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Abstract

Simultaneous  speech-to-text  translation
(SimulST) systems have to balance translation
quality with latency—the delay between speech
input and the translated output. While quality
evaluation is well established, accurately
measuring latency remains a challenge.
Existing metrics often produce inconsistent or
misleading results, especially in the widely
used short-form setting where speech is
artificially pre-segmented. In this paper, we
present the first comprehensive analysis of
SimulST latency metrics across language
pairs, systems, and both short- and long-form
regimes. We uncover a structural bias in
current metrics related to segmentation that
undermines fair and meaningful comparisons.
To address this, we introduce YAAL (Yet
Another Average Lagging), a refined latency
metric that delivers more accurate evaluations
in the short-form regime. We extend YAAL
to LongYAAL for unsegmented audio streams
and propose SOFTSEGMENTER, a novel
resegmentation tool based on word-level
alignment. Our experiments show that YAAL
and LongYAAL outperform popular latency
metrics, while SOFTSEGMENTER enhances
alignment quality in long-form evaluation,
together enabling more reliable assessments of
SimulST systems.

1 Introduction

Simultaneous speech-to-text translation (SimulST)
is the task in which a system has to produce incre-
mental translation concurrently with the speaker’s
speech (Ren et al., 2020). SimulST models have
to balance between quality and latency of the out-
put, which is the time elapsed between when a
word is uttered and when its corresponding trans-
lation is produced. While translation quality mea-
sures are extensively studied both in the offline
ST and in the related field of machine translation
(Freitag et al., 2022, 2023; Zouhar et al., 2024),
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Figure 1: Ranking of the systems submitted to the
IWSLT 2023 Simultaneous Speech Translation Track
according to the official five latency metrics.

there is no study regarding the reliability of la-
tency metrics. The most commonly used latency
metrics in SimulST (Cho and Esipova, 2016; Ma
et al., 2019; Cherry and Foster, 2019; Polék et al.,
2022; Papi et al., 2022; Kano et al., 2023), even
though with different approximations, base their
calculation on simplifying assumptions such as uni-
form word duration, absence of long pauses, and
strict monotonic alignment between source speech
and target translation. However, despite relying on
the same assumptions, these metrics often produce
very inconsistent assessments of the system’s per-
formance. This inconsistency is clearly illustrated
in the results of the IWSLT 2023 Shared Task on
Simultaneous Translation (Agarwal et al., 2023),
where different metrics produced substantially dif-
ferent rankings for the same set of systems (see
Figure 1). Such variability raises serious concerns
about the validity of current evaluation protocols
and their ability to support meaningful comparisons
between systems. Moreover, this risk can be further
exacerbated when shifting from dealing with al-
ready pre-segmented speech input—i.e., short-form
SimulST-to unsegmented audio streams—i.e., long-
form SimulST, where information about sentence
boundaries is not available, thereby further compli-
cating the systems’ evaluation (Papi et al., 2025).

In this paper, we present the first comprehen-



sive evaluation of latency metrics for SimulST
under several aspects, including diverse systems,
language pairs, and short- and long-form regimes.
Through an in-depth analysis of systems submitted
to recent IWSLT SimulST Shared Tasks (Anasta-
sopoulos et al., 2022; Agarwal et al., 2023; Ahmad
et al., 2024), we reveal that existing metrics can
lead to misleading conclusions and hinder effective
system design. We show that the inconsistent eval-
uations are not primarily due to the aforementioned
assumptions, but rather to a structural bias in how
latency is measured—particularly in how segmenta-
tion influences SimulST models’ behavior.
Motivated by these findings, we propose YAAL
(Yet Another Average Lagging), a refined latency
metric designed to mitigate the biases present in
existing latency metrics. Our extensive experi-
ments demonstrate that YAAL yields more reli-
able latency estimates, consistently aligning bet-
ter with the actual behavior of SimulST systems.
Furthermore, we also show that resegmentation—
which pairs segment-level predictions with their
corresponding reference—is necessary to produce
meaningful latency measurements for long-form
SimulST. To this end, we introduce SOFTSEG-
MENTER, a new resegmentation tool, and extend
our YAAL to LongYAAL, which deals with audio
streams. Compared to the current standard align-
ment tool used in the speech translation community
(Matusov et al., 2005a), SOFTSEGMENTER signifi-
cantly improves alignment quality, enabling more
accurate evaluation in long-form scenarios.'

2 Background

In the following, we describe the metrics currently
used for both the short-form (§2.1) and long-form
(§2.2) regimes. Throughout the paper, we assume
incremental SimulST systems, i.e., systems that
cannot revise their outputs, as they are not affected
by flickering problems, and are leading current
research efforts in the topic (Papi et al., 2025).

2.1 Short-Form SimulST Latency Metrics

The short-form is the most common evaluation
regime of SimulST (Anastasopoulos et al., 2022;
Agarwal et al., 2023; Ahmad et al., 2024), where
all recordings of the test set are divided, usually fol-
lowing sentence boundaries, into short segments of

"The code for YAAL, its long-form variant LongYAAL,
and SOFTSEGMENTER will be released upon the paper accep-
tance under Apache 2.0 license.

a few seconds. Each segment consists of source au-
dio X = [z1, ..., 7x|], where z; is a small portion
of raw audio—i.e., audio chunk—with a duration 7j,
and reference translation YR = [y ... ,yI@Rl].
Each audio chunk is incrementally fed to the sys-
tem, which concurrently outputs a partial transla-
tion Y ; at timestamp d; = 22:1 T}. Under these
settings, we describe below the latency metrics op-
erating in the short-form regime.

