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Abstract

We introduce Dynamic Manifold Evolution
Theory (DMET), a unified framework that
models large-language-model generation as a
controlled dynamical system evolving on a
low-dimensional semantic manifold. By cast-
ing latent-state updates as discrete-time Euler
approximations of continuous dynamics, we
map intrinsic energy-driven flows and context-
dependent forces onto Transformer compo-
nents (residual connections, attention, feed-
forward networks). Leveraging Lyapunov sta-
bility theory We define three empirical metrics
(state continuity, clustering quality, topologi-
cal persistence) that quantitatively link latent-
trajectory properties to text fluency, grammati-
cality, and semantic coherence. Extensive ex-
periments across decoding parameters validate
DMET’s predictions and yield principled guide-
lines for balancing creativity and consistency
in text generation.

1 Introduction

Large Language Models (LLMs) have achieved rev-
olutionary advances in recent years, from GPT-4
(OpenAl, 2023), LLaMA-3 (Touvron et al., 2024)
to Claude (Anthropic, 2024), demonstrating un-
precedented capabilities in language understand-
ing and generation. However, despite their abun-
dant applications, their internal mechanisms remain
largely opaque, functioning as “black boxes” (Bom-
masani et al., 2022). This opacity constitutes a
critical barrier to further improving the reliability,
interpretability, and safety of LLMs. In particu-
lar, our understanding of how models organize and
evolve their latent representations during the gen-
eration process remains limited—a knowledge gap
that hinders our ability to effectively address core
challenges such as hallucinations (Huang et al.,
2023), inconsistencies (Zheng et al., 2023), and
semantic drift (Shi et al., 2024).

Recent research has attempted to unveil the in-
ternal mechanisms of LLMs through various ana-

lytical approaches. Methods such as attention visu-
alization (Vaswani et al., 2023), feature attribution
(Sundararajan et al., 2022), and probing techniques
(Liu et al., 2023) have revealed static properties of
model representations, while the residual stream
analysis by Elhage et al. (2021) and mechanistic
interpretability research by Anthropic (2022) have
begun to explore the dynamic aspects of cross-layer
information propagation. However, these efforts
largely provide localized or fragmented perspec-
tives, lacking a unified theoretical framework that
can describe the temporal evolutionary character-
istics of the generation process. Traditional views
simplify LLM generation as a concatenation of dis-
crete token predictions, neglecting the continuous
evolutionary dynamics in the latent space, which
limits our understanding of how models gradually
refine initial concepts into coherent text.

This paper proposes the Dynamic Manifold
Evolution Theory (DMET), an innovative mathe-
matical framework that reconceptualizes the LLM
generation process as a dynamical system evolving
on high-dimensional manifolds. Our key insight
is that LLM generation is essentially a continu-
ous process of latent representation evolution along
semantic manifold trajectories, gradually refining
macroscopic semantic concepts into specific textual
expressions. By integrating dynamical systems the-
ory, manifold geometry, and deep learning, DMET
provides a rigorous mathematical foundation for
understanding and optimizing the dynamics of in-
ternal representations in LLMs.

The main contributions of this paper are as fol-
lows: We propose the Dynamic Manifold Evolu-
tion Theory, which, for the first time, conceptual-
izes the LLM generation process as a dynamical
system evolving on high-dimensional manifolds
and establishes a rigorous mathematical link be-
tween latent representation evolution and generated
text quality. We develop both continuous-time and
discretized dynamical system models, provide ex-



plicit mappings to Transformer architectures, and
introduce a comprehensive toolkit for analyzing
internal state evolution. Leveraging Lyapunov the-
ory, we prove convergence conditions for latent
dynamics and establish a theoretical foundation
connecting semantic consistency of generated text
with dynamical stability, thereby offering princi-
pled strategies for mitigating hallucinations and
inconsistencies. Furthermore, we pioneer geomet-
ric and topological optimization approaches—such
as curvature regularization and topology simplifica-
tion—to address the challenges posed by complex
high-dimensional geometry and improve the stabil-
ity of generation. Finally, we validate our theoreti-
cal framework through extensive experiments and
advanced visualizations, demonstrating strong cor-
relations between latent trajectory properties and
output quality, and highlighting the critical role of
attractor structures in the generative process.

The remainder of this paper is organized as fol-
lows: Section 2 reviews related work and intro-
duces necessary preliminaries; Section 3 details
the mathematical foundations and implementation
methods of the Dynamic Manifold Evolution The-
ory; Section 4 describes the experimental design
and analyzes results; and finally, Section 5 sum-
marizes the main findings of this research and dis-
cusses directions for future work. Through this
comprehensive framework, we not only deepen
our understanding of internal LLM mechanisms
but also provide theoretical guidance for design-
ing more reliable and controllable next-generation
language models.

2 Related Work

We ground DMET at the intersection of three re-
search strands: dynamical systems in deep learning,
manifold-based representation analysis, and latent
trajectory modeling in language models.

Dynamical Systems in Neural Networks In-
terpreting deep networks as discretized contin-
uous systems has gained traction since Neural
ODEs (Chen et al., 2018a), which view residual
connections as Euler steps. Extensions include
augmented neural differential equations (Dupont
et al., 2019) and stability analyses for recurrent and
feed-forward architectures (Miller and Hardt, 2019;
Santos et al., 2023; Li et al., 2023). In the language
domain, Lu et al. (2023) and Patil et al. (2024) ana-
lyze Transformer dynamics, while Zhang and Xiao
(2024) frame decoding as a Markov decision pro-

cess. Unlike these localized or task-specific studies,
DMET provides a unified mapping from continu-
ous dynamics (with Lyapunov stability) to all core
Transformer components.

