
Editable Concept Bottleneck Models

Lijie Hu * 1 2 Chenyang Ren * 1 2 3 Zhengyu Hu * 4 1 Hongbin Lin 4 1

Cheng-Long Wang 1 2 Zhen Tan 5 Weimin Lyu 6 Jingfeng Zhang 7 1 2 Hui Xiong 4 Di Wang 1 2

Abstract
Concept Bottleneck Models (CBMs) have gar-
nered much attention for their ability to eluci-
date the prediction process through a human-
understandable concept layer. However, most
previous studies focused on cases where the data,
including concepts, are clean. In many scenar-
ios, we often need to remove/insert some training
data or new concepts from trained CBMs for rea-
sons such as privacy concerns, data mislabelling,
spurious concepts, and concept annotation errors.
Thus, deriving efficient editable CBMs without re-
training from scratch remains a challenge, particu-
larly in large-scale applications. To address these
challenges, we propose Editable Concept Bottle-
neck Models (ECBMs). Specifically, ECBMs
support three different levels of data removal:
concept-label-level, concept-level, and data-level.
ECBMs enjoy mathematically rigorous closed-
form approximations derived from influence func-
tions that obviate the need for retraining. Ex-
perimental results demonstrate the efficiency and
adaptability of our ECBMs, affirming their practi-
cal value in CBMs. Code is available on https:
//github.com/kaustpradalab/ECBM

1. Introduction
Modern deep learning models, such as large language mod-
els (Zhao et al., 2023; Yang et al., 2024a;b; Xu et al., 2023;
Yang et al., 2024c) and large multimodal (Yin et al., 2023;
Ali et al., 2024; Cheng et al., 2024), often exhibit intricate

*Equal contribution 1Provable Responsible AI and Data Ana-
lytics (PRADA) Lab 2King Abdullah University of Science and
Technology 3Shanghai Jiao Tong University 4Thrust of Artificial
Intelligence, The Hong Kong University of Science and Technol-
ogy (Guangzhou), China Department of Computer Science and
Engineering, The Hong Kong University of Science and Technol-
ogy, Hong Kong SAR, China 5Arizona State University 6Stony
Brook University 7The University of Auckland. Correspondence
to: Di Wang <di.wang@kaust.edu.sa>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

non-linear architectures, posing challenges for end-users
seeking to comprehend and trust their decisions. This lack
of interpretability presents a significant barrier to adoption,
particularly in critical domains such as healthcare (Ahmad
et al., 2018; Yu et al., 2018) and finance (Cao, 2022), where
transparency is paramount. To address this demand, explain-
able artificial intelligence (XAI) models (Das & Rad, 2020;
Hu et al., 2023b;a) have emerged, offering explanations
for their behavior and insights into their internal mecha-
nisms. Among these, Concept Bottleneck Models (CBMs)
(Koh et al., 2020) have gained prominence for explaining
the prediction process of end-to-end AI models. CBMs
add a bottleneck layer for placing human-understandable
concepts. In the prediction process, CBMs first predict the
concept labels using the original input and then predict the
final classification label using the predicted concept in the
bottleneck layer, which provides a self-explained decision
to users.

Delete 𝑝𝓇 ∈ 𝒸

Input 𝓍𝒾
CNN

Concept 𝒸

wing
color

undert‐
ail color

…beak
length

incorrect

wing
color

beak
length

…

Edited 𝒸′

Concept‐level Data‐level

Dataset 𝐷 ൌ ሼሺ𝓍௜𝑐௜, 𝑦௜, ሻሽ௜ୀଵே

Remove data
ሺ𝓍𝒾, 𝒸𝒾, 𝑦𝒾)

𝓍ଵ 𝑐ଵ 𝑦ଵ

incorrect 𝑐௜ 𝑦௜𝓍୧

…

…

𝓍୬ 𝑐௡ 𝑦௡

…

𝓍ଵ 𝑐ଵ 𝑦ଵ

Dataset 𝐷′ ൌ ሼሺ𝓍௜𝑐௜, 𝑦௜, ሻሽ௜ୀଵேିଵ

…

𝓍୬ିଵ 𝑐௡ିଵ 𝑦௡ିଵ

Concept label‐level

𝑐௜𝓍𝒾 𝑦௜

Data ሺ𝓍𝒾, 𝒸𝒾, 𝑦𝒾)

wing
color

undert‐
ail color

…

incorrect

bird
spec
‐ies

Delete/Correct 𝒸𝒾

Data ሺ𝓍𝒾, 𝒸𝒾′, 𝑦𝒾)

𝑐௜𝓍𝒾 𝑦௜

beak
length

wing
color

…

beak
length

bird
spec
‐ies

Figure 1: An illustration of Editable Concept Bottleneck
Models with three settings.

Existing research on CBMs predominantly addresses two
primary concerns: Firstly, CBMs heavily rely on laborious
dataset annotation. Researchers have explored solutions
to these challenges in unlabeled settings (Oikarinen et al.,
2023; Yuksekgonul et al., 2023; Lai et al., 2023). Secondly,
the performance of CBMs often lags behind that of origi-
nal models lacking the concept bottleneck layer, attributed
to incomplete information extraction from original data to
bottleneck features. Researchers aim to bridge this utility
gap (Sheth & Ebrahimi Kahou, 2023; Yuksekgonul et al.,
2023; Espinosa Zarlenga et al., 2022). However, few of
them considered the adaptivity or editability of CBMs, cru-

1

https://github.com/kaustpradalab/ECBM
https://github.com/kaustpradalab/ECBM

Editable Concept Bottleneck Models

cial aspects encompassing annotation errors, data privacy
considerations, or concept updates. Actually, these demands
are increasingly pertinent in the era of large models. We de-
lineate the editable setting into three key aspects (illustrated
in Figure 1):

• Concept-label-level: In most scenarios, concept labels
are annotated by humans or experts. Thus, it is unavoid-
able that there are some annotation errors, indicating
that there is a need to correct some concept labels in a
trained CBM.

• Concept-level: In CBMs, the concept set is pre-defined
by LLMs or experts. However, in many cases, evolv-
ing situations demand concept updates, as evidenced
by discoveries such as chronic obstructive pulmonary
disease as a risk factor for lung cancer, and doctors
have the requirements to add related concepts. For
another example, recent research found a new factor,
obesity (Sattar et al., 2020) are risky for severe COVID-
19 and factors (e.g., older age, male gender, Asian race)
are risk associated with COVID-19 infection (Rozen-
feld et al., 2020). On the other hand, one may also
want to remove some spurious or unrelated concepts
for the task. This demand is even more urgent in some
rapidly evolving domains like the pandemic.

• Data-level: Data issues can arise in CBMs when train-
ing data is erroneous or poisoned. For example, if a
doctor identifies a case as erroneous or poisoned, this
data sample becomes unsuitable for training. There-
fore, it is essential to have the capability to completely
delete such data from the learned models. We need
such an editable model that can interact effectively
with doctors.

The most direct way to address the above three problems is
retraining from scratch on the data after correction. How-
ever, retraining models in such cases prove prohibitively
expensive, especially in large models, which is resource-
intensive and time-consuming. Therefore, developing an
efficient method to approximate prediction changes becomes
paramount. Providing users with an adaptive and editable
CBM is both crucial and urgent.

We propose Editable Concept Bottleneck Models (ECBMs)
to tackle these challenges. Specifically, compared to retrain-
ing, ECBMs provide a mathematically rigorous closed-form
approximation for the above three settings to address ed-
itability within CBMs efficiently. Leveraging the influence
function (Cook, 2000; Cook & Weisberg, 1980), we quan-
tify the impact of individual data points, individual concept
labels, and the concept for all data on model parameters. De-
spite the growing attention and utility of influence functions
in machine learning (Koh & Liang, 2017), their application

in CBMs remains largely unexplored due to their composite
structure, i.e., the intermediate representation layer.

To the best of our knowledge, we are the first to work to
fill this gap by demonstrating the effectiveness of influence
functions in elucidating the behavior of CBMs, especially
in identifying mislabeled data and discerning the data influ-
ence. Comprehensive experiments on benchmark datasets
show that our ECBMs are efficient and effective. Our con-
tributions are summarized as follows.

• We delineate three different settings that need various
levels of data or concept removal in CBMs: concept-
label-level, concept-level, and data-level. To the best of
our knowledge, our research marks the first exploration
of data removal issues within CBMs.

• To make CBMs able to remove data or concept in-
fluence without retraining, we propose the Editable
Concept Bottleneck Models (ECBMs). Our approach
in ECBMs offers a mathematically rigorous closed-
form approximation. Furthermore, to improve com-
putational efficiency, we present streamlined versions
integrating Eigenvalue-corrected Kronecker-Factored
Approximate Curvature (EK-FAC).

• To showcase the effectiveness and efficiency of our
ECBMs, we conduct comprehensive experiments
across various benchmark datasets to demonstrate our
superior performance.

2. Related Work
Concept Bottleneck Models. CBM (Koh et al., 2020)
stands out as an innovative deep-learning approach for im-
age classification and visual reasoning. It introduces a con-
cept bottleneck layer into deep neural networks, enhanc-
ing model generalization and interpretability by learning
specific concepts. However, CBM faces two primary chal-
lenges: its performance often lags behind that of original
models lacking the concept bottleneck layer, attributed to
incomplete information extraction from the original data to
bottleneck features. Additionally, CBM relies on laborious
dataset annotation. Researchers have explored solutions to
these challenges. Chauhan et al. (2023) extend CBM into
interactive prediction settings, introducing an interaction
policy to determine which concepts to label, thereby improv-
ing final predictions. Oikarinen et al. (2023) address CBM
limitations and propose a novel framework called Label-free
CBM. This innovative approach enables the transformation
of any neural network into an interpretable CBM without
requiring labeled concept data, all while maintaining high
accuracy. Post-hoc Concept Bottleneck models (Yuksek-
gonul et al., 2023) can be applied to various neural networks
without compromising model performance, preserving in-
terpretability advantages. CBMs work on the image field

2

Editable Concept Bottleneck Models

also includes the works of Havasi et al. (2022),Kim et al.
(2023),Keser et al. (2023),Sawada & Nakamura (2022) and
Sheth & Kahou (2023). Despite many works on CBMs, we
are the first to investigate the interactive influence between
concepts through influence functions. Our research endeav-
ors to bridge this gap by utilizing influence functions in
CBMs, thereby deciphering the interaction of concept mod-
els and providing an adaptive solution to concept editing.
For more related work, please refer to Appendix I.

3. Preliminaries
Concept Bottleneck Models. In this paper, we consider the
original CBM, and we adopt the notations used by Koh et al.
(2020). We consider a classification task with a concept set
denoted as {p1, · · · , pk} with each pi being a concept given
by experts or LLMs, and a training dataset represented as
D = {zi}ni=1, where zi = (xi, yi, ci). Here, for i ∈ [n],
xi ∈ Rdi represents the input feature vector, yi ∈ Rdo

denotes the label (with do corresponding to the number
of classes) and ci = (c1i , · · · , cki) ∈ Rk represents the
concept vector. In this context, cji represents the label of
the concept pj of the i-th data. In CBMs, our goal is to
learn two representations: one called concept predictor that
transforms the input space into the concept space, denoted
as g : Rd

i → Rk, and the other called label predictor which
maps the concept space to the prediction space, denoted as
f : Rk → Rdo . Usually, here the map f is linear. For each
training sample zi = (xi, yi, ci), we consider two empirical
loss functions: concept predictor ĝ and label predictor f̂ :

ĝ = argmin
g

n∑
i=1

k∑
j=1

gj(xi)
⊤ log(cji), (1)

where gj(∗) is the predicted j-th concept. For brevity, write
the loss function as LC(g(xi), ci) =

∑k
j=1 L

j
C(g(xi), ci)

for data (xi, ci). Once we obtain the concept predictor ĝ,
the label predictor is defined as:

f̂ = argmin
f

n∑
i=1

LY

(
f(ĝ(xi)), yi

)
, (2)

where LY represents the cross-entropy loss, similar to (1).
CBMs enforce dual precision in predicting interpretable
concept vectors ĉ = ĝ(x) (matching concept c) and final
outputs ŷ = f̂(ĉ) (matching label y), ensuring transparent
reasoning through explicit concept mediation. Furthermore,
in this paper, we focus primarily on the scenarios in which
the label predictor f is a linear transformation, motivated by
their interpretability advantages in tracing concept-to-label
relationships. For details on the symbols used, please refer
to the notation table in Appendix 2.

Influence Function. The influence function measures
the dependence of an estimator on the value of individ-

ual point in the sample. Consider a neural network θ̂ =
argminθ

∑n
i=1 ℓ(zi; θ) with loss function ℓ and dataset

D = {zi}ni=1. If we remove zm from the training dataset,
the parameters become θ̂−zm = argminθ

∑
i ̸=m ℓ(zi; θ).

The influence function provides an efficient model approx-
imation by defining a series of ϵ-parameterized models as
θ̂ϵ,−zm = argmin

∑n
i=1 ℓ(zi; θ) + ϵℓ(zm; θ). By perform-

ing a first-order Taylor expansion on the gradient of the
objective function corresponding to the argmin process,
the influence function is defined as:

Iθ̂ (zm) ≜
dθ̂ϵ,−zm

dϵ

∣∣∣∣∣
ϵ=0

= −H−1

θ̂
· ∇θℓ(zm; θ̂),

where H−1

θ̂
= ∇2

θ

∑n
i=1 ℓ(zi; θ̂) is the Hessian matrix.

When the loss function ℓ is twice-differentiable and strongly
convex in θ, the Hessian Hθ̂ is positive definite and thus
the influence function is well-defined. For non-convex loss
functions, Bartlett (1953) proposed replacing the Hessian
Hθ̂ with Ĥ = Gθ̂ + δI , where Gθ̂ is the Fisher information
matrix defined as

∑n
i=1 ∇θℓ(zi; θ)

T∇θℓ(zi; θ), and δ is the
damping term used to ensure the positive definiteness of
Ĥ . We can employ the Eigenvalue-corrected Kronecker-
Factored Approximate Curvature (EK-FAC) method to fur-
ther accelerate the computation. See Appendix C for addi-
tional details.

4. Editable Concept Bottleneck Models
In this section, we introduce our EBCMs for the three set-
tings mentioned in the introduction, leveraging the influence
function. Specifically, at the concept-label level, we calcu-
late the influence of a set of data samples’ individual concept
labels; at the concept level, we calculate the influence of
multiple concepts; and at the data level, we calculate the
influence of multiple samples.

4.1. Concept Label-level Editable CBM

In many cases, certain data samples contain erroneous an-
notations for specific concepts, yet their other information
remains valuable. This is particularly relevant in domains
such as medical imaging, where acquiring data is often
costly and time-consuming. In such scenarios, it is common
to correct the erroneous concept annotations rather than
removing the entire data from the dataset. Estimating the re-
trained model parameter is crucial in this context. We refer
to this scenario as the concept label-level editable CBM.

Mathematically, we have a set of erroneous data De and
its associated index set Se ⊆ [n] × [k] such that for each
(w, r) ∈ Se, (xw, yw, cw) ∈ De with crw is mislabeled and
c̃rw is corrected concept label. Our goal is to estimate the
retrained CBM. The retrained concept predictor and label

3

Editable Concept Bottleneck Models

predictor are represented as follows:

ĝe = argmin
g

∑
(i,j)/∈Se

Lj
C (g(xi), ci)

+
∑

(i,j)∈Se

Lj
C (g(xi), c̃i) ,

(3)

f̂e = argmin
f

n∑
i=1

LY (f (ĝe (xi)) , yi) . (4)

For simple neural networks, we can use the influence func-
tion approach directly to estimate the retrained model. How-
ever, for CBM architecture, if we intervene with the true
concepts, the concept predictor ĝ fluctuates to ĝe accord-
ingly. Observe that the input data of the label predictor
comes from the output of the concept predictor, which is
also subject to change. Therefore, we need to adopt a two-
stage editing approach. Here we consider the influence
function for (3) and (4) separately. We first edit the concept
predictor from ĝ to ḡe, and then edit from f̂ to f̄e based on
our approximated concept predictor. To begin, we provide
the following definitions:

Definition 4.1. Define the gradient of the j-th concept pre-
dictor and the label predictor for the i-th data point xi as:

Gj
C(xi, ci; g) ≜ ∇gL

j
C (g(xi), ci) ,

GY (xi; g, f) ≜ ∇fLY (f(g(xi)), yi) .

Theorem 4.2. The retrained concept predictor ĝe defined
by (3) can be approximated by ḡe, defined by:

ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(Gr
C(xw, c̃w; ĝ)−Gr

C(xw, cw; ĝ)) ,

where Hĝ = ∇ĝ

∑
i,j G

j
C(xi, ci; ĝ) is the Hessian matrix

of the loss function with respect to ĝ.

Theorem 4.3. The retrained label predictor f̂e defined by
(4) can be approximated by f̄e, defined by:

f̂ +H−1

f̂
·

n∑
i=1

(
GY (xi; ĝ, f̂)−GY (xi; ḡe, f̂)

)
,

where Hf̂ = ∇f̂

∑n
i=1 GY (xi; ĝ, f̂) is the Hessian matrix,

and ḡe is given in Theorem 4.2.

Difference from Test-Time Intervention. The ability to
intervene in CBMs allows human users to interact with
the model during the prediction process. For example, a
medical expert can directly replace an erroneously predicted
concept value ĉ and observe its impact on the final prediction
ŷ. However, the underlying flaws in the concept predictor
remain unaddressed, meaning similar errors may persist
when applied to new test data. In contrast, under the editable

CBM framework, not only can test-time interventions be
performed, but the concept predictor of the CBM can also
be further refined based on test data that repeatedly produces
errors. Our ECBM method incorporates the corrected test
data into the training dataset without requiring full retraining.
This approach extends the rectification process from the data
level to the model level.

4.2. Concept-level Editable CBM

In this case, a set of concepts is removed due to incorrect
attribution or spurious concepts, termed concept-level edit.
1Specifically, for the concept set, denote the erroneous con-
cept index set as M ⊂ [k], we aim to delete these concept
labels in all training samples. We aim to investigate the im-
pact of updating the concept set within the training data on
the model’s predictions. It is notable that compared to the
above concept label case, the dimension of output (input) of
the retrained concept predictor (label predictor) will change.
If we delete t concepts from the dataset, then g becomes
g′ : Rdi → Rk−t and f becomes f ′ : Rk−t → Rdo . More
specifically, if we retrain the CBM with the revised dataset,
the corresponding concept predictor becomes:

ĝ−pM
= argmin

g′

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci). (5)

The variation of the parameters in dimension renders the
application of influence function-based editing challenging
for the concept predictor. This is because the influence
function implements the editorial predictor by approximate
parameter change from the original base after ϵ-weighting
the corresponding loss for a given sample, and thus, it is
unable to deal with changes in parameter dimensions.

