2, attractor clus-398

tering via the silhouette-inspired score Q =399
1
N

∑N
i=1

b(i)−a(i)
max{a(i),b(i)} , and topological persistence400

P =
∑

α |dα − bα|. For text-quality metrics,401

we use both intrinsic measures—perplexity (com-402

puted with GPT-2-XL) and lexical diversity (log403

type–token ratio)—and extrinsic measures, includ-404

ing grammar accuracy and topical coherence.405

Correlation Analysis: We fit mixed-effects re-406

gression models predicting each text-quality metric407

from the three dynamic metrics, treating temper- 408

ature and top-p as random effects to isolate their 409

influence. 410

4.3 Experimental Results 411

Figure 4: PCA projection of 400 sample trajectories,
showing two robust clusters (silhouette = 0.76)

Attractor Structure Analysis. Figure 4 visu- 412

alizes the latent-space attractor structure via PCA 413

and k-means clustering. We observe two prominent 414

clusters—one large, one smaller—indicating that 415

hidden states converge to distinct, stable regions 416

rather than spreading randomly. This empirical 417

finding aligns with our DMET prediction of seman- 418

tic attractors. 419

Figure 5: Aggregated trajectories of all 400 samples as
a 3D surface, colored from purple (start) to red (end).

Collective Dynamics. Figure 5 presents the ag- 420

gregate dynamics of all 400 samples, visualized as 421

a surface in 3D latent space with time progression 422

color-coded from purple (start) to red (end). Sev- 423

eral key features emerge from this visualization: 424

most trajectories originate in the purple region on 425

the left, indicating similar initial semantic states; 426

as generation proceeds, the trajectories disperse in 427

different directions, forming a fan-shaped pattern; 428
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Table 1: Mixed-effects Model Results for Text Quality Predictors

Dependent Variables

Predictors Log-PPL Spelling Lexical Diversity Grammaticality Coherence

State Continuity −0.031∗∗∗ -0.000 −0.003∗∗∗ -0.001 0.002∗∗

Clustering Quality 0.044 -0.010 -0.074 0.081∗ 0.047
Topological Persistence -0.000 0.000 -0.003 0.002 0.009∗∗∗

Random Effects (Var.) 0.962∗∗∗ 0.048 0.265 0.058 0.115∗

Observations (N) 120 120 120 120 120

Note: Coefficients shown with significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
Log-PPL = Log-Perplexity