Average Proportion (AP; Cho and Esipova, 2016)
measures the average proportion of input speech
read when emitting a target token:

1
P = d;. (D
XIY] 2=

Average Lagging (AL; Ma et al., 2019) for si-
multaneous machine translation and modified for
speech by Ma et al. (2020) defines the latency as
the average delay behind an ideal policy:

L X
AL = d; — d;, (2)
7(X) 2

where 7(X) = min{i|d; = Z'fi‘l Tj} is the in-
dex of the hypothesis token when the model reaches
the end of the source sentence, also known as the
cutoff point. AL considers delays up to and includ-
ing the one associated with the token at the cutoff
point. The i-th delay of the ideal policy is defined
ST

asd; = %, where 7 = |YR|/Z]-:1

Length-Aware Average Lagging (LAAL) is
an AL modification that is robust to overgenera-
tion, i.e., when the hypothesis Y is much longer
than YR, which makes the original AL produce
negative delays when [Y| > |YR|. To over-
come this problem, which was unduly reward-
ing overgenerating systems, Poldk et al. (2022)
and Papi et al. (2022) proposed the modification

v = max(|Y[, [Y®))/ =X 75,

Differentiable Average Lagging (DAL; Cherry
and Foster, 2019) modifies AL by introducing
a minimal delay of 1/~ after each step. Unlike

AL and LAAL, DAL considers all delays in the
hypothesis, without cutoff after i > 7(X):

[Y]
1
DAL:mng—d;ﬂ 3)
=1



di = , . 4)
max(d;,d; +1/v), otherwise.

Average Token Delay (AP; Kano et al., 2023)
assumes that the source speech, similar to the trans-
lation, consists of discrete tokens. ATD defines
a fixed duration for speech tokens of 300ms and
divides the input speech and translation into C'
chunks, where the c-th translation chunk y€ is trans-
lated conditioned on the source chunk z¢ and previ-
ous translation chunks ¢!, ..., y°"!. ATD is then
defined as the average delay between each transla-
tion and the corresponding source tokens:

ATD = — Z(T(yt) - T(xa(t)»? (5)

where 7'(-) is the end time of the source/translation
token and

a(t) = {S(t% el S.L““(xdt)) ©6)
Lace(z¢0),  otherwise,

is an index of a source token corresponding to
translation token y;, where Lg..(z€) is the num-
ber of source tokens in the chunk z¢ and s(t) =
t—maz(0, Lace(y° D) = Lyee(2°®~1)) handles
the case where more tokens are generated than read,
i.e., y; is aligned with xy, t' < t.

2.2 Long-Form SimulST Latency Metrics

The long-form evaluation regime evaluates
SimulST systems more realistically (Papi et al.,
2025), as it assesses their ability to handle long
audio streams, often spanning several minutes.
Since all metrics were developed for the short-form
regime, recent studies exploring the long-form
counterpart (Poldk and Bojar, 2024; Papi et al.,
2024) resorted to re-segmentation of the transla-
tions and delays based on the reference translation
(Matusov et al., 2005b), and computed the metrics
on the segment level. A proposed variant of the
LAAL metric for long-form is explained below.

Streaming LAAL (StreamLAAL; Papi et al.,
2024) extends the LAAL metric to unsegmented
audio streams S = [Xy, ..., X|g|], paired with a
continuous stream of predicted translations Yg.
Since reference translations YR, ..., Ylfg‘ are only
available at segment-level X4, ..., X|g|, prediction

Ys = [Y1,..., Y|g|| with the corresponding de-
lays is segmented based on reference sentences Y}
to obtain segment-level predictions. Then, Stream-
LAAL is computed as:

1 8 X
Stream _— _— d; — d; 7
LAAL 78] £ 7(X,) Z

Where df = (i — 1) - |Xs|/max{|Ys|, [YR|} In
practice, the LAAL metric is calculated for every
speech segment Xy of the stream S and its cor-
responding reference Y with the automatically
aligned prediction Yy and then averaged over all
the speech segments of the stream X4, ..., X|g).

3 Overcoming the Pitfalls in SimulST
Latency Metrics

3.1 The Short-Form Regime

The use of audio segmentation in short-form evalu-
ations significantly affects translation behavior and
latency. In practice, short-form SimulST systems
are evaluated in a simulated environment where
each segment is processed independently (Ma et al.,
2020). When the entire source segment has been
consumed-i.e., fed to the system—the translation is
often still in progress. At that point, the simulator
requests the remaining translation, which the model
emits without any additional delay. This setup in-
troduces two unrealistic conditions. First, the audio
is typically segmented in advance by a human anno-
tator or an automatic model with access to the full
audio (Oracle Segmentation). Second, the model is
allowed to generate the remaining translation (here-
inafter, fail words) instantaneously once the input
segment ends. These factors unduly distort short-
form evaluations, by both providing high-quality
segmentation and eliminating the delay that would
occur in a realistic setting, where the system must
wait to confirm that the sentence has ended.

In a more realistic scenario, a model has both to
rely on online segmentation and delay final transla-
tion steps until it is confident that the input sentence
is complete, thereby introducing extra latency. This
discrepancy is illustrated in Figure 2. In the With-
out Segmentation and Simultaneous Segmentation
regimes, the last five words of the first sentence are
emitted during the second sentence. In contrast,
Oracle Segmentation concludes the first sentence
synchronously with the speaker—before the second
sentence begins—gaining an artificial latency advan-
tage of approximately 500 ms.
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Figure 2: Translations and emission times of a SimulST model. Words in a column were emitted at once. The
emission of the last five words (“gemeinniitzige Organisation namens Robin Hood.”) depends on the segmentation.
Without Segmentation: Model continues translating the second sentence. Simultaneous Segmentation: Segmentation
model runs concurrently with the translation model. Oracle Segmentation: Optimal segmentation is known before.