To overcome the challenge, our strategy is to develop some
transformations that need to be performed on ĝ−pM

to align
its dimension with ĝ so that we can apply the influence
function to edit the CBM. We achieve this by mapping
ĝ−pM

to ĝ∗−pM
≜ P(ĝ−pM

), which has the same amount
of parameters as ĝ and has the same predicted concepts
ĝ∗−pM

(j) as ĝ−pM
(j) for all j ∈ [di]−M . We achieve this

effect by inserting a zero row vector into the r-th row of the
matrix in the final layer of ĝ−pM

for r ∈ M . Thus, we can
see that the mapping P is one-to-one. Moreover, assume
the parameter space of ĝ is T and that of ĝ∗−pM

, T0 is the
subset of T . Noting that ĝ∗−pM

is the optimal model of the
following objective function:

ĝ∗−pM
= argmin

g′∈T0

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci), (6)

i.e., it is the optimal model of the concept predictor loss on
the remaining concepts under the constraint T0. Now we

1For convenience, in this paper, we only consider concept
removal; our method can directly extend to concept insertion.

4

Editable Concept Bottleneck Models

can apply the influence function to edit ĝ to approximate
ĝ∗−pM

with the restriction on the value of 0 for rows indexed
by M with the last layer of the neural network, denoted as
ḡ∗−pM

. After that, we remove from ḡ∗−pM
the parameters

initially inserted to fill in the dimensional difference, which
always equals 0 because of the restriction we applied in the
editing stage, thus approximating the true edited concept
predictor ĝ−pM

. We now detail the editing process from ĝ
to ĝ∗−pM

using the following theorem.
Theorem 4.4. For the retrained concept predictor ĝ−pM

defined in (5), we map it to ĝ∗−pM
as (6). And we can edit

the initial ĝ to ĝ∗−pM
, defined as:

ḡ∗−pM
≜ ĝ −H−1

ĝ ·
∑
j /∈M

n∑
i=1

Gj
C(xi, ci; ĝ),

where Hĝ = ∇g

∑
j /∈M

∑n
i=1 G

j
C(xi, ci; ĝ). Then, by re-

moving all zero rows inserted during the mapping phase, we
can naturally approximate ĝ−pM

≈ P−1(ĝ∗−pM
).

For the second stage of training, assume we aim to remove
concept pr for r ∈ M and the new optimal model is f̂−pM

.
We will encounter the same difficulty as in the first stage, i.e.,
the number of parameters of the label predictor will change.
To address the issue, our key observation is that in the exist-
ing literature on CBMs, we always use linear transformation
for the label predictor, meaning that the dimensions of the
input with values of 0 will have no contribution to the final
prediction. To leverage this property, we fill the missing
values in the input of the updated predictor with 0, that is,
replacing ĝ−pM

with ĝ∗−pM
and consider f̂pM=0 defined by

f̂pM=0 = argmin
f

n∑
i=1

LY

(
f
(
ĝ∗−pM

(xi)
)
, yi
)
. (7)

In total, we have the following lemma:
Lemma 4.5. In the CBM, if the label predictor utilizes
linear transformations of the form f̂ ·c with input c, then, for
each r ∈ M , we remove the r-th concept from c and denote
the new input as c′; set the r-th concept to 0 and denote the
new input as c0. Then we have f̂−pM

· c′ = f̂pM=0 · c0 for
any input c.

Lemma 4.5 demonstrates that the retrained f̂−pM
and

f̂pM=0, when given inputs ĝ−pM
(x) and ĝ∗−pM

(x) respec-
tively, yield identical outputs. Consequently, we can utilize
f̂pM=0 as the editing target in place of f̂−pM

.
Theorem 4.6. For the revised retrained label predictor
f̂pM=0 defined by (7), we can edit the initial label predictor
f̂ to f̄pM=0 by the following equation as a substitute for
f̂pM=0:

f̂pM=0 ≈ f̄pM=0 ≜ f̂ −H−1

f̂
·

n∑
l=1

GY (xl; ḡ
∗
−pM

, f̂),

where Hf̂ = ∇f̂

∑n
i=1 GY (xl; ḡ

∗
−pM

, f̂) is the Hessian
matrix. Deleting the r-th dimension of f̄pM=0 for r ∈ M ,
then we can map it to f̄−pM

, which is the approximation of
the final edited label predictor f̂−pM

under concept level.

4.3. Data-level Editable CBM

In this scenario, we are more concerned about fully remov-
ing the influence of data samples on CBMs due to different
reasons, such as the training data involving poisoned or er-
roneous issues. Specifically, we have a set of samples to be
removed {(xi, yi, ci)}i∈G with G ⊂ [n]. Then, we define
the retrained concept predictor as

ĝ−zG = argmin
g

k∑
j=1

∑
i∈[n]−G

Lj
C(g(xi), ci), (8)

which can be evaluated by the following theorem:

Theorem 4.7. For dataset D = {(xi, yi, ci)}ni=1, given a
set of data zr = (xr, yr, cr), r ∈ G to be removed. Suppose
the updated concept predictor ĝ−zG is defined by (8), then
we have the following approximation for ĝ−zG

ĝ−zG ≈ ḡ−zG ≜ ĝ +H−1
ĝ ·

∑
r∈G

M∑
j=1

Gj
C(xr, cr; ĝ), (9)

where Hĝ = ∇g

∑
i,j G

j
C(xi, ci; ĝ) is the Hessian matrix

of the loss function with respect to ĝ.

Based on ĝ−zG , the label predictor becomes f̂−zG which is
defined by

f̂−zG = argmin
f

∑
i∈[n]−G

LY (f(ĝ−zG (xi) , yi) . (10)

Compared with the original loss before unlearning in (2),
we can observe two changes in (10). First, we remove |G|
data points in the loss function LY . Secondly, the input for
the loss is also changed from ĝ(xi) to ĝ−zG . Therefore, it
is difficult to estimate directly with an influence function.
Here we introduce an intermediate label predictor as

f̃−zG = argmin
∑

i∈[n]−G

LY (f(ĝ(xi), yi), (11)

and split the estimate of f̂−zG − f̂ into f̂−zG − f̃−zG and
f̃−zG − f̂ .

Theorem 4.8. For dataset D = {(xi, yi, ci)}ni=1, given a
set of data zr = (xr, yr, cr), r ∈ G to be removed. The
intermediate label predictor f̃−zG is defined in (11). Then
we have

f̃−zG − f̂ ≈ H−1

f̂

∑
i∈[n]−G

GY (xi; ĝ, f̂) ≜ AG.

5

Editable Concept Bottleneck Models

We denote the edited version of f̃−zG as f̄∗
−zG ≜ f̂ + AG.

Define BG as

−H−1
f̄∗
−zG

∑
i∈[n]−G

GY (xi; ḡ−zG , f̄
∗
−zG)−GY (xi; ĝ, f̄

∗
−zG),

where Hf̄∗
−zG

= ∇f̄

∑
i∈[n]−G GY (xi; ĝ, f̄

∗
−zG) is the Hes-

sian matrix concerning f̄∗
−zG . Then f̂−zG can be estimated

by f̃−zG + BG. Combining the above two-stage approxi-
mation, then, the final edited label predictor f̄−zG can be
obtained by

f̄−zG = f̄∗
−zG +BG = f̂ +AG +BG. (12)

Acceleration via EK-FAC. As mentioned in Section 3, the
loss function in CBMs is non-convex, meaning the Hessian
matrices in all our theorems may not be well-defined. To
address this, we adopt the EK-FAC approach, where the
Hessian is approximated as Ĥθ = Gθ + δI . Here, Gθ rep-
resents the Fisher information matrix of the model θ, and
δ is a small damping term introduced to ensure positive
definiteness. For details on applying EK-FAC to CBMs,
see Appendix C.1. Additionally, refer to Algorithms 6-8 in
the Appendix for the EK-FAC-based algorithms correspond-
ing to our three levels, with their original (Hessian-based)
versions provided in Algorithms 1-3, respectively.

Theoretical Bounds. We provide error bounds for the con-
cept predictor between retraining and ECBM across all three
levels; see Appendix D.2, E.2 and F.2 for details. We show
that under certain scenarios, the approximation error be-
comes tolerable theoretically when leveraging some damp-
ing term δ regularized in the Hessian matrix.

5. Experiments
In this section, we demonstrate our main experimental
results on utility evaluation, edition efficiency, and inter-
pretability evaluation. Details and additional results are in
Appendix H due to space limit.

5.1. Experimental Settings

Dataset.We utilize three datasets: X-ray Grading
(OAI) (Nevitt et al., 2006), Bird Identification (CUB) (Wah
et al., 2011), and the Large-scale CelebFaces Attributes
Dataset (CelebA) (Liu et al., 2015). OAI is a multi-center ob-
servational study of knee osteoarthritis, comprising 36,369
data points. Specifically, we configure n=10 concepts that
characterize crucial osteoarthritis indicators such as joint
space narrowing, osteophytes, and calcification. Bird iden-
tification (CUB)2 consists of 11,788 data points, which be-
long to 200 classes and include 112 binary attributes to

2The original dataset is processed. Detailed explanation can be
found in H.

describe detailed visual features of birds. CelebA comprises
202,599 celebrity images, each annotated with 40 binary
attributes that detail facial features, such as hair color, eye-
glasses, and smiling. As the dataset lacks predefined clas-
sification tasks, following (Espinosa Zarlenga et al., 2022),
we designate 8 attributes as labels and the remaining 32
attributes as concepts. For all the above datasets, we follow
the same network architecture and settings outlined in (Koh
et al., 2020).

Ground Truth and Baselines. We use retrain as the ground
truth method. Retrain: We retrain the CBM from scratch
by removing the samples, concept labels, or concepts from
the training set. We employ two baseline methods: CBM-IF,
and ECBM. CBM-IF: This method is a direct implemen-
tation of our previous theorems of model updates in the
three settings. See Algorithms 1-3 in Appendix for details.
ECBM: As we discussed above, all of our model updates
can be further accelerated via EK-FAC, ECBM corresponds
to the EK-FAC accelerated version of Algorithms 1-3 (refer
to Algorithms 6-8 in Appendix).

Evaluation Metric. We utilize two primary evaluation met-
rics to assess our models: the F1 score and runtime (RT).
F1 score measures the model performance by balancing pre-
cision and recall. Runtime, measured in minutes, evaluates
the total running time of each method to update the model.

Implementation Details. Our experiments utilized an Intel
Xeon CPU and an RTX 3090 GPU. For utility evaluation,
at the concept level, one concept was randomly removed
for the OAI dataset and repeated while ten concepts were
randomly removed for the CUB dataset, with five different
seeds. At the data level, 3% of the data points were randomly
deleted and repeated 10 times with different seeds. At the
concept-label level, we randomly selected 3% of the data
points and modified one concept of each data randomly,
repeating this 10 times for consistency across iterations.

5.2. Evaluation of Utility and Editing Efficiency

Our experimental results, as illustrated in Table 1, demon-
strate the effectiveness of ECBMs compared to traditional
retraining and CBM-IF, particularly emphasizing computa-
tional efficiency without compromising accuracy. Specif-
ically, ECBMs achieved F1 scores close to those of re-
training (0.8808 vs. 0.8825) while significantly reducing
the runtime from 297.77 minutes to 2.36 minutes. This
pattern is consistent in the CUB dataset, where the run-
time was decreased from 85.56 minutes for retraining to
0.65 minutes for ECBMs, with a negligible difference in
the F1 score (0.7971 to 0.7963). These results highlight
the potential of ECBMs to provide substantial time sav-
ings—approximately 22-30% of the computational time
required for retraining—while maintaining comparable ac-
curacy. Compared to CBM-IF, ECBM also showed a slight

6

Editable Concept Bottleneck Models

Table 1: Performance comparison of different methods on the three datasets.

Edit Level Method OAI CUB CelebA

F1 score RT (minute) F1 score RT (minute) F1 score RT (minute)

Concept Label
Retrain 0.8825±0.0054 297.77±35.01 0.7971±0.0066 85.56±4.22 0.3827±0.0272 304.71±35.15
CBM-IF(Ours) 0.8639±0.0033 4.63±0.89 0.7699±0.0035 1.33±0.09 0.3561±0.0134 5.54±0.82
ECBM(Ours) 0.8808±0.0039 2.36±0.54 0.7963±0.0050 0.65±0.08 0.3845±0.0327 2.49±0.53

Concept
Retrain 0.8448±0.0191 258.84±42.48 0.7811±0.0047 87.21±7.62 0.3776±0.0350 355.85±25.39
CBM-IF(Ours) 0.8214±0.0071 4.94±0.91 0.7579±0.0065 1.45±0.08 0.3609±0.0202 5.51±0.89
ECBM(Ours) 0.8403±0.0090 2.36±0.60 0.7787±0.0058 0.59±0.17 0.3761±0.0280 2.48±0.52

Data
Retrain 0.8811±0.0065 319.37±31.08 0.7838±0.0051 86.20±7.74 0.3797±0.0375 325.62±50.59
CBM-IF(Ours) 0.8472±0.0046 5.07±0.75 0.7623±0.0031 1.46±0.08 0.3536±0.0166 5.97±0.75
ECBM(Ours) 0.8797±0.0038 2.50±0.49 0.7827±0.0088 0.65±0.19 0.3748±0.0347 2.49±0.61

reduction in runtime and a significant improvement in F1
score. The former verifies the effective acceleration of our
algorithm by EK-FAC. This efficiency is particularly crucial
in scenarios where frequent updates to model annotations
are needed, confirming the utility of ECBMs in dynamic
environments where running time and accuracy are critical.

We can also see that the original version of ECBM, i.e.,
CBM-IF, also has a lower runtime than retraining but a
lower F1 score than ECBM. Such results may be due to dif-
ferent reasons. For example, our original theorems depend
on the inverse of the Hessian matrices, which may not be
well-defined for non-convex loss. Moreover, these Hessian
matrices may be ill-conditioned or singular, which makes
calculating their inverse imprecise and unstable.

Editing Multiple Samples. To comprehensively evalu-
ate the editing capabilities of ECBM in various scenarios,
we conducted experiments on the performance with mul-
tiple samples that need to be removed. Specifically, for
the concept label/data levels, we consider the different ra-
tios of samples (1-10%) for edit, while for the concept
level, we consider removing different numbers of concepts
∈ {2, 4, 6, · · · , 20}. We compared the performance of re-
training, CBM-IF, and ECBM methods. As shown in Figure
2, except for certain cases at the concept level, the F1 score
of the ECBM method is generally around 0.0025 lower than
that of the retrain method, which is significantly better than
the corresponding results of the CBM-IF method. Recall-
ing Table 1, the speed of ECBM is more than three times
faster than that of retraining. Consequently, ECBM is an
editing method that achieves a trade-off between speed and
effectiveness.

5.3. Results on Interpretability

ECBM can measure concepts importance. The origi-
nal motivation of the influence function is to calculate the
importance score of each sample. Here, we will show that
the influence function for the concept level in Theorem 4.4
can be used to calculate the importance of each concept in
CBMs, which provides an explainable tool for CBMs. In
detail, we conduct our experiments on the CUB dataset. We

first select 1-10 most influential and 1-10 least influential
concepts by our influence function. Then, we will remove
these concepts and update the model via retraining or our
ECBM and analyze the change (F1 Score Difference) w.r.t.
the original CBM before removal.

The results in Figure 3(a) demonstrate that when we remove
the 1-10 most influential concepts identified by the ECBM
method, the F1 score decreases by more than 0.025 com-
pared to the CBM before removal. In contrast, Figure 3(b)
shows that the change in the F1 score remains consistently
below 0.005 when removing the least influential concepts.
These findings strongly indicate that the influence function
in ECBM can successfully determine the importance of con-
cepts. Furthermore, we observe that the gap between the F1
score of retraining and ECBM is consistently smaller than
0.005, and even smaller in the case of least important con-
cepts. This further suggests that when ECBM edits various
concepts, its performance is very close to the ground truth.

ECBMs can erase data influence. For the data level,
ECBMs aim to facilitate an efficient removal of samples. We
perform membership inference attacks (MIAs) to provide
direct evidence that ECBMs can indeed erase data influence.
MIA is a privacy attack that aims to infer whether a specific
data sample was part of the training dataset used to train a
model. The attacker exploits the model’s behavior, such as
overconfidence or overfitting, to distinguish between train-
ing (member) and non-training (non-member) data points.
In MIAs, the attacker typically queries the model with a
data sample and observes its prediction confidence or loss
values, which tend to be higher for members of the training
set than non-members (Shokri et al., 2017).

To quantify the success of these edits, we calculate the
RMIA (Removed Membership Inference Attack) score for
each category. The RMIA score is defined as the model’s
confidence in classifying whether a given sample belongs
to the training set. Lower RMIA values indicate that the
sample behaves more like a test set (non-member) sam-
ple (Zarifzadeh et al., 2024). This metric is especially cru-
cial for edited samples, as a successful ECBM should make
the removed members behave similarly to non-members,

7

Editable Concept Bottleneck Models

2 4 6 8 10
Ratio of Edition

0.770

0.775

0.780

0.785

0.790

0.795

0.800

F1
 S

co
re

Concept-label-level
Strategy

Retrain
CBM-IF
ECBMs

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of Deletion

0.755

0.760

0.765

0.770

0.775

0.780

0.785

0.790

F1
 S

co
re

Concept-level
Strategy

Retrain
CBM-IF
ECBMs

2 4 6 8 10
Ratio of Deletion

0.755

0.760

0.765

0.770

0.775

0.780

0.785

0.790

F1
 S

co
re

Data-level
Strategy

Retrain
CBM-IF
ECBMs

Figure 2: Impact of edition ratio on three settings on CUB dataset.