multiple local clusters appear in space, correspond-429

ing to distinct semantic attractors; and the overall430

structure exhibits a coherent manifold rather than431

a random point cloud. These collective observa-432

tions strongly support our hypothesis that LLM gen-433

eration follows constrained dynamical evolution434

paths—analogous to fluid flow in physics—rather435

than exhibiting a random walk in representation436

space.437

Correlation Between Dynamics and Text438

Quality. Table 1 and fig 6 summarizes the mixed-439

effects regression findings. State continuity corre-440

lates negatively with log perplexity (β = −0.031,441

p < 0.001) and lexical diversity (β = −0.003, p <442

0.001), but positively with coherence (β = 0.002,443

p < 0.01), indicating a trade-off between fluency444

and creativity. Clustering quality (silhouette) is445

positively associated with grammatical accuracy446

(β = 0.081, p < 0.05). Topological persistence447

is strongly correlated with coherence (β = 0.009,448

p < 0.001), empirically validating the theoretical449

prediction that robust manifold topology underpins450

logical, coherent text.451

Effect of Decoding Parameters. We observe452

that low temperature (τ ≤ 0.5) yields highly deter-453

ministic, smooth trajectories converging on major454

attractors. Moderate temperature (0.6 ≤ τ ≤ 1.2)455

enables a balance of exploration and convergence,456

maximizing both continuity and topological persis-457

tence. High temperature (τ ≥ 1.3) leads to more458

stochastic, jumpy trajectories and weaker cluster-459

ing. Lower top-p values (0.3) constrain exploration460

and boost continuity, while higher values (0.8–1.0)461

support diversity at the expense of global coher-462

ence. Notably, a combination of moderate temper-463

ature (τ ≈ 0.7) and top-p (0.6–0.8) achieves the464

optimal balance between creativity and coherence.465

4.4 Experimental Conclusion 466

Our experiments robustly validate the Dynamic 467

Manifold Evolution Theory (DMET) by demon- 468

strating that latent dynamics critically influence 469

text quality. Clustering of 400 generated sam- 470

ples uncovers clear attractor structures—confirmed 471

by multidimensional scaling to align with distinct 472

semantic frames—showing that representations 473

collapse to coherent regions rather than disperse 474

randomly. Mixed-effects regression reveals that 475

smoother trajectories (state continuity C) reduce 476

perplexity (β = −0.031, p < 0.001) and boost 477

coherence (β = 0.002, p < 0.01), stronger at- 478

tractor separation (clustering quality Q) predicts 479

grammatical accuracy (β = 0.081, p < 0.05), and 480

greater topological persistence (P ) enhances se- 481

mantic coherence (β = 0.009, p < 0.001). Pa- 482

rameter sweeps further show that low sampling 483

temperature (τ ≤ 0.5) yields overly deterministic 484

paths, high temperature (τ ≥ 1.3) produces erratic 485

trajectories with weak attractors, and moderate set- 486

tings (0.7 ≤ τ ≤ 1.0, top-p ∈ [0.6, 0.8]) strike 487

the optimal balance of creativity and coherence. 488

Finally, increasing sequence length leads to de- 489

creased continuity and increased topological com- 490

plexity—explaining semantic drift in long-form 491

generation—while some tasks preserve stable clus- 492

tering. These findings confirm DMET’s predictions 493

and offer practical decoding guidelines: by tuning 494

sampling parameters to shape latent dynamics, one 495

can systematically improve fluency, grammatical- 496

ity, and semantic coherence. 497

5 Summary 498

In this work, we introduced Dynamic Manifold 499

Evolution Theory (DMET), a unified mathemati- 500

cal framework that conceptualizes LLM genera- 501
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Figure 6: Quality Metrics across Different Parameter.

tion as a dynamical system evolving on a high-502

dimensional semantic manifold. Our main contri-503

butions are: (1) establishing a formal mapping be-504

tween continuous-time dynamical systems and the505

discrete Transformer architecture; (2) deriving rep-506

resentation stability conditions via Lyapunov the-507

ory; (3) defining quantifiable dynamic metrics; (4)508

empirically validating strong correlations between509

these metrics and text quality; and (5) propos-510

ing theory-driven decoding parameter optimiza-511

tion strategies. Our experiments robustly support512

DMET’s central predictions: state continuity en-513

hances fluency, attractor clustering improves gram-514

matical accuracy, and topological persistence en-515

sures semantic coherence. In particular, we demon-516

strate that tuning temperature and top-p thresholds517

can effectively shape latent-trajectory dynamics,518

enabling fine-grained control over generation out-519

comes. From a broader theoretical perspective,520

DMET reveals that language generation is driven521

jointly by an internal energy function (linguistic522

knowledge) and an external input function (con-523

text), offering a principled basis for both interpret-524

ing current models and designing next-generation525

architectures with improved consistency, reduced526

hallucination, and enhanced coherence.527

6 Limitations 528

Despite these encouraging results, our study has 529

several limitations. Firsty, computational complex- 530

ity of manifold and topological analyses remains 531

high for very large models; more efficient algo- 532

rithms are needed for real-time or large-scale de- 533

ployment. Second, while we demonstrate strong 534

correlations, causal relationships between latent 535

dynamics and text quality remain to be established; 536

developing interventions to directly manipulate la- 537

tent trajectories will be crucial. Fourth, our frame- 538

work rests on the idealized manifold assumption; 539

real LLM representations may exhibit complex 540

folds and self-intersections, posing challenges for 541

accurate manifold estimation. Finally, although 542

we propose theory-based tuning strategies, prac- 543

tical control mechanisms for manipulating latent 544

dynamics (e.g., optimized regularization or decod- 545

ing algorithms) are yet to be developed. 546
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generative AI tool is not a co-author of this study.565

References566

Anthropic. 2022. Mechanistic interpretability in567
language models: A survey. arXiv preprint568
arXiv:2211.00593.569

Anthropic. 2024. Claude 3 technical report. arXiv570
preprint arXiv:2401.10409.571