Based on these observations, we categorize ex-
isting short-form latency metrics (§2.1) into two
main groups, depending on whether they include
all translated words or only a subset in their la-
tency computation. The first group—comprising
AP, DAL, and ATD-includes all translated words
in the calculation. Among these, DAL attempts
to mitigate the impact of tail words by adding a
minimum delay of 1/ after each generated word
(also within the same step), thus “spreading” the
tail delays across words. However, 1/~ simply re-
flects the average source-to-target length ratio and
does not accurately capture the system behavior
for tail words in settings without segmentation. If
multiple words are emitted as tail words, DAL can
significantly overestimate latency. In the edge case
of a system that waits for an end-of-segment signal
(i.e., an offline system), DAL returns the segment
length, failing to capture the system’s true behavior—
in this case, infinite latency. AP assigns a delay of
1 to each tail word as the entire recording has to
be processed to emit that word, thus, the propor-
tion is 1. While AP is marginally less sensitive to
segmentation effects than DAL—since it operates
on proportions rather than absolute delays—it still
fails to model system behavior faithfully for the
tail words. ATD also considers all translated words.
However, unlike DAL, it does not apply corrections
for tail word behavior, making it the most sensitive
to segmentation artifacts among the three metrics.

The second group—AL and LAAL—computes la-
tency only for words emitted up to and includ-

ing the cutoff point 7(X), which marks the first
word generated after the end of the input segment.
This corresponds to the word “gemeinniitzige” in
Figure 2. As discussed earlier, in the short-form
regime with oracle segmentation, the 7(X)-th and
following words are often translated earlier than
they would be in a more realistic long-form sce-
nario. As a result, this cutoff introduces a system-
atic bias in the latency estimate, which may lead to
either underestimation or overestimation, depend-
ing on the system’s policy.’

AP, DAL, ATD, AL, and, more recently, LAAL
became established metrics in the short-form eval-
uation of SimulST. However, as discussed above,
including any of the tail words in the latency com-
putation leads to a systematic bias that undermines
fair comparisons. To cope with this bias, we pro-
pose a new metric derived from the LAAL metric:

Yet Another Average Latency (YAAL) We re-
fine the LAAL formulation to better isolate the
portion of output that is actually produced under
simultaneous settings. Specifically, we define a
new cutoff point:

X|
mvaaL(X, D) = max{ild; < > T;},  (8)
j=1

%For instance, systems that continuously produce output
may appear faster due to the omission of final tail delays (i.e.,
underestimation), while systems that delay a large portion of
translation until the end of the segment may appear slower
than they actually are (i.e., overestimation).



which includes only those words generated strictly
before the end of the input stream. For example, in
Figure 2, this corresponds to including words up to
and including “eine”, thereby avoiding distortion
from tail words and yielding a more reliable latency
estimate that remains consistent across different
segmentation regimes.

3.2 The Long-Form Regime

The long-form regime offers a more realistic evalu-
ation setting by assessing systems on continuous,
unsegmented audio streams that better reflect real-
world use cases. However, widely used latency
metrics were originally designed for the short-form
regime and do not directly extend to this setting.

First, metrics such as AL, LAAL, and DAL
rely on a -y parameter, representing the average
target-to-source length ratio. In long-form settings,
however, v can vary substantially across different
segments within the same audio stream, leading
to inconsistent and unreliable latency estimates
(Iranzo-Séanchez et al., 2021). Second, AP tends to
converge toward O for long recordings, as typical
speech inputs are significantly longer than their cor-
responding translations, i.e.,
Equation (1) to approach 0. Finally, ATD assumes
that each speech token has a fixed duration and
that source and target tokens align monotonically—
assumptions that are overly restrictive and espe-
cially unrealistic for long-form speech.

To address these challenges, prior work has in-
troduced re-segmenting long inputs into short seg-
ments and computing latency on these units, as in
StreamLLAAL. While StreamLLAAL provides the
first adaptation of existing metrics to long-form
input, it has some limitations. It relies on the mW-
ERSegmenter tool (Matusov et al., 2005a), which
may introduce alignment errors (Amrhein and Had-
dow, 2022; Poldk and Bojar, 2024), and computes
latency up to the cutoff word 7(Xj;) (Equation (7)),
which can lead to the systematic bias (§3.1) as this
word is often translated beyond the reference seg-
ment. To overcome these limitations, we propose
both a new re-segmentation method and an exten-
sion of the YAAL metric for the long-form regime.

SOFTSEGMENTER We introduce a new re-
segmentation method inspired by Poldk and Bo-
jar (2024), employing a softer alignment strategy
to more accurately match translation outputs with
reference segments. Our method works on the
word level, but uses a character-level score to al-

low a non-exact match. Additionally, we penalize
word alignments to punctuation, reducing spurious
boundaries and improving alignment robustness.
Refer to Appendix B for implementation details.