1 2 3 4 5 6 7 8 9 10

Number of Deletions

0.025

0.020

0.015

0.010

0.005

0.000

F1
 S

co
re

 D
iff

er
en

ce

Strategy
Retrain
ECBMs

(a) Results on the 1-10 most influential concepts

1 2 3 4 5 6 7 8 9 10

Number of Deletions
0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

F1
 S

co
re

 D
iff

er
en

ce
Strategy

Retrain
ECBMs

(b) Results on the 1-10 least influential concepts

Figure 3: F1 score difference after removing most and least influential concepts given by ECBM.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
RMIA

0

20

40

60

80

100

Fr
eq

ue
nc

y

Before Editing
Normal Distribution of Non-Members' RMIA
Normal Distribution of Members' RMIA
non-members
members

(a) RMIA Score Before Editing

0.01 0.02 0.03 0.04 0.05 0.06 0.07
RMIA

0

20

40

60

80

100

After Editing
Normal Distribution of Non-Members' RMIA
Normal Distribution of Removed-members' RMIA
non-members
removed-members

(b) RMIA Score After Editing

Figure 4: RMIA scores of data before and after removal.

reducing their membership vulnerability. See Appendix H
for its definition.

We conducted experiments by randomly selecting 200 sam-
ples from the training set (members) and 200 samples from
the test set (non-members) of the CUB dataset. We calcu-
lated the RMIA scores for these samples and plotted their
frequency distributions, as shown in Figure 4(a). The mean
RMIA score for non-members was 0.049465, while mem-
bers had a mean score of 0.063505. Subsequently, we ap-
plied ECBMs to remove the 200 training samples from the
model, updated the model parameters, and then recalculated
the RMIA scores. After editing, the mean RMIA score for
the removed members decreased to 0.052105, significantly

closer to the non-members’ mean score. This shift in RMIA
values demonstrates the effectiveness of ECBMs in editing
the model, as the removed members now exhibit behavior
closer to that of non-members. The post-editing RMIA
score distributions are shown in Figure 4(b). These results
provide evidence of the effectiveness of ECBMs in editing
the model’s knowledge about specific samples.

6. Conclusion
In this paper, we propose Editable Concept Bottleneck
Models (ECBMs). ECBMs can address issues of remov-
ing/inserting some training data or new concepts from

8

Editable Concept Bottleneck Models

trained CBMs for different reasons, such as privacy con-
cerns, data mislabelling, spurious concepts, and concept
annotation errors retraining from scratch. Furthermore, to
improve computational efficiency, we present streamlined
versions integrating EK-FAC. Experimental results show
our ECBMs are efficient and effective.

Impact Statement
This research propose editable concept bottleneck models.
While we acknowledge the importance of evaluating societal
impacts, our analysis suggests that there are no immediate
ethical risks requiring specific mitigation measures beyond
standard practices in machine learning.

Acknowledgements
Lijie Hu, Chenyang Ren, Cheng-Long Wang, and Di Wang
are supported in part by the funding BAS/1/1689-01-01,
URF/1/4663-01-01, REI/1/5232-01-01, REI/1/5332-01-01,
and URF/1/5508-01-01 from KAUST, and funding from
KAUST - Center of Excellence for Generative AI, un-
der award number 5940. Zhengyu Hu, Hongbin Lin, and
Hui Xiong are supported by the National Key R&D Pro-
gram of China (Grant No. 2023YFF0725001), the Na-
tional Natural Science Foundation of China (Grant No.
92370204), the Guangdong Basic and Applied Basic Re-
search Foundation (Grant No. 2023B1515120057), the
Guangzhou-HKUST(GZ) Joint Funding Program (Grant No.
2023A03J0008), and the Education Bureau of Guangzhou
Municipality.

References
Agarwal, N., Bullins, B., and Hazan, E. Second-order

stochastic optimization for machine learning in linear
time. Journal of Machine Learning Research, 18(116):
1–40, 2017.

Ahmad, M. A., Eckert, C., and Teredesai, A. Interpretable
machine learning in healthcare. In Proceedings of the
2018 ACM international conference on bioinformatics,
computational biology, and health informatics, pp. 559–
560, 2018.

Ali, M. A., Li, Z., Yang, S., Cheng, K., Cao, Y., Huang, T.,
Hu, L., Yu, L., and Wang, D. Prompt-saw: Leveraging
relation-aware graphs for textual prompt compression.
arXiv preprint arXiv:2404.00489, 2024.

Bartlett, M. Approximate confidence intervals. Biometrika,
40(1/2):12–19, 1953.

Basu, S., Pope, P., and Feizi, S. Influence functions in
deep learning are fragile. In International Conference on
Learning Representations (ICLR), 2021.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot,
N. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Brophy, J. and Lowd, D. Machine unlearning for random
forests. In International Conference on Machine Learn-
ing, pp. 1092–1104. PMLR, 2021.

Brunet, M.-E., Alkalay-Houlihan, C., Anderson, A., and
Zemel, R. Understanding the origins of bias in word
embeddings. In International conference on machine
learning, pp. 803–811. PMLR, 2019.

Cao, L. Ai in finance: challenges, techniques, and oppor-
tunities. ACM Computing Surveys (CSUR), 55(3):1–38,
2022.

Cao, Y. and Yang, J. Towards making systems forget with
machine unlearning. In 2015 IEEE symposium on security
and privacy, pp. 463–480. IEEE, 2015.

Chauhan, K., Tiwari, R., Freyberg, J., Shenoy, P., and Dvi-
jotham, K. Interactive concept bottleneck models. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37(5), pp. 5948–5955, 2023.

Chen, C., Sun, F., Zhang, M., and Ding, B. Recommenda-
tion unlearning. In Proceedings of the ACM Web Confer-
ence 2022, pp. 2768–2777, 2022a.

Chen, H., Si, S., Li, Y., Chelba, C., Kumar, S., Boning, D.,
and Hsieh, C.-J. Multi-stage influence function. Advances
in Neural Information Processing Systems, 33:12732–
12742, 2020.

Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M.,
and Zhang, Y. Graph unlearning. In Proceedings of the
2022 ACM SIGSAC conference on computer and commu-
nications security, pp. 499–513, 2022b.

Cheng, K., Lin, G., Fei, H., Yu, L., Ali, M. A., Hu, L., Wang,
D., et al. Multi-hop question answering under temporal
knowledge editing. arXiv preprint arXiv:2404.00492,
2024.

Chowdhury, S. B. R., Choromanski, K., Sehanobish, A.,
Dubey, A., and Chaturvedi, S. Towards scalable exact
machine unlearning using parameter-efficient fine-tuning.
arXiv preprint arXiv:2406.16257, 2024.

Cook, R. D. Detection of influential observation in linear
regression. Technometrics, 42(1):65–68, 2000.

Cook, R. D. and Weisberg, S. Characterizations of an em-
pirical influence function for detecting influential cases
in regression. Technometrics, 22(4):495–508, 1980.

9

Editable Concept Bottleneck Models

Das, A. and Rad, P. Opportunities and challenges in explain-
able artificial intelligence (xai): A survey. arXiv preprint
arXiv:2006.11371, 2020.

Espinosa Zarlenga, M., Barbiero, P., Ciravegna, G., Marra,
G., Giannini, F., Diligenti, M., Shams, Z., Precioso, F.,
Melacci, S., Weller, A., Lió, P., and Jamnik, M. Concept
embedding models: Beyond the accuracy-explainability
trade-off. In Advances in Neural Information Processing
Systems, volume 35, 2022.

George, T., Laurent, C., Bouthillier, X., Ballas, N., and
Vincent, P. Fast approximate natural gradient descent
in a kronecker factored eigenbasis. Advances in Neural
Information Processing Systems, 31, 2018.

Golatkar, A., Achille, A., and Soatto, S. Eternal sunshine of
the spotless net: Selective forgetting in deep networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020a.

Golatkar, A., Achille, A., and Soatto, S. Forgetting out-
side the box: Scrubbing deep networks of information
accessible from input-output observations. In Computer
Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part XXIX
16, pp. 383–398. Springer, 2020b.

Golatkar, A., Achille, A., Ravichandran, A., Polito, M., and
Soatto, S. Mixed-privacy forgetting in deep networks. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 792–801, 2021.

Guo, C., Goldstein, T., Hannun, A., and Van Der Maaten,
L. Certified data removal from machine learning models.
arXiv preprint arXiv:1911.03030, 2019.

Guo, H., Rajani, N., Hase, P., Bansal, M., and Xiong, C.
Fastif: Scalable influence functions for efficient model
interpretation and debugging. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language
Processing, pp. 10333–10350, 2021.

Han, X., Wallace, B. C., and Tsvetkov, Y. Explaining black
box predictions and unveiling data artifacts through influ-
ence functions. arXiv preprint arXiv:2005.06676, 2020.

Havasi, M., Parbhoo, S., and Doshi-Velez, F. Addressing
leakage in concept bottleneck models. Advances in Neu-
ral Information Processing Systems, 35:23386–23397,
2022.

Hu, L., Liu, Y., Liu, N., Huai, M., Sun, L., and Wang, D.
Improving faithfulness for vision transformers. arXiv
preprint arXiv:2311.17983, 2023a.

Hu, L., Liu, Y., Liu, N., Huai, M., Sun, L., and Wang, D.
Seat: stable and explainable attention. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume
37(11), pp. 12907–12915, 2023b.

Izzo, Z., Smart, M. A., Chaudhuri, K., and Zou, J. Approx-
imate data deletion from machine learning models. In
International Conference on Artificial Intelligence and
Statistics, pp. 2008–2016. PMLR, 2021.

Keser, M., Schwalbe, G., Nowzad, A., and Knoll, A. Inter-
pretable model-agnostic plausibility verification for 2d
object detectors using domain-invariant concept bottle-
neck models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
3890–3899, 2023.

Kim, E., Jung, D., Park, S., Kim, S., and Yoon, S. Prob-
abilistic concept bottleneck models. arXiv preprint
arXiv:2306.01574, 2023.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International conference
on machine learning, pp. 1885–1894. PMLR, 2017.

Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson,
E., Kim, B., and Liang, P. Concept bottleneck models. In
International conference on machine learning, pp. 5338–
5348. PMLR, 2020.

Kwon, Y., Wu, E., Wu, K., and Zou, J. Datainf: Efficiently
estimating data influence in lora-tuned llms and diffu-
sion models. In The Twelfth International Conference on
Learning Representations, 2023.

Lai, S., Hu, L., Wang, J., Berti-Equille, L., and Wang, D.
Faithful vision-language interpretation via concept bot-
tleneck models. In The Twelfth International Conference
on Learning Representations, 2023.

Liu, J., Lou, J., Qin, Z., and Ren, K. Certified minimax
unlearning with generalization rates and deletion capacity.
Advances in Neural Information Processing Systems, 36,
2024.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning
face attributes in the wild. In Proceedings of the IEEE
international conference on computer vision, pp. 3730–
3738, 2015.

Mehta, R., Pal, S., Singh, V., and Ravi, S. N. Deep unlearn-
ing via randomized conditionally independent hessians.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 10422–10431,
2022.

Nevitt, M., Felson, D., and Lester, G. The osteoarthritis
initiative. Protocol for the cohort study, 1:2, 2006.

10

Editable Concept Bottleneck Models

Oikarinen, T., Das, S., Nguyen, L., and Weng, L. Label-free
concept bottleneck models. In International Conference
on Learning Representations, 2023.

Rozenfeld, Y., Beam, J., Maier, H., Haggerson, W.,
Boudreau, K., Carlson, J., and Medows, R. A model
of disparities: risk factors associated with covid-19 infec-
tion. International journal for equity in health, 19(1):126,
2020.

Sattar, N., McInnes, I. B., and McMurray, J. J. Obesity
is a risk factor for severe covid-19 infection: multiple
potential mechanisms. Circulation, 142(1):4–6, 2020.

Sawada, Y. and Nakamura, K. Concept bottleneck model
with additional unsupervised concepts. IEEE Access, 10:
41758–41765, 2022.

Sekhari, A., Acharya, J., Kamath, G., and Suresh, A. T. Re-
member what you want to forget: Algorithms for machine
unlearning. Advances in Neural Information Processing
Systems, 34:18075–18086, 2021.

Sheth, I. and Ebrahimi Kahou, S. Auxiliary losses for learn-
ing generalizable concept-based models. In Oh, A., Nau-
mann, T., Globerson, A., Saenko, K., Hardt, M., and
Levine, S. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 26966–26990, 2023.

Sheth, I. and Kahou, S. E. Auxiliary losses for learning
generalizable concept-based models. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE symposium on security and privacy
(SP), pp. 3–18. IEEE, 2017.

Thudi, A., Deza, G., Chandrasekaran, V., and Papernot,
N. Unrolling sgd: Understanding factors influencing ma-
chine unlearning. In 2022 IEEE 7th European Symposium
on Security and Privacy (EuroS&P), pp. 303–319. IEEE,
2022.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The caltech-ucsd birds-200-2011 dataset. California
Institute of Technology, 2011.

Wang, H., Ustun, B., and Calmon, F. Repairing without
retraining: Avoiding disparate impact with counterfactual
distributions. In International Conference on Machine
Learning, pp. 6618–6627. PMLR, 2019.

Warnecke, A., Pirch, L., Wressnegger, C., and Rieck, K.
Machine unlearning of features and labels. Network and
Distributed System Security (NDSS) Symposium, 2023.

Wu, Y., Dobriban, E., and Davidson, S. Deltagrad: Rapid re-
training of machine learning models. In International
Conference on Machine Learning, pp. 10355–10366.
PMLR, 2020.

Xu, X., Kong, K., Liu, N., Cui, L., Wang, D., Zhang, J., and
Kankanhalli, M. An llm can fool itself: A prompt-based
adversarial attack. arXiv preprint arXiv:2310.13345,
2023.

Yang, S., Ali, M. A., Wang, C.-L., Hu, L., and Wang, D.
Moral: Moe augmented lora for llms’ lifelong learning.
arXiv preprint arXiv:2402.11260, 2024a.

Yang, S., Hu, L., Yu, L., Ali, M. A., and Wang, D. Human-ai
interactions in the communication era: Autophagy makes
large models achieving local optima. arXiv preprint
arXiv:2402.11271, 2024b.

Yang, S., Su, J., Jiang, H., Li, M., Cheng, K., Ali, M. A., Hu,
L., and Wang, D. Dialectical alignment: Resolving the
tension of 3h and security threats of llms. arXiv preprint
arXiv:2404.00486, 2024c.

Yin, S., Fu, C., Zhao, S., Li, K., Sun, X., Xu, T., and Chen,
E. A survey on multimodal large language models. arXiv
preprint arXiv:2306.13549, 2023.

Yu, K.-H., Beam, A. L., and Kohane, I. S. Artificial intel-
ligence in healthcare. Nature biomedical engineering, 2
(10):719–731, 2018.

Yuksekgonul, M., Wang, M., and Zou, J. Post-hoc con-
cept bottleneck models. In The Eleventh International
Conference on Learning Representations, 2023.

Zarifzadeh, S., Liu, P., and Shokri, R. Low-cost high-power
membership inference attacks. In Forty-first International
Conference on Machine Learning, 2024.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. A survey of
large language models. arXiv preprint arXiv:2303.18223,
2023.

11

Editable Concept Bottleneck Models

A. Notation Table

Table 2: Notation Table.

Symbol Description

c = {p1, . . . , pk} Set of concepts provided by experts or LLMs.
D = {zi}ni=1 Training dataset, where zi = (xi, yi, ci).
xi ∈ Rdi Feature vector for the i-th sample.
yi ∈ Rdo Label for the i-th sample, with dz being the number of classes.
ci = (c1i , . . . , c

k
i) ∈ Rk Concept vector for the i-th sample.

c̃rw Corrected concept label for the w-th sample and r-th concept.
cji Weight of the concept pj in the concept vector ci.
g : Rd

i → Rk Concept predictor mapping input space to concept space.
f : Rk → Rdo Label predictor mapping concept space to prediction space.
Lj
C(g(x), c) Loss function for the j-th concept predictor.

LY (f(ĝ(x)), y) Loss function from concept space to output space.
Gj

C(xi, ci; g) Gradient of the loss Lj
C(g(xi), ci).

GY (xi, ci; g) Gradient of the loss LY (f(g(xi)), ci).
Hθ̂ Hessian matrix of the loss function with respect to θ̂.
Gθ̂ Fisher information matrix of model θ̂.
δ Damping term for ensuring positive definiteness of the Hessian.
ĝ Estimated concept predictor.
f̂ Estimated label predictor.
ĝe Retrained concept predictor after correcting erroneous data.
f̂e Retrained label predictor after correcting erroneous data.
ĝ−pM

Retrained concept predictor after removing concepts indexed by M .
ĝ∗−pM

Mapped concept predictor with the same dimensionality as ĝ.
ḡ−pM

Approximation of the retrained concept predictor ĝ−pM
.

f̂pM=0 Label predictor after setting the r-th concept to zero for r ∈ M .
f̄pM=0 Approximation of the label predictor f̂pM=0.
Hĝ Hessian matrix of the loss function with respect to ĝ.
Hf̂ Hessian matrix of the loss function with respect to f̂ .
M ⊂ [k] Set of erroneous concept indices to be removed.
G ⊂ [n] Set of indices of samples to be removed from the dataset.
zr = (xr, yr, cr) Data sample to be removed, where r ∈ G.
ĝ−zG Retrained concept predictor after removing samples indexed by G.
ḡ−zG Approximation of the retrained concept predictor ĝ−zG .
f̃−zG Intermediate label predictor.
f̄−zG Final edited label predictor after removing samples indexed by G.

B. Influence Function
Consider a neural network θ̂ = argminθ

∑n
i=1 ℓ(zi, θ) with loss function L and dataset D = {zi}ni=1. That is θ̂ minimize

the empirical risk

R(θ) =

n∑
i=1

L(zi, θ)

Assume R is strongly convex in θ. Then θ is uniquely defined. If we remove a point zm from the training dataset,
the parameters become θ̂−zm = argminθ

∑
i ̸=m L(zi, θ). Up-weighting zm by ϵ small enough, then the revised risk

R(θ)
′
= 1

n

∑n
i=1 L(zi; θ) + ϵL(zm; θ) is still strongly convex. Then the response function θ̂ϵ,−zm = R(θ)

′
is also uniquely

defined. The parameter change is denoted as ∆ϵ = θ̂ϵ,−zm − θ̂. Since θ̂ϵ,−zm is the minimizer of R(θ)
′
, we have the

12

Editable Concept Bottleneck Models

first-order optimization condition as

∇θ̂ϵ,−zm
R(θ) + ϵ · ∇θ̂ϵ,−zm

L(zm, θ̂ϵ,−zm) = 0

Since θ̂ϵ,−zm → θ̂asϵ → 0, we perform a Taylor expansion of the right-hand side:[
∇R(θ̂) + ϵ∇L(zm, θ̂)

]
+
[
∇2R(θ̂) + ϵ∇2L(zm, θ̂)

]
∆ϵ ≈ 0

Noting ϵ∇2L(zm, θ̂)∆ϵ is o(∥∆ϵ∥) term, which is smaller than other parts, we drop it in the following analysis. Then the
Taylor expansion equation becomes [

∇R(θ̂) + ϵ∇L(zm, θ̂)
]
+∇2R(θ̂) ·∆ϵ ≈ 0

Solving for ∆ϵ, we obtain:

∆ϵ = −
[
∇2R(θ̂) + ϵ∇2L(z, θ̂)

]−1 [
∇R(θ̂) + ϵ∇L(z, θ̂)

]
.