Georgios Arvanitidis, Lars Kai Hansen, and Søren572
Hauberg. 2018. Latent space oddity: on the curvature573
of deep generative models. International Conference574
on Learning Representations.575

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ576
Altman, Simran Arora, Sydney von Arx, Michael S.577
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma578
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dal-579
las Card, Rodrigo Castellon, Niladri S. Chatterji,580
Annie S. Chen, Kathleen Creel, Jared Davis, Dora581
Demszky, and 95 others. 2022. On the opportuni-582
ties and risks of foundation models. arXiv preprint583
arXiv:2108.07258.584

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt,585
and David K. Duvenaud. 2018a. Neural ordinary dif-586
ferential equations. Advances in Neural Information587
Processing Systems.588

Yuhang Chen, D. Kalashnikov, Pietro Perona, and589
P. Welinder. 2018b. Bn-nas: Neural architecture590
search with batch normalization. arXiv preprint591
arXiv:1812.03443.592

Xiao Dai, Ziling Song, Mikita Balesni, and Dani Yo-593
gatama. 2023. Representation engineering in large594
language models. arXiv preprint arXiv:2310.01405.595

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh.596
2019. Augmented neural odes. Advances in Neural597
Information Processing Systems.598

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom599
Henighan, Nicholas Joseph, Ben Mann, Amanda600
Askell, Yuntao Bai, Anna Chen, Tom Conerly,601
Maxwell Nova, David Dalrymple, Jared Kaplan, Sam602
McCandlish, Dario Amodei, and Chris Olah. 2021.603
A mathematical framework for transformer circuits.604
Anthropic Technical Report.605

Alex Hernandez-Garcia, Daniel Y. Fu, Quan Vuong, 606
Kartik Sreenivasan, Patrick Blöbaum, Jake Tyo, 607
Shibani Santurkar, Ishita Dasgupta, L. Schmidt, 608
Samuel J. Gershman, Peter W. Battaglia, and Ben- 609
jamin A. Spector. 2024. Thought manifolds: Un- 610
derstanding llm reasoning through activation space 611
geometry. arXiv preprint arXiv:2404.09813. 612

John Hewitt and Christopher D. Manning. 2019. A 613
structural probe for finding syntax in word represen- 614
tations. NAACL. 615

Sewon Huang, Guangxuan Xiao, Weijia Shi, Wenhan 616
Xiong, J. Weston, William Cohen, Luke Zettlemoyer, 617
and Tao Yu. 2023. Factscore: Fine-grained atomic 618
evaluation of factual precision in long form text gen- 619
eration. arXiv preprint arXiv:2305.14251. 620

Jiwei Li, Xinlei Chen, Eduard H. Hovy, and Dan Ju- 621
rafsky. 2016. Visualizing and understanding neural 622
models in nlp. NAACL. 623

Kaiming Li, Ling Yang, Hongxu Yin, S. Levine, and 624
Rene Vidal. 2023. On the stability of transformer- 625
based models. arXiv preprint arXiv:2306.00148. 626

Nelson F. Liu, Ananya Kumar, Percy Liang, and Robin 627
Jia. 2023. Probes as instruments for causal un- 628
derstanding of neural networks. arXiv preprint 629
arXiv:2303.04244. 630

Siyu Liu, Yue Fan, Shujian Zhang, J. Weston, and 631
L. Dinh. 2024. Topological analysis of lan- 632
guage model representations. arXiv preprint 633
arXiv:2402.07622. 634

Yuanzhi Lu, Sebastien Bubeck, Ronen Eldan, Allie Del 635
Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023. 636
Dynamical systems perspective on transformer train- 637
ing. arXiv preprint arXiv:2303.17504. 638

Andreas Mardt, Luca Pasquali, Hao Wu, and Frank 639
Noé. 2018. Vampnets: Deep learning of molecular 640
kinetics. Nature Communications. 641

R. Thomas McCoy, Harsh Trivedi, Richard Socher, 642
Tal Linzen, Naomi Saphra, Blerta Ferko Serif, 643
and Alexander Rush. 2022. Linguistic struc- 644
ture inherent in gpt embeddings. arXiv preprint 645
arXiv:2211.00603. 646

John Miller and Moritz Hardt. 2019. Stable recurrent 647
models. International Conference on Learning Rep- 648
resentations. 649