Manifold Geometry and Topology The man-
ifold hypothesis posits that high-dimensional
representations lie on low-dimensional struc-
tures (Roweis and Saul, 2000; Tenenbaum et al.,
2000). Deep manifold learning methods include
Riemannian metric estimation (Arvanitidis et al.,
2018) and neural tangent space analysis (Chen
et al., 2018b). In NLP, latent geometry has been
explored via syntactic probes (Hewitt and Man-
ning, 2019), linear subspace visualizations (Reif
et al., 2019), and hierarchical manifold discovery in
GPT (McCoy et al., 2022). Topological tools such
as persistent homology (Liu et al., 2024; Dai et al.,
2023) reveal global structural features. DMET
leverages these geometric and topological insights
to define dynamic trajectory metrics that directly
link manifold structure to generation quality.

Latent Trajectory Analysis in Language Mod-
els Examining how hidden states evolve during
text generation has illuminated RNN behavior (Li
et al., 2016; Mardt et al., 2018) and Transformer
residual streams (Elhage et al., 2021). Recent
work investigates trajectory bifurcations (Rajamo-
han et al., 2023) and “thought manifold” evolu-
tion (Hernandez-Garcia et al., 2024). However,
these analyses typically focus on visualization or
specific phenomena. In contrast, DMET systemat-
ically models latent evolution as a dynamical sys-
tem, quantifies its properties, and empirically cor-
relates them with text fluency, grammaticality, and
coherence.

By unifying continuous-time theory, manifold
geometry, and trajectory analysis, DMET offers the
first end-to-end framework for interpreting and con-
trolling LLM generation dynamics. Our Dynamic
Manifold Evolution Theory (DMET) uniquely inte-
grates dynamical systems, Lyapunov stability, and
manifold learning for a unified interpretation of
LLM latent representation evolution. DMET dif-
fers from previous works by: (1) modeling repre-
sentations as evolving points on dynamic manifolds
rather than static vectors; (2) applying differential
equations to model continuous evolution; (3) using
Lyapunov stability to link representational stability
and text quality; and (4) proposing geometric regu-
larization for active optimization of latent manifold
geometry and topology.
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Figure 1: Overview of the DMET framework: latent trajectories evolve on a low-dimensional semantic manifold
under intrinsic energy gradients and context-driven forces, with discrete Transformer layers implementing Euler

steps of this continuous dynamics.

3 Dynamic Manifold Evolution Theory
(DMET): Methodology

3.1 Framework Overview

In this section, we give an overview of the Dy-
namic Manifold Evolution Theory (DMET): we
begin by stating its three foundational assumptions,
then show how these lead to a continuous-time dy-
namical model, and finally explain how residual
connections, self-attention, and feed-forward layers
implement that model in a Transformer.

3.2 Three Core Assumptions

Dynamic Manifold Evolution Theory (DMET) fun-
damentally reinterprets the generation process of
large language models (LLMs). Unlike traditional
perspectives that simplify text generation as a se-
quential prediction of discrete tokens, DMET con-
ceptualizes it as a continuous trajectory evolution
within a structured semantic space. This section
elaborates on the three core assumptions that un-
derpin this theoretical framework.The Dynamic
Manifold Evolution Theory (DMET) is grounded
in three core assumptions that shape our under-
standing of LLM internal dynamics.We summarize

DMET'’s theoretical foundation in three concise
pillars:

1. Manifold Structure. The hidden state
h ¢ R always lies on a much lower-
dimensional semantic manifold M C R¢,

with dim(M) < d.

2. Continuous Evolution. Text generation
corresponds to a continuous trajectory h(t)
smoothly traversing M over time.

3. Attractor Landscape. The manifold M con-
tains multiple attractor basins {.A;}—each
representing a coherent semantic state—and
h(t) naturally converges into one of these
basins.

Core Assumptions of DMET. We build DMET
on three intertwined hypotheses. First, although
LLMs operate in a high-dimensional hidden space
R?, their meaningful representations lie on a much
lower-dimensional semantic manifold M C R¢,
capturing the regularities of language. Second, text
generation is not a series of independent jumps but
a smooth trajectory h(t) that continuously traverses
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dimensional semantic manifold where latent represen-
tations exist. Rather than occupying the entire high-
dimensional space, meaningful linguistic representa-
tions are constrained to this manifold.

M from an initial state h(0) to a final state h(7"),
much like a hiker following a well-defined ridge
rather than a random path. Third, M is shaped by
multiple attractor basins {.4; }—each correspond-
ing to a coherent semantic frame—so that once the
latent state enters an attractor’s domain, it naturally
converges to a stable region, explaining why LLMs
generate focused, logically connected passages in-
stead of disjoint word sequences.

