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ABSTRACT

Time series anomaly detection (TSAD) is of critical importance in applications
such as industry, finance, and healthcare, yet it remains challenging due to com-
plex temporal dependencies, non-stationarity, and the scarcity of anomalous sam-
ples. Existing methods typically operate in a single domain—either time or fre-
quency—limiting their ability to capture diverse anomalies across both global and
local patterns. To address this, we propose Dyn-ConvNet, a novel hybrid deep
learning architecture that systematically integrates time- and frequency-domain
representations by combining the Fast Fourier Transform (FFT) for long-range peri-
odic feature extraction with the Wavelet Transform for local and transient anomaly
detection. These complementary features are fused through a deep convolutional
backbone enhanced with gating mechanisms and residual connections, enabling
adaptive learning and robust detection across different scales and anomaly types.
Experiments on five popular multivariate time series benchmark datasets show
that Dyn-ConvNet outperforms state-of-the-art methods, with even larger gains
in complex anomaly scenarios, demonstrating the effectiveness of multi-domain
feature integration in enhancing both the performance and generalization capability
of multivariate time series anomaly detection.

1 INTRODUCTION

Time series anomaly detection (TSAD) is a critical task in diverse domains, from industrial control
systems and financial risk management to medical diagnostics and IT operations(Wu et al., 2021;
Franceschi et al., 2019; Friedman, 1962; Xu et al., 2021). It aims to identify data points or subse-
quences that significantly deviate from normal patterns. Unlike anomalies in static data, time series
anomalies are complex, manifesting as point anomalies (single abnormal data points), contextual
anomalies (data points that are abnormal only within a specific temporal context), or collective
anomalies (subsequences that are abnormal as a whole). These anomalies are challenging to detect
due to complex temporal dependencies, non-stationarity, and inherent noise. Furthermore, their rare,
diverse, and context-dependent nature makes robust model learning and generalization particularly
difficult.

Traditional statistical methods, such as autoregressive models(Box et al., 2015), are interpretable
but often fail to model non-linear dependencies or adapt to evolving data distributions. While
deep learning models—including recurrent neural networks (RNNs), convolutional neural networks
(CNNs)(Lai et al., 2018), and attention-based Transformers(Wu et al., 2021), have shown notable
progress, most existing architectures are constrained to a single domain of representation. Time-
domain models excel at capturing local sequential patterns but struggle with long-range periodicity.
In contrast, frequency-domain approaches like the Fast Fourier Transform (FFT) effectively uncover
global trends and seasonality(Papoulis & Saunders, 1989), but they are ill-suited for detecting
transient, non-periodic variations and require careful handling of cutoff frequencies.

Single-domain models therefore have clear limitations: time-domain methods can detect local abrupt
spikes but are insensitive to global periodic deviations, whereas frequency-domain methods reveal
periodic changes but often overlook short-lived anomalies(Oppenheim, 1999). To illustrate this,
Figure 1 presents typical examples in both time and frequency domains. Some anomalies are
subtle periodic deviations best seen in the frequency domain, while others are sudden spikes best
detected through local time-domain analysis. Existing architectures often lack a robust mechanism for
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(a) Time-domain signal (b) Frequency-domain (global anomaly)

(c) Frequency-domain (local anomaly)

Figure 1: Limitations of single-domain time series anomaly detection. (a) Time-domain signal with
local spikes (red) and a global periodic anomaly (orange). (b) Frequency spectrum of the global
anomaly segment, showing a clear 2.5 Hz peak (red line) absent in the baseline (gray dashed). (c)
Frequency spectrum of the local spike segment, where frequency components (red dot) are weak,
illustrating that short-lived anomalies are not well captured in the frequency domain.

combining these complementary perspectives, causing single-domain models to inevitably overlook
certain anomalies. To overcome these limitations, we propose Dyn-ConvNet, a novel hybrid deep
learning model for robust time series anomaly detection. Dyn-ConvNet systematically integrates
complementary information from both the time and frequency domains. We leverage FFT to capture
global periodic patterns and Wavelet Transform to pinpoint localized, transient anomalies. These
features are then fused through a deep convolutional network enhanced with gating mechanisms and
residual connections, enabling adaptive learning and robust operation across diverse scenarios, from
subtle deviations to sudden, pronounced anomalies.