Remember θ minimizes R, then ∇R(θ̂) = 0. Dropping o(ϵ) term, we have

∆ϵ = −ϵ∇2R(θ̂)−1∇L(z, θ̂).

dθ̂ϵ,−zm

dϵ

∣∣∣∣∣
ϵ=0

=
d∆ϵ

dϵ

∣∣∣∣
ϵ=0

= −H−1

θ̂
∇L(z, θ̂) ≡ Iup,params(z).

Besides, we can obtain the approximation of θ̂−zm directly by θ̂−zm ≈ θ̂ + Iup,params(z).

C. Acceleration for Influence Function
EK-FAC. EK-FAC method relies on two approximations to the Fisher information matrix, equivalent to Gθ̂ in our setting,
which makes it feasible to compute the inverse of the matrix.

Firstly, assume that the derivatives of the weights in different layers are uncorrelated, which implies that Gθ̂ has a block-
diagonal structure. Suppose ĝθ can be denoted by ĝθ(x) = gθL ◦ · · · ◦ gθl ◦ · · · ◦ gθ1(x) where l ∈ [L]. We fold the bias
into the weights and vectorize the parameters in the l-th layer into a vector θl ∈ Rdl , dl ∈ N is the number of l-th layer
parameters. Then Gθ̂ can be reaplcaed by

(
G1(θ̂), · · · , GL(θ̂)

)
, where Gl(θ̂) ≜ n−1

∑n
i=1 ∇θ̂l

ℓi∇θlℓ
T
i . Denote hl, ol as

the output and pre-activated output of l-th layer. Then Gl(θ) can be approximated by

Gl(θ) ≈ Ĝl(θ) ≜
1

n

n∑
i=1

hl−1 (xi)hl−1 (xi)
T ⊗ 1

n

n∑
i=1

∇olℓi∇olℓ
T
i ≜ Ωl−1 ⊗ Γl.

Furthermore, in order to accelerate transpose operation and introduce the damping term, perform eigenvalue decomposition
of matrix Ωl−1 and Γl and obtain the corresponding decomposition results as QΩΛΩQ

⊤
Ω and QΓΛΓQ

⊤
Γ . Then the inverse of

Ĥl(θ) can be obtained by

Ĥl(θ)
−1 ≈

(
Ĝl (ĝ) + λlIdl

)−1

=
(
QΩl−1

⊗QΓl

) (
ΛΩl−1

⊗ ΛΓl
+ λlIdl

)−1 (
QΩl−1

⊗QΓl

)T
.

Besides, George et al. (2018) proposed a new method that corrects the error in equation 13 which sets the i-th diagonal
element of ΛΩl−1

⊗ ΛΓl
as Λ∗

ii = n−1
∑n

j=1

((
QΩl−1

⊗QΓl

)
∇θlℓj

)2
i
.

C.1. EK-FAC for CBMs

In our CBM model, the label predictor is a single linear layer, and Hessian computing costs are affordable. However, the
concept predictor is based on Resnet-18, which has many parameters. Therefore, we perform EK-FAC for ĝ.

ĝ = argmin
g

k∑
j=1

LCj
= argmin

g

k∑
j=1

n∑
i=1

LC(g
j(xi), c

j
i),

13

Editable Concept Bottleneck Models

we define Hĝ = ∇2
ĝ

∑
i,j LCj

(g(xi), ci) as the Hessian matrix of the loss function with respect to the parameters.

To this end, consider the l-th layer of ĝ which takes as input a layer of activations {aj,t} where j ∈ {1, 2, . . . , J} indexes
the input map and t ∈ T indexes the spatial location which is typically a 2-D grid. This layer is parameterized by a set of
weights W = (wi,j,δ) and biases b = (bi), where i ∈ {1, . . . , I} indexes the output map, and δ ∈ ∆ indexes the spatial
offset (from the center of the filter).

The convolution layer computes a set of pre-activations as

[Sl]i,t = si,t =
∑
δ∈∆

wi,j,δaj,t+δ + bi.

Denote the loss derivative with respect to si,t as

Dsi,t =
∂
∑

LCj

∂si,t
,

which can be computed during backpropagation.

The activations are actually stored as Al−1 of dimension |T | × J . Similarly, the weights are stored as an I × |∆|J array
Wl. The straightforward implementation of convolution, though highly parallel in theory, suffers from poor memory access
patterns. Instead, efficient implementations typically leverage what is known as the expansion operator J·K. For instance,
JAl−1K is a |T | × J |∆| matrix, defined as

JAl−1Kt,j|∆|+δ = [Al−1](t+δ),j = aj,t+δ,

In order to fold the bias into the weights, we need to add a homogeneous coordinate (i.e. a column of all 1’s) to the
expanded activations JAl−1K and denote this as JAl−1KH. Concatenating the bias vector to the weights matrix, then we have
θl = (bl,Wl).

Then, the approximation for Hĝ is given as:

G(l)(ĝ) =E [Dwi,j,δDwi′,j′,δ′] = E

[(∑
t∈T

aj,t+δDsi,t

)(∑
t′∈T

aj′,t′+δ′Dsi′,t′

)]

≈E
[
JAl−1K⊤HJAl−1KH

]
⊗ 1

|T |
E
[
DS⊤

l DSl

]
≜ Ωl−1 ⊗ Γl.

Estimate the expectation using the mean of the training set,

G(l)(ĝ) ≈ 1

n

n∑
i=1

(
JAi

l−1K
⊤
HJAi

l−1KH
)
⊗ 1

n

n∑
i=1

(
1

|T |
DSi

l

⊤DSi
l

)
≜ Ω̂l−1 ⊗ Γ̂l.

Furthermore, if the factors Ω̂l−1 and Γ̂l have eigen decomposition QΩΛΩQ
⊤
Ω and QΓΛΓQ

⊤
Γ , respectively, then the eigen

decomposition of Ω̂l−1 ⊗ Γ̂l can be written as:

Ω̂l−1 ⊗ Γ̂l = QΩΛΩQ
⊤
Ω ⊗QΓΛΓQ

⊤
Γ

= (QΩ ⊗QΓ) (ΛΩ ⊗ ΛΓ) (QΩ ⊗QΓ)
⊤
.

Since subsequent inverse operations are required and the current approximation for G(l)(ĝ) is PSD, we actually use a
damped version as

Ĝl(ĝ)
−1

= (Gl (ĝ) + λlIdl
)
−1

=
(
QΩl−1

⊗QΓl

) (
ΛΩl−1

⊗ ΛΓl
+ λlIdl

)−1 (
QΩl−1

⊗QΓl

)T
. (13)

Besides, (George et al., 2018) proposed a new method that corrects the error in equation 13 which sets the i-th diagonal
element of ΛΩl−1

⊗ ΛΓl
as

Λ∗
ii = n−1

n∑
j=1

((
QΩl−1

⊗QΓl

)
∇θlℓj

)2
i
.

14

Editable Concept Bottleneck Models

D. Concept-label-level Influence
D.1. Proof of Concept-label-level Influence Function

We have a set of erroneous data De and its associated index set Se ⊆ [n] × [k] such that for each (w, r) ∈ Se, we have
(xw, yw, cw) ∈ De with crw is mislabeled and c̃rw is its corrected concept label. Thus, our goal is to approximate the new
CBM without retraining.

Proof Sketch. Our goal is to edit ĝ and f̂ to ĝe and f̂e. (i) First, we introduce new parameters ĝϵ,e that minimize a modified
loss function with a small perturbation ϵ. (ii) Then, we perform a Newton step around ĝ and obtain an estimate for ĝe. (iii)
Then, we consider changing the concept predictor at one data point (xic , yic , cic) and retraining the model to obtain a new
label predictor f̂ic , obtain an approximation for f̂ic . (iv) Next, we iterate ic over 1, 2, · · · , n, sum all the equations together,
and perform a Newton step around f̂ to obtain an approximation for f̂e. (v) Finally, we bring the estimate of ĝ into the
equation for f̂e to obtain the final approximation.

Theorem D.1. Define the gradient of the j-th concept predictor of the i-th data xi as

Gj
C(xi, ci; g) ≜ ∇gL

j
C (g(xi), ci) , (14)

then the retrained concept predictor ĝe defined by

ĝe = argmin

 ∑
(i,j)/∈Se

Lj
C (g(xi), ci) +

∑
(i,j)∈Se

Lj
C (g(xi), c̃i)

 , (15)

can be approximated by ḡe, defined by:

ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(Gr
C(xw, c̃w; ĝ)−Gr

C(xw, cw; ĝ)) (16)

where Hĝ = ∇2
ĝ

∑
i,j L

j
C(ĝ(xi), ci) is the Hessian matrix of the loss function with respect to ĝ.

Proof. For the index (w, r) ∈ Se, indicating the r-th concept of the w-th data is wrong, we correct this concept crw to c̃rw.
Rewrite ĝe as

ĝe = argmin

∑
i,j

Lj
C (g(xi), ci) +

∑
(w,r)∈Se

Lr
C (g(xw), c̃w)−

∑
(w,r)∈Se

Lr
C (g(xw), cw)

 . (17)

To approximate this effect, define new parameters ĝϵ,e as

ĝϵ,e ≜ argmin

∑
i,j

Lj
C (g(xi), ci) +

∑
(w,r)∈Se

ϵ · Lr
C (g(xw), c̃w)−

∑
(w,r)∈Se

ϵ · Lr
C (g(xw), cw)

 . (18)

Then, because ĝϵ,e minimizes equation 18, we have

∇ĝ

∑
i,j

Lj
C (ĝϵ,e(xi), ci) +

∑
(w,r)∈Se

ϵ · ∇ĝL
r
C (ĝϵ,e(xw), c̃w)−

∑
(w,r)∈Se

ϵ · ∇ĝL
r
C (ĝϵ,e(xw), cw) = 0.

Perform a Taylor expansion of the above equation at ĝ,

∇ĝ

∑
i,j

Lj
C (ĝ(xi), ci) +

∑
(w,r)∈Se

ϵ · ∇ĝL
r
C (ĝ(xw), c̃w)−

∑
(w,r)∈Se

ϵ · ∇ĝL
r
C (ĝ(xw), cw)

+∇2
ĝ

∑
i,j

Lj
C (ĝ(xi), ci) · (ĝϵ,e − ĝ) ≈ 0. (19)

15

Editable Concept Bottleneck Models

Because of equation 15, the first term of equation 19 equals 0. Then we have

ĝϵ,e − ĝ = −
∑

(w,r)∈Se

ϵ ·H−1
ĝ · (∇ĝL

r
C (ĝ(xw), c̃w)−∇ĝL

r
C (ĝ(xw), cw)) ,

where
Hĝ = ∇2

ĝ

∑
i,j

Lj
C (ĝ(xi), ci) .

Then, we do a Newton step around ĝ and obtain

ĝe ≈ ḡe ≜ ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(∇ĝL
r
C (ĝ(xw), c̃w)−∇ĝL

r
C (ĝ(xw), cw)) . (20)

Define the gradient of the j-th concept predictor of the i-th data xi as

Gj
C(xi, ci; g) ≜ ∇gL

j
C (g(xi), ci) , (21)

then the retrained concept predictor ĝe defined by

ĝe = argmin

 ∑
(i,j)/∈Se

Lj
C (g(xi), ci) +

∑
(i,j)∈Se

Lj
C (g(xi), c̃i)

 , (22)

can be approximated by ḡe, defined by:

ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(Gr
C(xw, c̃w; ĝ)−Gr

C(xw, cw; ĝ)) (23)

Theorem D.2. Define the gradient of the label predictor of the i-th data xi as

GY (xi; g, f) ≜ ∇fLY (f(g(xi)), yi) , (24)

then the retrained label predictor f̂e defined by

f̂e = argmin

[
n∑

i=1

LY (f (ĝe (xi)) , yi)

]
can be approximated by:

f̂ +H−1

f̂
·

n∑
i=1

(
GY (xi; ĝ, f̂)−GY (xi; ḡe, f̂)

)
,

where Hf̂ = ∇f̂

∑n
i=1 GY (xi; ĝ, f̂) is the Hessian matrix, and ḡe is given in Theorem D.1.

Proof. Now we come to deduce the edited label predictor towards f̂e.

First, we consider only changing the concept predictor at one data point (xic , yic , cic) and retrain the model to obtain a new
label predictor f̂ic .

f̂ic = argmin

 n∑
i=1,i̸=ic

LY (f (ĝ (xi)) , yi) + LY (f (ĝe (xic)) , yic)

 .

We rewrite the above equation as follows:

f̂ic = argmin

[
n∑

i=1

LY (f (ĝ (xi)) , yi) + LY (f (ĝe (xic)) , yic)− LY (f (ĝ (xic)) , yic)

]
.

16

Editable Concept Bottleneck Models

We define f̂ϵ,ic as:

f̂ϵ,ic = argmin

[
n∑

i=1

LY (f (ĝ (xi)) , yi) + ϵ · LY (f (ĝe (xic)) , yic)− ϵ · LY (f (ĝ (xic)) , yic)

]
.

Derive with respect to f at both sides of the above equation. we have

∇f̂

n∑
i=1

LY

(
f̂ϵ,ic (ĝ (xi)) , yi

)
+ ϵ · ∇f̂LY

(
f̂ϵ,ic (ĝe (xic)) , yic

)
− ϵ · ∇f̂LY

(
f̂ϵ,ic (ĝ (xic)) , yic

)
= 0

Perform a Taylor expansion of the above equation at f̂ ,

∇f̂

n∑
i=1

LY

(
f̂ (ĝ (xi)) , yi

)
+ ϵ · ∇f̂LY

(
f̂ (ĝe (xic)) , yic

)
− ϵ · ∇f̂LY

(
f̂ (ĝ (xic)) , yic

)
+∇2

f̂

n∑
i=1

LY

(
f̂ (ĝ (xi)) , yi

)
·
(
f̂ϵ,ic − f̂

)
= 0

Then we have

f̂ϵ,ic − f̂ ≈ −ϵ ·H−1

f̂
· ∇f

(
LY

(
f̂ (ĝe (xic)) , yic

)
− LY

(
f̂ (ĝ (xic)) , yic

))
,

where H−1

f̂
= ∇2

f̂

∑n
i=1 LY

(
f̂ (ĝ (xi)) , yi

)
.

Iterate ic over 1, 2, · · · , n, and sum all the equations together, we can obtain:

f̂ϵ,e − f̂ ≈ −ϵ ·H−1

f̂
·

n∑
i=1

∇f

(
LY

(
f̂ (ĝe (xi)) , yi

)
− LY

(
f̂ (ĝ (xi)) , yi

))
.

Perform a Newton step around f̂ and we have

f̂e ≈ f̂ −H−1

f̂
·

n∑
i=1

∇f

(
LY

(
f̂ (ĝe (xi)) , yi

)
− LY

(
f̂ (ĝ (xi)) , yi

))
. (25)

Bringing the edited (20) of g into equation (25), we have

f̂e ≈f̂ −H−1

f̂
·

n∑
i=1

∇f

(
LY

(
f̂ (ḡe (xi)) , yi

)
− LY

(
f̂ (ĝ (xi)) , yi

))
≜ f̄e.

Define the gradient of the label predictor of the i-th data xi as

GY (xi; g, f) ≜ ∇fLY (f(g(xi)), yi) , (26)

then the retrained label predictor f̂e defined by (4) can be approximated by f̄e, defined by:

f̂ +H−1

f̂
·

n∑
i=1

(
GY (xi; ĝ, f̂)−GY (xi; ḡe, f̂)

)
,

where Hf̂ = ∇f̂

∑n
i=1 GY (xi; ĝ, f̂) is the Hessian matrix, and ḡe is given in Theorem D.1.

17

Editable Concept Bottleneck Models

D.2. Theoretical Bound for the Influence Function

Consider the dataset D = {(xi, ci, yi}i = 1n, the loss function of the concept predictor g is defined as:

LTotal(D; g) =

n∑
i=1

LC(g(xi), ci) +
δ

2
· ∥g∥2 =

n∑
i=1

k∑
j=1

Lj
C(g(xi), ci) +

δ

2
· ∥g∥2 =

n∑
i=1

k∑
j=1

gj(xi)
⊤ log(ci

j) +
δ

2
· ∥g∥2.

Mathematically, we have a set of erroneous data De and its associated index set Se ⊆ [n]× [k] such that for each (w, r) ∈ Se,
we have (xw, yw, cw) ∈ De with crw is mislabeled and c̃rw is corrected concept label. Thus, our goal is to estimate the
retrained CBM. The retrained concept predictor and label predictor will be represented in the following manner.

ĝe = argmin

 ∑
(i,j)/∈Se

Lj
C (g(xi), ci) +

∑
(i,j)∈Se

Lj
C (g(xi), c̃i) +

δ

2
· ∥g∥2

 , (27)

Define the corrected dataset as D∗. Then the loss function with the influence of erroneous data De removed becomes

L−(D∗; g) =
∑

(i,j)/∈Se

Lj
C (g(xi), ci) +

∑
(i,j)∈Se

Lj
C (g(xi), c̃i) +

δ

2
· ∥g∥2. (28)

Assume ĝ = argminLTotal(D; g) is the original model parameter, and ĝe(D∗) is the minimizer of L−(D∗; g), which is
obtained from retraining. Denote ḡe(D∗) as the updated model with the influence of erroneous data De removed and is
obtained by the influence function method in theorem D.1, which is an estimation for ĝe(D∗).

To simplify the problem, we concentrate on the removal of erroneous data De and neglect the process of adding the corrected
data back. Once we obtain the bound for ĝe(D∗) − ḡe(D∗) under this circumstance, the bound for the case where the
corrected data is added back can naturally be derived using a similar approach. For brevity, we use the same notations.