Long-Form YAAL (LongYAAL) We also
extend YAAL to the long-form regime-i.e.,
LongYAAL. Unlike StreamLLAAL, LongYAAL in-
cludes all words in the latency computation, even
those generated beyond the aligned segment bound-
aries Xg, i.e., all d; for i > 7(Xg). However, we
exclude the final tail words produced after the end
of the full stream S, i.e., d; for i > T(Z'S)ill |Xs])-
This ensures that we include all words emitted be-
yond the segment boundaries Xg, but we do not
include the tail words generated at the end of the
entire stream S. If the stream S consists of a single
segment, LongYAAL coincides with YAAL.

4 Experimental Settings
4.1 Data

For the short-form regime, we use systems submit-
ted to the IWSLT Simultaneous Speech Translation
tracks of 2022 and 2023. For the long-form regime,
the logs are sourced from IWSLT 2025. Detailed
information on the data, the number of systems
available for each regime, year, and language pair
is presented in Appendix A. All systems were eval-
uated with SimulEval (Ma et al., 2020).

4.2 Evaluation

True Latency To enable fair comparisons across
latency metrics, we require a reference latency re-
flecting the user experience, i.e., how long the user
needs to wait for translation. Since human eval-
uation is infeasible at scale, we adopt a carefully
designed automatic approximation, which we refer
to as true latency. This is grounded in an intuitive
and practical definition of latency in speech trans-
lation: On average, how long does a user have to
wait for a given piece of source information to ap-
pear in the translation? Concretely, we define true
latency as the average delay between each target
word and its corresponding source word.

YA

|YA‘ Z d o dsrc (9)

where d; is the emission time of the target word
y; and d;"¢ is the corresponding source delay. We
define the source delay as the time that the speaker



finished the last word corresponding to the target
word: df"¢ = max; {s{"?|(y;, s1) € A(Y — S)},
where sle"d is the end timestamp of the source word
s;and A(Y — S) is the translation alignment be-
tween the target and the source. As discussed in
§3.1, computing latency over all words—including
tail words—can introduce systematic bias. To mit-
igate this, we restrict the true latency calculation
to words generated strictly during simultaneous
decoding, i.e., before the end-of-source signal. Ad-
ditionally, we consider only the subset of target
words YA C Y that are aligned to at least one
source word, thereby avoiding biases introduced
by over- or under-generation (Poldk et al., 2022;
Papi et al., 2022). The implementation details are
provided in Appendix C.

Score Difference For the main evaluation, we
adopt the pairwise comparison approach (Mathur
et al., 2020). Rather than evaluating each system in-
dependently as a standalone data point, we examine
the difference between the scores of two systems:
A = score(System A) — score(System B). Pair-
wise comparison better reflects the typical use case
of latency metrics—namely, distinguishing between
two systems. In our evaluation, we restrict compar-
isons to system pairs evaluated on the same test set
and language pair.

Accuracy Following Kocmi et al. (2021), we also
evaluate the accuracy of binary comparisons be-
tween systems: given a pair of systems, which one
is better according to the true latency ranking (used
as gold labels)? The accuracy is defined as the
proportion of system pairs for which the relative
ranking according to a metric matches that of the
true latency:

|sign(ATL) = sign(AM)|
|all system pairs|

Accuracy =

This accuracy measure considers only the ranking—
not the magnitude—of the latency differences, allow-
ing us to aggregate comparisons across language
pairs and test sets. However, this accuracy might
be affected if two systems have similar latencies.
To avoid this issue, we compute the accuracies in
multiple subsets by removing pairs that are not sig-
nificantly different according to Mann-Whitney U
test on their true latencies.> We use bootstrap re-
sampling with N = 10000 (Tibshirani and Efron,

3We do not assume normal distribution of delays. Each
system has different hypotheses, so we cannot use paired tests.
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Figure 3: Each point represents the difference between
the true latency (x-axis) and the automatic metric (y-
axis) for two systems. Reported Pearson and Kendall
rank correlations are for illustration only, as each lan-
guage pair has a slightly different scale.

1993) to estimate confidence intervals and consider
all metrics within the 95% confidence interval of
the top-performing metric to be statistically tied.

5 Results

5.1 Short-Form Evaluation

Which is the best Short-form Latency Metric?
We present the pairwise comparison of all short-
form systems in Figure 3. An important first obser-
vation is that a significant portion of system pairs
exhibit no or slightly negative correlations—points
that create almost vertical lines and lines far off
the diagonal. These systems* share an anomalous
simultaneous policy: The lower the latency of the
prefix generated simultaneously, the larger the por-
tion of the sentence translated offline. We assume
that the underlying reason for this behavior is that
the system is too eager to emit outputs at the begin-
ning, but then it gets to a “dead end” of probable
outputs and only emits the remaining words at the
signaled end of the sentence. This policy, coupled
with the bias introduced by the latency metrics,
led to a severe overestimation of the systems’ ac-
tual latency. In particular, the shorter the prefix
in low-latency systems, the greater the impact of
the 7(X)-th word that has a delay equal to the
segment length, causing the low-latency system to

4 After a manual inspection, we identified that all affected
systems were submitted independently by two different teams
in IWSLT 2022 and 2023, showing that the metric’s negative
behavior is not so uncommon.



have higher AL values.’