Our main contributions are summarized as follows:

• We propose Dyn-ConvNet, a novel hybrid architecture that, for the first time, systematically
and adaptively integrates global periodic patterns captured by FFT with localized transient
features identified by Wavelet Transform.

• We design an adaptive feature fusion mechanism with gating and residual structures, signifi-
cantly enhancing the model’s robustness against heterogeneous anomaly patterns.

• Through extensive experiments on multiple real-world benchmark datasets (SMD (Su et al.,
2019), MSL (Hundman et al., 2018), SMAP (Hundman et al., 2018), SWaT (Mathur &
Tippenhauer, 2016), PSM (Abdulaal et al., 2021)), we demonstrate that Dyn-ConvNet signifi-
cantly outperforms state-of-the-art methods, achieving an average performance improvement
of 1.46%.

2 RELATED WORK

The landscape of time series anomaly detection (TSAD) has evolved significantly, beginning with
traditional statistical models that laid the foundational principles. Early approaches, such as au-
toregressive (AR) models(Box et al., 2015), exponential smoothing(Holt, 2004), and hypothesis
testing(Barnett et al., 1994), offered interpretability and explicit modeling of normal behavior. How-
ever, they impose strong assumptions on data stationarity and anomaly distributions, making them
rigid and ill-suited for the non-stationary, high-noise, and dynamically changing environments of
real-world data. Moving beyond these constraints, classical machine learning techniques like support
vector machines (SVM)(Schölkopf et al., 2001), isolation forests(Liu et al., 2008), and Gaussian
mixture models (GMM) were applied to TSAD(Bishop & Nasrabadi, 2006). While these methods
can capture nonlinear relationships, they often rely on handcrafted features and have a limited ability
to model long-term temporal dependencies.

In recent years, deep learning methods have achieved remarkable performance in TSAD by moving
beyond handcrafted features. Recurrent neural networks (RNNs) and their variants (LSTMs, GRUs)
excel at capturing sequential dependencies(Lai et al., 2018; Hochreiter & Schmidhuber, 1997;
Franceschi et al., 2019; Gu et al., 2022), making them effective for detecting point and contextual
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anomalies. Similarly, convolutional neural networks (CNNs) leverage convolutional kernels to extract
local patterns, enabling high sensitivity to sudden spikes and local perturbations(Wang et al., 2017).
More recently, attention-based models, such as Transformers(Zhou et al., 2021; Liu et al., 2021;
Wu et al., 2021; Zhou et al., 2022; Vaswani et al., 2017b), have proven effective in modeling long-
range dependencies and global patterns. Despite their strengths in modeling time-domain features,
these methods often struggle to detect periodic anomalies or global trend shifts when relying on
time-domain information alone.

To address this limitation, frequency-domain approaches analyze periodicity and trends by transform-
ing time series into their frequency components. Methods like the Fast Fourier Transform (FFT)
efficiently capture global periodic patterns but perform poorly in detecting transient, non-periodic
anomalies(Oppenheim, 1999; Choi et al., 2021). Wavelet transforms provide a joint time-frequency
analysis but remain limited in their sensitivity to local patterns when used in isolation(Mallat, 2002).
While some studies have proposed hybrid approaches that fuse features to exploit these complemen-
tary strengths, existing models are often shallow or rely on simple feature concatenation. This simple
fusion lacks an adaptive mechanism to intelligently weigh information from different domains, thus
failing to achieve deep representation learning and limiting their robustness across heterogeneous
datasets and anomaly patterns.

To overcome these challenges, we propose Dyn-ConvNet, a novel hybrid model that not only fuses
time- and frequency-domain features but does so through a dynamic, deep learning architecture.
This systematic integration enables adaptive learning and robust detection across a wide range of
anomalies, from subtle periodic deviations to abrupt spikes—a capability lacking in prior work.

3 DYN-CONVNET

3.1 PROBLEM DEFINITION

We address the task of time series anomaly detection (TSAD), where the goal is to identify irregular
patterns that deviate from expected behavior. Given an input sequence X = {x1, x2, . . . , xT }, the
model reconstructs an approximation X̂ = g(X). An anomaly score is then computed for each time
step as

st = ∥xt − x̂t∥22, (1)

where higher scores indicate stronger deviations.The challenge arises from the dual nature of anoma-
lies: Local irregularities (e.g., spikes, bursts) that require fine-grained temporal modeling(Lai et al.,
2018).Global periodic deviations (e.g., shifts in frequency or amplitude) that require spectral anal-
ysis(Wu et al., 2021).A model optimized for one type often fails on the other. Dyn-ConvNet is
designed to unify both perspectives through a joint time–frequency architecture.

