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Abstract
Machine learning interatomic potentials (MLIPs)
have become increasingly effective at approximat-
ing quantum mechanical calculations at a fraction
of the computational cost. However, lower errors
on held out test sets do not always translate to im-
proved results on downstream physical property
prediction tasks. In this paper, we propose test-
ing MLIPs on their practical ability to conserve
energy during molecular dynamic simulations. If
passed, improved correlations are found between
test errors and their performance on physical prop-
erty prediction tasks. We identify choices which
may lead to models failing this test, and use these
observations to improve upon highly-expressive
models. The resulting model, eSEN, provides
state-of-the-art results on a range of physical prop-
erty prediction tasks, including materials stability
prediction, thermal conductivity prediction, and
phonon calculations.

1. Introduction
Density Functional Theory (DFT), which models the elec-
trons in materials and molecules, serves as the foundation
for many modern drug and materials discovery workflows.
Unfortunately, DFT calculations are notoriously compu-
tationally intensive, scaling cubically with the number of
electrons in the system: O(n3). Machine learning inter-
atomic potentials (MLIPs) are promising in approximating
and expediting DFT calculations. With increasing data set
sizes and model innovations, MLIPs have shown substan-
tial improvements in accuracy and generalization capabili-
ties (Batatia et al., 2023; Merchant et al., 2023; Yang et al.,
2024; Barroso-Luque et al., 2024).
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Predicting physical properties in chemistry and materials sci-
ence often requires complex workflows involving numerous
evaluations of DFT or MLIPs. For example, in molecu-
lar dynamics (MD) simulations, forces are predicted over
thousands to millions of time steps. However, the MLIP
literature has mostly focused on assessing models based on
energy and force predictions over static DFT test sets rather
than directly assessing their performance in complex simula-
tions. This approach has limitations, as improved accuracy
on test sets does not always lead to better predictions of
physical properties (Póta et al., 2024; Loew et al., 2024).

In this paper, we address two questions: Why does higher
test accuracy sometimes fail to enhance a model’s ability to
predict physical properties, and how can we improve MLIPs
to excel in this area? We first outline four critical property
prediction tasks and identify the properties required for an
MLIP to succeed in these tasks. These properties entail
learning a conservative model with continuous and bounded
energy derivatives, indicating a smoothly-varying and phys-
ically meaningful energy landscape. To test whether these
properties hold, we propose testing the ability of MLIPs to
practically conserve energy in MD simulations. We demon-
strate models that pass this test have a higher correlation
between test errors and property prediction accuracy.

Building on these insights, we present a novel MLIP
called eSEN and training approach that achieves state-of-
the-art (SOTA) performance on complex property predic-
tion tasks. Specifically, our model is capable of running
energy-conserving MD simulations for out-of-distribution
systems (Figure 1 (a)). For materials stability prediction,
eSEN achieves a leading F1 score of 0.831 and a κSRME

of 0.340 on the compliant Matbench-Discovery bench-
mark (Riebesell et al., 2023; Póta et al., 2024). Previous
models are only able to excel in one of these metrics ( Fig-
ure 1 (b,c)). We also achieve a SOTA F1 score of 0.925
and κSRME of 0.170 on the non-compliant category. On the
MDR Phonon benchmark (Loew et al., 2024), SOTA results
are found (Figure 1 (d)). Finally, eSEN achieves the highest
test accuracy on the SPICE-MACE-OFF dataset (Kovács
et al., 2023).

1



Learning Smooth and Expressive Interatomic Potentials for Physical Property Prediction

(a) (b)

(c) (d)

Figure 1. (a) Energy conservation in MD simulations. Direct-force
models (Orb, eqV2) and CHGNet fail to conserve. (b) A higher F1
score on the Matbench-Discovery strongly correlates with a lower
test-set energy MAE. (c) Test-set energy MAE and κSRME on the
Matbench-Discovery benchmark. (d) Test-set energy MAE and
vibrational entropy MAE on the MDR Phonon benchmark. Our
model (eSEN) achieves the best performance on all benchmarks.
A higher correlation between test-set energy MAE and physical
property prediction performance can be observed among energy-
conserving models. All models are trained on MPTrj.

2. Preliminaries
2.1. Machine learning interatomic potentials

Under the Born-Oppenheimer approximation (Oppen-
heimer, 1927) utilized by DFT (Parr et al., 1979), the Po-
tential Energy Surface (PES) can be written as a function
of positions, r, and atomic numbers, a: E(r,a). Per-atom
forces can be calculated by taking the negative gradient of
the PES with respect to the atom positions, F = −∇rE.
For periodic systems such as inorganic materials, the lattice
parameters l are also considered (E(r,a, l)), and the stress
σ may also be calculated, which can be understood as the
gradient of the potential energy surface with respect to the
lattice parameters.

The goal of an MLIP (Unke et al., 2021b) is to predict the
exact same properties as DFT from a training dataset of DFT
calculations (Chanussot et al., 2021; Riebesell et al., 2023;
Loew et al., 2024). The most straightforward benchmark
for MLIPs is to evaluate the model on a held-out test set of
DFT calculations, and compare models based on the mean
absolute error (MAE) or root mean squared error (RMSE) of

energies, forces, or stresses. To bridge the gap between these
performance metrics and practical applicability, we need
to ensure they correlate with physical property prediction
tasks, such as those described next.

2.2. Physical property prediction tasks

Geometry optimization/relaxation. Many computational
chemistry and materials science tasks rely on atomic sys-
tems being in stable configurations, which correspond to
minima of the PES. Stable states are found by minimizing
the potential energy using an optimization procedure that
iteratively updates atom positions based on the predicted
forces (F = −∇rE). Given that many physical properties
are evaluated at or near equilibrium states, geometry opti-
mization (also referred to as “relaxation”) is usually the first
step in most computational workflows.

MD simulations. Simulating the time evolution of atomic
systems enables us to gain understanding of various chemi-
cal and biological processes, as well as enabling the calcula-
tion of macroscopic properties, such as liquid densities, that
can be experimentally verified. For the task of molecular
dynamics simulation, we typically use a potential to com-
pute the per-atom forces which are then used to numerically
integrate Newton’s equations of motion. In this work, we
will focus on the microcanonical ensemble (NVE), where
the number of particles (N), the volume of the system (V),
and the energy of the system (E) are kept constant.