3.3 Dynamical System Modeling and
Transformer Mapping

We model latent evolution as a controlled dynami-
cal system on the semantic manifold:

dh(t)

S = ~VV(h) + g(h),u),

where V' is an energy potential encoding semantic
coherence, and g is a context-driven force from in-
put u(¢). Discretizing via the explicit Euler method
with step size At gives

ht+1 = ht + At [—VV(ht> —|—g(ht,ut)]

Remarkably, each term aligns with a core Trans-
former component:

3.4 Dynamic Metrics (Aligned to
Assumptions)

To quantify latent trajectories, we define three met-
rics directly reflecting our core assumptions:
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Figure 3: Mapping DMET dynamics to Transformer
layers. Detailed derivations and error bounds are pro-
vided in Appendix A.

1. State Continuity (smoothness):

1 X
€ = L3 [,
t=1
2. Attractor Clustering Quality (structure):

1 b(i) —ali)
@ = NZ max{a(i), b(i)}’

where a(i) and b(i) are intra- and nearest-
neighbor cluster distances.

3. Topological Persistence (global stability):
P =) |do—bal,
(634

summing the lifespans of topological features
(birth b, death d,,).

Note: Implementation details—PCA for dimen-
sion reduction, k-means clustering for (), and Vi-
etoris—Rips filtration for P—are described in Ap-
pendix B.

3.5 Theory—Quality Correspondence

To bridge the gap between theory and practical
application, we posit a central hypothesis: the dy-
namic properties of latent trajectories directly de-
termine the quality of generated text, manifesting
in three critical correspondences—state continu-
ity leads to fluency, clustering quality underpins
grammaticality, and topological persistence en-
sures semantic coherence. These associations are
grounded not merely in conjecture, but in rigorous
theoretical analysis and linguistic intuition. We
elaborate on the mechanisms underlying each re-
lationship below.We formalize three propositions
linking our dynamic metrics to generation quality:



Proposition 1 (Continuity—Fluency). Higher
state continuity C' implies smoother information
flow and lower perplexity. Formally, if

1
C= T Zt: |lhy —hy_q]|2 islarge,

then the KL divergence between successive token
distributions,

Dir (p(welwer) || plwiiiwer1)),

remains small, yielding more fluent text.

The link between state continuity and textual
fluency can be understood through the lens of infor-
mation flow: smooth transitions between adjacent
latent states enable gradual information blending
rather than abrupt changes. For example, consider
the sentence “The clouds drift slowly across the
sky.” In latent space, the transition from “sky” to
“clouds” to “drift” is realized as a smooth semantic
evolution, with natural progression between tokens.
In contrast, abrupt state transitions may yield inco-
herent outputs such as “The computers drift slowly
across the sky.” Thus, state continuity fosters natu-
ral word choice, syntactic flow, and overall fluency.

Proposition 2 (Clustering-Grammaticality).
Stronger attractor separation () supports robust
grammatical regimes. If
_ 1 b(i) — afi)
Q=% Z max{a(i), b(i)]

is high, then the model remains within consistent
syntactic attractors, reducing grammatical errors.

Attractor structures in latent space can be in-
terpreted as stable representations of grammat-
ical states. High clustering quality indicates
that such grammatical regimes are clearly sepa-
rated, allowing the model to reliably identify and
maintain correct syntax. For instance, syntactic
rules—such as subject-verb agreement or tense con-
sistency—manifest as stable attractors; initiating
a “If...then...” structure triggers a specific attrac-
tor, guiding the model to complete a well-formed
conditional sentence. Distinct attractor boundaries
prevent the model from abruptly switching gram-
matical frameworks (e.g., from declarative to inter-
rogative), or mixing tenses within a sentence.

Proposition 3 (Persistence—Coherence).
Greater topological persistence P ensures stable
global structure and semantic coherence. When

P=>"|da — bal

is large, thematic loops and topic transitions remain
well-connected, preventing abrupt topic shifts.

Topological persistence captures the global sta-
bility of manifold organization, particularly the
prominence of loops, connecting paths, and se-
mantic “regions.” Consider an article on climate
change, which might cover diverse subtopics such
as scientific evidence, policy responses, and soci-
etal impacts. In latent space, these subtopics form
distinct “semantic zones,” and high topological per-
sistence ensures that stable paths connect these
zones—allowing smooth thematic transitions and
preserving overall document coherence. In con-
trast, low persistence may yield abrupt topic shifts
or logical discontinuities.Notably, the H; homol-
ogy group (representing persistent cycles) is closely
tied to argumentative closure and logical complete-
ness in text. Persistent cycles facilitate the return
of arguments to central themes, enabling essays to
form closed, self-consistent reasoning structures
rather than fragmenting into disconnected parts.

3.6 Summary

DMET provides a unified framework by casting
LLM generation as a controlled dynamical system
on a semantic manifold; it introduces quantitative
metrics—state continuity, attractor clustering, and
topological persistence—that offer concrete, mea-
surable lenses on latent evolution; it maps these
dynamics to Transformer components, where resid-
ual connections implement inertia, self-attention
provides contextual force, and feed-forward layers
approximate gradient flow; and it delivers prac-
tical value by demonstrating that correlations be-
tween latent dynamics and text quality can guide
decoding parameter tuning to achieve improved
fluency, grammaticality, and coherence. Our mani-
fold and attractor assumptions may fail under high-
dimensional noise or in very long sequences where
semantic drift accumulates. In such cases, trajec-
tories can wander off M or traverse spurious at-
tractors. Future work includes adapting DMET
to non-Transformer architectures (e.g., diffusion-
based generators), and modeling advanced decod-
ing strategies (e.g., beam search, mixture sam-
pling) by incorporating multi-step lookahead forces

9(h>{ut+1> S })



4 Experiments and Analysis

4.1 Experimental Setup
4.1.1 Models and Data

We use the DeepSeek-R1 Transformer as our base
model. For each decoding configuration, we gener-
ate 10 continuations of 100 tokens each from the
prompt:

"The future of AI is"”

This yields a total of 400 samples across all settings.
Hidden states are extracted from every layer of the
model at each token step.