3.2 OVERALL FRAMEWORK

Figure 2 illustrates the overall architecture of Dyn-ConvNet. Given an input sequence X ∈ RB×1×L,
the model processes it via two parallel feature streams. The Fourier feature stream utilizes FFT to
analyze the signal’s spectral content and identify dominant periodicities. The identified periodic
components are then used to generate weighted cosinusoidal and sinusoidal features. These, along
with the original input, are processed by a 1 × 1 convolution and layer normalization to produce
Hfourier.

The wavelet feature stream employs multi-scale convolutions (kernel sizes 3 and 5) to extract local
patterns, producing Hwavelet. A gating unit, informed by the Fourier features, generates weights to
modulate Hwavelet, resulting in Hwavelet

gated .

The fusion module concatenates Hfourier and Hwavelet
gated , followed by a 1 × 1 convolution and layer

normalization to yield Hfused. A core convolution block with residual connections refines Hfused,
and a final projection layer outputs the reconstructed sequence X̂ ∈ RB×L. This parallel and gated
design enables joint learning of global periodic and local multi-scale features, enhancing anomaly
detection performance.

3
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Figure 2: Dyn-ConvNet architecture. The model integrates a Fourier branch for global periodicity
and a wavelet branch for local multi-scale features, with a novel Fourier-guided gating mechanism
that adaptively modulates the wavelet stream before fusion for improved anomaly detection.

3.3 MODEL ARCHITECTURE DETAILS

3.3.1 FOURIER FEATURE STREAM

Time-series data often contain global periodic patterns that reveal underlying regularities, but these
patterns can be obscured by noise or non-stationarity. To address this, Dyn-ConvNet introduces the
Fourier Feature Stream, which explicitly transforms the input sequence into the frequency domain to
identify dominant periodicities. By applying FFT, the model captures the global spectral structure of
the sequence:

Xf = FFT(X). (2)

A learnable convolution kernel Wf is then applied to selectively emphasise informative frequency
components:

H freq = Conv(Xf ;Wf ). (3)

This can be viewed as an adaptive spectral filter, allowing the model to go beyond raw FFT amplitudes.
Finally, inverse FFT maps the filtered features back to the time domain:

H freq
time = iFFT(H freq), (4)

Ensuring compatibility with downstream modules. This stream is designed to provide robust global
context for anomaly detection, especially for periodic anomalies.

3.3.2 WAVELET FEATURE STREAM

Local anomalies tend to be subtle and context-dependent. Fixed convolution kernels are often
insufficient to capture such variability. Dyn-ConvNet therefore introduces a Wavelet Feature Stream
equipped with adaptive dynamic convolution, enabling the model to extract fine-grained temporal
patterns in a context-sensitive way(Chen et al., 2020). For each local window Xi:i+k, a kernel
generator fθ produces an input-dependent kernel:

Wi = fθ(Xi:i+k), H time
i = Conv(Xi:i+k;Wi). (5)

This mechanism allows the model to adjust its receptive field dynamically, effectively focusing on the
most informative local patterns.
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3.3.3 GATING AND FUSION MODULE

Global periodicity and local patterns offer complementary insights, but their relative importance can
vary across time and context. Instead of naively combining them, Dyn-ConvNet employs a Gating
and Fusion Module that adaptively integrates the two streams. Specifically, the gate is computed as:

G = σ
(
Wg[H

time;H freq
time] + bg

)
(6)

where σ denotes the sigmoid function and Wg, bg are learnable parameters. This gate dynamically
balances contributions from both streams. The fused representation is then obtained by:

H fused = G⊙H time + (1−G)⊙H freq
time. (7)

This mechanism ensures that Dyn-ConvNet emphasizes global periodicity when relevant, while
prioritizing local details for abrupt anomalies.

3.3.4 CORE CONVOLUTION BLOCK AND PROJECTION

The fused representation H fused is further refined through a residual convolution block:

H(l+1) = Conv
(
ReLU

(
Conv(H(l))

))
+H(l), H(0) = H fused. (8)

This block enhances feature interactions while preserving important information. Finally, a projection
layer maps features back to the original dimension:

X̂ = Proj
(
H(L)

)
, (9)

and anomaly scores are computed as reconstruction errors.