Phonon and thermal conductivity calculations. Precise
predictions of phonon band structures and vibrational modes
are essential for understanding various material proper-
ties, including dynamical stability, thermal stability (Bartel,
2022; Fultz, 2010), thermal conductivity (Razeghi, 2002),
and optoelectronic behavior (Ganose et al., 2021). The cal-
culation of phonon band structures requires the MLIP to
accurately predict higher-order derivatives and capture the
subtle curvature of the true PES around critical points. Re-
cent work (Póta et al., 2024) has demonstrated the usage
of MLIPs in predicting thermal conductivity (κ) by solving
the Wigner transport equation (Simoncelli et al., 2022). In
order to accurately predict κ, MLIPs must reliably capture
both harmonic and anharmonic phonon behavior, which ne-
cessitates the calculation of second and third derivatives of
the learned PES.

3. Desideratum for physical property
prediction

We begin the section by defining what it means for an MLIP
to be energy conserving, which is a fundamental principle
for applications such as MD simulations (Tuckerman, 2023).
For many physical property prediction tasks that probe the
higher-order derivatives of the PES it is also important that
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the PES’s derivatives are well-behaved (they exist and are
bounded). To indicate whether a PES meets these criteria,
we discuss how an MLIP’s ability to conserve energy given
fixed simulation settings may be used.

3.1. Conservative forces

For a force model to be conservative, the work done by
moving in a closed path must be zero, i.e., the integration
of the forces along any path that starts and ends at the same
point is zero: ∮

F · dr = 0 (1)

This property holds if the forces are calculated as the neg-
ative derivative of the PES with respect to the atom po-
sitions (Unke et al., 2021b). However, predicting forces
as derivatives requires an additional backpropagation step
through the network, which increases the computational cost
of the MLIP. Alternatively, some networks (Liao et al., 2023;
Neumann et al., 2024) directly predict forces using a sepa-
rate force head to increase efficiency1. Although direct-force
models can achieve high accuracy, their non-conservative
nature leads to significantly larger errors in certain property
prediction tasks (Fu et al., 2023; Loew et al., 2024; Póta
et al., 2024; Bigi et al., 2024).

3.2. Bounded energy derivatives

Conservative forces is a necessary but not sufficient con-
dition for an MLIP to demonstrate energy conservation in
MD. In practice, MD simulations use a finite-order numer-
ical integration algorithm and a finite time step ∆t, which
introduces truncation errors. The most commonly used in-
tegrator for the NVE ensemble is the Verlet algorithm–a
second-order integrator. The Verlet integrator is known to
approximately conserve the total energy of the system in
long-time simulations. As shown by Theorem 5.1 of Hairer
et al. 2003, the total energy drift of a simulation satisfies

|E(rT ,a)− E(r0,a)| ≤ C∆t2 + CN∆tNT, (2)

where T , 0 ≤ T ≤ ∆t−N , is the total simulation time, N is
a positive integer representing the highest order for which
the N th-order derivative of E is continuously differentiable
with a bounded derivative, and r0 and rT are the starting
and ending positions of the atoms in the simulation respec-
tively. The constants C and CN are independent of T and
∆t. The energy drift bound contains two terms: the first
term represents a time-independent fluctuation of O(∆t2),
and the second term represents the long-term energy conser-
vation. The proof for this theorem is long and technical, for

1Strictly speaking, direct-force models are not truly “poten-
tials”, but rather (non-conservative) “force fields”.
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Figure 2. (a) The eSEN architecture. The high-level architecture is
similar to Transformer/Equiformer, while the edgewise/nodewise
layers are simplified/enhanced. The final-layer L = 0 features
are used to predict nodewise energy, which is summed to get the
total potential energy E. Forces and stress are obtained through
back-propagration. (b) The Edgewise Convolution layer in eSEN.

which we refer interested readers to Hairer et al. 2003 and
Hairer et al. 2006 for more details.

In Equation (2), the ∆tN in the second term and the bound
on the simulation time T ≤ ∆t−N implies that the PES
must be continuously differentiable to high order for energy
conservation in long-time simulations. The critical constant
CN depends on the bounds of the derivatives of E up to the
(N + 1)th order. This implies that, given a fixed time step
size, E and its higher-order derivatives up to the (N)th or-
der all need to be continuously differentiable with bounded
derivatives to maintain long-time conservation. If the deriva-
tives of a PES are more tightly bound, approximate energy
conservation will be maintained even at larger step sizes ∆t.
Therefore, the magnitude of ∆t for which the energy is sta-
ble can be viewed as a proxy for the derivative bounds of the
estimated PES. Alternatively, if a certain time step is known
to be stable when using DFT, we can determine whether
an MLIP has similar bounds on higher-order derivatives by
testing whether it is also stable using the same time step.

4. eSEN
We propose equivariant Smooth Energy Network (eSEN),
a new MLIP architecture that improves upon architectures
that demonstrate high test accuracies to achieve effective
physical property predictions. eSEN is a message-passing
neural network that conducts multiple blocks of edgewise
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and nodewise neural processing. Initially, all nodes are em-
bedded as multi-channel spherical harmonic representations.
Each eSEN layer block updates the node embedding by
conducting an edgewise convolution, followed by a node-
wise feed-forward network with normalization layers and
residual connections between all layers.

A model diagram is shown in Figure 2. eSEN utilizes the
same SO2 convolution layer from the equivariant spherical
channel network (eSCN) architecture (Passaro & Zitnick,
2023) inside the edgewise convolution block. Compared to
eSCN, our edgewise convolution blocks first concatenate
the source and target node embedding, then apply two SO2
convolution layers with an intermediate non-linearity. We
also add an envelope function (details in Section 5) which
is not in eSCN. The nodewise feed-forward layer uses two
equivariant linear layers and an intermediate SiLU-based
gated non-linearity (Weiler et al., 2018; Geiger & Smidt,
2022), which is the same as Equiformer (Liao & Smidt,
2022). Unlike eSCN and EquiformerV2 (Liao et al., 2023),
which projects the spherical-harmonics channels onto spa-
tial grids for nodewise processing, the nodewise layers in
eSEN do not discretize the node representations. As we
demonstrate in Section 5, this design improves the ability of
the model to conserve energy. Normalization is performed
using the equivariant layer normalization (Ba, 2016) pro-
posed by Equiformer (Liao & Smidt, 2022). In the next
section, we conduct an in-depth analysis of the key design
choices for energy conservation, which we argue is impor-
tant for accurate physical property prediction.

5. Design choices for enhancing physical
property prediction

As discussed in Section 3, having conservative forces with
continuous and bounded energy derivatives are properties
an MLIP should obey for MD simulations. It can also be
seen as a prerequisite for the MLIP to accurately capture
higher-order behavior of the PES and thus high accuracy
in physical property prediction tasks such as phonon calcu-
lations. Motivated by this observation, we identify design
choices that impact a model’s ability to conserve energy
and whether its PES varies smoothly. These design choices
can be categorized into three aspects: (1) conservative vs.
direct-force prediction; (2) discretization of the representa-
tion; and (3) obtaining a continuous and smoothly varying
PES. For many of these design aspects, their impact on the
desired properties is not well understood.