4.1.2 Decoding Parameter Grid

We sweep the temperature 7 over 10 values from
0.1 to 2.0 and the nucleus (top-p) threshold over
{0.3, 0.6, 0.8, 1.0}, resulting in 40 unique configu-
rations.

4.1.3 Validation Pipeline

Algorithm 1 summarizes our pipeline for comput-
ing the four latent-dynamics metrics from each
generated sequence.

Algorithm 1 Latent Dynamical System Validation

Require: Transformer model M, input text x
Ensure: Dynamics metrics {0, 7, s, p}
1: H < GetHiddenStates(M, x)
0 < ComputeDistances(H)
J < DetectJumps(9)
V « ReduceDim(H)
s < ClusterStates(V)
p < ComputePersistence(V)
return {9, 7,s,p}
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4.2 Evaluation Metrics

We evaluate both latent dynamics and text-
quality using a three-tiered framework. For
dynamic metrics, we measure state continuity
as C = %Zle |lhy — hy_1]|2, attractor clus-
tering via the silhouette-inspired score ) =
% sz\; 1 %, and topological persistence
P = 3" |da — ba|. For text-quality metrics,
we use both intrinsic measures—perplexity (com-
puted with GPT-2-XL) and lexical diversity (log
type—token ratio)—and extrinsic measures, includ-
ing grammar accuracy and topical coherence.
Correlation Analysis: We fit mixed-effects re-
gression models predicting each text-quality metric

from the three dynamic metrics, treating temper-
ature and top-p as random effects to isolate their
influence.

4.3 Experimental Results
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Figure 4: PCA projection of 400 sample trajectories,
showing two robust clusters (silhouette = 0.76)

Attractor Structure Analysis. Figure 4 visu-
alizes the latent-space attractor structure via PCA
and k-means clustering. We observe two prominent
clusters—one large, one smaller—indicating that
hidden states converge to distinct, stable regions
rather than spreading randomly. This empirical
finding aligns with our DMET prediction of seman-
tic attractors.

Figure 5: Aggregated trajectories of all 400 samples as
a 3D surface, colored from purple (start) to red (end).

Collective Dynamics. Figure 5 presents the ag-
gregate dynamics of all 400 samples, visualized as
a surface in 3D latent space with time progression
color-coded from purple (start) to red (end). Sev-
eral key features emerge from this visualization:
most trajectories originate in the purple region on
the left, indicating similar initial semantic states;
as generation proceeds, the trajectories disperse in
different directions, forming a fan-shaped pattern;



Table 1: Mixed-effects Model Results for Text Quality Predictors

Dependent Variables
Predictors Log-PPL.  Spelling Lexical Diversity Grammaticality Coherence
State Continuity —0.031***  -0.000 —0.003*** -0.001 0.002**
Clustering Quality 0.044 -0.010 -0.074 0.081* 0.047
Topological Persistence -0.000 0.000 -0.003 0.002 0.009***
Random Effects (Var.) 0.962*** 0.048 0.265 0.058 0.115*
Observations (N) 120 120 120 120 120

Note: Coefficients shown with significance levels: *p < 0.05, **p < 0.01, ***p < 0.001.
Log-PPL = Log-Perplexity

multiple local clusters appear in space, correspond-
ing to distinct semantic attractors; and the overall
structure exhibits a coherent manifold rather than
a random point cloud. These collective observa-
tions strongly support our hypothesis that LLM gen-
eration follows constrained dynamical evolution
paths—analogous to fluid flow in physics—rather
than exhibiting a random walk in representation
space.

Correlation Between Dynamics and Text
Quality. Table 1 and fig 6 summarizes the mixed-
effects regression findings. State continuity corre-
lates negatively with log perplexity (5 = —0.031,
p < 0.001) and lexical diversity (5 = —0.003, p <
0.001), but positively with coherence (8 = 0.002,
p < 0.01), indicating a trade-off between fluency
and creativity. Clustering quality (silhouette) is
positively associated with grammatical accuracy
(B = 0.081, p < 0.05). Topological persistence
is strongly correlated with coherence (5 = 0.009,
p < 0.001), empirically validating the theoretical
prediction that robust manifold topology underpins
logical, coherent text.

Effect of Decoding Parameters. We observe
that low temperature (7 < 0.5) yields highly deter-
ministic, smooth trajectories converging on major
attractors. Moderate temperature (0.6 < 17 < 1.2)
enables a balance of exploration and convergence,
maximizing both continuity and topological persis-
tence. High temperature (1 > 1.3) leads to more
stochastic, jumpy trajectories and weaker cluster-
ing. Lower top-p values (0.3) constrain exploration
and boost continuity, while higher values (0.8-1.0)
support diversity at the expense of global coher-
ence. Notably, a combination of moderate temper-
ature (7 ~ 0.7) and top-p (0.6-0.8) achieves the
optimal balance between creativity and coherence.