4 EXPERIMENTS

4.1 DATASETS

We evaluated our Dyn-ConvNet model on five widely-used public benchmark datasets for multivariate
time series anomaly detection: SMD (Su et al., 2019), MSL (Hundman et al., 2018), SMAP (Hundman
et al., 2018), SWaT (Mathur & Tippenhauer, 2016), PSM (Abdulaal et al., 2021). These datasets
provide a diverse and comprehensive testbed, encompassing monitoring data from various domains,
including water treatment systems, server information, and spacecraft telemetry. Each dataset presents
unique challenges, from series with strong periodic patterns to those characterized by abrupt, transient
anomalies. A detailed description of each dataset can be found in Appendix A.

4.2 COMPARED MODELS

To evaluate Dyn-ConvNet, we compare it against a diverse set of state-of-the-art models in time series
analysis. Our selection includes powerful Transformer-based models like Informer(Zhou et al., 2021),
Autoformer(Wu et al., 2021), and TimesNet(Wu et al., 2022), which excel at capturing long-term
dependencies. We also benchmark against efficient variants like Reformer(Kitaev et al., 2020) and
FEDformer(Zhou et al., 2022), as well as simpler, yet effective, linear models such as DLinear(Zeng
et al., 2023) and LightTS(Zhang et al., 2022). Finally, we include KAN-AD(Zhou et al., 2024), a
direct competitor designed for anomaly detection, to highlight our model’s specific advantages. This
comprehensive comparison allows us to validate the effectiveness and robustness of our approach.

4.3 EXPERIMENTAL SETTINGS

Our experiments used a sliding window of 100 to segment the time series data. All models were
trained with a batch size of 128 using the Adam optimizer at a learning rate of 0.0001. We evaluated
performance using Precision, Recall, and F-score.
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Table 1: Anomaly detection task. The P, R and F1 represent the precision, recall and F1-score (%)
respectively. F1-score is the harmonic mean of precision and recall. A higher value of P, R and F1
indicates a better performance.

Datasets SMD MSL SMAP SWaT PSM Avg F1

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 (%)

Transformer 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07 76.88
Reformer 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31
Informer 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Pyraformer 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57
Autoformer 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
DLinear 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46
ETSformer 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76 82.87
LightTS 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
FEDformer 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97
TimesNet 88.66 83.14 85.81 83.92 86.42 85.15 92.52 58.29 71.52 86.76 97.32 91.74 98.19 96.76 97.35 86.31
KAN-AD 87.13 84.21 84.08 88.98 71.13 79.06 93.21 81.27 86.83 92.85 93.50 93.17 99.35 92.73 95.93 87.81
Dyn-ConvNet 89.40 88.48 88.94 89.67 75.40 81.92 91.92 72.12 80.55 93.82 95.54 94.67 98.48 96.48 97.47 89.27

4.4 OVERALL PERFORMANCE AND ANOMALY TYPE ANALYSIS

As shown in Table 1, Dyn-ConvNet obtains the highest average F1 across the five benchmarks. It
obtains an average F1-score of 89.27%, outperforming the next best model (KAN-AD(Zhou et al.,
2024)) by over 1.46%. This demonstrates the superior capability of our hybrid time-frequency
approach.

Dyn-ConvNet’s strong performance can be attributed to its specialized architecture tailored to different
anomaly types. On datasets dominated by periodic patterns, such as SMD(Su et al., 2019) and
MSL(Hundman et al., 2018), the model leverages FFT features to effectively capture normal temporal
dynamics, yielding F1-scores of 88.94% and 81.92%, respectively. For datasets characterized by
abrupt, transient anomalies, like SWaT(Mathur & Tippenhauer, 2016) and PSM(Abdulaal et al.,
2021), the inclusion of wavelet analysis enables top scores of 94.67% and 97.47%, reflecting high
sensitivity to sudden deviations. Notably, on the challenging SMAP(Hundman et al., 2018) dataset,
which contains a diverse mix of anomaly types, Dyn-ConvNet achieves a competitive F1-score
of 80.55%, outperforming most baselines. This highlights the robustness of our adaptive fusion
mechanism, which dynamically balances contributions from different feature streams to address
complex anomaly distributions.