OpenAI. 2023. Gpt-4 technical report. arXiv preprint 650
arXiv:2303.08774. 651

Shishir G. Patil, Tianjun Zhang, Tatsu Hashimoto, 652
Tommi S. Jaakkola, Michael R. DeWeese, and Joseph 653
Gonzalez. 2024. Time-evolution of transformer rea- 654
soning through dynamical systems. arXiv preprint 655
arXiv:2402.05633. 656

9



Ashwin Rajamohan, Nate Gruver, Hattie Zhou,657
Sorelle A. Friedler, Samy Bengio, and Been Kim.658
2023. A focus in your hidden states: Evidence659
for bifurcation in llm reasoning. arXiv preprint660
arXiv:2402.03189.661

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B.662
Viégas, Andy Coenen, Adam Pearce, and Been Kim.663
2019. Visualizing and measuring the geometry of664
bert. Advances in Neural Information Processing665
Systems.666

Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear667
dimensionality reduction by locally linear embedding.668
Science.669

Matheus Viana Santos, Yuan Gao, Aditi Krishnapriyan,670
and Michael W. Mahoney. 2023. A theory of learn-671
ing dynamics in transformers with application to op-672
timization. arXiv preprint arXiv:2306.01129.673

Junjie Shi, Suhang Wang, and Dongwon Lee. 2024. De-674
tailed evaluation of output stability in large language675
models. arXiv preprint arXiv:2401.06706.676

Mukund Sundararajan, Xiaoyin Xie, Matej Zečević, and677
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A Appendix Overview707

This appendix provides all detailed derivations, im-708

plementation details, and additional results that709

support the main text.710

• Appendix B: Mapping Transformer to Con- 711

tinuous Dynamics (corresponds to Sec. 3.3) 712

Complete proofs and error-bound derivations 713

for the correspondence between Transformer 714

components (residual, MHSA, FFN, Layer- 715

Norm) and the continuous-time dynamical 716

system model. 717

• Appendix C: Experimental Method De- 718

tails (corresponds to Sec. 4.1) Implementa- 719

tion specifics for computing dynamic metrics 720

(state continuity, clustering, persistence) and 721

text-quality metrics (perplexity, lexical diver- 722

sity, grammar, coherence). 723

• Appendix D: Supplementary Results (corre- 724

sponds to Sec. 4.2) Additional visualizations, 725

including single-sequence trajectory phases 726

and temperature ablation curves, that illus- 727

trate latent evolution and the “golden zone” 728

for decoding parameters. 729

• Appendix E: Mathematical Proofs (cor- 730

responds to Sec. 3.5 and Sec. 3.6) Full 731

statements and proofs of Lyapunov stability 732

(Theorems 1–2), continuity–fluency, cluster- 733

ing–grammar, persistence–coherence (Theo- 734

rems 3–5), and temperature effects (Proposi- 735

tions 3–4). 736

B Mapping between Transformer 737

Architecture and Dynamical Systems 738

In the previous section we established the basic 739

framework of Dynamic Manifold Evolution The- 740

ory. In this section, we delve into how this the- 741

ory can be precisely mapped onto the concrete im- 742

plementation of the Transformer architecture. We 743

first provide rigorous mathematical proofs of the 744

dynamical-system interpretation for each architec- 745

tural component, then analyze the limitations and 746

approximation errors of the mapping, and finally 747

discuss the crucial modulatory role of Layer Nor- 748

malization in this framework. 749

Table 2 summarizes the correspondence between 750

DMET theoretical concepts and Transformer com- 751

ponents. This table is intended to fit within a single 752

column of a two-column layout. 753
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Table 2: Mapping between DMET theoretical concepts and Transformer components.