4.4 Experimental Conclusion

Our experiments robustly validate the Dynamic
Manifold Evolution Theory (DMET) by demon-
strating that latent dynamics critically influence
text quality. Clustering of 400 generated sam-
ples uncovers clear attractor structures—confirmed
by multidimensional scaling to align with distinct
semantic frames—showing that representations
collapse to coherent regions rather than disperse
randomly. Mixed-effects regression reveals that
smoother trajectories (state continuity C) reduce
perplexity (8 = —0.031,p < 0.001) and boost
coherence (5 = 0.002,p < 0.01), stronger at-
tractor separation (clustering quality (Q) predicts
grammatical accuracy (8 = 0.081, p < 0.05), and
greater topological persistence (P) enhances se-
mantic coherence (6 = 0.009,p < 0.001). Pa-
rameter sweeps further show that low sampling
temperature (7 < 0.5) yields overly deterministic
paths, high temperature (7 > 1.3) produces erratic
trajectories with weak attractors, and moderate set-
tings (0.7 < 7 < 1.0, top-p € [0.6,0.8]) strike
the optimal balance of creativity and coherence.
Finally, increasing sequence length leads to de-
creased continuity and increased topological com-
plexity—explaining semantic drift in long-form
generation—while some tasks preserve stable clus-
tering. These findings confirm DMET’s predictions
and offer practical decoding guidelines: by tuning
sampling parameters to shape latent dynamics, one
can systematically improve fluency, grammatical-
ity, and semantic coherence.

S Summary

In this work, we introduced Dynamic Manifold
Evolution Theory (DMET), a unified mathemati-
cal framework that conceptualizes LLM genera-
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tion as a dynamical system evolving on a high-
dimensional semantic manifold. Our main contri-
butions are: (1) establishing a formal mapping be-
tween continuous-time dynamical systems and the
discrete Transformer architecture; (2) deriving rep-
resentation stability conditions via Lyapunov the-
ory; (3) defining quantifiable dynamic metrics; (4)
empirically validating strong correlations between
these metrics and text quality; and (5) propos-
ing theory-driven decoding parameter optimiza-
tion strategies. Our experiments robustly support
DMET’s central predictions: state continuity en-
hances fluency, attractor clustering improves gram-
matical accuracy, and topological persistence en-
sures semantic coherence. In particular, we demon-
strate that tuning temperature and top-p thresholds
can effectively shape latent-trajectory dynamics,
enabling fine-grained control over generation out-
comes. From a broader theoretical perspective,
DMET reveals that language generation is driven
jointly by an internal energy function (linguistic
knowledge) and an external input function (con-
text), offering a principled basis for both interpret-
ing current models and designing next-generation
architectures with improved consistency, reduced
hallucination, and enhanced coherence.

6 Limitations

Despite these encouraging results, our study has
several limitations. Firsty, computational complex-
ity of manifold and topological analyses remains
high for very large models; more efficient algo-
rithms are needed for real-time or large-scale de-
ployment. Second, while we demonstrate strong
correlations, causal relationships between latent
dynamics and text quality remain to be established;
developing interventions to directly manipulate la-
tent trajectories will be crucial. Fourth, our frame-
work rests on the idealized manifold assumption;
real LLM representations may exhibit complex
folds and self-intersections, posing challenges for
accurate manifold estimation. Finally, although
we propose theory-based tuning strategies, prac-
tical control mechanisms for manipulating latent
dynamics (e.g., optimized regularization or decod-
ing algorithms) are yet to be developed.
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A Appendix Overview

This appendix provides all detailed derivations, im-
plementation details, and additional results that
support the main text.
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* Appendix B: Mapping Transformer to Con-
tinuous Dynamics (corresponds to Sec. 3.3)
Complete proofs and error-bound derivations
for the correspondence between Transformer
components (residual, MHSA, FFN, Layer-
Norm) and the continuous-time dynamical
system model.

Appendix C: Experimental Method De-
tails (corresponds to Sec. 4.1) Implementa-
tion specifics for computing dynamic metrics
(state continuity, clustering, persistence) and
text-quality metrics (perplexity, lexical diver-
sity, grammar, coherence).

Appendix D: Supplementary Results (corre-
sponds to Sec. 4.2) Additional visualizations,
including single-sequence trajectory phases
and temperature ablation curves, that illus-
trate latent evolution and the “golden zone”
for decoding parameters.

Appendix E: Mathematical Proofs (cor-
responds to Sec. 3.5 and Sec. 3.6) Full
statements and proofs of Lyapunov stability
(Theorems 1-2), continuity—fluency, cluster-
ing—grammar, persistence—coherence (Theo-
rems 3-5), and temperature effects (Proposi-
tions 3—4).

Mapping between Transformer
Architecture and Dynamical Systems

In the previous section we established the basic
framework of Dynamic Manifold Evolution The-
ory. In this section, we delve into how this the-
ory can be precisely mapped onto the concrete im-
plementation of the Transformer architecture. We
first provide rigorous mathematical proofs of the
dynamical-system interpretation for each architec-
tural component, then analyze the limitations and
approximation errors of the mapping, and finally
discuss the crucial modulatory role of Layer Nor-
malization in this framework.

Table 2 summarizes the correspondence between
DMET theoretical concepts and Transformer com-
ponents. This table is intended to fit within a single
column of a two-column layout.