Then, the loss function L−(D∗; g) becomes

L−(D∗; g) =
∑

(i,j)/∈Se

Lj
C (g(xi), ci) +

δ

2
· ∥g∥2 = LTotal(D; g)−

∑
(i,j)∈Se

Lj
C (g(xi), ci) (29)

And the definition of ḡe(D∗) becomes

ĝ +H−1
ĝ ·

∑
(w,r)∈Se

Gr
C(xw, cw; ĝ) (30)

where Hĝ = ∇2
ĝ

∑
i,j L

j
C(ĝ(xi), ci) + δ · I is the Hessian matrix of the loss function with respect to ĝ. Here δ · I is a

small damping term for ensuring positive definiteness of the Hessian. Introducing the damping term into the Hessian is
essentially equivalent to adding a regularization term to the initial loss function. Consequently, δ can also be interpreted as
the regularization strength.

In this part, we will study the error between the estimated influence given by the theorem D.1 method and retraining. We use
the parameter changes as the evaluation metric:

|(ḡe − ĝ)− (ĝe − ĝ)| = |ḡe − ĝe| (31)

Assumption D.3. The loss LC(x, c; g)

LC(x, c; g; j) = Lj
C(g(x), c)

is convex and twice-differentiable in g, with positive regularization δ > 0. There exists CH ∈ R such that

∥∇2
gLC(x, c; g1)−∇2

gLC(x, c; g2)∥2 ≤ CH∥g1 − g2∥2

for all (x, c) ∈ D = {(xi, ci)}ni=1, j ∈ [k] and g1, g2 ∈ Γ.

18

Editable Concept Bottleneck Models

Then the function L′(D, Se; g):

L′(D, Se; g) =
∑

(i,j)∈Se

Lj
C (g(xi), ci) =

∑
(i,j)∈Se

LC(xi, ci; g; j)

is convex and twice-differentiable in g, with some positive regularization. Then we have

∥∇2
gL

′(D, Se; g1)−∇2
gL

′(D, Se; g2)∥2 ≤ |Se| · CH∥g1 − g2∥2

for g1, g2 ∈ Γ.

Corollary D.4.
∥∇2

gL
−(D∗; g1)−∇2

gL
−(D∗; g2)∥2 ≤ ((nk + |Se|) · CH) ∥g1 − g2∥

Define C−
H ≜ (nk + |Se|) · CH

Definition D.5. Define |D| as the number of pairs

C ′
L = ∥∇gL

′(D, Se; ĝ)∥2 ,

σ′
min = smallest singular value of ∇2

gL
−(D∗; ĝ),

σmin = smallest singular value of ∇2
gLTotal(D; ĝ),

Based on above corollaries and assumptions, we derive the following theorem.

Theorem D.6. We obtain the error between the actual influence and our predicted influence as follows:

∥ĝe(D∗)− ḡe(D∗)∥

≤
C−

HC ′
L
2

2(σ′
min + δ)3

+

∣∣∣∣ 2δ + σmin + σ′
min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L.

Proof. We will use the one-step Newton approximation as an intermediate step. Define ∆gNt(D∗) as

∆gNt(D∗) ≜ H−1
δ · ∇gL

′(D, Se; ĝ),

where Hδ = δ · I +∇2
gL

−(D∗; ĝ) is the regularized empirical Hessian at ĝ but reweighed after removing the influence of
wrong data. Then the one-step Newton approximation for ĝ(D∗) is defined as gNt(D∗) ≜ ∆gNt(D∗) + ĝ.

In the following, we will separate the error between ḡe(D∗) and ĝe(D∗) into the following two parts:

ĝe(D∗)− ḡe(D∗) = ĝe(D∗)− gNt(D∗)︸ ︷︷ ︸
ErrNt, act(D∗)

+(gNt(D∗)− ĝ)− (ḡe(D∗)− ĝ)︸ ︷︷ ︸
ErrNt, if(D∗)

Firstly, in Step 1, we will derive the bound for Newton-actual error ErrNt, act(D∗). Since L−(g) is strongly convex with
parameter σ′

min + δ and minimized by ĝe(D∗), we can bound the distance ∥ĝe(D∗)− gNt(D∗)∥2 in terms of the norm of
the gradient at gNt:

∥ĝe(D∗)− gNt(D∗)∥2 ≤ 2

σ′
min + δ

∥∥∇gL
− (gNt(D∗))

∥∥
2

(32)

Therefore, the problem reduces to bounding ∥∇gL
− (gNt(D∗))∥2. Noting that ∇gL

′(ĝ) = −∇gL
−. This is because ĝ

minimizes L− + L′, that is,

∇gL
−(ĝ) +∇gL

′(ĝ) = 0.

19

Editable Concept Bottleneck Models

Recall that ∆gNt = H−1
δ · ∇gL

′(D, Se; ĝ) = −H−1
δ · ∇gL

−(D∗; ĝ). Given the above conditions, we can have this bound
for ErrNt, act(−D∗). ∥∥∇gL

− (gNt(D∗))
∥∥
2

=
∥∥∇gL

− (ĝ +∆gNt(D∗))
∥∥
2

=
∥∥∇gL

− (ĝ +∆gNt(D∗))−∇gL
− (ĝ)−∇2

gL
− (ĝ) ·∆gNt(D∗)

∥∥
2

=

∥∥∥∥∫ 1

0

(
∇2

gL
− (ĝ + t ·∆gNt(D∗))−∇2

gL
− (ĝ)

)
∆gNt(D∗) dt

∥∥∥∥
2

≤
C−

H

2
∥∆gNt(D∗)∥22 =

C−
H

2

∥∥∥[∇2
gL

−(ĝ)
]−1 ∇gL

−(ĝ)
∥∥∥2
2

≤
C−

H

2(σ′
min + δ)2

∥∥∇gL
−(ĝ)

∥∥2
2
=

C−
H

2(σ′
min + δ)2

∥∇gL
′(ĝ)∥22

≤
C−

HC ′
L
2

2(σ′
min + δ)2

.

(33)

Now we come to Step 2 to bound ErrNt, if(−D∗), and we will bound the difference in parameter change between Newton
and our ECBM method.

∥(gNt(D∗)− ĝ)− (ḡe(D∗)− ĝ)∥

=
∥∥∥[(δ · I +∇2

gL
− (ĝ)

)−1
+
(
δ · I +∇2

gLTotal (ĝ)
)−1
]
· ∇gL

′(D, Se; ĝ)
∥∥∥

For simplification, we use matrix A, B for the following substitutions:

A = δ · I +∇2
gL

− (ĝ)

B = δ · I +∇2
gLTotal (ĝ)

And A and B are positive definite matrices with the following properties

δ + σ′
min ≺ A ≺ δ + σ′

max

δ + σmin ≺ B ≺ δ + σmax

Therefore, we have

∥(gNt(D∗)− ĝ)− (ḡe(D∗)− ĝ)∥
=
∥∥(A−1 +B−1

)
· ∇gL

−(D∗; ĝ)
∥∥

≤
∥∥A−1 +B−1

∥∥ · ∥∥∇gL
−(D∗; ĝ)

∥∥
≤
∣∣∣∣ 2δ + σmin + σ′

min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · ∥∥∇gL
−(D∗; ĝ)

∥∥
≤
∣∣∣∣ 2δ + σmin + σ′

min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L

(34)

By combining the conclusions from Step I and Step II in Equations 32, 33 and 34, we obtain the error between the actual
influence and our predicted influence as follows:

∥ĝe(D∗)− ḡe(D∗)∥

≤
C−

HC ′
L
2

2(σ′
min + δ)3

+

∣∣∣∣ 2δ + σmin + σ′
min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L.

20

Editable Concept Bottleneck Models

Remark D.7. Theorem D.6 reveals one key finding about influence function estimation: The estimation error scales inversely
with the regularization parameter δ (O(1/δ)), indicating that increased regularization improves approximation accuracy.
Remark D.8. In CBM, retraining is the most accurate way to handle the removal of a training data point. For the concept
predictor, we derive a theoretical error bound for an influence function-based approximation. However, the label predictor
differs. As a single-layer linear model, the label predictor is computationally inexpensive to retrain. However, its input
depends on the concept predictor, making theoretical analysis challenging due to: (1) Input dependency: Changes in the
concept predictor affect the label predictor’s input, coupling their updates. (2) Error propagation: Errors from the concept
predictor propagate to the label predictor, introducing complex interactions. Given the label predictor’s low retraining cost,
direct retraining is more practical and accurate. Thus, we focus our theoretical analysis on the concept predictor.

E. Concept-level Influence
E.1. Proof of Concept-level Influence Function

We address situations that delete pr for r ∈ M concept removed dataset. Our goal is to estimate ĝ−pM
, f̂−pM

, which is the
concept and label predictor trained on the pr for r ∈ M concept removed dataset.

Proof Sketch. The main ideas are as follows: (i) First, we define a new predictor ĝ∗pM
, which has the same dimension

as ĝ and the same output as ĝ−pM
. Then deduce an approximation for ĝ∗pM

. (ii) Then, we consider setting pr = 0 instead
of removing it, we get f̂pM=0, which is equivalent to f̂−pM

according to lemma E.1. We estimate this new predictor as a
substitute. (iii) Next, we assume we only use the updated concept predictor ĝ∗pM

for one data (xir , yir , cir) and obtain a new
label predictor f̂ir, and obtain a one-step Newtonian iterative approximation of f̂ir with respect to f̂ . (iv) Finally, we repeat
the above process for all data points and combine the estimate of ĝ in Theorem E.2, we obtain a closed-form solution of the
influence function for f̂ .

First, we introduce our following lemma:
Lemma E.1. For the concept bottleneck model, if the label predictor utilizes linear transformations of the form f̂ · c with
input c, then, for each r ∈ M , we remove the r-th concept from c and denote the new input as c′. Set the r-th concept to 0
and denote the new input as c0. Then we have f̂−pM

· c′ = f̂pM=0 · c0 for any c.

Proof. Assume the parameter space of f̂−pM
and f̂pM=0 are Γ and Γ0, respectively, then there exists a surjection P : Γ → Γ0.

For any θ ∈ Γ, P (θ) is the operation that removes the r-th row of θ for r ∈ M . Then we have:

P (θ) · c′ =
∑
t/∈M

θ[j] · c′[j] =
∑
t

θ[t]I{t /∈ M}c[t] = θ · c0.

Thus, the loss function LY (θ, c
0) = LY (P (θ), c′) of both models is the same for every sample in the second stage. Besides,

by formula derivation, we have, for θ′ ∈ Γ0, for any θ in P−1(θ′),

∂LY (θ, c
0)

∂θ
=

∂LY (P (θ), c′)

∂θ′

Thus, if the same initialization is performed, f̂−pM
· c′ = f̂pM=0 · c0 for any c in the dataset.

Theorem E.2. For the retrained concept predictor ĝ−pM
defined by

ĝ−pM
= argmin

g′

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci),

we map it to ĝ∗−pM
as

ĝ∗−pM
= argmin

g′∈T0

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci).

And we can edit the initial ĝ to ĝ∗−pM
, defined as:

ḡ−pM
≜ ĝ −H−1

ĝ ·
∑
j /∈M

n∑
i=1

Dj
C(xi, ci; ĝ), (35)

21

Editable Concept Bottleneck Models

where Hĝ = ∇g

∑
j /∈M

∑n
i=1 D

j
C(xi, ci; ĝ). Then, by removing all zero rows inserted during the mapping phase, we can

naturally approximate ĝ−pM
≈ P−1(ĝ∗−pM

).

Proof. At this level, we consider the scenario that removes a set of mislabeled concepts or introduces new ones. Because
after removing concepts from all the data, the new concept predictor has a different dimension from the original. We denote
gj(xi) as the j-th concept predictor with xi, and cji as the j-th concept in data zi. For simplicity, we treat g as a collection
of k concept predictors and separate different columns as a vector gj(xi). Actually, the neural network gets g as a whole.

For the comparative purpose, we introduce a new notation ĝ∗−pM
. Specifically, we define weights of ĝ and ĝ∗−pM

for the last
layer of the neural network as follows.

ĝ−pM
(x) =


w11 w12 · · · w1di

w21 w22 · · · w2di

...
...

...
w(k−1)1 w(k−1)2 · · · w(k−1)di


︸ ︷︷ ︸

(k−1)×di

·


x1

x2

...
xdi


︸ ︷︷ ︸

di×1

=



c1
...

cr−1

cr+1

...
ck


︸ ︷︷ ︸

(k−1)×1

ĝ∗−pM
(x) =



w11 w12 · · · w1di

...
...

...
w(r−1)1 w(r−1)2 · · · w(r−1)di

0 0 · · · 0
w(r+1)1 w(r+1)2 · · · w(r+1)di

...
...

...
wk1 wk2 · · · wkdi


︸ ︷︷ ︸

k×di

·



x1

...
xr−1

xr

xr+1

...
xdi


︸ ︷︷ ︸

di×1

=



c1
...

cr−1

0
cr+1

...
ck


︸ ︷︷ ︸

k×1

,

where r is an index from the index set M .

Firstly, we want to edit to ĝ∗−pM
∈ T0 = {wfinal = 0} ⊆ T based on ĝ, where wfinal is the parameter of the final layer of

neural network. Let us take a look at the definition of ĝ∗−pM
:

ĝ∗−pM
= argmin

g′∈T0

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci).

Then, we separate the r-th concept-related item from the rest and rewrite ĝ as the following form:

ĝ = argmin
g∈T

∑
j /∈M

n∑
i=1

Lj
C(g(xi), ci) +

∑
r∈M

n∑
i=1

Lr
C(g(xi), ci)

 .

Then, if the r-th concept part is up-weighted by some small ϵ, this gives us the new parameters ĝϵ,pM
, which we will

abbreviate as ĝϵ below.

ĝϵ,pM
≜ argmin

g∈T

∑
j /∈M

n∑
i=1

Lj
C(g(xi), ci) + ϵ ·

∑
r∈M

n∑
i=1

Lr
C(g(xi), ci)

 .

Obviously, when ϵ → 0, ĝϵ → ĝ∗−pM
. We can obtain the minimization conditions from the definitions above.

∇ĝ∗
−pM

∑
j /∈M

n∑
i=1

Lj
C(ĝ

∗
−pM

(xi), ci) = 0. (36)

22

Editable Concept Bottleneck Models

∇ĝϵ

∑
j /∈M

n∑
i=1

Lj
C(ĝϵ(xi), ci) + ϵ · ∇ĝϵ

∑
r∈M

n∑
i=1

Lr
C(ĝϵ(xi), ci) = 0.

Perform a first-order Taylor expansion of equation 36 with respect to ĝϵ, then we get

∇g

∑
j /∈M

n∑
i=1

Lj
C(ĝϵ(xi), ci) +∇2

g

∑
j /∈M

n∑
i=1

Lj
C(ĝϵ(xi), ci) · (ĝ∗−pM

− ĝϵ) ≈ 0.

Then we have

ĝ∗−pM
− ĝϵ = −H−1

ĝϵ
· ∇g

∑
j /∈M

n∑
i=1

Lj
C(ĝϵ(xi), ci).

Where Hĝϵ = ∇2
g

∑
j /∈M

∑n
i=1 L

j
C(ĝϵ(xi), ci).

We can see that:

When ϵ = 0,
ĝϵ = ĝ∗−pM

,

When ϵ = 1, ĝϵ = ĝ,

ĝ∗−pM
− ĝ ≈ −H−1

ĝ · ∇g

∑
j /∈M

n∑
i=1

Lj
C(ĝ(xi), ci),

where Hĝ = ∇2
g

∑
j /∈M

∑n
i=1 L

j
C(ĝ(xi), ci).

Then, an approximation of ĝ∗−pM
is obtained.

ĝ∗−pM
≈ ĝ −H−1

ĝ · ∇g

∑
j /∈M

n∑
i=1

Lj
C(ĝ(xi), ci). (37)

Recalling the definition of the gradient:

Gj
C(xi, ci; ĝ) = Lj

C(ĝ(xi), ci)) = ĝj(xi)
⊤ · log(cji).

Then the approximation of ĝ∗−pM
becomes

ḡ−pM
≜ ĝ −H−1

ĝ ·
∑
j /∈M

n∑
i=1

Gj
C(xi, ci; ĝ),

Theorem E.3. For the retrained label predictor f̂−pM
defined as

f̂−pM
= argmin

f ′

n∑
i=1

LY = argmin
f ′

n∑
i=1

LY (f
′(ĝ−pM

(xi)), yi),

We can consider its equivalent version f̂pM=0 as:

f̂pM=0 = argmin
f

n∑
i=1

LY

(
f
(
ĝ∗−pM

(xi)
)
, yi
)
,

which can be edited by

f̂pM=0 ≈ f̄pM=0 ≜ f̂ −H−1

f̂
·

n∑
l=1

GY (xl; ḡ
∗
−pM

, f̂),

where Hf̂ = ∇f̂

∑n
i=1 GY (xl; ḡ

∗
−pM

, f̂) is the Hessian matrix. Deleting the r-th dimension of f̄pM=0 for r ∈ M , then we

can map it to f̄−pM
, which is the approximation of the final edited label predictor f̂−pM

under concept level.

23

Editable Concept Bottleneck Models

Proof. Now, we come to the approximation of f̂−pM
. Noticing that the input dimension of f decreases to k − |M |. We

consider setting pr = 0 for all data points in the training phase of the label predictor and get another optimal model f̂pM=0.
From lemma E.1, we know that for the same input x, f̂pM=0(x) = f̂−pM

. And the values of the corresponding parameters
in f̂pM=0 and f̂−pM

are equal.

Now, let us consider how to edit the initial f̂ to f̂pM=0. Firstly, assume we only use the updated concept predictor ĝ∗−pM
for

one data (xir , yir , cir) and obtain the following f̂ir, which is denoted as

f̂ir = argmin
f

[
n∑

i=1

LY (f(ĝ(xi)), yi) + LY (f(ĝ
∗
−pM

(xir)), yir)− LY (f(ĝ(xir)), yir)

]
.

Then up-weight the ir-th data by some small ϵ and have the following new parameters:

f̂ϵ,ir = argmin
f

[
n∑

i=1

LY (f(ĝ(xi)), yi) + ϵ · LY (f(ĝ
∗
−pM

(xir)), yir)− ϵ · LY (f(ĝ(xir)), yir)

]
.

Deduce the minimized condition subsequently,

∇f

n∑
i=1

LY (f̂ir(ĝ(xi)), yi) + ϵ · ∇fLY (f̂ir(ĝ
∗
−pM

(xir)), yir)− ϵ · ∇fLY (f̂ir(ĝ(xir)), yir) = 0.