To quantify whether an MLIP’s PES is continuous and
smoothly varying, we measure the ability of the resulting
MLIP to conserve energy during MD simulations with a pre-
determined fixed time step. We trained eSEN models under
the same hyperparameters while ablating one design choice
at a time. We construct out-of-distribution (OOD) MD

simulation tasks for both inorganic materials and organic
molecules using models trained on the MPTrj (Jain et al.,
2013; Deng et al., 2023) and the SPICE-MACE-OFF (East-
man et al., 2023; Kovács et al., 2023) datasets. For inorganic
materials, we compute an average conservation error over
81 NVE MD simulations of 100 ps based on the TM23
dataset’s simulation settings (Owen et al., 2024). For or-
ganic molecules, we compute an average conservation er-
ror over 7 NVE MD simulations of 100 ps based on the
MD22 dataset’s simulation settings (Chmiela et al., 2023).
All eSEN models are 2-layer with 3.2M trainable param-
eters. We include details regarding the task protocol in
Appendix A.

5.1. Direct-force prediction

Models that directly predict forces F̂ from the atomic con-
figuration may produce forces that are inconsistent with
the energy prediction, i.e., F̂ ̸= −∇rÊ, and more impor-
tantly are unlikely to be conservative. From the perspective
of minimizing the test error, the direct-force approach has
strong motivations: it avoids the backward pass for force
prediction, which significantly improves model efficiency
and enables low-precision training which further accelerates
training. Empirically, current SOTA accuracy on the OC20,
OC22, and Matbench-Discovery (Chanussot et al., 2021;
Tran et al., 2023; Riebesell et al., 2023) benchmarks are
achieved by direct-force models. Despite this, the direct-
force formulation results in significant energy drift in MD
simulations, as shown in Figure 4 (a1, a2). For this reason,
we compute forces as the negative gradient of the PES with
respect to the atom positions in eSEN.

0 20 40 60 80 100
Epoch

2.0

2.5

3.0

3.5

4.0

Va
lid

at
io

n 
lo

ss

0 10 20 30 40
Time (hours)

2.0

2.5

3.0

3.5

4.0
Direct force
Conserved
Finetuning
Finetuning starts

Figure 3. Validation loss curves for epoch and wallclock time.

Direct-force pre-training. Although direct-force models
are not suitable for certain physical property prediction tasks,
they may still offer advantages (Bigi et al., 2024; Amin et al.,
2025). We demonstrate their efficiency can offer significant
benefit as a pre-training strategy for a conservative model.
Figure 3 shows the validation loss of 2-layer eSEN models
trained on the MPTrj dataset: direct-force, conservative,
and conservative fine-tuning from a pre-trained direct-force
backbone. We start from a direct-force model trained for
60 epochs, remove its direct-force prediction head, and fine-
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(a1)

(a2) (b2)

(b1) (c1)

(c2)

Figure 4. Conservation error on the TM23 task (top row) and MD22 task (bottom row) for ablating design choices of eSEN. Models that
conserve energy are bolded in the legends.

tune using conservative force prediction. The conservative
fine-tuned model achieves a lower validation loss after being
trained for 40 epochs compared to the from-scratch conser-
vative model being trained for 100 epochs. The fine-tuning
strategy also reduces the wallclock time for model training
by 40%. The strategy of combining direct-force pre-training
and conservative fine-tuning is also shown to be effective
under different data/model settings (Bigi et al., 2024).

5.2. Representation discretization

As proposed by Cohen & Welling 2016 and later used in
eSCN and EquiformerV2 (Zitnick et al., 2022; Passaro &
Zitnick, 2023; Liao et al., 2023), non-linearities may be per-
formed by projecting the spherical harmonics to a discrete
grid. A 1 × 1 convolution or pointwise non-linearity may
then be applied to this grid, which then get projected back
to the spherical-harmonics space. The non-linear step may
introduce higher-frequency signals than cannot be properly
represented by the spherical harmonics, i.e., they are beyond
the Nyquist frequency. This can lead to sampling errors that
break strict equivariance and energy conservation. This
problem can be mitigated by sampling the grid at higher res-
olutions as shown in Figure 4 (b1, b2). In eSEN, we instead
use the SiLU-based equivariant Gated non-linearity (Weiler
et al., 2018; Geiger & Smidt, 2022) that performs the non-
linearity directly in the spherical harmonic representation.
This does not require a projection to a discrete grid, so
the model is perfectly equivariant and conservative up to
numerical accuracy.

5.3. Smoothly varying PES

Subtle choices in the design of MLIPs can have a significant
impact on whether a PES varies smoothly and can even lead
to the presence of discontinuities. These include how neigh-
boring atoms are chosen, whether envelope functions are
used near atom distance cutoffs, and which basis functions
are used to embed pairwise atom distances. We discuss each
of these in turn.

A maximum number of neighbors limit in graph construc-
tion has been found to improve training efficiency without
compromising test error (Liao et al., 2023; Qu & Krish-
napriyan, 2024). However, it results in a discontinuity in
the learned PES as the nearest-K neighbors may change
drastically under a small perturbation of the atom positions.
As shown in Figure 4 (c1, c2), having a maximum neighbor
limit breaks energy conservation. In eSEN, instead of limit-
ing the number of neighbors, we use the common approach
of applying a distance cutoff (6Å) under which all neighbors
are kept.

Envelope functions were first introduced in the DimeNet
architecture (Gasteiger et al., 2020a) to improve model
smoothness. The radial basis function used in MLIPs is
not twice continuously differentiable due to the use of a
finite cutoff during graph construction. By applying a poly-
nomial envelope function on the edge messages, the values
in an edge message and its first/higher-order derivatives
with respect to atom positions decays to 0 when the edge
distance approaches the cutoff distance. Figure 4 (c1, c2)
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Table 1. Test set MAE for design choices studied in Section 3.
The conserved model significantly outperforms the direct-force
model on SPICE-MACE-OFF. Nbasis = 512 performs slightly
better on SPICE but slightly worse on MPTrj. Other eSEN variants
all have similar test errors on MPTrj/SPICE-MACE-OFF. Energy
MAE is in meV/atom. Force MAE is in meV/Å. Stress MAE is in
meV/Å/atom.