4.5 ABLATION AND INTERPRETABILITY STUDIES

To systematically evaluate the contribution of each key component in our proposed Dyn-ConvNet
model, we conducted a comprehensive ablation study. Our experimental design is structured to
progressively remove core modules, allowing us to isolate and measure their impact on model
performance. We focus primarily on the F1-score, as it provides a balanced evaluation of the model’s
precision and recall, a critical metric for anomaly detection.

4.5.1 EXPERIMENTAL DESIGN

Full Model This is our complete architecture, including all core components, and serves as the
baseline for performance evaluation.

No-Gating This model removes the dynamic gating unit, using simple feature concatenation to
fuse the Fourier and Wavelet feature streams instead. This variant helps us directly evaluate the
contribution of the gating mechanism itself.

No-FFT This variant removes the entire Fourier feature stream and the gating unit. It relies solely on
the wavelet feature stream for anomaly detection, allowing us to evaluate the independent contribution
of the local wavelet features.
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Table 2: Ablation study of different model versions across multiple datasets. All results are reported
using the F1-Score metric.

Model Version F1-Score

SMD MSL SMAP SWaT PSM

Full Model 0.8894 0.8192 0.8055 0.9467 0.9747
- No Gating 0.8822 0.8044 0.6869 0.9325 0.9742
- No FFT 0.8672 0.8096 0.8358 0.9384 0.9727

- No Wavelet 0.8765 0.8083 0.6848 0.9182 0.9745
- No CoreConv 0.8822 0.8138 0.7242 0.9095 0.9738

No-Wavelet This variant removes the entire wavelet feature stream and the gating unit. It relies
exclusively on the Fourier feature stream, allowing us to evaluate the independent contribution of the
global periodic features.

No-CoreConv This model removes the two-layer convolutional block that refines the fused features.
This helps us assess the role of these layers in feature refinement and abstraction.

4.5.2 RESULTS AND ANALYSIS

The results of our ablation study are summarized in Table 2.

Gating Mechanism By comparing the Full Model to the No-Gating variant, we validate the
effectiveness of our dynamic gating mechanism. Removing the gating unit consistently leads to a
performance drop across all datasets, demonstrating that our adaptive fusion approach is superior to
simple feature concatenation. For instance, on the SMAP dataset, this removal results in a significant
F1-score drop from 0.8055 to 0.6869.

Wavelet Features To evaluate the independent contribution of wavelet features, we compare the
No-Gating model to the No-Wavelet model. The results show that the role of wavelet features is
highly dataset-dependent. On the SWaT dataset, their removal causes a significant performance
degradation, with the F1-score dropping from 0.9325 to 0.9182. However, on other datasets like
SMAP, MSL, and PSM, removing the wavelet features results in only minor changes or even a slight
performance increase, suggesting that their contribution is not universally critical.

FFT Features Similarly, to evaluate the independent contribution of Fourier features, we compare
the No-Gating model to the No-FFT model. The impact of FFT features also varies significantly by
dataset:On the SMAP dataset, removing the FFT features leads to a notable performance gain, with
the F1-score increasing from 0.6869 to 0.8358. This suggests that the periodic features captured by
FFT may be irrelevant or introduce noise for this dataset.On the SWaT and MSL datasets, removing
the FFT features also results in a slight performance increase.Conversely, on the SMD and PSM
datasets, removing the FFT features leads to a slight performance decrease, indicating their positive
contribution.

Core Convolution Block The ablation of the core convolutional block (No-CoreConv) demonstrates
its necessity for the model’s final performance. Comparing the Full Model to the No-CoreConv
variant shows a consistent performance drop across all datasets when this block is removed. This
confirms that the core convolutional block plays a crucial role in further refining and abstracting the
fused features, providing a more powerful representation for the final anomaly prediction.

Our ablation study provides strong evidence for the effectiveness of each component in the Dyn-
ConvNet model. We find that the synergistic interaction between the local wavelet stream, the global
Fourier stream, and the dynamic gating unit is key to achieving superior performance. The wavelet
features provide the foundational local context, while the gating mechanism intelligently integrates
the multi-scale information. Although the contribution of Fourier features is dataset-dependent,
their positive impact on several datasets highlights the value of our hybrid architecture. Overall,
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Figure 3: Hyperparameter sensitivity analysis for Dyn-ConvNet on the SWaT dataset. F1-scores
across different combinations of dmodel and top-k illustrate the stability and performance trends of the
model.

the full Dyn-ConvNet model demonstrates the most stable and robust performance, validating our
multi-component, adaptive fusion approach for multivariate time series anomaly detection.