Theory Concept Transformer Component Functional Role

Latent state h(t) Hidden state Encodes current semantics
Evolution time t Layer index l Discrete update step
Energy function V (h) Feed-forward network (FFN) Semantic optimization
External function g(h,u) Multi-head self-attention (MHSA) Contextual integration
Time step ∆t Layer normalization + scaling Controls update magnitude
Manifold constraint c(h) Activation + Residual Restricts representation to valid manifold

B.1 Dynamical-System Interpretation of754

Transformer Components755

B.1.1 Residual Connection as Inertia:756

Rigorous Proof757

Residual connections are a key innovation in Trans-758

formers, allowing direct passage of the previous759

layer’s output so that the network learns residual760

mappings. From a dynamical-system perspective, a761

residual connection implements “inertia,” keeping762

the representation evolution continuous.763

Theorem 3 (Equivalence of Residual Inertia).764

The Transformer residual update765

ht+1 = ht + F (ht)766

is formally equivalent to the inertia term in the767

discrete Lagrangian system, where F denotes a768

nonlinear transformation.769

Proof. Start from the continuous Lagrangian sys-770

tem:771

d2h

dt2
= f
(
h, dh

dt

)
. (1)772

Let v = dh
dt , yielding the first-order form:773

dh

dt
= v, (2)774

dv

dt
= f(h,v). (3)775

Applying the explicit Euler discretization with step776

∆t:777

ht+1 = ht +∆tvt, (4)778

vt+1 = vt +∆t f(ht,vt). (5)779

In a highly damped regime, vt ≈ ∆t · f(ht,0).780

Substituting into the update for h gives781

ht+1 = ht + (∆t)2 f(ht,0). (6)782

Defining F (ht) = (∆t)2 f(ht,0) yields783

ht+1 = ht + F (ht),784

which matches the Transformer residual update. ■ 785

This proof shows that residual connections dis- 786

cretely simulate physical inertia. The “strength” of 787

inertia is controlled by ∆t and affects trajectory 788

smoothness. 789

Lemma 1 (Residual Strength–Continuity Rela- 790

tionship). Let α be a residual-strength parameter, 791

with update 792

ht+1 = αht + F (ht). 793

Then the continuity metric 794

C =
1

T

T∑
t=1

∥∥ht − ht−1

∥∥
2

795

is monotonically decreasing in α. 796

B.1.2 Self-Attention as Contextual Force: 797

Functional Analysis 798

Self-attention implements context-dependent dy- 799

namics in text generation, allowing representation 800

evolution to respond to global information. We 801

now prove how multi-head self-attention approx- 802

imates an arbitrary Lipschitz-continuous “contex- 803

tual force” function g(h,u). 804

Theorem 4 (Equivalence of Self-Attention and 805

Contextual Force). Under suitable parameteri- 806

zation, multi-head self-attention (MHSA) can ap- 807

proximate any Lipschitz-continuous function 808

g : Rd × Rn×d → Rd 809

arbitrarily well. 810

Proof Sketch. Standard MHSA computes 811

MHSA(ht,X) =

h∑
i=1

WO
i

(
n∑

j=1

αij(ht,X) ·W V
i xj

)
,

(7)

812

where the attention weights are defined as 813

αij(ht,X) =
exp

(
(WQ

i ht)
⊤(WK

i xj)/
√
dk

)
∑n

j′=1 exp
(
(WQ

i ht)⊤(WK
i xj′)/

√
dk

) .
(8)

814
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By Stone–Weierstrass, any continuous function815

g(h,u) can be approximated by finite sums of basis816

functions in h with context-dependent coefficients.817

As the number of heads h grows, MHSA’s paramet-818

ric form can realize these sums to arbitrary preci-819

sion. A detailed epsilon-net construction shows the820

sup-norm error decays as O(1/
√
h). ■821

B.1.3 Feed-Forward Network as Gradient822

Field: Expressivity Proof823

The position-wise feed-forward network (FFN) cor-824

responds to a negative gradient field −∇V (h),825

driving the system toward local minima of a se-826

mantic energy function V .827

Theorem 5 (Equivalence of FFN and Gradi-828

ent Field). A two-layer ReLU FFN of sufficient829

width can approximate any smooth energy gradient830

field −∇V (h) on compact sets to arbitrary accu-831

racy.832

Proof Sketch. By the universal approximation833

theorem, the FFN can approximate any continuous834

vector field. Imposing a curl-penalty835

Lcurl =
∥∥∇× FFN(h)