MPTrj SPICE
Model Energy Force Stress Energy Force

eSEN 17.02 43.96 0.14 0.23 6.36
eSEN, direct 18.66 43.62 0.16 0.56 10.98
eSEN, neighbor limit 17.30 44.11 0.14 0.24 6.52
eSEN, no envelope 17.60 44.69 0.14 0.23 6.33
eSEN, Nbasis = 512 19.87 48.29 0.15 0.19 5.40
eSEN, Bessel 17.65 44.83 0.15 0.20 5.54
eSEN, discrete, res=6 17.05 43.10 0.14 0.26 6.34
eSEN, discrete, res=10 17.11 43.13 0.14 0.33 6.57
eSEN, discrete, res=14 17.12 43.09 0.14 0.33 6.51

shows a model fails to conserve energy without the envelope
function.

Radial basis functions are commonly used to embed inter-
atomic distances(Bartók et al., 2013). A larger number of
basis functions (512 in Passaro & Zitnick 2023, as opposed
to 10 in eSEN’s default setting) allows higher-frequency sig-
nals to pass through the network. This can lead to the PES
being more sensitive to small shifts in the atom positions.
In our experiments, using a large number of basis functions
breaks conservation for the TM23 tasks, but is able to con-
serve energy for the MD22 tasks. Using a Bessel radial
basis function (as opposed to a Gaussian radial basis in the
default setting) does not impact conservation properties in
both tasks.

5.4. Ablation studies

Many of the architecture choices described above have neg-
ligible impact on the test set errors as shown in Table 1.
However, as shown in Figure 4, they can have a dramatic
impact on whether a model is conservative in practice. If
a model is found to be conservative, stronger correlations
are found between test errors and property prediction tasks
(Figure 1 and Figure 6).

6. Experiments
In the previous section, we demonstrated the design of eSEN
results in its ability to be energy-conserving in MD simula-
tions. In this section, we evaluate eSEN in physical property
prediction tasks: (1) materials stability prediction based on
geometry optimization; (2) thermal conductivity prediction;
and (3) phonon calculation. We also demonstrate the cor-
relation between test energy MAE and physical property
prediction tasks for eSEN.

6.1. Matbench Discovery

The Matbench-Discovery benchmark evaluates a model’s
ability to predict ground-state (0 K) thermodynamic stability
through geometry optimization and energy prediction. It is
a widely used benchmark for evaluating ML models in ma-
terials discovery. The compliant benchmark only includes
models trained on the MPTrj (Jain et al., 2013; Deng et al.,
2023) dataset or its subset, which facilitate a fair comparison
of model architectures. The F1 score is the primary metric
used to rank models. We train an eSEN with 30M parame-
ters on MPTrj for 60 epochs of direct-force pre-training and
40 epochs of conservative fine-tuning. DeNS (Liao et al.,
2024) is used during direct-force pre-training. As shown in
Table 2, eSEN-30M-MP achieves an F1 score of 0.831—the
highest among all compliant models. eSEN-30M-MP also
achieves the lowest root mean square deviation (RMSD)
when comparing the relaxed structures to the ground truth
DFT reference.

The thermal conductivity prediction task requires ac-
curate modeling of harmonic and anharmonic phonons in
materials, which tests the accuracy of second and third or-
der derivatives of the learned PES. The primary metric is
the symmetric relative mean error in predicting thermal
conductivity (κSRME). We follow the protocol set forth in
the Matbench-Discovery benchmark (Riebesell et al., 2023;
Póta et al., 2024) to predict thermal conductivity κ. After
running a structural relaxation, κ is computed using sec-
ond and third order force constants obtained from phonon
calculations using the supercell method.

As shown in Table 2, our model achieves a κSRME of 0.340
under the default evaluation protocol proposed by Póta et al.
2024. Notably, our model excels in both the F1 score and
κSRME, while all previous models only achieve SOTA per-
formance on one or the other of these metrics.

The non-compliant Matbench-Discovery benchmark in-
cludes models trained on datasets other than MPTrj. eSEN-
30M-OAM is an eSEN model with 30 million param-
eters pre-trained on the OMat24 (Barroso-Luque et al.,
2024) dataset then fine-tuned on the subsampled Alexan-
dria (sAlex) dataset (Barroso-Luque et al., 2024; Schmidt
et al., 2024) and MPTrj dataset. As shown in Table 3, eSEN-
30M-OAM achieves the best performance among all non-
compliant models with an F1 score of 0.925, a κSRME of
0.170, and an RMSD of 0.0608, significantly advancing
state-of-the-art.

6.2. MDR phonon benchmark

The MDR Phonon benchmark (Loew et al., 2024) assesses
the performance of MLIPs in predicting key phonon proper-
ties, including maximum phonon frequency (ωmax), entropy
(S), free energy (F ) and heat capacity at constant volume
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Table 2. Matbench-Discovery benchmark results of compliant models (trained only on MPtrj or its subset) with results on the unique
prototype split. MAE is in units of eV/atom. (↑/↓) stands for higher/lower the better.

Metric eSEN-30M-MP eqV2 S DeNS MatRIS-MP AlphaNet-MP DPA3-v2-MP ORB v2 MPtrj SevenNet-l3i5 GRACE-2L-MPtrj MACE-MP-0 CHGNet M3GNet

F1 ↑ 0.831 0.815 0.809 0.799 0.786 0.765 0.760 0.691 0.669 0.613 0.569
DAF ↑ 5.260 5.042 5.049 4.863 4.822 4.702 4.629 4.163 3.777 3.361 2.882
Precision ↑ 0.804 0.771 0.772 0.743 0.737 0.719 0.708 0.636 0.577 0.514 0.441
Accuracy ↑ 0.946 0.941 0.938 0.933 0.929 0.922 0.920 0.896 0.878 0.851 0.813
MAE ↓ 0.033 0.036 0.037 0.041 0.039 0.045 0.044 0.052 0.057 0.063 0.075
R2 ↑ 0.822 0.788 0.803 0.745 0.804 0.756 0.776 0.741 0.697 0.689 0.585

κSRME ↓ 0.340 1.676 0.861 1.31 0.959 1.725 0.550 0.525 0.647 1.717 1.412
RMSD ↓ 0.0752 0.0757 0.0773 0.1067 0.0823 0.1007 0.0847 0.0897 0.0915 0.0949 0.1117

Table 3. Matbench-Discovery benchmark results of non-compliant models with results on the unique prototype split.
Model eSEN-30M-OAM eqV2-M-OAM ORB v3 SevenNet-MF-ompa DPA3-v2-OpenLAM GRACE-2L-OAM MatterSim-v1-5M MACE-MPA-0 GNoME