Table 2: Mapping between DMET theoretical concepts and Transformer components.

Theory Concept Transformer Component

Functional Role

Hidden state

Layer index [

Feed-forward network (FFN)
Multi-head self-attention (MHSA)
Layer normalization + scaling
Activation + Residual

Latent state h(t)
Evolution time ¢

Energy function V' (h)
External function g(h, u)
Time step At

Manifold constraint c(h)

Encodes current semantics

Discrete update step

Semantic optimization

Contextual integration

Controls update magnitude

Restricts representation to valid manifold

B.1 Dynamical-System Interpretation of
Transformer Components

B.1.1 Residual Connection as Inertia:
Rigorous Proof

Residual connections are a key innovation in Trans-
formers, allowing direct passage of the previous
layer’s output so that the network learns residual
mappings. From a dynamical-system perspective, a
residual connection implements “inertia,” keeping
the representation evolution continuous.

Theorem 3 (Equivalence of Residual Inertia).
The Transformer residual update

hi1 1 =hy + F(hy)

is formally equivalent to the inertia term in the
discrete Lagrangian system, where F' denotes a
nonlinear transformation.

Proof. Start from the continuous Lagrangian sys-

tem:
d*h dh
T =t(h, ™) m
Letv = dt , yielding the first-order form:
dh
o 2
=V @)
dv
— =f(h,v). 3
=) )

Applying the explicit Euler discretization with step
At:

“
(&)

hi 1 =h; + At vy,
Vi1 = V¢ + At f(ht, Vt).

In a highly damped regime, v; ~ At - f(hy,0).
Substituting into the update for h gives

b1 = hy + (A £(hy, 0). (6)
Defining F'(h;) = (At)? f(hy, 0) yields

hy1; =hy + F(hy),
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which matches the Transformer residual update. ll

This proof shows that residual connections dis-
cretely simulate physical inertia. The “strength” of
inertia is controlled by At and affects trajectory
smoothness.

Lemma 1 (Residual Strength—Continuity Rela-
tionship). Let a be a residual-strength parameter,
with update

ht+1 = aht + F(ht)

Then the continuity metric

1 T
€ = g 2],

is monotonically decreasing in .
B.1.2 Self-Attention as Contextual Force:
Functional Analysis

Self-attention implements context-dependent dy-
namics in text generation, allowing representation
evolution to respond to global information. We
now prove how multi-head self-attention approx-
imates an arbitrary Lipschitz-continuous “contex-
tual force” function g(h, u).

Theorem 4 (Equivalence of Self-Attention and
Contextual Force). Under suitable parameteri-
zation, multi-head self-attention (MHSA) can ap-
proximate any Lipschitz-continuous function

g:RTx R — RY
arbitrarily well.

Proof Sketch. Standard MHSA computes

MHSA (h;, X Z wP <Z aij(hy, X WVxJ>

(N

where the attention weights are defined as

exp ((Whe)T(W/x,) /v

a;j(hy, X) = )
S0y exp ((Wﬁh»T(fojf)/@)
(3)



By Stone—Weierstrass, any continuous function
g(h, u) can be approximated by finite sums of basis
functions in h with context-dependent coefficients.
As the number of heads h grows, MHSA’s paramet-
ric form can realize these sums to arbitrary preci-
sion. A detailed epsilon-net construction shows the
sup-norm error decays as O(1/v/h). B

B.1.3 Feed-Forward Network as Gradient
Field: Expressivity Proof

The position-wise feed-forward network (FFN) cor-
responds to a negative gradient field —VV (h),
driving the system toward local minima of a se-
mantic energy function V.

Theorem 5 (Equivalence of FFN and Gradi-
ent Field). A two-layer ReLLU FFN of sufficient
width can approximate any smooth energy gradient
field —VV'(h) on compact sets to arbitrary accu-
racy.

Proof Sketch. By the universal approximation
theorem, the FFN can approximate any continuous
vector field. Imposing a curl-penalty

Lewi = ||V x FEN(h)| 7,

drives the learned field to be (approximately) irro-
tational, hence a gradient of some scalar potential.
|

B.2 Mapping Limitations and Approximation
Error Analysis

Although Transformers can approximate continu-
ous dynamical systems, the mapping incurs inher-
ent errors. We bound the global error between the
continuous trajectory h(¢) and its discrete counter-

part hy;/a¢):

with b
LN(hy) = 7= + 8.
Ot
If FFN and MHSA are approximately homoge-
neous of degree one, then

Ateff = l

Ot
acts as an adaptive step-size. A stability condition
follows:

Y < Omin v

)
Amax

where A .« 1S the largest eigenvalue of the Jaco-
bian.

This completes the appendix material for “Sec-
tion 4 — Continuous-to-Discrete Mapping.”

C Experimental Details

C.1 Latent Dynamics Computation

We compute the three dynamic metrics as follows:

 State Continuity: For each hidden-state se-
quence {h;}]_, we calculate

1T
C = = h; — h;_{|l.
]7;£;\| ¢t —hy1]f2

Hidden states are L2-normalized before dif-
ferencing.