Moving to the metrics, we observe that they all
show positive correlations with the true latency, but
each language pair has a slightly different scale,
which motivates the use of accuracy. Therefore,
we compare the latency metrics in terms of accu-
racy in Table 1. If we consider all system pairs,
we see that all metrics significantly underperform
YAAL, which reaches 96% accuracy. When we
progressively filter out system pairs with similar
true latency, the accuracies slightly increase, but
the order of metrics does not change. If we con-
sider a subset that has a p-value between 0.001-0.05
(i.e., removing systems with the same true latency
and systems that are easily distinguishable), we
see that YAAL still remains the most accurate one,
but relative ranking of the other metrics changes,
which we attribute to the influence of systems with
the anomalous policy. Apart from YAAL, AP ap-
pears less vulnerable to tail words, likely due to
the use of relative delays compared to absolute de-
lays in other metrics. If we remove systems with
the anomalous policy, all metrics gain a significant
boost in accuracy (bottom part of Table 1). The
YAAL metric is the best metric in all subsets based
on p-values, achieving 98 and 99% accuracy—even
though it relies on assumptions such as uniform
source token durations and monotonic source-to-
target alignment. Based on these observations, we
conclude that the automatic YAAL metric is almost
as accurate as true latency. We include more ac-
curacy evaluations by isolating different categories
of systems in Appendix D.

Should we use the Short-Form Regime? As
discussed in §3 and empirically observed in this
section, short-form evaluation can significantly dis-
tort latency measurements. In Table 2, we present
the average fraction of target words generated after
the end-of-segment signal. The results reveal that a
substantial portion of the translations are tail words,
starting at 41% in the low-latency regime (1-2s) and
reaching 72% in the high-latency regime (4-5s).5
Short-form evaluation, with artificial segment
boundaries absent in real-world scenarios and

>For example, one segment had only one word translated
simultaneously, and the rest was translated after the end of the
speechin 9.3 s. YAAL for this segmentis (1—0x0.4)/1 =1
s, while AL and LAAL are (1-0x0.4+9.3—-1x0.4)/2 =
4.95 s, where * x 0.4 is the ideal latency for this segment.

®Systems with higher-latency behavior have policies lead-
ing to deferred delays, and these delays in turn are more likely
to overflow the source duration.

p-val AL LAAL DAL ATD AP YAAL N
all system pairs

all 066 069 059 056 074 096 | 5326

<0.05 067 070 059 056 075 098 | 5149

<0.01 0.67 070 059 056 075 098 | 5103

<0.001 068 070 059 056 076 098 | 5048

0.001-0.05 | 0.40 046 040 043 042 071 101

w/o anomalous policy

all 095 097 095 092 085 098 | 2100
<0.05 096 097 09 092 0.85 0.99 | 2060
<0.01 096 098 09 093 0.85 0.99 | 2046

<0.001 096 098 097 093 085 0.99 | 2025
0.001-0.05 | 0.71  0.74 066 0.74 0.66 0.74 35

Table 1: Accuracy of systems in the short-form regime.
Best scores in bold. Underlined scores are considered
tied with the best metric.

Latency regime [s] | 1-2  2-3 3-4 4-5
Tail Words [%] ‘ 41 49 63 72

Table 2: Average fraction of words generated after the
end-of-segment signal under the short-form evaluation
regime, averaged across all systems.

metrics’ problematic handling of tail words, of-
ten misrepresents SimulST system behavior. This
raises serious concerns about its reliability and un-
derscores the need for long-form evaluation, which
we analyze in §5.2.

5.2 Long-Form Evaluation

Which Resegmentation is Better? In Table 3,
we evaluate two re-segmentation tools: mWERSeg-
menter (Matusov et al., 2005a) and our proposed
SOFTSEGMENTER. The evaluation is done on
reconcatenated short-form outputs, allowing us to
compare with gold segment boundaries. As we
can see in Table 3, the accuracy of SOFTSEG-
MENTER is significantly higher. When filtering
out comparable systems by the p-value, accuracy
further decreases with mWERSegmenter, suggest-
ing that the segmentation is not stable. Moreover,
both segmentation approaches achieve a very high
accuracy of more than 99%, showing that reseg-
mentation does not compromise translation quality
measurement.

Do we need Resegmentation? The upper part of
Table 4 presents the accuracy of latency metrics on
long-form systems evaluated without resegmenta-
tion. We see that the accuracies are low, not exceed-
ing 66% when considering all systems. Compared
to StreamLAAL (first column), the best-performing
AL metric loses 15% to 16% absolute points, and



‘ Latency (StreamLAAL) ‘ MT Quality (COMET)

p-value ‘ mWERSegmenter ours ‘ mWERSegmenter  ours

All 86.4 94.1 99.3 99.1

0.05 86.3 95.8 100.0 100.0
0.01 86.2 96.1 100.0 100.0
0.001 86.1 96.5 100.0 100.0

Table 3: Accuracy of latency and quality metrics after
re-segmentation.

p-val | {uwm | AL LAAL DAL ATD AP YAAL| N
longform + unsegmented

all 0.82 [0.66 0.61 057 061 039 061 |594

<0.05 0.85 | 0.69 0.64 059 063 036 064 |523

<0.01 0.85 | 070 0.65 059 0.63 035 065 |496

<0.001 0.87 | 071 0.65 060 0.63 034 065 |461
0.001-0.05 | 0.63 | 0.52 055 048 0.60 047 0.55 62

-val ‘ Stream ‘ Long Long Long Long  Long Long N
p LAAL AL LAAL DAL ATD AP YAAL

longform + resegmented

all 0.82 092 095 094 093 071 095 |594
<0.05 0.85 | 094 096 097 097 072 098 | 523
<0.01 0.85 | 095 097 097 098 072 098 |496

<0.001 087 | 095 097 098 099 074 099 |46l
0.001-0.05 | 0.63 | 0.85 090 0.85 0.82 060 087 | 62

Table 4: Accuracy of systems in the long-form regime.
Best scores in bold. Underlined scores are considered
tied with the best metric. All metrics in the bottom
half use the proposed SOFTSEGMENTER, except for
StreamLLAAL that uses the original mWERSegmenter.