F1 ↑ 0.925 0.917 0.905 0.901 0.890 0.880 0.862 0.852 0.829
DAF ↑ 6.069 6.047 5.912 5.825 5.747 5.774 5.852 5.582 5.523
Precision ↑ 0.928 0.924 0.904 0.879 0.879 0.883 0.895 0.853 0.844
Accuracy ↑ 0.977 0.975 0.971 0.969 0.966 0.963 0.959 0.954 0.955
MAE ↓ 0.018 0.020 0.024 0.021 0.022 0.023 0.024 0.028 0.035
R2 ↑ 0.866 0.848 0.821 0.867 0.869 0.862 0.863 0.842 0.785

κSRME ↓ 0.170 1.771 0.210 0.317 0.687 0.294 0.574 0.412 N/A
RMSD ↓ 0.0608 0.0691 0.0750 0.0639 0.0679 0.0666 0.0733 0.0731 N/A

(CV ), for around 10,000 materials. The evaluation follows
the testing protocol outlined by Loew et al. 2024. Sec-
tion 6.2 shows the resulting MAE of our model and those
of several other models2. eSEN achieves SOTA results in
both compliant and non-compliant categories.

Our results are consistent with those reported by Loew et al.
2024, showing that conservative MLIPs significantly out-
perform direct-force models in terms of prediction accuracy
when tested using phonon calculations with a displacement
of 0.01 Å. The high error of direct-force models can be
largely attributed to high-frequency prediction errors at
small displacements (Loew et al., 2024). Increasing the
displacement used in the finite-difference phonon calcula-
tions to 0.2 Å can considerably improve prediction accuracy
of direct-force models (with caveats). We include a more
detailed analysis of the relationship between atom displace-
ment and phonon prediction in Appendix B.

In physical phonon calculations, we expect the results to
converge as the displacement goes to zero. By examining
the resulting phonon band structure, we can gain insight
into this behavior. Figure 5 presents the predicted phonon
band structure and density of states for three representative
materials using eSEN. The predicted phonon bands exhibit
convergence as the displacement decreases. In contrast, Fig-
ures Figure C.11 and Figure C.12 display the phonon bands
for the same three materials predicted using eqV2-S-DeNS
(direct-forces), which not only fail to demonstrate conver-
gence but also exhibit significant errors, including missing

2In addition to our model, we also run the evaluation for
GRACE (Bochkarev et al., 2024), SevenNet (Park et al., 2024),
Orb (Neumann et al., 2024), and eqV2-S-DeNS (Liao et al., 2023;
Barroso-Luque et al., 2024), which were not included in the work
by Loew et al. 2024.

Table 4. Summary of model performance on the MDR Phonon
benchmark. Metrics include maximum phonon frequency
(MAE(ωmax), in K), the vibrational entropy (MAE(S), in J/K/mol),
the Helmholtz free energy (MAE(F ), in kJ/mol), and the heat ca-
pacity at constant volume (MAE(CV ), in J/K/mol). *The OMat24
dataset uses a slightly different DFT setting from the DFT setting
of the MDR Phonon benchmark.

Compliant models MAE(ωmax) MAE(S) MAE(F ) MAE(CV )

M3GNet 98 150 56 22
CHGNet 89 114 45 21
MACE 61 60 24 13
GRACE-2L (r6) 40 25 9 5
SevenNet-0 40 48 19 9
SevenNet-l3i5 26 28 10 5
eSEN-30M-MP 21 13 5 4

Direct-force models

Orb MPTrj [0.01 Å] 309 476 64 181
Orb MPTrj [0.2 Å] 61 34 11 8
eqV2-S-DeNS [0.01 Å] 280 224 54 94
eqV2-S-DeNS [0.2 Å] 58 26 8 8

Non-compliant models

eqV2-M-OAM [0.01 Å] 780 403 241 100
eqV2-M-OAM [0.2 Å] 50 25 7 9
MatterSim 17 15 5 3
GRACE-2L-OAM 19 14 5 4
SevenNet-MF-ompa 15 8 3 3
eSEN-30M-OAM 15 10 4 3

acoustic branches and spurious imaginary frequencies.

While we find that the OMat-trained models (without
sAlex/MPTrj finetuning) may provide a lower error on
phonon prediction (7/7/2/2 for ωmax/S/F /CV MAE), we
refrain from direct comparison due to mismatch in level of
theory. We attribute this result to the softening issue of the
sAlex and MPTrj dataset (Deng et al., 2025; Barroso-Luque
et al., 2024), which OMat24 addresses. We refer interested
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Figure 5. Predicted phonon band structure and density of states (DOS) of Si (diamond structure), CsCl (CsCl structure), AlN (wurtzite
structure) using eSEN at different displacement values. DFT baseline is taken from the PBE MDR dataset (Loew et al., 2024) calculated
using a displacement of 0.01 Å.

Table 5. Test set MAE for SPICE-MACE-OFF. Energy (E) MAE
is in meV/atom. Force (F) MAE is in meV/Å. *EscAIP-45M is a
direct-force model.

MACE-4.7M EScAIP-45M* eSEN-3.2M eSEN-6.5M
Dataset E F E F E F E F

PubChem 0.88 14.75 0.53 5.86 0.22 6.10 0.15 4.21
DES370K M. 0.59 6.58 0.41 3.48 0.17 1.85 0.13 1.24
DES370K D. 0.54 6.62 0.38 2.18 0.20 2.77 0.15 2.12

Dipeptides 0.42 10.19 0.31 5.21 0.10 3.04 0.07 2.00
Sol. AA 0.98 19.43 0.61 11.52 0.30 5.76 0.25 3.68
Water 0.83 13.57 0.72 10.31 0.24 3.88 0.15 2.50

QMugs 0.45 16.93 0.41 8.74 0.16 5.70 0.12 3.78

readers to Deng et al. 2025 and Barroso-Luque et al. 2024
for a detailed discussion on the softening issue of some DFT
datasets and its relation to phonon properties.

6.3. SPICE-MACE-OFF

We train and evaluate eSEN models on the SPICE-MACE-
OFF dataset (Kovács et al., 2023), which is built upon the
SPICE dataset (Eastman et al., 2023). As shown in Ta-
ble 5, eSEN with 6.5M parameters outperforms MACE-
OFF-L (4.7M parameters) and EscAIP (45M parameters,
direct-force) on all test-set splits for both energy and force
MAE. We also include results for eSEN with 3.2M parame-
ters, which has inference efficiency similar to MACE-4.7M,
while achieving lower test energy/force MAE. More de-
tails on the inference efficiency benchmark are included in
Appendix C.