If we expand first term of f̂ , which f̂ir,ϵ → f̂(ϵ → 0), then

∇f

n∑
i=1

LY

(
f̂(ĝ(xi)), yi

)
+ ϵ · ∇fLY (f̂(ĝ

∗
−pM

(xir)), yir)− ϵ · ∇fLY (f̂(ĝ(xir)), yir)

+

(
∇2

f

n∑
i=1

LY

(
f̂(ĝ(xi)), yi

))
· (f̂ir,ϵ − f̂) = 0.

Note that ∇f

∑n
i=1 LY (f̂(ĝ(xi)), yi) = 0. Thus we have

f̂ir,ϵ − f̂ = H−1

f̂
· ϵ
(
∇fLY (f̂(ĝ

∗
−pM

(xir)), yir)−∇fLY (f̂(ĝ(xir)), yir)
)
.

We conclude that

df̂ϵ,ir
dϵ

∣∣∣∣∣
ϵ=0

= H−1

f̂
·
(
∇f̂LY (f̂(ĝ

∗
−pM

(xir)), yir)−∇f̂LY (f̂(ĝ(xir)), yir)
)
.

Perform a one-step Newtonian iteration at f̂ and we get the approximation of f̂ir .

f̂ir ≈ f̂ +H−1

f̂
·
(
∇f̂LY (f̂(ĝ(xir)), yir)−∇f̂LY (f̂(ĝ

∗
−pM

(xir)), yir)
)
.

Reconsider the definition of f̂ir , we use the updated concept predictor ĝ∗−pM
for one data (xir , yir , cir). Now we carry out

this operation for all the other data and estimate f̂pM=0. Combining the minimization condition from the definition of f̂ , we
have

f̂pM=0 ≈f̂ +H−1

f̂
·

(
∇f̂

n∑
i=1

LY (f̂(ĝ(xi)), yi)−∇f̂

n∑
i=1

LY (f̂(ĝ
∗
−pM

(xi)), yi)

)

=f̂ +H−1

f̂
·

(
−∇f̂

n∑
i=1

LY (f̂(ĝ
∗
−pM

(xi)), yi)

)

=f̂ −H−1

f̂

n∑
l=1

∇f̂LY (f̂(ĝ
∗
−pM

(xl)), yl). (38)

24

Editable Concept Bottleneck Models

Theorem E.2 gives us the edited version of ĝ∗−pM
. Substitute it into equation 38, and we get the final closed-form edited

label predictor under concept level:

f̂pM=0 ≈ f̄pM=0 ≜ f̂ −H−1

f̂
· ∇f̂

n∑
l=1

LYl

(
f̂ , ḡ∗−pM

)
,

where Hf̂ = ∇2
f̂

∑n
i=1 LYi

(f̂ , ĝ) is the Hessian matrix of the loss function respect to is the Hessian matrix of the loss

function respect to f̂ . Recalling the definition of the gradient:

GY (xl; ḡ
∗
−pM

, f̂) = ∇f̂LY

(
f̂
(
ḡ∗−pM

(xl)
)
, yl

)
,

then the approximation becomes

f̂pM=0 ≈ f̄pM=0 ≜ f̂ −H−1

f̂
·

n∑
l=1

GY (xl; ḡ
∗
−pM

, f̂).

E.2. Theoretical Bound for the Influence Function

Consider the dataset D = {(xi, ci, yi}ni=1, the loss function of the concept predictor g is defined as:

LTotal(D; g) =

n∑
i=1

LC(g(xi), ci) +
δ

2
· ∥g∥2 =

n∑
i=1

k∑
j=1

Lj
C(g(xi), ci) +

δ

2
· ∥g∥2 =

n∑
i=1

k∑
j=1

gj(xi)
⊤ log(ci

j) +
δ

2
· ∥g∥2.

Mathematically, we have a set of erroneous concepts need to be removed, which are denoted as pr for r ∈ M . Then the
retrained concept predictor becomes

ĝ−pM
= argmin

g′

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci) +
δ

2
· ∥g∥2.

We map it to ĝ∗−pM
as ĝ−pM

to ĝ∗−pM
≜ P(ĝ−pM

), which has the same amount of parameters as ĝ and has the same predicted
concepts ĝ∗−pM

(j) as ĝ−pM
(j) for all j ∈ [di] − M . We achieve this effect by inserting a zero row vector into the r-th

row of the matrix in the final layer of ĝ−pM
for r ∈ M . Thus, we can see that the mapping P is one-to-one. Moreover,

assume the parameter space of ĝ is T and that of ĝ∗−pM
, T0 is the subset of T . Noting that ĝ∗−pM

is the optimal model of the
following objective function:

ĝ∗−pM
= argmin

g′∈T0

∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci) +
δ

2
· ∥g∥2.

Then the loss function with the influence of erroneous concepts removed becomes

L−(D; g) =
∑
j /∈M

n∑
i=1

Lj
C(g

′(xi), ci) +
δ

2
· ∥g∥2 = LTotal(D; g)−

∑
j∈M

n∑
i=1

Lj
C (g(xi), ci) . (39)

Assume ĝ = argminLTotal(D; g) is the original model parameter. ĝ−pM
(D) and ĝ∗−pM

(D) is the minimizer of L−(D; g),
which is obtained from retraining in different parameter space. ĝ∗−pM

(D) shares the same dimensionality as the original
model. Because ĝ−pM

(D) and ĝ∗−pM
(D) produces identical outputs given identical inputs, to simplify the proof, we use

ĝ∗−pM
(D) as the retrained model.

Denote ḡ−pM
as the updated model with the influence of erroneous concepts removed and is obtained by the influence

function method in theorem E.2, which is an estimation for ĝ∗−pM
(D).

ḡ−pM
(D) ≜ ĝ −H−1

ĝ ·
∑
j /∈M

n∑
i=1

Gj
C(xi, ci; ĝ),

25

Editable Concept Bottleneck Models

In this part, we will study the error between the estimated influence given by the theorem E.2 method and ĝ∗−pM
(D). We use

the parameter changes as the evaluation metric:∣∣(ḡ−pM
− ĝ)−

(
ĝ∗−pM

− ĝ
)∣∣ = ∣∣ḡ−pM

− ĝ∗−pM

∣∣ (40)

Assumption E.4. The loss LC(x, c; g; j)

LC(D; g; j) =

n∑
i=1

Lj
C(g(xi), ci).

is convex and twice-differentiable in g, with positive regularization δ > 0. There exists CH ∈ R such that

∥∇2
gLC(D; g1; j)−∇2

gLC(D; g2; j)∥2 ≤ CH∥g1 − g2∥2

for all j ∈ [k] and g1, g2 ∈ Γ.

Definition E.5.
C ′

L = max
j

∥∇gLC(D; ĝ; j)∥2 ,

σ′
min = smallest singular value of ∇2

gL
−(D; ĝ),

σmin = smallest singular value of ∇2
gLTotal(D; ĝ),

L′(D,M ; g) =
∑
j∈M

LC(D; g; j) (41)

Corollary E.6.
L−(D; g) = LTotal(D; g)− L′(D,M ; g) (42)

∥∇2
gL

−(D; g1)−∇2
gL

−(D; g2)∥2 ≤ ((k + |M |) · CH) ∥g1 − g2∥

Define C−
H ≜ (k + |M |) · CH

Based on above corollaries and assumptions, we derive the following theorem.

Theorem E.7. We obtain the error between the actual influence and our predicted influence as follows:∥∥ĝ∗−pM
(D)− ḡ−pM

(D)
∥∥

≤
C−

HC ′
L|M |2

2(σ′
min + δ)3

+

∣∣∣∣ 2δ + σmin + σ′
min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L|M |.

Proof. We will use the one-step Newton approximation as an intermediate step. Define ∆gNt(D) as

∆gNt(D) ≜ H−1
δ · ∇gL

′(D,M ; ĝ),

where Hδ = δ · I +∇2
gL

−(D; ĝ) is the regularized empirical Hessian at ĝ but reweighed after removing the influence of
wrong data. Then the one-step Newton approximation for ĝ∗−pM

(D) is defined as gNt(D) ≜ ∆gNt(D) + ĝ.

In the following, we will separate the error between ḡ−pM
(D) and ĝ∗−pM

(D) into the following two parts:

ĝ∗−pM
(D)− ḡ−pM

(D) = ĝ∗−pM
(D)− gNt(D)︸ ︷︷ ︸
ErrNt, act(D)

+(gNt(D)− ĝ)− (ḡ−pM
(D)− ĝ)︸ ︷︷ ︸

ErrNt, if(D)

Firstly, in Step 1, we will derive the bound for Newton-actual error ErrNt, act(D). Since L−(g) is strongly convex with
parameter σ′

min + δ and minimized by ĝ∗−pM
(D), we can bound the distance

∥∥ĝ∗−pM
(D)− gNt(D)

∥∥
2

in terms of the norm
of the gradient at gNt: ∥∥ĝ∗−pM

(D)− gNt(D)
∥∥
2
≤ 2

σ′
min + δ

∥∥∇gL
− (gNt(D))

∥∥
2

(43)

26

Editable Concept Bottleneck Models

Therefore, the problem reduces to bounding ∥∇gL
− (gNt(D))∥2. Noting that ∇gL

′(ĝ) = −∇gL
−. This is because ĝ

minimizes L− + L′, that is,
∇gL

−(ĝ) +∇gL
′(ĝ) = 0.

Recall that ∆gNt = H−1
δ · ∇gL

′(D, Se; ĝ) = −H−1
δ · ∇gL

−(D; ĝ). Given the above conditions, we can have this bound
for ErrNt, act(−D). ∥∥∇gL

− (gNt(D))
∥∥
2

=
∥∥∇gL

− (ĝ +∆gNt(D))
∥∥
2

=
∥∥∇gL

− (ĝ +∆gNt
(D))−∇gL

− (ĝ)−∇2
gL

− (ĝ) ·∆gNt
(D)
∥∥
2

=

∥∥∥∥∫ 1

0

(
∇2

gL
− (ĝ + t ·∆gNt(D))−∇2

gL
− (ĝ)

)
∆gNt(D) dt

∥∥∥∥
2

≤
C−

H

2
∥∆gNt(D∗)∥22 =

C−
H

2

∥∥∥[∇2
gL

−(ĝ)
]−1 ∇gL

−(ĝ)
∥∥∥2
2

≤
C−

H

2(σ′
min + δ)2

∥∥∇gL
−(ĝ)

∥∥2
2
=

C−
H

2(σ′
min + δ)2

∥∇gL
′(ĝ)∥22

≤
C−

HC ′
L|M |2

2(σ′
min + δ)2

.

(44)

Now we come to Step 2 to bound ErrNt, if(−D), and we will bound the difference in parameter change between Newton and
our ECBM method.

∥(gNt(D)− ĝ)− (ḡ−pM
(D)− ĝ)∥

=
∥∥∥[(δ · I +∇2

gL
− (ĝ)

)−1
+
(
δ · I +∇2

gLTotal (ĝ)
)−1
]
· ∇gL

′(D, Se; ĝ)
∥∥∥

For simplification, we use matrix A, B for the following substitutions:

A = δ · I +∇2
gL

− (ĝ)

B = δ · I +∇2
gLTotal (ĝ)

And A and B are positive definite matrices with the following properties

δ + σ′
min ≺ A ≺ δ + σ′

max

δ + σmin ≺ B ≺ δ + σmax

Therefore, we have

∥(gNt(D)− ĝ)− (ḡ−pM
(D)− ĝ)∥

=
∥∥(A−1 +B−1

)
· ∇gL

−(D; ĝ)
∥∥

≤
∥∥A−1 +B−1

∥∥ · ∥∥∇gL
−(D; ĝ)

∥∥
≤
∣∣∣∣ 2δ + σmin + σ′

min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · ∥∥∇gL
−(D; ĝ)

∥∥
≤
∣∣∣∣ 2δ + σmin + σ′

min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L|M |

(45)

By combining the conclusions from Step I and Step II in Equations 43, 44 and 45, we obtain the error between the actual
influence and our predicted influence as follows:∥∥ĝ∗−pM

(D)− ḡ−pM
(D)
∥∥

≤
C−

HC ′
L|M |2

2(σ′
min + δ)3

+

∣∣∣∣ 2δ + σmin + σ′
min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L|M |.

27

Editable Concept Bottleneck Models

Remark E.8. Theorem E.7 reveals one key finding about influence function estimation: The estimation error scales inversely
with the regularization parameter δ (O(1/δ)), indicating that increased regularization improves approximation accuracy.
Besides, the error bound is linearly increasing with the number of removed concepts |M |. This implies that the estimation
error increases with the number of erroneous concepts removed.

F. Data-level Influence
F.1. Proof of Data-level Influence Function

We address situations that for dataset D = {(xi, yi, ci)}ni=1, given a set of data zr = (xr, yr, cr), r ∈ G to be removed. Our
goal is to estimate ĝ−zG , f̂−zG , which is the concept and label predictor trained on the zr for r ∈ G removed dataset.

Proof Sketch. (i) First, we estimate the retrained concept predictor ĝ−zG . (ii) Then, we define a new label predictor
f̃−zG and estimate f̃−zG − f̂ . (iii) Next, in order to reduce computational complexity, use the lemma method to obtain the
approximation of the Hessian matrix of f̃−zG . (iv) Next, we compute the difference f̂−zG − f̃−zG as

−H−1

f̃−zG

·
(
∇f̂LY

(
f̃−zG(ĝ−zG(xir)), yir

)
−∇f̂LY

(
f̃−zG(ĝ(xir)), yir

))
.

(v) Finally, we divide f̂−zG − f̂ , which we actually concerned with, into
(
f̂−zG − f̃−zG

)
+
(
f̃−zG − f̂

)
.

Theorem F.1. For dataset D = {(xi, yi, ci)}ni=1, given a set of data zr = (xr, yr, cr), r ∈ G to be removed. Suppose the
updated concept predictor ĝ−zG is defined by

ĝ−zG = argmin
g

∑
j∈[k]

∑
i∈[n]−G

LCj
(ĝ(xi), ci)

where LC(ĝ(xi), ci) ≜
∑k

j=1 L
j
C(ĝ(xi), ci). Then we have the following approximation for ĝ−zG

ĝ−zG ≈ ḡ−zG ≜ ĝ +H−1
ĝ ·

∑
r∈G

M∑
j=1

Gj
C(xr, cr; ĝ), (46)

where Hĝ = ∇g

∑
i,j G

j
C(xi, ci; ĝ) is the Hessian matrix of the loss function with respect to ĝ.

Proof. Firstly, we rewrite ĝ−zG as

ĝ−zG = argmin
g

[
n∑

i=1

LC(ĝ(xi), ci)−
∑
r∈G

LC(g(xr), cr)

]
,

Then we up-weighted the r-th data by some ϵ and have a new predictor ĝ−zG,ϵ, which is abbreviated as ĝϵ:

ĝϵ ≜ argmin
g

[
n∑

i=1

LC(g(xi), ci)− ϵ ·
∑
r∈G

LC(g(xr), cr)

]
. (47)

Because ĝϵ minimizes the right side of equation 47, we have

∇ĝϵ

n∑
i=1

LY (ĝϵ(xi), ci)− ϵ · ∇ĝϵ

∑
r∈G

LY (ĝϵ(xr), cr) = 0.

When ϵ → 0, ĝϵ → ĝ. So we can perform a first-order Taylor expansion with respect to ĝ, and we have

∇g

n∑
i=1

LC(ĝ(xi), ci)− ϵ · ∇g

∑
r∈G

LC(ĝ(xr), cr) +∇2
g

n∑
i=1

LC(ĝ(xi), ci) · (ĝϵ − ĝ) ≈ 0. (48)

28

Editable Concept Bottleneck Models

Recap the definition of ĝ:

ĝ = argmin
g

n∑
i=1

LY (g(xi), ci),

Then, the first term of equation 48 equals 0. Let ϵ → 0, then we have

dĝϵ
dϵ

∣∣∣∣
ϵ=0

= H−1
ĝ ·

∑
r∈G

∇gLC(ĝ(xr), cr),

where Hĝ = ∇2
g

∑n
i=1 ℓ(ĝ(xi), ci).

Remember when ϵ → 0, ĝϵ → ĝ−zG . Perform a Newton step at ĝ, then we obtain the method to edit the original concept
predictor under concept level:

ĝ−zG ≈ ḡ−zG ≜ ĝ +H−1
ĝ ·

∑
r∈G

∇gLC(ĝ(xr), cr).

Recall the definition of Gj
C(xi, ci; ĝ), then we can edit the initial ĝ to ĝ∗−pG

, defined as:

ĝ−zG ≈ ḡ−zG ≜ ĝ +H−1
ĝ ·

∑
r∈G

M∑
j=1

Gj
C(xr, cr; ĝ), (49)

where Hĝ = ∇g

∑
i,j G

j
C(xi, ci; ĝ) is the Hessian matrix of the loss function with respect to ĝ.

Theorem F.2. For dataset D = {(xi, yi, ci)}ni=1, given a set of data zr = (xr, yr, cr), r ∈ G to be removed. The label
predictor f̂−zG trained on the revised dataset becomes

f̂−zG = argmin
f

∑
i∈[n]−G

LYi(f, ĝ−zG). (50)

The intermediate label predictor f̃−zG is defined by

f̃−zG = argmin
∑

i∈[n]−G

LYi
(f, ĝ),

Then f̃−zG − f̂ can be approximated by

f̃−zG = argmin
∑

i∈[n]−G

LY (f(ĝ(xi), yi). (51)

We denote the edited version of f̃−zG as f̄∗
−zG ≜ f̂ +AG. Define BG as

−H−1
f̄∗
−zG

∑
i∈[n]−G

GY (xi; ḡ−zG , f̄
∗
−zG)−GY (xi; ĝ, f̄

∗
−zG),

where Hf̄∗
−zG

= ∇f̄

∑
i∈[n]−G GY (xi; ĝ, f̄

∗
−zG) is the Hessian matrix concerning f̄∗

−zG . Then f̂−zG can be estimated by

f̃−zG +BG. Combining the above two-stage approximation, then, the final edited label predictor f̄−zG can be obtained by

f̄−zG = f̄∗
−zG +BG = f̂ +AG +BG. (52)

Proof. We can see that there is a huge gap between f̂−zG and f̂ . Thus, firstly, we define f̃−zG as

f̃−zG = argmin
f

n∑
i=1

LY (f(ĝ(xi)), yi)−
∑
r∈G

LY (f(ĝ(xr)), yr) .