the gap is even wider compared to LongYAAL,
with AL falling short by 29 points. The bottom part
of Table 4 reports the accuracy of latency metrics
in long-form systems when evaluated with reseg-
mentation. Overall, we see that the resegmenta-
tion quality significantly influences the accuracy.
StreamLAAL and LongLLAAL share the same defi-
nition, but differ in the resegmentation tool-while
StreamLLAAL uses the original mWERSegmenter,
LonglLAAL (and all the other “Long-" metrics)
uses our proposed SOFTSEGMENTER. The gap
in accuracy is 8% to 10% absolute in all subsets,
showing trends similar to those in Table 3. These
results highlight the critical role of resegmenta-
tion in ensuring reliable latency evaluation in the
long-form regime. Additional observations are
provided in Appendix E.

Which is the best Long-form Latency Metric?
Table 4 also shows that the proposed LongYAAL
metric has the highest accuracy across all subsets.
LongATD and LongDAL show slightly worse re-
sults, but the differences are not statistically sig-
nificant. This contrasts with the observations in

§5.1, where ATD and DAL are in the fourth and
third places. This discrepancy can be explained
by the fact that both metrics account for all words,
including tail words that rarely occur in the long-
form regime. We attribute the marginal difference
to LongATD’s assumption of 300ms words in the
source speech, which is dynamic in LongYAAL
and LongDAL in the form of the v parameter, and
the difference in LongDAL is probably caused by
the minimum delay of 1/~ assigned to each word.
LongLLAAL ties with LongYAAL in most subsets,
but appears slightly worse when considering eas-
ily distinguishable systems (p-val <0.001), where
the metric loses 2% absolute in terms of accuracy.
LongLLAAL, unlike LongYAAL, disregards words
generated beyond the reference segment bound-
aries. The number of words ignored increases with
the true latency of the system (see §5.1), which is
more prevalent in the p-val < 0.001 subset. Simi-
larly, LongAL ignores the tail words in the reseg-
mentation and is also vulnerable to overgeneration
(Polak and Bojar, 2024; Papi et al., 2024). Finally,
AP performs the worst with a loss of more than
21% points compared to the rest of the metrics,
which we attribute to the metric’s sensitivity to
variable segment length. Overall, these results po-
sition LongYAAL as the most reliable metric for
assessing latency in long-form SimulST.

6 Conclusions

In this paper, we presented the first systematic eval-
uation of latency metrics for SimulST across sev-
eral aspects, such as diverse systems, language
pairs, and operating under short- and long-form
speech processing. We have identified current pit-
falls in the SimulST evaluation by isolating issues
in the most commonly used metrics. To overcome
these limitations, we propose YAAL, a new latency
metric better aligned with the short-form evaluation
regime. However, our analysis also reveals inher-
ent shortcomings of short-form evaluation, further
reinforcing the adoption of long-form evaluation
as a more reliable alternative. Moreover, we also
demonstrated that resegmentation is necessary to
conduct a proper evaluation of systems operating
under the long-form regime, and proposed an im-
proved resegmentation tool coupled with the ex-
tension of YAAL for these settings—Long YAAL.
The results showed that YAAL and LongYAAL im-
prove over all other metrics in both regimes, estab-
lishing the new state-of-the-art metric for SimulST.



Limitations

While our study offers a thorough evaluation of la-
tency metrics for SimulST and introduces improved
tools for both short- and long-form regimes, some
limitations remain. First, our evaluation depends
on reference translations and transcriptions, which
may not be available or reliable in low-resource or
real-time scenarios. Second, although the proposed
SOFTSEGMENTER improves alignment robustness,
word-level alignment is still susceptible to errors in
the presence of disfluencies or speech recognition
noise. Third, our experimental analysis focuses
on systems from the IWSLT Shared Tasks, which
may not fully represent the range of techniques
or data conditions used in broader academic or in-
dustrial settings. Fourth, our analysis focuses on
high-resource languages, for which data were avail-
able, but the findings should be reconfirmed under
low-resource language settings.

Potential Risks Our work introduces new evalua-
tion tools that could influence future benchmarking
of SimulST systems. However, there is a risk that
over-reliance on specific metrics—even improved
ones like YAAL and LongYAAL—could lead to
overfitting system design to particular evaluation
settings. For example, systems might be tuned to
perform well under LongYAAL but degrade in real-
world conditions that are not fully captured by the
metric. Additionally, the use of automatic reseg-
mentation methods may inadvertently introduce
subtle biases if misaligned with human interpre-
tation of segment boundaries. We encourage the
community to use these tools alongside qualitative
analysis and human-in-the-loop evaluations where
possible.

Computational Budget We did not train any
models as part of this study. However, we used sev-
eral evaluations that required computation. Most
of the experiments were conducted on a standard
desktop computer equipped with an Intel i7 proces-
sor and 32GB of RAM. For forced alignments with
neural models, machine translation alignment, and
the COMET translation quality metric, we used a
GPU cluster. However, these evaluations can be
done on a desktop machine with a slightly longer
runtime. The proposed SOFTSEGMENTER, YAAL,
and LongYAAL can be run efficiently on a CPU.