6.4. Test-set error for model development

In Figure 1, we showed the correlation between test error
and physical property prediction tasks for different architec-
tures. Figure 6 demonstrates this correlation for different
variants of eSEN (with a 1k-materials subset of the MDR
Phonon benchmark for efficiency). In particular, among
models that pass the MD energy conservation test, a strong
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Figure 6. Test error correlation across several property prediction
tasks for eSEN variants. Conservative models are shown as boxes
and those found to not conserve as crosses. Note metrics for
conservative models have a stronger correlation with test set errors.

correlation between test error and κSRME/vibrational en-
tropy MAE can be observed. We include experimental
details about Figure 1 and Figure 6 in Appendix A and addi-
tional results for other phonon properties in Appendix B.

7. Related works
MLIP architectures have made significant progress since
their initial proposal (Behler & Parrinello, 2007). These
architectures are usually symmetry-preserving (Smith et al.,
2017; Schütt et al., 2017; Gilmer et al., 2017; Chmiela
et al., 2017; Artrith et al., 2017; Unke & Meuwly, 2018;
Zhang et al., 2018; Zubatyuk et al., 2019; Smith et al.,
2020; Kovács et al., 2021), with increasingly expressive
atom environment embeddings and message-passing opera-
tions (Gasteiger et al., 2020b; 2021; Schütt et al., 2021; Liu
et al., 2021; Unke et al., 2021a; Chen & Ong, 2022; Deng
et al., 2023; Cheng, 2024; Yin et al., 2025). Notably, equiv-
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ariant architectures based on spherical harmonics represen-
tations (Thomas et al., 2018; Thölke & De Fabritiis, 2021;
Batzner et al., 2022; Musaelian et al., 2022; Batatia et al.,
2022; Passaro & Zitnick, 2023; Liao et al., 2023; Bochkarev
et al., 2024; Park et al., 2024; Batatia et al., 2025) have
shown strong performance on large-scale datasets. Mean-
while, the high computational cost of these architectures
has sparked significant interest in scalable architectures that
may not respect physical principles such as energy conser-
vation (Langer et al., 2024; Brehmer et al., 2024; Hu et al.,
2021; Yang et al., 2024; Qu & Krishnapriyan, 2024; Neu-
mann et al., 2024; Rhodes et al., 2025). These models have
demonstrated strong performance in accuracy, scalability,
and relaxation tasks (Chanussot et al., 2021; Riebesell et al.,
2023). While their non-physical nature may make them
unsuitable for direct usage in some physical property pre-
diction tasks, they may still provide benefit by using the
pre-training strategy proposed in this paper and Bigi et al.
2024, distilling them to conservative models (Amin et al.,
2025), or combining them with a conservative model using
multiple-time-step integration (Bigi et al., 2024).

MLIPs and physical observables. While MLIPs con-
tinue to improve, it is necessary to evaluate them in realis-
tic tasks that are relevant to scientific discovery. Physical
property prediction benchmarks that involve geometry opti-
mization (Riebesell et al., 2023; Lan et al., 2023; Wander
et al., 2024), MD simulations (Fu et al., 2023; Kovács et al.,
2023; Moore et al., 2024; Sabanes Zariquiey et al., 2024;
Eastman et al., 2024), vibrational analysis and phonon cal-
culations (Póta et al., 2024; Loew et al., 2024; Wines &
Choudhary, 2024), and others are increasing in scale with
broader applications and wider adoption. Training strategies
for learning from physical observables (Wang et al., 2020;
Greener, 2024; Röcken et al., 2024; Raja et al., 2024) and
the higher-order derivatives of the PES (Fang et al., 2024;
Williams et al., 2025) are promising directions to further
improve MLIPs for predicting physical properties.

8. Discussion
We identify conservative forces and a smoothly-varying PES
as two important properties for MLIPs to consistently per-
form well in physical property prediction tasks. We offer an
analysis of design choices to enhance these two properties.
The resulting eSEN architecture bridges the gap between
the test-set error and downstream applications, achieving
SOTA performance in force/energy prediction, geometry
optimization, phonon calculations, and thermal conductivity
prediction. This implies it may be possible to use test error
as a proxy metric for evaluating model performance during
development, if a model passes energy conservation tests.
This can accelerate innovations in MLIPs, since benchmark-
ing physical properties usually requires significant domain

knowledge and is usually time-consuming, whereas evaluat-
ing test set error is straightforward and efficient.

Software and Data
Code is available at: https://github.com/
facebookresearch/fairchem. Pretrained check-
points are available at https://huggingface.co/
facebook/OMAT24.
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A. Experimental details
A.1. MD simulation protocol

Simulating molecular systems not seen during training is
a key capability of MLIPs. Therefore, we construct chal-
lenging MD simulation tasks featuring out-of-distribution
data to test a model’s conservation capability. We conduct
experiments on two chemical domains: inorganic crystals
and organic molecules.

Inorganic materials. For training models on inorganic ma-
terials we utilize the MPTrj (Deng et al., 2023) dataset, and
we establish a suite of simulation tasks based on the TM23
dataset (Owen et al., 2024). TM23 contains MD samples of
27 single vacancy defect transition metal systems at cold,
warm, and melt temperatures using an NVT ensemble, in
total 81 combinations of different metals and temperature.
These defected systems are out-of-distribution for a model
trained on the MPTrj datasets, which only contains relax-
ation trajectories of non-defected systems. Additionally,
some of the metals in the TM23 dataset is very rare in the
MPTrj dataset. We initialize the simulation by sampling a
frame from the TM23 dataset, run a relaxation using the
LBFGS algorithm, randomly initialize the atom velocities at
cold/warm/melt temperatures using a Maxwell-Boltzmann
distribution, then run MD simulations under the NVE en-
semble for 100 ps using a time step of 5 fs (same as the time
step used in the TM23 ab initio MD protocol).

Organic molecules. For training models on organic
molecules we use the SPICE-MACE-OFF dataset (Kovács
et al., 2023), which is mainly based on the SPICE-1.0
dataset (Eastman et al., 2023), and we establish a suite of
simulation tasks from the MD22 dataset (Chmiela et al.,
2023) that contains seven large molecules. Molecules
in MD22 are out-of-distribution for a model trained on
the SPICE-MACE-OFF dataset as they are considerably
larger than all molecules in the SPICE-MACE-OFF training
dataset. We initialize the simulation by sampling a frame
from the MD22 dataset, run a relaxation using the LBFGS
algorithm, randomly initialize the atom velocities at a tem-
peratures of 400/500 K using a Maxwell-Boltzmann dis-
tribution (400 K for Buckyball catcher and Double-walled
nanotube and 500 K for other molecules, which are the same
as the MD22 protocol), then run MD simulations under the
NVE ensemble for 100 ps using a time step of 1 fs (same as
the time step used in the MD22 ab initio MD protocol).