∥∥2
F

836

drives the learned field to be (approximately) irro-837

tational, hence a gradient of some scalar potential.838

■839

B.2 Mapping Limitations and Approximation840

Error Analysis841

Although Transformers can approximate continu-842

ous dynamical systems, the mapping incurs inher-843

ent errors. We bound the global error between the844

continuous trajectory h(t) and its discrete counter-845

part h⌊t/∆t⌋:846

sup
t∈[0,T ]

∥∥h(t)− h⌊t/∆t⌋
∥∥
2
≤ C1∆t + C2 ϵFFN + C3 ϵMHSA,

(9)

847

where ϵFFN and ϵMHSA are the FFN and MHSA848

approximation errors respectively. Standard error-849

analysis yields the stated bound.850

B.3 Layer Normalization as Time-Step851

Modulator852

LayerNorm not only stabilizes training but also853

adapts the effective time-step. Consider the update854

ht+1 = ht + FFN
(
LN(ht)

)
+ MHSA

(
LN(ht)

)
,

(10)
855

with 856

LN(ht) = γ
ht − µt

σt
+ β. 857

If FFN and MHSA are approximately homoge- 858

neous of degree one, then 859

∆teff =
γ

σt
860

acts as an adaptive step-size. A stability condition 861

follows: 862

γ < σmin
2

λmax
, 863

where λmax is the largest eigenvalue of the Jaco- 864

bian. 865

This completes the appendix material for “Sec- 866

tion 4 — Continuous-to-Discrete Mapping.” 867

C Experimental Details 868

C.1 Latent Dynamics Computation 869

We compute the three dynamic metrics as follows: 870

• State Continuity: For each hidden-state se- 871

quence {ht}Tt=0, we calculate 872

C =
1

T

T∑
t=1

∥ht − ht−1∥2. 873

Hidden states are L2-normalized before dif- 874

ferencing. 875

• Attractor Clustering: We apply PCA to 876

reduce {ht} to 2–3 dimensions (retaining 877

> 85% variance), then run k–means++ with 878

k chosen by silhouette analysis. We report the 879

average silhouette score 880

Q =
1

N

N∑
i=1

b(i)− a(i)

max{a(i), b(i)}
, 881

where a(i) and b(i) are intra- and nearest- 882

cluster distances. 883

• Topological Persistence: Using a Vi- 884

etoris–Rips filtration over a range of radii, we 885

compute H1 barcodes via Ripser. Persistence 886

is measured as 887

P =
∑
α

|dα − bα|, 888

summing lifespans of 1D cycles. We apply a 889

significance threshold ρ > 0.2 determined by 890

permutation testing. 891
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C.2 Text Quality Evaluation892

We evaluate generated text using both automated893

and learned metrics:894

• Perplexity: Computed with a GPT-2-XL895

model:896

PPL = exp
(
− 1

N

N∑
i=1

log p(wi|w<i)
)
.897

• Lexical Diversity: Measured as log898

type–token ratio:899

LTTR =
log(#types)
log(#tokens)