4.6 HYPERPARAMETER SENSITIVITY ANALYSIS

To evaluate the robustness of Dyn-ConvNet and guide its optimal configuration, we conducted a
comprehensive hyperparameter sensitivity analysis on the SWaT dataset. Specifically, we examined
the influence of two key hyperparameters: the model’s hidden dimension (dmodel) and the number of
dominant Fourier components (top-k). The F1-score was used as the primary performance metric to
ensure consistency across experiments.

4.6.1 EXPERIMENTAL DESIGN

We performed a grid search over dmodel ∈ {2, 4, 8, 16, 32, 64, 128} and top-k ∈ {3, 5, 7} to evaluate
model sensitivity and stability.

4.6.2 RESULTS AND DISCUSSION

Figure 3 summarises the experimental results, presenting the F1-scores for all tested hyperparameter
combinations.

Our analysis reveals two important insights: robust performance across a wide range of settings and
clear trends linking model capacity with feature richness.

Impact of dmodel Across all values of top-k, Dyn-ConvNet consistently maintains strong per-
formance, demonstrating its robustness. Lower dimensions (dmodel = 2) exhibit relatively lower
F1-scores (0.8854–0.9352), reflecting insufficient capacity to capture the complex patterns in the
SWaT dataset. Increasing dmodel markedly improves performance, with values between 4 and 32
yielding consistently high F1-scores (>0.92). Notably, dmodel = 32 achieves the highest peak F1-
score of 0.9467 for top-k=7, highlighting an optimal balance between capacity and generalisation.
Beyond dmodel = 32, performance gains saturate or slightly decline, suggesting diminishing returns
and potential overfitting while increasing computational cost.

Impact of top-k The number of Fourier components influences performance in a dimension-
dependent manner. For smaller dimensions (dmodel = 4), a moderate top-k=5 achieves the best
performance (0.9400), while for larger dimensions (dmodel = 32), top-k=7 is optimal, enabling the
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model to better leverage richer frequency information. This interplay between dmodel and top-k
underscores the importance of coordinated hyperparameter tuning.

Overall, Dyn-ConvNet exhibits remarkable stability across diverse hyperparameter settings, with
performance consistently above 0.89. The hyperparameter study confirms that the combination
dmodel = 32, top-k=7 offers the best performance (F1=0.9467) on SWaT, and highlights the critical
balance between model capacity and feature complexity.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed Dyn-ConvNet, a novel hybrid deep learning architecture for time series
anomaly detection. By systematically integrating global periodic features from FFT and local transient
features from the Wavelet Transform through an adaptive, deep convolutional backbone, our model
successfully addresses the limitations of single-domain approaches. Extensive experiments on five
challenging benchmarks demonstrate that Dyn-ConvNet achieves state-of-the-art performance, with
an average F1-score improvement of over 1.46% compared to previous methods.For future work,
we plan to explore the integration of more advanced wavelet families and apply the Dyn-ConvNet
architecture to other time series analysis tasks, such as forecasting and classification.
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A DATASETS

We evaluated Dyn-ConvNet on five widely-used public benchmark datasets for multivariate time
series anomaly detection. A detailed description of each dataset is provided below, with a summary
of key statistics presented in Table 3.

• SMD Su et al. (2019): This dataset, collected from a large internet company, consists of
multivariate time series data from numerous server machines. It is characterized by its strong
periodic and seasonal patterns, making it an ideal benchmark for evaluating a model’s ability
to capture global temporal behaviors. The anomalies are diverse and mimic real-world
system failures.

• MSL Hundman et al. (2018): The MSL dataset comprises telemetry data from the Curiosity
rover on Mars. It is a highly complex, multivariate dataset with non-stationary characteristics
due to the rover’s varying operational modes. Anomalies are often related to sensor faults
or unexpected operational events, posing a challenge for models that rely on strict data
stationarity.