All ML-based MD simulations use a Velocity-Verlet inte-
grator and are conducted with ASE (Larsen et al., 2017).
We measure the energy conservation error (extent of energy
drift) across the 100-ps simulations. All eSEN models are
2-layer with Lmax = 2 and Mmax = 2 (3.2M trainable
parameters). Detailed model hyperparameters are included
in Appendix D.

A.2. Phonon calculation protocols

Harmonic and anharmonic phonon calculations and solu-
tions to the Wigner transport equation (Simoncelli et al.,
2022) used for the thermal conductivity benchmark (κSRME)
values given in Table 2 were carried out using the supercell
method with finite differences implemented in PHONO3PY
(Togo et al., 2015; 2023). The calculations followed
the protocol described in the Matbench-Discovery bench-
mark (Riebesell et al., 2023; Póta et al., 2024). For eSEN-
30M, an even lower κSRME of 0.298 is obtained when we
adjust the evaluation parameter atom displacement from
0.03 Å to 0.05 Å.

Harmonic phonon calculations for the MDR benchmark re-
sults listed in Section 6.2 were carried out following the
calculation protocol used by (Loew et al., 2024) which em-
ploys phonon calculations using the supercell method with
finite differences with a displacement of 0.01 Å. Calcula-
tions were done using the PHONOPY software (Togo et al.,
2023).

A.3. Test-set error for MPTrj-trained models

Since MPTrj lacks an official test split and various models
are typically trained on distinct subsets of the data, we ran-
domly selected 5000 samples from the subsampled Alexan-
dria (sAlex) dataset (Schmidt et al., 2024; Barroso-Luque
et al., 2024) for a fair comparison. This subset was used to
calculate the test-set energy mean absolute errors (MAEs)
presented in Figures 1, 6, B.7, and B.8.

In the ablation study reported in Table 1, we use a random
test split of the MPTrj dataset. We find the performance of
eSEN to be highly stable with different random seeds. We
trained 2-layer eSENmodels on the MPTrj dataset using 3
different seeds for 50 epochs, with loss coefficients the same
loss coefficients of models in Table 1. The validation set
errors and standard deviations are 19.67± 0.23 for energy
(meV/atom), 43.85± 0.058 for forces (meV/Å), and 0.16±
0.00038 for stress (meV/(Å3· atom)).

B. Phonon calculations and vibrational
properties

B.1. Correlation of test-set energy errors and
vibrational property errors

Figure B.7 presents the correlation between test-set energy
MAE and the other three phonon calculation tasks, evalu-
ated across various model architectures. The corresponding
correlations for different variants of eSEN are displayed in
Figure B.8. In both figures, improved correlation can be
observed among energy-conserving models.

Figure B.8 illustrates that failing the conservation test can
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Figure B.7. The correlation between test-set energy error and maximum frequency, free energy and heat capacity across different model
architectures.
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Figure B.8. The correlation between test-set energy error and maximum frequency, free energy and heat capacity for different variants of
eSEN.

result in varying degrees of impact on different properties,
depending on the specific design choices made. Although
the neighbor limit, envelope function, and number of basis
functions substantially affect κSRME (see Figure 6), their
influence on the properties evaluated in the MDR Phonon
benchmark is relatively minor. Representation discretization
impacts vibrational entropy and heat capacity but not other
properties. While a model might still be able to get good
performance in some physical property task when the energy
conservation test is failed, when the conservation test is
passed, the model performs very well robustly across all
metrics.

B.2. Displacement values and their relation to phonon
band structure predictions

Figure B.9 presents the MAEs on phonon calculations for
eSEN, MACE, and eqV2 S DeNS as a function of increasing
displacement values. As anticipated, both eSEN and MACE
exhibit constant or slightly increasing MAE with respect to
displacement. In contrast, eqV2 S DeNS displays a notable
decrease in MAE with increasing displacement. Notably,
when using a displacement of 0.2 Å, the resulting phonon

benchmark MAE values for eqV2 S DeNS become compa-
rable to those of conservative force models (Section 6.2).

While the prediction accuracy of thermodynamic properties
such as maximum frequency, entropy, free energy, and heat
capacity improves with increasing displacement for direct-
force models, this improvement is deceptive and does not
translate to accurate predictions of the underlying phonon
band structure and density of states (DOS). As illustrated
in Figure C.11, the predicted phonon bands and DOS for
three selected materials exhibit significant errors, particu-
larly in capturing the correct dispersion relations. Moreover,
imaginary frequencies are commonly predicted at small dis-
placement values, suggesting a rough energy landscape (i.e.
the learned PES is not truly convex when it’s very close to
the minima). The eqV2 S DeNS model also fails to accu-
rately capture acoustic modes—those that go to zero linearly
at the γ point—which is due to a non-zero net force on the
structure. In contrast, non-zero net force at energy local min-
ima does not occur for conservative models by definition
(Figure 5).

By enforcing a net zero force prediction, as proposed by
Neumann et al. 2024, direct-force models can be modified
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Figure B.9. Errors in a randomly sampled subset (1000 samples) of the MDR Phonon benchmark when the atom displacement is adjusted.

to accurately capture acoustic phonon modes. As demon-
strated in Figure C.12, incorporating this constraint allows
the model to predict acoustic modes correctly. However,
despite this improvement, the model continues to struggle
with accurately reproducing the phonon band structure, and
the issue of predicting imaginary frequencies at small dis-
placement values persists.

The apparent paradox of direct-force models like eqV2 S
DeNS failing to accurately capture phonon band structures
while still achieving competitive accuracy for thermody-
namic properties such as entropy, free energy, and heat
capacity can be resolved by examining the underlying cal-
culation methodology. These properties are computed using
weighted integrals of the DOS. Additionally the metrics in
the MDR are performed at room temperature (300 K). The
predicted DOS in Figure C.11 and Figure C.12 at larger dis-
placement values adequately captures the overall features of
the DFT DOS, but does not reproduce finer details such as
high density areas and fluctuations. This level of agreement
is sufficient for accurate predictions because the Boltzmann-
weighted integrals used in calculating thermal properties
help to mitigate the impact of point-wise errors, making it
less crucial to precisely capture fine details in the band struc-
ture and DOS (Ackland et al., 1997; Van De Walle & Ceder,
2002). Moreover, since properties are estimated at 300
K, models can achieve accurate predictions by prioritizing
prediction accuracy of lower-frequency modes, which are
more relevant for thermal property calculations, rather than
attempting to capture higher-frequency modes. Although
eqV2 S DeNS without a net-zero force contraint may not
accurately capture acoustic phonon branches, its ability to
predict vibrational thermodynamics at room temperature
remains unaffected due to the relatively small number of
acoustic phonon states at low frequencies.