.900

• Grammar Accuracy: Detected via a fine-901

tuned BERT classifier; score is902

1− #errors
#tokens

.903

• Coherence: Entity-grid model combining lo-904

cal and global coherence:905

Coherence = 0.7× Local + 0.3×Global.906

• Factuality: Checked against a knowledge907

graph; factuality score is908

#correct facts
#verifiable facts

.909

C.3 Supplementary Results910

Trajectory Evolution Analysis. Figure 7-10 de-911

pict the evolution of latent representations along912

the generation trajectory of a single sequence. By913

tracking the representations across time steps (to-914

kens), we identify a characteristic three-phase pat-915

tern: during the Initial Phase (first 10 tokens), the916

trajectory explores a local neighborhood, reflecting917

a search for initial semantic direction; in the Ex-918

pansion Phase (approximately tokens 30–60), the919

trajectory expands into new regions, corresponding920

to topic development and elaboration; finally, in921

the Convergence Phase (around tokens 70–100),922

the trajectory moves toward a specific region, in-923

dicating the natural closure of content. This dy-924

namic progression aligns closely with our theoreti-925

cal framework: a well-formed generation process926

exhibits a structured transition from exploration to927

convergence in latent space.928

D Mathematical Proofs 929

This appendix provides detailed proofs for the the- 930

orems and propositions referenced in the main text. 931

Throughout, let h denote the latent representation, 932

V (h) the energy function, and g(h,u) the external 933

input function. 934

D.1 Lyapunov Stability Proof 935

Theorem 1 (Stability Condition). If for all h ̸= 936

h∗, 937

(h−h∗)TQg(h,u) ≤ (h−h∗)TQ∇V (h), (11) 938

then the equilibrium h∗ is asymptotically stable. 939

Proof. Consider the Lyapunov function L(h) = 940

(h− h∗)TQ(h− h∗), where Q is symmetric posi- 941

tive definite. L(h) > 0 for h ̸= h∗ and L(h∗) = 0. 942

The time derivative is 943

dL

dt
= 2(h− h∗)TQ

dh

dt
(12) 944

= 2(h− h∗)TQ [−∇V (h) + g(h,u)] (13) 945

= −2(h− h∗)TQ∇V (h) + 2(h− h∗)TQg(h,u)
(14)

946

By the assumption, the second term is no greater 947

than the first, so dL
dt ≤ 0. If the inequality is strict, 948

then dL
dt < 0. By Lyapunov’s direct method and 949

LaSalle’s invariance principle, all trajectories con- 950

verge to h∗. ■ 951

D.2 Discrete System Stability 952

Theorem 2 (Discrete Stability). For the discrete 953

system ht+1 = ht + ∆t[−∇V (ht) + g(ht,ut)], 954

suppose: 955

1. ∇V (ht)
T g(ht,ut) ≤ ∥∇V (ht)∥2 956

2. ∆t < 2/λmax(HV ), where HV is the Hessian 957

of V 958

Then the discrete system is stable, and V (h) de- 959

creases approximately monotonically. 960

Proof. The change in V per update is: 961

∆Vt = V (ht+1)− V (ht) (15) 962

≈ ∇V (ht)
T (ht+1 − ht) (16) 963

+
1

2
(ht+1 − ht)

THV (ht+1 − ht) (17) 964

= ∆t[−∥∇V (ht)∥2 +∇V (ht)
T g(ht,ut)]

(18)
965

+
1

2
∆t2λmax(HV )∥ − ∇V (ht) + g(ht,ut)∥2

(19)

966
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Figure 7: Dynamic evolution along a generation trajectory in 2D latent space (temperature=0.1 and top_K=0.3).

Figure 8: Dynamic evolution along a generation trajectory in 2D latent space (temperature=0.1 and top_K=0.6).
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Figure 9: Dynamic evolution along a generation trajectory in 2D latent space (temperature=0.1 and top_K=1.0).

Figure 10: Dynamic evolution along a generation trajectory in 2D latent space (temperature=2.0 and top_K=0.6).
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Condition 1 ensures the first term is nonpositive;967