29

Editable Concept Bottleneck Models

Then, we define f̃ϵ,−zG as follows to estimate f̃−zG .

f̃ϵ,−zG = argmin
f

n∑
i=1

LY (f(ĝ(xi)), yi)− ϵ ·
∑
r∈G

LY (f(ĝ(xr)), yr) .

From the minimization condition, we have

∇f̃

n∑
i=1

LY

(
f̃ϵ,−zG(ĝ(xi)), yi

)
− ϵ ·

∑
r∈G

∇f̃LY

(
f̃ϵ,−zG(ĝ(xr)), yr

)
= 0.

Perform a first-order Taylor expansion at f̂ ,

∇f̂

n∑
i=1

LY

(
f̂(ĝ(xi)), yi

)
− ϵ · ∇f̂

∑
r∈G

LY

(
f̂(ĝ(xr)), yr

)
+∇2

f̂

n∑
i=1

LY

(
f̂(ĝ(xi)), yi

)
·
(
f̃ϵ,−zG − f̂

)
= 0.

Then f̃−zG can be approximated by

f̃−zG ≈ f̂ +H−1

f̂
·
∑
r∈G

∇f̂LY

(
f̂(ĝ(xr)), yr

)
≜ AG. (53)

Then the edit version of f̃−zG is defined as
f̄∗
−zG = f̂ +AG (54)

Then we estimate the difference between f̂−zG and f̃−zG . Rewrite f̃−zG as

f̃−zG = argmin
f

n∑
i∈S

LY (f(ĝ(xi)), yi) , (55)

where S ≜ [n]−G.

Compare equation 50 with 55, we still need to define an intermediary predictor f̂−zG,ir as

f̂−zG,ir = argmin
f

∑
i∈S
i̸=ir

LYi
(f, ĝ(xi)) + LYir

(f, ĝ−zG)


= argmin

f

[∑
i∈S

LYi (f, ĝ) + LYir (f, ĝ−zG)− LYir (f, ĝ)

]
.

Up-weight the ir data by some ϵ, we define f̂ϵ,−zG,ir as

f̂ϵ,−zG,ir = argmin
f

[∑
i∈S

LYi
(f, ĝ) + ϵ · LYir

(f, ĝ−zG)− ϵ · LYir
(f, ĝ)

]
.

We denote f̂ϵ,−zG,ir as f̂∗
ϵ in the following proof. Then, from the minimization condition, we have

∇f̂

∑
i∈S

LYi

(
f̂∗
ϵ , ĝ
)
+ ϵ · ∇f̂LYir

(
f̂∗
ϵ , ĝ−zG

)
− ϵ · ∇f̂LYir

(
f̂∗
ϵ , ĝ(xir

)
. (56)

30

Editable Concept Bottleneck Models

When ϵ → 0, f̂∗
ϵ → f̃−zG . Then we perform a Taylor expansion at f̃−zG of equation 56 and have

∇f̂

∑
i∈S

LYi

(
f̃−zG , ĝ

)
+ ϵ · ∇f̂LYir

(
f̃−zG , ĝ−zG

)
− ϵ · ∇f̂LYir

(
f̃−zG , ĝ

)
+∇2

f̂

∑
i∈S

LYi

(
f̃−zG , ĝ

)
· (f̂∗

ϵ − f̃−zG) ≈ 0.

Organizing the above equation gives

f̂∗
ϵ − f̃−zG ≈ −ϵ ·H−1

f̃−zG

·
(
∇f̂LYir

(
f̃−zG , ĝ−zG

)
−∇f̂LYir

(
f̃−zG , ĝ

))
,

where Hf̃−zG
= ∇2

f̂

∑
i∈S LYi

(
f̃−zG , ĝ

)
.

When ϵ = 1, f̂∗
ϵ = f̂−zG,ir. Then we perform a Newton iteration with step size 1 at f̃−zG ,

f̂−zG,ir − f̃−zG ≈ −H−1

f̃−zG

·
(
∇f̂LYir

(
f̃−zG , ĝ−zG

)
−∇f̂LYir

(
f̃−zG , ĝ

))
Iterate ir through set S, and we have

f̂−zG − f̃−zG ≈ −H−1

f̃−zG

·

(
∇f̂

∑
i∈S

LYi

(
f̃−zG , ĝ−zG

)
−∇f̂

∑
i∈S

LYi

(
f̃−zG , ĝ

))
(57)

The edited version of ĝ−zG has been deduced as ḡ−zG in theorem F.1, substituting this approximation into (57), then we
have

f̂−zG − f̃−zG ≈ −H−1

f̃−zG

·

(
∇f̂

∑
i∈S

LYi

(
f̃−zG , ḡ−zG

)
−∇f̂

∑
i∈S

LYi

(
f̃−zG , ĝ

))
. (58)

Noting that we cannot obtain f̂−zG and Hf̃−zG
directly because we do not retrain the label predictor but edit it to f̄∗

−zG as a

substitute. Therefore, we approximate f̂−zG with f̄∗
−zG and Hf̃−zG

with Hf̄∗
−zG

which is defined by:

Hf̄∗
−zG

= ∇2
f̂

∑
i∈S

LYi

(
f̄∗
−zG , ĝ

)
Then we define BG as

BG ≜ −H−1
f̄∗
−zG

·

(
∇f̂

∑
i∈S

LYi

(
f̄∗
−zG , ḡ−zG

)
−∇f̂

∑
i∈S

LYi

(
f̄∗
−zG , ĝ

))
(59)

Combining (54) and (59), then we deduce the final closed-form edited label predictor as

f̄−zG = f̄∗
−zG +BG = f̂ +AG +BG.

Replace the definition of gradient of LC and LC , then we obtain the final version of approximation.

F.2. Theoretical Bound for the Influence Function

Consider the dataset D = {(xi, ci, yi}ni=1, the loss function of the concept predictor g is defined as:

LTotal(D; g) =

n∑
i=1

LC(g(xi), ci) +
δ

2
· ∥g∥2 =

n∑
i=1

k∑
j=1

Lj
C(g(xi), ci) +

δ

2
· ∥g∥2 =

n∑
i=1

k∑
j=1

gj(xi)
⊤ log(ci

j) +
δ

2
· ∥g∥2.

Mathematically, we have a set of erroneous data zr = (xr, yr, cr), r ∈ G need to be removed. Then the retrained concept
predictor becomes

31

Editable Concept Bottleneck Models

ĝ−zG = argmin
g

k∑
j=1

∑
i∈[n]−G

Lj
C(g(xi), ci) +

δ

2
· ∥g∥2.

Define the new dataset as D∗ = {(xi, ci, yi)}i∈[n]−G, then the loss function with the influence of erroneous data removed
becomes

L−(D∗; g) =

k∑
j=1

∑
i∈[n]−G

Lj
C(g(xi), ci) +

δ

2
· ∥g∥2 = LTotal(D; g)−

k∑
j=1

∑
i∈G

Lj
C (g(xi), ci) . (60)

Assume ĝ = argminLTotal(D; g) is the original model parameter. ĝ−zG is the minimizer of L−(D∗; g). Denote ḡ−zG as the
updated model with the influence of erroneous data removed and is obtained by the influence function method in theorem
F.1, which is an estimation for ĝ−zG .

ĝ−zG ≈ ḡ−zG ≜ ĝ +H−1
ĝ ·

∑
r∈G

M∑
j=1

Gj
C(xr, cr; ĝ), (61)

In this part, we will study the error between the estimated influence given by the theorem F.1 method and ĝ−zG . We use the
parameter changes as the evaluation metric:

|(ḡ−zG − ĝ)− (ĝ−zG − ĝ)| = |ḡ−zG − ĝ−zG | (62)

Assumption F.3. The loss LC(x, c; g; j)

LC(x, c; g) =

k∑
j=1

Lj
C(g(x), c).

is convex and twice-differentiable in g, with positive regularization δ > 0. There exists CH ∈ R such that

∥∇2
gLC(x, c; g1)−∇2

gLC(x, c; g2)∥2 ≤ CH∥g1 − g2∥2

for all (x, c) ∈ D and g1, g2 ∈ Γ.

Definition F.4.
C ′

L = ∥∇gLC(D; ĝ)∥2 ,

σ′
min = smallest singular value of ∇2

gL
−(D; ĝ),

σmin = smallest singular value of ∇2
gLTotal(D; ĝ),

L′(D, G; g) =
∑
i∈G

LC(xi, ci; g) (63)

Corollary F.5.
L−(D; g) = LTotal(D; g)− L′(D, G; g) (64)

∥∇2
gL

−(D; g1)−∇2
gL

−(D; g2)∥2 ≤ ((n+ |G|) · CH) ∥g1 − g2∥

Define C−
H ≜ (n+ |G|) · CH

Based on above corollaries and assumptions, we derive the following theorem.

Theorem F.6. We obtain the error between the actual influence and our predicted influence as follows:

∥ĝ−zG(D)− ḡ−zG(D)∥

≤
C−

HC ′
L|G|2

2(σ′
min + δ)3

+

∣∣∣∣ 2δ + σmin + σ′
min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L|G|.

32

Editable Concept Bottleneck Models

Proof. We will use the one-step Newton approximation as an intermediate step. Define ∆gNt(D) as

∆gNt(D) ≜ H−1
δ · ∇gL

′(D, G; ĝ),

where Hδ = δ · I +∇2
gL

−(D; ĝ) is the regularized empirical Hessian at ĝ but reweighed after removing the influence of
wrong data. Then the one-step Newton approximation for ĝ−zG(D) is defined as gNt(D) ≜ ∆gNt(D) + ĝ.

In the following, we will separate the error between ḡ−zG(D) and ĝ−zG(D) into the following two parts:

ĝ−zG(D)− ḡ−zG(D) = ĝ−zG(D)− gNt(D)︸ ︷︷ ︸
ErrNt, act(D)

+(gNt(D)− ĝ)− (ḡ−zG(D)− ĝ)︸ ︷︷ ︸
ErrNt, if(D)

Firstly, in Step 1, we will derive the bound for Newton-actual error ErrNt, act(D). Since L−(g) is strongly convex with
parameter σ′

min + δ and minimized by ĝ−zG(D), we can bound the distance ∥ĝ−zG(D)− gNt(D)∥2 in terms of the norm of
the gradient at gNt:

∥ĝ−zG(D)− gNt(D)∥2 ≤ 2

σ′
min + δ

∥∥∇gL
− (gNt(D))

∥∥
2

(65)

Therefore, the problem reduces to bounding ∥∇gL
− (gNt(D))∥2. Noting that ∇gL

′(D, G; ĝ) = −∇gL
−. This is because

ĝ minimizes L− + L′, that is,
∇gL

−(ĝ) +∇gL
′(D, G; ĝ) = 0.

Recall that ∆gNt = H−1
δ · ∇gL

′(D, G; ĝ) = −H−1
δ · ∇gL

−(D; ĝ). Given the above conditions, we can have this bound
for ErrNt, act(−D). ∥∥∇gL

− (gNt(D))
∥∥
2

=
∥∥∇gL

− (ĝ +∆gNt(D))
∥∥
2

=
∥∥∇gL

− (ĝ +∆gNt
(D))−∇gL

− (ĝ)−∇2
gL

− (ĝ) ·∆gNt
(D)
∥∥
2

=

∥∥∥∥∫ 1

0

(
∇2

gL
− (ĝ + t ·∆gNt(D))−∇2

gL
− (ĝ)

)
∆gNt(D) dt

∥∥∥∥
2

≤
C−

H

2
∥∆gNt(D∗)∥22 =

C−
H

2

∥∥∥[∇2
gL

−(ĝ)
]−1 ∇gL

−(ĝ)
∥∥∥2
2

≤
C−

H

2(σ′
min + δ)2

∥∥∇gL
−(ĝ)

∥∥2
2
=

C−
H

2(σ′
min + δ)2

∥∇gL
′(D, G; ĝ)∥22

≤
C−

HC ′
L|G|2

2(σ′
min + δ)2

.

(66)

Now we come to Step 2 to bound ErrNt, if(−D), and we will bound the difference in parameter change between Newton and
our ECBM method.

∥(gNt(D)− ĝ)− (ḡ−zG(D)− ĝ)∥

=
∥∥∥[(δ · I +∇2

gL
− (ĝ)

)−1
+
(
δ · I +∇2

gLTotal (ĝ)
)−1
]
· ∇gL

′(D, G; ĝ)
∥∥∥

For simplification, we use matrix A, B for the following substitutions:

A = δ · I +∇2
gL

− (ĝ)

B = δ · I +∇2
gLTotal (ĝ)

And A and B are positive definite matrices with the following properties

δ + σ′
min ≺ A ≺ δ + σ′

max

δ + σmin ≺ B ≺ δ + σmax

33

Editable Concept Bottleneck Models

Therefore, we have

∥(gNt(D)− ĝ)− (ḡ−zG(D)− ĝ)∥
=
∥∥(A−1 +B−1

)
· ∇gL

−(D; ĝ)
∥∥

≤
∥∥A−1 +B−1

∥∥ · ∥∥∇gL
−(D; ĝ)

∥∥
≤
∣∣∣∣ 2δ + σmin + σ′

min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · ∥∥∇gL
−(D; ĝ)

∥∥
≤
∣∣∣∣ 2δ + σmin + σ′

min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L|G|

(67)

By combining the conclusions from Step I and Step II in Equations 65, 66 and 67, we obtain the error between the actual
influence and our predicted influence as follows:

∥ĝ−zG(D)− ḡ−zG(D)∥

≤
C−

HC ′
L|G|2

2(σ′
min + δ)3

+

∣∣∣∣ 2δ + σmin + σ′
min

(δ + σ′
min) · (δ + σmin)

∣∣∣∣ · C ′
L|G|.

Remark F.7. The error bound is linearly increasing with the number of removed data |G|. This implies that the estimation
error increases with the number of erroneous data removed.

G. Algorithm

Algorithm 1 Concept-label-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}ni=1, original concept predictor f̂ , and label predictor ĝ, a set of erroneous data De

and its associated index set Se.
2: For the index (w, r) in Se, correct crw to the right label crw

′ for the w-th data (xw, yw, cw).
3: Compute the Hessian matrix of the loss function respect to ĝ:

Hĝ = ∇2
ĝ

∑
i,j

LCj (ĝ
j(xi), c

j
i).

4: Update concept predictor g̃:

g̃ = ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(
∇ĝLCr

(
ĝr(xw), c

r
w
′)−∇ĝLCr (ĝ

r(xw), c
r
w)
)
.

5: Compute the Hessian matrix of the loss function respect to f̂ :

Hf̂ = ∇2
f̂

n∑
i=1

LYi
(f̂ , ĝ).

6: Update label predictor f̃ :

f̃ = f̂ +H−1

f̂
· ∇f

n∑
i=1

LY

(
f̂ (ĝ(xi)) , yi

)
−H−1

f̂
· ∇f

n∑
l=1

(
LY

(
f̂ (g̃(xl)) , yl

))
.

7: Return: f̃ , g̃.

Algorithm 2 Concept-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}ni=1, original concept predictor f̂ , label predictor ĝ and the to be removed concept
index set M .

34

Editable Concept Bottleneck Models

2: For r ∈ M , set pr = 0 for all the data z ∈ D.
3: Compute the Hessian matrix of the loss function respect to ĝ:

Hĝ = ∇2
ĝ

∑
j /∈M

n∑
i=1

LCj (ĝ
j(xi), c

j
i).

4: Update concept predictor g̃∗:

g̃∗ = ĝ −H−1
ĝ · ∇ĝ

∑
j /∈M

n∑
i=1

LCj (ĝ
j(xi), c

j
i).

5: Compute the Hessian matrix of the loss function respect to f̂ :

Hf̂ = ∇2
f̂

n∑
i=1

LY (f̂(ĝ(xi), yi).

6: Update label predictor f̃ :

f̃ = f̂ −H−1

f̂
· ∇f̂

n∑
l=1

LY

(
f̂ (g̃∗(xl)) , yl

)
.

7: Map g̃∗ to g̃ by removing the r-th row of the matrix in the final layer of g̃∗ for r ∈ M .
8: Return:f̃ , g̃.

Algorithm 3 Data-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}Ni=1, original concept predictor f̂ , label predictor ĝ, and the to be removed data index
set G.

2: For r ∈ G, remove the r-th data (xr, yr, cr) from D and define the new dataset as S.
3: Compute the Hessian matrix of the loss function with respect to ĝ:

Hĝ = ∇2
ĝ

∑
i,j

LCj
(ĝj(xi), c

j
i).

4: Update concept predictor g̃:
g̃ = ĝ +H−1

ĝ ·
∑
r∈G

∇gLC(ĝ(xr), cr)

5: Update label predictor f̃ . Compute the Hessian matrix of the loss function with respect to f̂ :

Hf̂ = ∇2
f̂

n∑
i=1

LY (f̂(ĝ(xi), yi).

6: Compute A as:
A = H−1

f̂
·
∑

i∈[n]−G

∇f̂LY

(
f̂(ĝ(xi)), yi

)
7: Obtain f̄ as

f̄ = f̂ +A

8: Compute the Hessian matrix of the loss function concerning f̄ :

Hf̄ = ∇2
f̄

∑
i∈[n]−G

LY (f̄(ĝ(xi)), yi).

9: Compute B as
B = −H−1

f̄
·
∑

i∈[n]−G

∇f̂

(
LY (f̄(g̃(xi)), yi)− LY (f̄(ĝ(xi)), yi)

)
35

Editable Concept Bottleneck Models

10: Update the label predictor f̃ as: f̃ = f̂ +A+B.
11: Return: f̃ , g̃.

Algorithm 4 EK-FAC for Concept Predictor g

1: Input: Dataset D = {(xi, yi, ci)}Ni=1, original concept predictor ĝ.
2: for the l-th convolution layer of ĝ: do
3: Define the input activations {aj,t}, weights W = (wi,j,δ), and biases b = (bi) of this layer;
4: Obtain the expanded activations JAl−1K as:

JAl−1Kt,j|∆|+δ = [Al−1](t+δ),j = aj,t+δ,

5: Compute the pre-activations:
[Sl]i,t = si,t =

∑
δ∈∆

wi,j,δaj,t+δ + bi.