» Attractor Clustering: We apply PCA to
reduce {h;} to 2-3 dimensions (retaining
> 85% variance), then run k—means++ with
k chosen by silhouette analysis. We report the
average silhouette score

1 b(i) — a(i)
@= N Z max{a(i),b(i)}’

N

sup Hh(t)_hU/AtJHZ < C1 At + Cyeppny + C3emmusa, i=1

te[0,T

©))

where eppn and eypgsa are the FFN and MHSA
approximation errors respectively. Standard error-
analysis yields the stated bound.

B.3 Layer Normalization as Time-Step
Modulator

LayerNorm not only stabilizes training but also
adapts the effective time-step. Consider the update

h;y1 =h; + FFN(LN(h¢)) + MHSA(LN(hy)),

(10)

where a(i) and b(i) are intra- and nearest-
cluster distances.

* Topological Persistence: Using a Vi-
etoris—Rips filtration over a range of radii, we
compute H; barcodes via Ripser. Persistence
is measured as

P=> | —bal,

summing lifespans of 1D cycles. We apply a
significance threshold p > 0.2 determined by
permutation testing.



C.2 Text Quality Evaluation
We evaluate generated text using both automated

and learned metrics:

e Perplexity: Computed with a GPT-2-XL
model:

N
PPL = exp (—% Z logp(wi|w<i)>-
i=1

e Lexical Diversity:
type—token ratio:

Measured as log

log(#types)

LTTR = .
log(#tokens)

* Grammar Accuracy: Detected via a fine-
tuned BERT classifier; score is

F£errors
#tokens

* Coherence: Entity-grid model combining lo-
cal and global coherence:

Coherence = 0.7 x Local 4+ 0.3 x Global.

* Factuality: Checked against a knowledge
graph; factuality score is

F£correct facts
#verifiable facts”

C.3 Supplementary Results

Trajectory Evolution Analysis. Figure 7-10 de-
pict the evolution of latent representations along
the generation trajectory of a single sequence. By
tracking the representations across time steps (to-
kens), we identify a characteristic three-phase pat-
tern: during the Initial Phase (first 10 tokens), the
trajectory explores a local neighborhood, reflecting
a search for initial semantic direction; in the Ex-
pansion Phase (approximately tokens 30-60), the
trajectory expands into new regions, corresponding
to topic development and elaboration; finally, in
the Convergence Phase (around tokens 70-100),
the trajectory moves toward a specific region, in-
dicating the natural closure of content. This dy-
namic progression aligns closely with our theoreti-
cal framework: a well-formed generation process
exhibits a structured transition from exploration to
convergence in latent space.

dL

D Mathematical Proofs

This appendix provides detailed proofs for the the-
orems and propositions referenced in the main text.
Throughout, let h denote the latent representation,
V (h) the energy function, and g(h, u) the external
input function.

D.1 Lyapunov Stability Proof

Theorem 1 (Stability Condition). If for all h #
h*,

(h—h*)"Q g(h,u) < (h—h*)TQ VV(h), (11)

then the equilibrium h* is asymptotically stable.

Proof. Consider the Lyapunov function L(h) =

(h — h*)TQ(h — h*), where Q is symmetric posi-
tive definite. L(h) > 0 for h # h* and L(h*) = 0.

The time derivative is

2(h - h*)TQ% (12)
2(h —h*)"Q[-VV(h) + g(h,u)] (13)

= —2(h - h")TQVV(h) + 2(h — h*)TQg(h,u)
(14)

dt

By the assumption, the second term is no greater
than the first, so % < 0. If the inequality is strict,

dL

then % < 0. By Lyapunov’s direct method and
LaSalle’s invariance principle, all trajectories con-
verge to h*. |

D.2 Discrete System Stability

Theorem 2 (Discrete Stability). For the discrete
system hyy1 = hy + At[-VV(h) + g(hy, ug)],
suppose:

1. VV(hy) g(hy,up) < [|[VV (hy)|?

2. At < 2/Amax(Hy ), where Hy is the Hessian

of V

Then the discrete system is stable, and V (h) de-
creases approximately monotonically.

Proof. The change in V' per update is:

AV; = V(heyt) — V(hy) (15)
=~ VV(ht)T(ht+1 — ht) (16)
1
+ §(ht+1 —hy)"Hy(hypr —hy) (17
= At[-[|[VV (hy)||* + VV (hy) T g(hy, uy)]
(18)

1
+ S A A (Hy ) | = VV (By) + g (b, )
(19)



Trajectory Evolution (temp=0.1, top_p=0.3)

Time: 25 Time: 35

Time: 45 Time: End

Figure 7: Dynamic evolution along a generation trajectory in 2D latent space (temperature=0.1 and top_K=0.3).

Trajectory Evolution (temp=0.1, top_p=0.6)

Time: 25 Time: 35

Time: 45 Time: End

Figure 8: Dynamic evolution along a generation trajectory in 2D latent space (temperature=0.1 and top_K=0.6).
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Trajectory Evolution (temp=0.1, top_p=1.0)

Time: 25 Time: 35

Time: 45 Time: End

Figure 9: Dynamic evolution along a generation trajectory in 2D latent space (temperature=0.1 and top_K=1.0).

Trajectory Evolution (temp=2.0, top_p=0.6)

Time: 25 Time: 35

Time: 45 Time: End

Figure 10: Dynamic evolution along a generation trajectory in 2D latent space (temperature=2.0 and top_K=0.6).
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Condition 1 ensures the first term is nonpositive;
condition 2 ensures the second (quadratic) term
does not dominate. Thus, AV; < 0 if both condi-
tions hold. u

D.3 Continuity-Fluency,
Clustering-Grammar,
Persistence—Coherence (Theorems 3-5)

Theorem 3 (Continuity—Fluency).
continuity

Higher state

1
C= T Zt: [y —hy—q2

implies smaller KL divergences between succes-
sive token distributions,

Drr(pt|lpe+1)s

and thus smoother, more fluent text.