Use of AI Assistants We used Al-assisted coding
(i.e, Copilot) with the bulk written by humans. For

writing, we used Al to check grammar mistakes.
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A Evaluated Systems

For the short-form regime, we use systems submit-
ted to the IWSLT Simultaneous Speech Translation
tracks of 2022 and 2023. Specifically, we use the
SimulEval evaluation logs of the IWSLT 2022 and
2023 test sets (Anastasopoulos et al., 2022; Agar-
wal et al., 2023), and the logs of the tst-COMMON
test set of the MuST-C data set (Cattoni et al., 2021)
that were submitted to IWSLT 2022. For the long-
form regime, the logs are sourced from IWSLT
2025. In particular, for English-to-{German, Chi-
nese, Japanese} the evaluation was done on the
development set of the ACL 60/60 dataset (Salesky
et al., 2023), and IWSLT 2025 test set. For the
Czech-to-English language pair, the evaluation was
performed on the IWSLT 2024 development set
(Ahmad et al., 2024) and the IWSLT 2025 test
set. A portion of the IWSLT 2024 development
set contained segmented audio that could not be
reconstructed into the original unsegmented audio.

In Tables 5 to 7, we present the number of sys-
tems used in the short- and long-form evaluations.
The number of systems available to us was slightly
larger, but we excluded all systems where the logs
were incomplete (e.g., predictions for all record-
ings were not present, mismatched order of sources
and hypotheses). Furthermore, in the long-form
regime, we excluded one team entirely from the
evaluation due to faulty logs. These logs contained
a different number of predicted words and delays,
which means that we could not faithfully determine
generation timestamps for each predicted word.

Language Pair Dataset Teams Systems
IWSLT 22 test set 5 68
EN—DE IWSLT 23 test set 5 5
tst-COMMON 7 75
IWSLT 22 test set 3 9
EN—JA IWSLT 23 test set 4 4
tst-COMMON 3 14
IWSLT 22 test set 3 14
EN—ZH IWSLT 23 test set 3 3
tst-:COMMON 3 14

Table 5: Overview of the short-form systems in our
evaluation.

Language Pair Dataset Teams Systems
IWSLT 22 test set 4 40
EN—DE IWSLT 23 test set 4 4
tst-COMMON 6 47
IWSLT 22 test set 3 7
EN—JA IWSLT 23 test set 4 4
tst-COMMON 3 7
IWSLT 22 test set 3 14
EN—ZH IWSLT 23 test set 3 3
tst-COMMON 3 14

Table 6: Overview of the short-form systems in our
evaluation after filtering out systems with anomalous
policy.

Language Pair Dataset Teams Systems
ENODE s 6 0
BNGIA s 2 3
ENSZH S 4 8
CUEN s 2 4

Table 7: Overview of the long-form systems in our
evaluation.

B SOFTSEGMENTER Implementation
Details

The main purpose of our SOFTSEGMENTER tool
is to mitigate the incorrect alignment and reseg-
mentation of hypotheses. We take inspiration from
(Polék and Bojar, 2024). During preprocessing, we
lowercase and tokenize both the reference trans-
lations and the system hypotheses. This allows
for a more precise alignment around the sentence
ends, especially in cases where the reference and
model differ in sentence segmentation. However,
we still keep the original texts in memory so as
not to interfere with the machine translation quality
evaluation. Additionally, we keep the delay infor-
mation together with each token, and we use it
during the alignment process to prevent alignment
of tokens to future segments, which generally leads
to spurious negative latencies.

For alignment, we use the following score metric
that we maximize during alignment:



—00 Sp Z dha
S(tr,th) = —00 P(tr) @P(Th),
Schar(tr,tn) otherwise,

(10)

where ¢, and ¢, are the reference and hypoth-
esis tokens, s, is offset of the reference segment
in the recording, dj, is the emission time of the hy-
pothesis token, P(-) is a function that indicates in
the token is a punctuation, and finally we define
the character-level similarity of the reference and
hypothesis tokens as follows:
RZaAE7
LUt

In case of character-based languages such as
Japanese and Chinese, Equation (11) reduces to an
exact match.

Schar(tm th) (11)

C True Latency

C.1 Implementation Details

Short-Form Regime To determine the true la-
tency for each system, we follow the definition in
§4. First, we tokenize the hypotheses, the refer-
ence transcript, and the reference translation us-
ing MosesTokenizer. For Chinese and Japanese,
we split the text into characters. Second, we per-
form time alignment between the source speech
and the golden source transcripts using Montreal
Forced Aligner (McAuliffe et al., 2017). This gives
us the precise start and end timestamps for every
word in the source recording. Third, we use the
awesome-align tool (Dou and Neubig, 2021) to
map each hypothesis word with its most likely
counterpart in the source transcript.

Long-Form Regime Same as in the short-form
evaluation, we follow the definition of the true
latency in §4. However, there are two differences.
After initial experiments, we observed that the
Montreal Forced Aligner used in the short-form
regime is not robust for the challenging conditions
of the IWSLT 2025 test set, which is based on ACL
presentations. The recordings include frequent
restarts, repetitions, domain-specific terminology,
and non-native speech. Instead, we use the
alignment method implemented within WhisperX
(Bain et al., 2023) for forced alignment. This tool
leverages neural speech encoders that seem to be
robust to the above-mentioned challenges. In par-
ticular, we used WhisperX’s default settings, i.e.,
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PyTorch’s WAV2VEC2_ASR_BASE_960H for English
and comodoro/wav2vec2-x1ls-r-300m-cs-250
for Czech speech forced alignments. Second,
we perform re-segmentation of the system
hypotheses prior to the machine translation
alignment with the reference. This step is neces-
sary because the awesome-align tool uses the
bert-base-multilingual-cased model for the
alignment, and this model has a maximum input
length of 512 tokens, which is much lower than
the system hypotheses.