6: During the backpropagation process, obtain the Dsi,t as:

Dsi,t =
∂
∑k

j=1

∑n
i=1 LCj

∂si,t

7: Compute Ω̂l−1 and Γ̂l:

Ω̂l−1 =
1

n

n∑
i=1

(
JAi

l−1K
⊤
HJAi

l−1KH
)

Γ̂l =
1

n

n∑
i=1

(
1

|T |
DSi

l

⊤DSi
l

)

8: Perform eigenvalue decomposition of Ω̂l−1 and Γ̂l, obtain QΩ,ΛΩ, QΓ,ΛΓ, which satisfies

Ω̂l−1 = QΩΛΩQ
⊤
Ω

Γ̂l = QΓΛΓQ
⊤
Γ

9: Define a diagonal matrix Λ and compute the diagonal element as

Λ∗
ii = n−1

n∑
j=1

((
QΩl−1

⊗QΓl

)
∇θlLCj

)2
i
.

10: Compute Ĥ−1
l as

Ĥ−1
l =

(
QΩl−1

⊗QΓl

)
(Λ + λlIdl

)
−1 (

QΩl−1
⊗QΓl

)T
11: end for
12: Splice Hl sequentially into large diagonal matrices

Ĥ−1
ĝ =

 Ĥ−1
1 0

. . .
0 Ĥ−1

d


where d is the number of the convolution layer of the concept predictor.

13: Return: the inverse Hessian matrix Ĥ−1
ĝ .

Algorithm 5 EK-FAC for Label Predictor f

1: Input: Dataset D = {(xi, yi, ci)}Ni=1, original label predictor f̂ .

36

Editable Concept Bottleneck Models

2: Denote the pre-activated output of f̂ as f ′, Compute A as

A =
1

n
·

n∑
i=1

ĝ(xi) · ĝ(xi)
T

3: Comput B as:

B =
1

n
·

n∑
i=1

∇f ′LY (f̂ (ĝ(xi)) , yi) · ∇f ′LY (f̂ (ĝ(xi)) , yi)
T

4: Perform eigenvalue decomposition of AA and BB, obtain QA,ΛA, QB ,ΛB , which satisfies

A = QAΛAQ
⊤
A

B = QBΛBQ
⊤
B

5: Define a diagonal matrix Λ and compute the diagonal element as

Λ∗
ii = n−1

n∑
j=1

(
(QA ⊗QB)∇f̂LYj

)2
i
.

6: Compute Ĥ−1

f̂
as

Ĥ−1

f̂
= (QA ⊗QB) (Λ + λId)

−1
(QA ⊗QB)

T

7: Return: the inverse Hessian matrix Ĥ−1

f̂
.

Algorithm 6 EK-FAC Concept-label-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}Ni=1, original concept predictor f̂ , label predictor ĝ, and the to be removed data index
set G, and damping parameter λ.

2: For r ∈ G, remove the r-th data (xr, yr, cr) from D and define the new dataset as S.
3: Use EK-FAC method in algorithm 4 to accelerate iHVP problem for ĝ and obtain the inverse Hessian matrix Ĥ−1

ĝ

4: Update concept predictor g̃:

g̃ = ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(
∇ĝLCr

(
ĝr(xw), c

r
w
′)−∇ĝLCr

(ĝr(xw), c
r
w)
)
.

5: Use EK-FAC method in algorithm 5 to accelerate iHVP problem for f̂ and obtain Ĥ−1

f̂

6: Update label predictor f̃ :

f̃ = f̂ +H−1

f̂
· ∇f

n∑
i=1

LY

(
f̂ (ĝ(xi)) , yi

)
−H−1

f̂
· ∇f

n∑
l=1

(
LY

(
f̂ (g̃(xl)) , yl

))
.

7: Return: f̃ , g̃.

Algorithm 7 EK-FAC Concept-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}ni=1, original concept predictor f̂ , label predictor ĝ and the to be removed concept
index set M , and damping parameter λ.

2: For r ∈ M , set pr = 0 for all the data z ∈ D.
3: Use EK-FAC method in algorithm 4 to accelerate iHVP problem for ĝ and obtain the inverse Hessian matrix Ĥ−1

ĝ

4: Update concept predictor g̃:

g̃∗ = ĝ −H−1
ĝ · ∇ĝ

∑
j /∈M

n∑
i=1

LCj
(ĝj(xi), c

j
i).

5: Use EK-FAC method in algorithm 5 to accelerate iHVP problem for f̂ and obtain Ĥ−1

f̂

37

Editable Concept Bottleneck Models

6: Update label predictor f̃ :

f̃ = f̂ −H−1

f̂
· ∇f̂

n∑
l=1

LY

(
f̂ (g̃∗(xl)) , yl

)
.

7: Map g̃∗ to g̃ by removing the r-th row of the matrix in the final layer of g̃∗ for r ∈ M .
8: Return: f̃ , g̃.

Algorithm 8 EK-FAC Data-level ECBM

1: Input: Dataset D = {(xi, yi, ci)}ni=1, original concept predictor f̂ , and label predictor ĝ, a set of erroneous data De

and its associated index set Se, and damping parameter λ.
2: For the index (w, r) in Se, correct crw to the right label crw

′ for the w-th data (xw, yw, cw).
3: Use EK-FAC method in algorithm 4 to accelerate iHVP problem for ĝ and obtain the inverse Hessian matrix Ĥ−1

ĝ

4: Update concept predictor g̃:

g̃ = ĝ −H−1
ĝ ·

∑
(w,r)∈Se

(
∇ĝLCr

(
ĝr(xw), c

r
w
′)−∇ĝLCr

(ĝr(xw), c
r
w)
)
.

5: Use EK-FAC method in algorithm 5 to accelerate iHVP problem for f̂ and obtain H−1

f̂
Compute A as:

A = H−1

f̂
·
∑

i∈[n]−G

∇f̂LY

(
f̂(ĝ(xi)), yi

)

Obtain f̄ as

f̄ = f̂ +A

6: Use EK-FAC method in algorithm 5 to accelerate iHVP problem for f̄ and obtain H−1
f̄

Compute B′ as

B′ = −H−1
f̄

·
∑

i∈[n]−G

∇f̂

(
LY (f̄(g̃(xi)), yi)− LY (f̄(ĝ(xi)), yi)

)
Update the label predictor f̃ as: f̃ = f̂ +A+B′.

7: Return: f̃ , g̃.

H. Additional Experiments
H.1. Experimental Setting

Methodology for Processing CUB Dataset For CUB dataset, we follow the setting in (Koh et al., 2020). We aggregate
instance-level concept annotations into class-level concepts via majority voting: e.g., if more than 50% of crows have black
wings in the data, then we set all crows to have black wings.

RMIA score. The RMIA score is computed as:

LRθ(x, z) ≈
Pr(fθ(x)|N (µx,z̄(x), σ

2
x,z̄(x)))

Pr(fθ(x)|N (µx̄,z(x), σ2
x̄,z(x)))

×
Pr(fθ(z)|N (µx,z̄(z), σ

2
x,z̄(z)))

Pr(fθ(z)|N (µx̄,z(z), σ2
x̄,z(z)))

where fθ(x) represents the model’s output (logits) for the data point x, N (µ, σ2) denotes a Gaussian distribution with mean
µ and variance σ2, µx,z̄(x) is the mean of the model’s outputs for x under the assumption that x belongs to the training set,
and σ2

x,z̄(x) is the variance of the model’s outputs for x. The likelihoods Pr(fθ(x)|N) represent the probability that the
model’s output fθ(x) follows the Gaussian distribution parameterized by µ and σ2, under the two different hypotheses: x
being a member of the training set versus not being a member.

38

Editable Concept Bottleneck Models

H.2. Improvement via Harmful Data Removal

We conducted additional experiments on CUB datasets with synthetically introduced noisy concepts or labels. Firstly, we
introduce noises under three levels. At the concept level, we choose 10% of the concepts and flip these concept labels for a
portion of the data. At the data level, we choose 10% of the data and flip their labels. At the concept-label level, we choose
10% of the total concepts and flip them. Then, we conduct the following experiments.

We introduce noises into the three levels and train the model. After that, we remove the noise and obtain the retrained model,
which is the ground truth(gt) of this harmful data removal task. In contrast, we use ECBM to remove the harmful data.

Figure 5: Model performance after the removal of harmful data.

From Figure 5, it can be observed that the model performance improves across all three settings after noise removal and
subsequent retraining or ECBM editing. This confirms that the performance of ECBM is nearly equivalent to retraining in
various experimental scenarios, further providing evidence of the robustness of our method.

H.3. Periodic Editing Performance

ECBM can perform periodic editing. To evaluate the multiple editing performance of ECBM, we conduct the following
experiments. Firstly, we introduce noises under three levels. At the concept level, we choose 10% of the concepts and flip
these concept labels for a portion of the data. At the data level, we choose 10% of the data and flip their labels. At the
concept-label level, we choose 10% of the total concepts and flip them. Then, we conduct the following experiments.

At the concept level, we first remove 1% of the concepts, then retrain or use ECBM to edit and repeat. In the data level, we
first remove 1% of the data, then retrain or use ECBM to edit. At the concept label level, we first remove one concept label
from 1% of the data, then retrain or use ECBM to edit. Note that when removing the next 1% of the concepts, ECBM edits
the model based on the last editing result. The results at each level are shown in Figure 6, 7 and 8.

From the above three levels, we can find that with the mislabeled information removed, the retrained model achieves better
performance in both accuracy and F1 score than the initial model. Furthermore, the performance of the ECBM-edited
model is similar to that of the retrained model, even after 10 rounds of editing, which demonstrates the ability of our ECBM
method to handle multiple edits.

H.4. More Visualization Results and Explanation

Visualization. Since CBM is an explainable model, we aim to evaluate the interpretability of our ECBM (compared to
the retraining). We will present some visualization results for the concept-level edit. Figure 9 presents the top 10 most
influential concepts and their corresponding predicted concept labels obtained by our ECBM and the retrain method after
randomly deleting concepts for the CUB dataset. (Detailed explanation can be found in Appendix H.4.1.) Our ECBM can
provide explanations for which concepts are crucial and how they assist the prediction. Specifically, among the top 10
most important concepts in the ground truth (retraining), ECBM can accurately recognize 9 within them. For instance, we
correctly identify ”has upperparts color::orange”, ”has upper tail color::red”, and ”has breast color::black” as some of the
most important concepts when predicting categories. Additional visualization results under data level and concept-label

39

Editable Concept Bottleneck Models

10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%

Mislabeled Concept

0.790

0.792

0.794

0.796

0.798

A
cc

ur
ac

y
Accuracy Comparison (Concept Level)

Accuracy Strategy
Retrain Acc
ECBM Acc

(a) The accuracy of the edited model compared with retrained.

10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%

Mislabeled Concept

0.776

0.778

0.780

0.782

0.784

0.786

0.788

0.790

F1
 S

co
re

F1 Score Comparison (Concept Level)
F1 Score Strategy

Retrain F1
ECBM F1

(b) The F1 score of the edited model compared with retrained.

Figure 6: Accuracy and F1 score difference of the edited model compared with retrained at concept level.

10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%

Data (%)

0.770

0.775

0.780

0.785

0.790

0.795

A
cc

ur
ac

y

Accuracy Comparison (Data Level)
Accuracy Strategy

Retrain Acc
ECBM Acc

(a) The accuracy of the edited model compared with retrained.

10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%

Data (%)

0.770

0.775

0.780

0.785

0.790
F1

 S
co

re
F1 Score Comparison (Data Level)

F1 Score Strategy
Retrain F1
ECBM F1

(b) he F1 score of the edited model compared with retrained.

Figure 7: Accuracy and F1 score difference of the edited model compared with retrained at data level.

level on OAI and CUB datasets are included in Appendix H.4.2.

H.4.1. EXPLANATION FOR VISUALIZATION RESULTS

At the concept level, we remove each concept one at a time, retrain the CBM, and subsequently evaluate the model
performance. We rank the concepts in descending order based on the model performance loss. Concepts that, when removed,
cause significant changes in model performance are considered influential concepts. The top 10 concepts are shown in the
retrain column as illustrated in Figure 9. In contrast, we use our ECBM method instead of the retrain method, as outlined in
Algorithm 7, and the top 10 concepts are shown in the ECBM column of Figure 9.

To help readers connect the top 10 influential concepts with the input image, we provide visualizations of the data and list
the concept labels corresponding to the top 10 influential concepts, which are shown in Figure 9,10, 11.

For the other two levels and for additional datasets, we also conduct a similar procedure, and the corresponding visualization
results are presented in Figure 12, 13, 14, 15, and 16.

H.4.2. VISUALIZATION RESULTS

We provide our additional visualization results in Figure 10, 11, 12, 13, 14, 15, and 16.

40

Editable Concept Bottleneck Models

10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%

Concept Label (%)

0.788

0.790

0.792

0.794

0.796

0.798
A

cc
ur

ac
y

Accuracy Comparison (Concept-label Level)
Accuracy Strategy

Retrain Acc
ECBM Acc

(a) The accuracy of the edited model compared with retrained.

10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0%

Concept Label (%)

0.780

0.782

0.784

0.786

0.788

0.790

F1
 S

co
re

F1 Score Comparison (Concept-label Level)
F1 Score Strategy

Retrain F1
ECBM F1

(b) The F1 score of the edited model compared with retrained.

Figure 8: Accuracy and F1 score difference of the edited model compared with retrained at concept-label level.

Figure 9: Visualization of the Top 10 Most Influential Concepts for CBM(Identified by ECBM or Retrain) Highlighted on
an Extracted Image.

I. More Related Work
Influence Function. The influence function, initially a staple in robust statistics (Cook, 2000; Cook & Weisberg, 1980),
has seen extensive adoption within machine learning since (Koh & Liang, 2017) introduced it to the field. Its versatility
spans various applications, including detecting mislabeled data, interpreting models, addressing model bias, and facilitating
machine unlearning tasks. Notable works in machine unlearning encompass unlearning features and labels (Warnecke et al.,
2023), minimax unlearning (Liu et al., 2024), forgetting a subset of image data for training deep neural networks (Golatkar
et al., 2020a; 2021), graph unlearning involving nodes, edges, and features. Recent advancements, such as the LiSSA method
(Agarwal et al., 2017; Kwon et al., 2023) and kNN-based techniques (Guo et al., 2021), have been proposed to enhance
computational efficiency. Besides, various studies have applied influence functions to interpret models across different
domains, including natural language processing (Han et al., 2020) and image classification (Basu et al., 2021), while also
addressing biases in classification models (Wang et al., 2019), word embeddings (Brunet et al., 2019), and finetuned models
(Chen et al., 2020). Despite numerous studies on influence functions, we are the first to utilize them to construct the editable
CBM. Moreover, compared to traditional neural networks, CBMs are more complicated in their influence function. Because
we only need to change the predicted output in the traditional influence function. While in CBMs, we should first remove
the true concept, then we need to approximate the predicted concept in order to approximate the output. Bridging the gap
between the true and predicted concepts poses a significant theoretical challenge in our proof.

Model Unlearning. Model unlearning has gained significant attention in recent years, with various methods (Bourtoule
et al., 2021; Brophy & Lowd, 2021; Cao & Yang, 2015; Chen et al., 2022a;b) proposed to efficiently remove the influence
of certain data from trained machine learning models. Existing approaches can be broadly categorized into exact and
approximate unlearning methods. Exact unlearning methods aim to replicate the results of retraining by selectively updating
only a portion of the dataset, thereby avoiding the computational expense of retraining on the entire dataset (Sekhari et al.,
2021; Chowdhury et al., 2024). Approximate unlearning methods, on the other hand, seek to adjust model parameters
to approximately satisfy the optimality condition of the objective function on the remaining data (Golatkar et al., 2020a;
Guo et al., 2019; Izzo et al., 2021). These methods are further divided into three subcategories: (1) Newton step-based
updates that leverage Hessian-related terms [22, 26, 31, 34, 40, 43, 49], often incorporating Gaussian noise to mitigate

41

Editable Concept Bottleneck Models

residual data influence. To reduce computational costs, some works approximate the Hessian using the Fisher information
matrix (Golatkar et al., 2020a) or small Hessian blocks (Mehta et al., 2022). (2) Neural tangent kernel (NTK)-based
unlearning approximates training as a linear process, either by treating it as a single linear change (Golatkar et al., 2020b).
(3) SGD path tracking methods, such as DeltaGrad (Wu et al., 2020) and unrollSGD (Thudi et al., 2022), reverse the
optimization trajectory of stochastic gradient descent during training. Despite their advancements, these methods fail to
handle the special architecture of CBMs. Moreover, given the high cost of obtaining data, we sometimes prefer to correct
the data rather than remove it, which model unlearning is unable to achieve.

J. Limitations and Broader Impacts
It is important to acknowledge that the ECBM approach is essentially an approximation of the model that would be obtained
by retraining with the edited data. However, results indicate that this approximation is effective in real-world applications.

Concept Bottleneck Models (CBMs) have garnered much attention for their ability to elucidate the prediction process
through a human-understandable concept layer. However, most previous studies focused on cases where the data, including
concepts, are clean. In many scenarios, we always need to remove/insert some training data or new concepts from trained
CBMs due to different reasons, such as data mislabeling, spurious concepts, and concept annotation errors. Thus, the
challenge of deriving efficient editable CBMs without retraining from scratch persists, particularly in large-scale applications.
To address these challenges, we propose Editable Concept Bottleneck Models (ECBMs). Specifically, ECBMs support three
different levels of data removal: concept-label-level, concept-level, and data-level. ECBMs enjoy mathematically rigorous
closed-form approximations derived from influence functions that obviate the need for re-training. Experimental results
demonstrate the efficiency and effectiveness of our ECBMs, affirming their adaptability within the realm of CBMs. Our
ECBM can be an interactive model with doctors in the real world, which is an editable explanation tool.

42

Editable Concept Bottleneck Models

Figure 10: Visualization of the top-10 most influential concepts for different classes in CUB.

43

Editable Concept Bottleneck Models

Figure 11: Visualization of the top-10 most influential concepts for different classes in CUB.

44

Editable Concept Bottleneck Models

Figure 12: Visualization of the most influential concept label related to different data in CUB.

45

Editable Concept Bottleneck Models

Figure 13: Visualization of the most influential concept label related to different data in CUB.

46

Editable Concept Bottleneck Models

Figure 14: Visualization of the most influential concept label related to different data in CUB.

47

Editable Concept Bottleneck Models

Figure 15: Visualization of the most influential concept label related to different data in CUB.

48

Editable Concept Bottleneck Models

Figure 16: Visualization of the most influential concept label related to different data in OAI.

49