condition 2 ensures the second (quadratic) term968

does not dominate. Thus, ∆Vt ≤ 0 if both condi-969

tions hold. ■970

D.3 Continuity–Fluency,971

Clustering–Grammar,972

Persistence–Coherence (Theorems 3–5)973

Theorem 3 (Continuity–Fluency). Higher state974

continuity975

C =
1

T

∑
t

∥ht − ht−1∥2976

implies smaller KL divergences between succes-977

sive token distributions,978

DKL(pt∥pt+1),979

and thus smoother, more fluent text.980

Proof Sketch. Since ht parametrizes p(wt|ht)981

smoothly, small latent steps yield small changes982

in logits and hence low DKL. Empirically this983

correlates with lower perplexity. ■984

Theorem 4 (Clustering–Grammaticality).985

Higher silhouette score Q indicates well-separated986

latent attractors corresponding to distinct syntactic987

regimes, thereby reducing grammatical errors.988

Proof Sketch. Well-defined clusters imply dis-989

tinct syntactic states; transitions remain within a990

single cluster, preventing abrupt grammatical shifts.991

■992

Theorem 5 (Persistence–Coherence). Greater993

topological persistence994

P =
∑
α

|dα − bα|995

reflects robust global manifold structure, support-996

ing coherent theme transitions.997

Proof Sketch. Persistent homology captures long-998

lived loops correlating with thematic cycles; higher999

P ensures stable topic connectivity and logical flow.1000

■1001

D.4 Parameter Sensitivity Analysis and1002

Optimization Strategies1003

A central practical question is how generation pa-1004

rameters shape the dynamic evolution of latent tra-1005

jectories. Our theoretical framework provides fresh1006

insight into the influence of temperature (τ ) and1007

sampling threshold (top-p), and yields actionable1008

strategies for controllable, high-quality generation.1009

Temperature Effects: Dynamics of Randomness. 1010

Temperature (τ ) serves as a primary dial for con- 1011

trolling stochasticity during generation. Our theory 1012

predicts that temperature fundamentally reshapes 1013

latent dynamics: low temperatures (τ → 0) en- 1014

hance state continuity, reduce topological complex- 1015

ity, and reinforce dominant attractors, while high 1016

temperatures (τ → ∞) decrease continuity, am- 1017

plify topological diversity, and weaken attractor 1018

structure. This is closely analogous to physical sys- 1019

tems, where low temperatures yield ordered states 1020

(e.g., crystalline solids) and high temperatures in- 1021

duce disorder (e.g., gases). In language modeling, 1022

low temperatures produce highly deterministic, po- 1023

tentially rigid text that closely follows the “energy- 1024

minimizing” path, whereas higher temperatures in- 1025

troduce more exploratory, creative, but potentially 1026

less coherent content. Mathematically, tempera- 1027

ture scales the logits in the sampling distribution, 1028

p(w|h) ∝ exp(zw/τ); as τ → 0, the distribution 1029

collapses to the argmax, while large τ makes the 1030

distribution uniform, directly modulating trajectory 1031

determinism and diversity. 1032

Sampling Threshold Effects: Dynamic Con- 1033

straints on Feasible Space. Beyond temperature, 1034

top-p (nucleus) sampling imposes a dynamic con- 1035

straint on the allowable state space. Our framework 1036

predicts: lower top-p restricts trajectories to a nar- 1037

row feasible region, increasing continuity but poten- 1038

tially limiting topological complexity; higher top-p 1039

expands the search space, potentially reducing con- 1040

tinuity but enriching manifold structure and output 1041

diversity. This can be likened to path planning in 1042

traffic systems: low top-p is akin to only permitting 1043

travel on main highways, ensuring smooth but con- 1044

strained trajectories, while high top-p opens up all 1045

roads, allowing for more exploration—at the cost 1046

of potential complexity or detours. By limiting the 1047

set of next-token candidates, low top-p “smooths 1048

out” suboptimal paths, whereas high top-p retains 1049

more manifold detail, shifting the balance between 1050

exploration and exploitation. 1051

Optimization Strategies: Theory-Grounded 1052

Practical Guidance. Leveraging these insights, 1053

we propose three core optimization strategies for 1054

practical generation control: 1055

1. Balanced Parameters: To trade off coher- 1056

ence and creativity, set moderate tempera- 1057

ture (τ ≈ 0.7–0.8) and top-p (p ≈ 0.7–0.9), 1058

yielding text that is both inventive and well- 1059
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Figure 11: Effects of decoding parameters on dynamic
metrics and recommended optimization strategy.

structured. For tasks like story or essay writ-1060

ing, this balance prevents the system from1061

being overly deterministic while maintaining1062

sufficient continuity to avoid abrupt logical1063

jumps.1064

2. Task-Adaptive Tuning: Adjust parameters1065

based on task requirements—use lower tem-1066

perature (τ ≈ 0.3–0.5) for highly coher-1067

ent, technical documents (e.g., API documen-1068

tation, legal texts), and higher temperature1069

(τ ≈ 0.9–1.2) for creative or poetic tasks,1070

where exploration and novelty are valued. In1071

the former, strict adherence to grammatical1072

attractors is vital; in the latter, higher tem-1073

perature encourages novel expressions, while1074

persistent topology ensures overall theme co-1075

hesion.1076

3. Dynamic Adjustment: Modulate parameters1077

during generation—begin with higher temper-1078

ature (τ ≈ 0.8–1.0) to encourage exploration1079

(“brainstorming” phase), then lower τ (≈ 0.5–1080

0.7) for convergence and refinement (“polish-1081

ing” phase). For example, in academic writ-1082

ing, initial high temperature facilitates idea1083

diversity; subsequently decreasing τ enables1084

the system to consolidate around optimal ar-1085

gumentative structure.1086
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