As a comparison with eqV2 S DeNS, Figures Figure C.13
and Figure C.14 shows the predicted phonon dispersion and
DOS for the same three materials using eSEN with direct-
force prediction. Although the results still exhibit some
of the characteristic artifacts of direct-force models, such

as convergence at larger displacements and the absence of
acoustic modes, these issues are less pronounced compared
to eqV2 S DeNS. Moreover, the predicted phonon bands
and DOS are significantly improved, providing a more accu-
rate representation of the DFT reference values. The better
approximation of phonon bands and a lower tendency to
predict imaginary frequencies highlight the importance of a
smoothly-varying model, even without being conservative.

Extending the existing metrics proposed by Loew et al. 2024
with additional evaluations would provide a more compre-
hensive assessment of MLIP performance. Specifically, new
metrics could be developed to assess phonon dispersion
across all modes and frequencies at commensurate points;
and computing vibrational thermodynamic properties at a
range of temperatures.
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Figure B.10. Inference efficiency of MACE-OFF-L and eSENs of
a similar scale.

C. Inference efficiency
We benchmarked the inference speed of our models
against the similar sized MACE-OFF-L (Kovács et al.,
2023) (4.7M) on a single 80GB Nvidia A-100 GPU. For
MACE-OFF-L we used the exact benchmark code found
in https://github.com/ACEsuit/mace/blob/
main/tests/test_benchmark.py with mace-torch
v0.3.6 (PyPi). To create a fair comparison, we replicated the
identical benchmark environment as MACE benchmarks
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using the same diamond system with variable number of
supercells (carbon atoms) as input. All models are bench-
marked using the standard Python (3.12) runtime with Py-
torch v2.4.0 (Paszke et al., 2019) and CUDA 12.1 (Nickolls
et al., 2008). No compile/torchscript was used for standard-
ization of runtime. Across all system sizes, eSEN-3.2M has
a comparable inference efficiency to MACE-OFF-L. For
216 atoms (Figure B.10), our models (3.2M, 6.4M) can run
approximately (0.4, 0.8) million steps per day comparable
to MACE-OFF-L (0.7 million steps per day).

D. Hyper-parameters
Hyper-parameters used for model training are shown in
Table 6 We train all models using a per-atom energy MAE
loss, a force l2 loss, and a stress MAE loss. For direct-
force models or direct-force pre-training, we use the same
decomposed loss as described in Barroso-Luque et al. 2024.
The eSEN-30M-MP model trained on MPTrj uses Denoising
Non-equilibrium Structures (DeNS) (Liao et al., 2024) with
a noising probablity of 0.5, a standard deviation of 0.1 Å
for the added Gaussian noise, and 10 for the DeNS loss
coefficient during direct-force pre-training. DeNS is not
used during conservative fine-tuning. In our ablation study
for maximum neighbor limit we used 30 as the limit. The
main effect of DeNS is reducing overfitting in the pretraining
stage. Such benefit is found to carry over to the conservative
finetuning stage. The eSEN-30M-OMat and the OAM Fine-
tuned models do not use DeNS.
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Figure C.11. Predicted phonon band structure and density of states (DOS) of Si (diamond structure), CsCl (CsCl structure), AlN (wurtzite
structure) using eqV2 S DeNS (direct-force prediction) at different displacement values. DFT baseline is taken from the PBE MDR
dataset (Loew et al., 2024) calculated using a displacement of 0.01 Å
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Figure C.12. Predicted phonon band structure and density of states (DOS) of Si (diamond structure), CsCl (CsCl structure), AlN (wurtzite
structure) using eqV2 S DeNS (direct-force prediction with a zero net force constraint) at different displacement values. DFT baseline is
taken from the PBE MDR dataset (Loew et al., 2024) calculated using a displacement of 0.01 Å
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Figure C.13. Predicted phonon band structure and density of states (DOS) of Si (diamond structure), CsCl (CsCl structure), AlN (wurtzite
structure) using eSEN with direct-force prediction at different displacement values. DFT baseline is taken from the PBE MDR dataset
(Loew et al., 2024) calculated using a displacement of 0.01 Å
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Figure C.14. Predicted phonon band structure and density of states (DOS) of Si (diamond structure), CsCl (CsCl structure), AlN (wurtzite
structure) using eSEN with direct-force prediction and a zero-net force constraint at different displacement values. DFT baseline is taken
from the PBE MDR dataset (Loew et al., 2024) calculated using a displacement of 0.01 Å

Table 6. Hyper-parameters for eSEN variants reported in this paper. *eSEN-30M on MPTrj was trained for 60 epochs using direct-force
pre-training and 40 epochs of conserved fine-tuning. eSEN-30M-OMat was trained for 2 epochs using direct-force pre-training and 2
epochs of conserved fine-tuning. †The eSEN-30M-OAM model starts from the eSEN-30M-OMat model, and was finetuned for 1 epoch
on a dataset constructed by combining the sAlex training dataset and 8 copies of the MPTrj training dataset.

Hyper-parameters SPICE-3.2M SPICE-6.5M MPTrj-3.2M MPTrj-6.5M MPTrj-30M OMat-30M OAM Fine-tuning

Number of eSEN layer blocks 2 4 2 4 10 10 10
Maximum degree Lmax 2 2 2 2 3 3 3
Maximum order Mmax 2 2 2 2 2 2 2
Number of channels Nchannel 128 128 128 128 128 128 128
Radial basis function Bessel Bessel Gaussian Gaussian Gaussian Gaussian Gaussian
Number of radial basis functions 10 10 10 10 10 64 64
Cutoff radius (Å) 5 5 6 6 6 6 6
Batch size 128 128 512 512 512 512 256
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Learning rate scheduling Cosine Cosine Cosine Cosine Cosine Cosine Cosine
Warmup epochs 0.1 0.01 0.1 0.1 0.1 0.1 0.1
Warmup factor 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Maximum learning rate 4× 10−4 4× 10−4 4× 10−4 4× 10−4 4× 10−4 4× 10−4 2× 10−4

Number of epochs 100 100 100 100 60 + 40* 2 + 2* 1†

Gradient clipping norm 100 100 100 100 100 100 100
Model EMA decay 0.999 0.999 0.999 0.999 0.999 0.999 0.999
Weight decay 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Energy loss coefficient 10 10 1 1 20 20 20
Force loss coefficient 20 20 10 10 20 20 20
Stress loss coefficient - - 100 100 5 5 5
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