C.2 Why Not Use True Latency Directly?

A natural question arises: Why rely on automatic
latency metrics at all, when true latency offers a
closer approximation of user experience? In prac-
tice, computing true latency requires several re-
quirements that limit its applicability. High-quality
transcripts must be available, which is often not
the case—particularly for low-resource languages
or unwritten languages where transcription is in-
feasible. Moreover, forced alignment tools and
reliable word-level translation alignments are typi-
cally available only for a small set of high-resource
language pairs. Even when such resources exist,
computing true latency involves multiple process-
ing steps and is substantially more complex than
evaluating standard automatic metrics. Importantly,
as we show in our analysis in §5, several auto-
matic metrics approximate true latency with high
accuracy, making them a practical and effective
alternative in most evaluation scenarios.

D Short-Form Evaluation

Additional Analysis In Figure 4, we illustrate
the trends after filtering out the systems affected
by the anomalous policy (see §5.1). Unlike in Fig-
ure 3, we see that all metrics and system pairs show
a positive correlation with the true latency. As
mentioned in §5.1, language pairs exhibit different
scales, making the use of the correlation coeffi-
cient more cumbersome and motivating the use of
accuracy as described in §4.2.

To this end, in Figures 5 and 6, we also offer the
accuracy of subsets of system pairs based on the
absolute difference in the true latency.

Comparing Related vs. Unrelated Systems We
were also interested in the accuracy of latency met-
rics when comparing related against unrelated sys-
tems. In our evaluation, we consider the systems
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Figure 4: Figure 3 excluding systems affected by the anomalous policy. Each point represents the difference between
the true latency (x-axis) and the automatic metric (y-axis) for two systems. In the upper left corner, we report the
Pearson correlation coefficient p, and in the bottom right corner, we report the Kendall rank coefficient 7. The
reported correlations are only for illustration, as different language pairs and test sets have different scales.
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Figure 5: Metric accuracies based on the difference
of two systems. Solid lines show the accuracy given
the minimal difference in True Latency. The colored

strips along the lines show the 95% confidence interval
obtained with bootstrap resampling (N=10000).

p-val | AL LAAL DAL ATD AP YAAL| N
related systems
all 0.99  1.00 099 096 099 1.00 897
<0.05 1.00  1.00 1.00 097 099 1.00 888
<0.01 1.00  1.00 1.00 097 099 1.00 888
<0.001 1.00  1.00 1.00 097 099 1.00 881
0.001-0.05 | 1.00  1.00 1.00 057 1.00 1.00 7
unrelated systems
all 092 095 092 088 0.74 097 | 1203
<0.05 093 096 094 0.89 075 098 | 1172
<0.01 0.93  0.96 094 089 075 098 | 1158
<0.001 093 096 094 0.89 075 098 | 1144
0.001-0.05 | 0.64  0.68 0.57 079 0.57 0.68 28

Table 8: Accuracy of systems in the short-form regime
when comparing related and unrelated systems. Systems
with the anomalous policy were omitted. Best scores
in bold. Underlined scores are considered tied with the
best metric.
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Figure 6: Figure 5 excluding systems affected by the
anomalous policy. Metric accuracies based on the differ-
ence between two systems. Solid lines show the accu-
racy given the minimal difference in True Latency. The
colored strips along the lines show the 95% confidence
interval obtained with bootstrap resampling (N=10000).

submitted by one team as related.” We also use
only a subset of the systems that were not affected
by the anomalous simultaneous policy. The results
are in Table 8.

Surprisingly, when evaluating related systems,
all metrics perform almost perfectly, reaching ac-
curacy between 97% and 100%. In Figure 7, we
report the accuracy of subsets based on the minimal
difference in the true latency. Given a difference of
at least ~ 250 ms, all metrics except AP achieve
100% accuracy, and AP achieves around 99% ac-
curacy.

The results on unrelated systems (bottom half
of Table 8, and Figure 8) are generally similar to

"To the best of our knowledge, most teams submitted mul-
tiple systems that were based on the same system with varying
hyperparameters.
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Figure 7: Metric accuracies based on the difference of
two related (coming from the same team) systems. Solid
lines show the accuracy given the minimal difference in
True Latency. The colored strips along the lines show
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Figure 8: Metric accuracies based on the difference
of two unrelated (each system is compared to a sys-
tem from a different team) systems. Solid lines show
the accuracy given the minimal difference in True La-
tency. The colored strips along the lines show the 95%
confidence interval obtained with bootstrap resampling
(N=10000).

the observations in §5.1 and Table 1. All metrics
show a loss of accuracy of no more than 4% points
compared to the results on all systems. The only
exception seems to be AP, which loses up to 11%
points. The order of the metrics remains the same.

E Long-Form Evaluation

In Figure 9, we show pairwise comparisons of sys-
tems evaluated in the long-form regime without
resegmentation, and in Figure 10, we show the
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same systems evaluated in the long-form regime,
but after resegmentation. In Figure 11, we report
the accuracy of subsets based on the minimal dif-
ference in the true latency.
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Figure 9: Automatic latency metrics when evaluating in the unsegmented regime without resegmentation.
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Figure 10: Automatic latency metrics when evaluating in the unsegmented regime without resegmentation.
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Figure 11: Metric accuracies based on the difference of
two systems evaluated in the long-form regime. Solid
lines show the accuracy given the minimal difference in
True Latency. The colored strips along the lines show
the 95% confidence interval obtained with bootstrap
resampling (N=10000).
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