• SMAP Hundman et al. (2018): This NASA dataset contains telemetry data from the SMAP
satellite. It is a challenging benchmark due to its diverse mix of anomaly types, including
point anomalies (single spikes), contextual anomalies (deviations within a specific context),
and collective anomalies (sequences of abnormal data points). This heterogeneity makes it a
robust test for a model’s generalization capability across different anomaly patterns.

• SWaT Mathur & Tippenhauer (2016): The SWaT dataset is generated from a physical water
treatment testbed. The data includes both normal operations and deliberate cyber-attack
scenarios. It is a key benchmark for evaluating a model’s sensitivity to abrupt, transient
anomalies that manifest as sudden and significant deviations from normal behavior.

• PSM Abdulaal et al. (2021): The PSM dataset consists of aggregated metrics from multiple
application servers at eBay. It is notable for its high dimensionality and complex temporal
dependencies. Anomalies in this dataset are predominantly collective in nature, representing
synchronized events or system-wide issues that affect multiple sensors simultaneously. This
makes it a strong test for models capable of handling large-scale, multivariate data.

Table 3: Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size

Anomaly Detection

SMD 38 100 (566724, 141681, 708420)

MSL 55 100 (44653, 11664, 73729)

SMAP 25 100 (108146, 27037, 427617)

SWaT 51 100 (396000, 99000, 449919)

PSM 25 100 (105984, 26497, 87841)

B BASELINES

We selected the following baseline approaches to evaluate Dyn-ConvNet and compare it with state-
of-the-art (SOTA) methods on multivariate time series datasets:

• Transformer (Vaswani et al., 2017a): The foundational self-attention model that captures
dependencies across all time steps, serving as the basis for many modern time series
architectures.

• Reformer (Kitaev et al., 2020): An efficient variant of the Transformer that addresses the
quadratic complexity of self-attention through locality-sensitive hashing (LSH), making it
scalable for very long sequences.

• Informer (Zhou et al., 2021): Designed to handle long-sequence time series forecasting,
Informer uses a ProbSparse self-attention mechanism and a self-attention distilling approach
to improve efficiency and performance.
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• Pyraformer (Liu et al., 2021): This model introduces a pyramid attention mechanism to
capture multi-scale dependencies with logarithmic complexity, providing a more efficient
way to model long-range temporal patterns.

• Autoformer (Wu et al., 2021): A Time Series Transformer that decomposes time series
into trend and seasonality components and uses an Auto-Correlation mechanism to find
period-based dependencies, enhancing its ability to handle long-term patterns.

• DLinear (Zeng et al., 2023): A simple yet highly effective linear model that decomposes
time series into trend and remainder components, challenging the notion that complex deep
learning models are always necessary for time series forecasting.

• ETSformer (Woo et al., 2022): This model integrates the principles of Exponential Smooth-
ing (ETS) with a Transformer architecture, providing a new way to model seasonality and
trend in time series.

• LightTS (Zhang et al., 2022): An efficient and lightweight Transformer-based model that
uses a non-autoregressive strategy to achieve faster inference and lower memory usage for
time series forecasting.

• FEDformer (Zhou et al., 2022): A frequency-enhanced Transformer that incorporates a mix
of Fourier and self-attention mechanisms, aiming to capture both global periodic patterns
and local dependencies with high efficiency.

• TimesNet (Wu et al., 2022): This model transforms 1D time series into 2D tensors based
on multiple periods, allowing it to leverage 2D kernels for multi-scale feature extraction,
effectively capturing periodic patterns.

• KAN-AD (Zhou et al., 2024): A model that applies Kolmogorov-Arnold Networks (KAN)
to the anomaly detection task, providing a novel approach to learning complex functions for
time series, which is known for its interpretability and expressiveness.

C LLM USAGE INSTRUCTIONS

Portions of this paper were polished and proofread with the assistance of a large language model.

12


	INTRODUCTION
	Related Work
	Dyn-ConvNet
	Problem Definition
	Overall Framework
	Model Architecture Details
	Fourier Feature Stream
	Wavelet Feature Stream
	Gating and Fusion Module
	core convolution block and Projection


	Experiments
	Datasets
	Compared Models
	Experimental Settings
	Overall Performance and Anomaly Type Analysis
	Ablation and Interpretability Studies
	Experimental Design
	Results and Analysis

	Hyperparameter Sensitivity Analysis
	Experimental Design
	Results and Discussion


	CONCLUSION AND FUTURE WORK
	Datasets
	Baselines
	LLM Usage Instructions