Proof Sketch. Since h; parametrizes p(w;|h;)
smoothly, small latent steps yield small changes
in logits and hence low Dg. Empirically this
correlates with lower perplexity. |

Theorem 4 (Clustering—Grammaticality).
Higher silhouette score () indicates well-separated
latent attractors corresponding to distinct syntactic
regimes, thereby reducing grammatical errors.

Proof Sketch. Well-defined clusters imply dis-
tinct syntactic states; transitions remain within a
single cluster, preventing abrupt grammatical shifts.
|

Theorem 5 (Persistence-Coherence). Greater

topological persistence
P=> | — b
«

reflects robust global manifold structure, support-
ing coherent theme transitions.

Proof Sketch. Persistent homology captures long-
lived loops correlating with thematic cycles; higher
P ensures stable topic connectivity and logical flow.
|

D.4 Parameter Sensitivity Analysis and
Optimization Strategies

A central practical question is how generation pa-
rameters shape the dynamic evolution of latent tra-
jectories. Our theoretical framework provides fresh
insight into the influence of temperature (7) and
sampling threshold (top-p), and yields actionable
strategies for controllable, high-quality generation.

16

Temperature Effects: Dynamics of Randomness.
Temperature (7) serves as a primary dial for con-
trolling stochasticity during generation. Our theory
predicts that temperature fundamentally reshapes
latent dynamics: low temperatures (7 — 0) en-
hance state continuity, reduce topological complex-
ity, and reinforce dominant attractors, while high
temperatures (7 — o0) decrease continuity, am-
plify topological diversity, and weaken attractor
structure. This is closely analogous to physical sys-
tems, where low temperatures yield ordered states
(e.g., crystalline solids) and high temperatures in-
duce disorder (e.g., gases). In language modeling,
low temperatures produce highly deterministic, po-
tentially rigid text that closely follows the “energy-
minimizing” path, whereas higher temperatures in-
troduce more exploratory, creative, but potentially
less coherent content. Mathematically, tempera-
ture scales the logits in the sampling distribution,
p(wlh) o< exp(zy/7); as 7 — 0, the distribution
collapses to the argmax, while large 7 makes the
distribution uniform, directly modulating trajectory
determinism and diversity.

Sampling Threshold Effects: Dynamic Con-
straints on Feasible Space. Beyond temperature,
top-p (nucleus) sampling imposes a dynamic con-
straint on the allowable state space. Our framework
predicts: lower top-p restricts trajectories to a nar-
row feasible region, increasing continuity but poten-
tially limiting topological complexity; higher top-p
expands the search space, potentially reducing con-
tinuity but enriching manifold structure and output
diversity. This can be likened to path planning in
traffic systems: low top-p is akin to only permitting
travel on main highways, ensuring smooth but con-
strained trajectories, while high top-p opens up all
roads, allowing for more exploration—at the cost
of potential complexity or detours. By limiting the
set of next-token candidates, low top-p “smooths
out” suboptimal paths, whereas high top-p retains
more manifold detail, shifting the balance between
exploration and exploitation.

Optimization Strategies: Theory-Grounded
Practical Guidance. Leveraging these insights,
we propose three core optimization strategies for
practical generation control:

1. Balanced Parameters: To trade off coher-
ence and creativity, set moderate tempera-
ture (7 ~ 0.7-0.8) and top-p (p ~ 0.7-0.9),
yielding text that is both inventive and well-

~
~



Parameter Influence and Optimization Strategies

Parameter Space Exploration Heatmaps

State Continuity C(h) Clustering Quality Q(h) Topological Persistence P(h)

S ohpF ©

e: Temperature

Dynamic Parameter Scheduling Effects

Generation Progress (Tokens)

Dynamic parameter scheduling enables smooth tra

from creative exploration to focused convergence

Figure 11: Effects of decoding parameters on dynamic
metrics and recommended optimization strategy.

structured. For tasks like story or essay writ-
ing, this balance prevents the system from
being overly deterministic while maintaining
sufficient continuity to avoid abrupt logical
jumps.

2. Task-Adaptive Tuning: Adjust parameters
based on task requirements—use lower tem-
perature (7 ~ 0.3-0.5) for highly coher-
ent, technical documents (e.g., API documen-
tation, legal texts), and higher temperature
(t = 0.9-1.2) for creative or poetic tasks,
where exploration and novelty are valued. In
the former, strict adherence to grammatical
attractors is vital; in the latter, higher tem-
perature encourages novel expressions, while
persistent topology ensures overall theme co-
hesion.

3. Dynamic Adjustment: Modulate parameters
during generation—begin with higher temper-
ature (7 ~ 0.8-1.0) to encourage exploration
(“brainstorming” phase), then lower 7 (= 0.5—
0.7) for convergence and refinement (“polish-
ing” phase). For example, in academic writ-
ing, initial high temperature facilitates idea
diversity; subsequently decreasing 7 enables
the system to consolidate around optimal ar-
gumentative structure.
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