Published as a conference paper at ICLR 2023

CAUSAL CONFUSION AND REWARD MISIDENTIFICA-
TION IN PREFERENCE-BASED REWARD LEARNING

Jeremy Tien Jerry Zhi-Yang He
University of California, Berkeley University of California, Berkeley
jtien@berkeley.edu

Zackory Erickson Anca D. Dragan Daniel S. Brown
Carnegie Mellon University University of California, Berkeley University of Utah
ABSTRACT

Learning policies via preference-based reward learning is an increasingly popu-
lar method for customizing agent behavior, but has been shown anecdotally to
be prone to spurious correlations and reward hacking behaviors. While much
prior work focuses on causal confusion in reinforcement learning and behavioral
cloning, we focus on a systematic study of causal confusion and reward misiden-
tification when learning from preferences. In particular, we perform a series of
sensitivity and ablation analyses on several benchmark domains where rewards
learned from preferences achieve minimal test error but fail to generalize to out-
of-distribution states—resulting in poor policy performance when optimized. We
find that the presence of non-causal distractor features, noise in the stated prefer-
ences, and partial state observability can all exacerbate reward misidentification.
We also identify a set of methods with which to interpret misidentified learned
rewards. In general, we observe that optimizing misidentified rewards drives the
policy off the reward’s training distribution, resulting in high predicted (learned)
rewards but low true rewards. These findings illuminate the susceptibility of pref-
erence learning to reward misidentification and causal confusion—failure to con-
sider even one of many factors can result in unexpected, undesirable behavior.

1 INTRODUCTION

Preference-based reward learning (Wirth et al., 2017 |Christiano et al., 2017; |Stiennon et al.| 2020;
Shin et al.| |2023) is a popular technique for adapting Al systems to individual preferences and
learning specifications for tasks without requiring demonstrations or an explicit reward function.
However, anecdotal evidence suggests that these methods are prone to learning rewards that pick
up on spurious correlations in the data and miss the true underlying causal structure, especially
when learning from limited numbers of preferences (Christiano et al.,|2017; Ibarz et al.,[2018; |Javed:
et al.l |2021). While the effects of reward misspecification have recently been studied in the context
of reinforcement learning agents that optimize a proxy reward function (Pan et al.| 2022), and the
effects of causal confusion have been emphasized in behavioral cloning approaches that directly
mimic an expert (De Haan et al., 2019; Zhang et al., 2020; |Swamy et al., 2022, we provide the first
systematic study of reward misidentification and causal confusion when learning reward functions.

Consider the assistive feeding task in Fig. Note that all successful robot executions will move the
spoon toward the mouth in the area in front of the patient’s face—few, if any, executions demonstrate
behavior behind the patient’s head (the exact likelihood depending on how trajectories for preference
queries are generated). In practice, we find that the learned reward will often pick up on the signed
difference between the spoon and the mouth rather than the absolute value of the distance. The two
correlate on the training data, but using the former instead of the latter leads to the robot thinking
that moving behind the patient’s head is even better than feeding the person!

Our contribution is a study of causal confusion and reward misidentification as it occurs in
preference-based reward learning. First, we demonstrate the failure of preference-based reward
learning to produce causal rewards that lead to desirable behavior on three benchmark tasks, even

Published as a conference paper at ICLR 2023

when given large amounts of preference data—in these settings, the learned reward has high test ac-
curacy but leads to poor policies when optimized. We then study the effect of several factors related
to reward model specification and training: the presence of non-causal distractor features, reward
model capacity, noise in the stated preferences, and partial state observability. For each of these,
we perform an analysis of what errors the learned reward has, how it compares to the ground truth
reward, and the amount of distribution shift it induces during policy optimization. Another of our
contributions is to point to the importance of data coverage and interactive techniques that iteratively
or actively query for feedback to help learners disambiguate causal features from correlates. Over-
all, our findings caution that there are many aspects that can make preference learning challenging,
from the way we define state—what to include and what not to include in the input to the learned
model—to how we mitigate the effects of noisy or biased preference data.

1.1 RELATED WORK

Reward Hacking and gaming behaviors are known to commonly occur in reinforcement learn-
ing (Ng et al. [1999} Krakovna et al., 2020) and reward learning (Christiano et al., [2017; [Ibarz
et al.l 2018; [He & Dragan, 2021). However, these behaviors are often only mentioned anecdo-
tally (Krakovna et al.,[2020). Recently, [Pan et al.|(2022)) proposed to systematically analyze reward
misspecification in RL by creating a set of domains where the agent optimizes a hand-engineered
proxy reward function and then studying when this leads to incorrect behavior. By contrast, we
study cases where the reward function must be learned.

Preference Learning is a popular method for training Al systems when a reward function is un-
available (Wirth et al.| 2017} [Christiano et al., 2017; Biyik & Sadighl [2018}; |Brown et al., 2020a}
Ouyang et al 2022} |Shin et al.| 2023} [Liu et al., 2023)). Preferences are often easier to provide
than demonstrations or raw numerical values (Wirth et al.| [2017) since they do not require expert
proficiency or fine-grained feedback. However, optimizing a reward function that has been trained
using preferences can sometimes lead to unintended behaviors. Anecdotal evidence of this has been
documented for Atari games (Christiano et al., 2017;|Ibarz et al.,|2018};[Brown et al.,|2020a), simple
robot navigation tasks (Javed et al.l |2021)), and language model fine-tuning (Stiennon et al., |2020);
however, there has been no systematic study of causal confusion when learning reward functions.

Causal Confusion in Imitation Learning has previously been studied in the context of behavioral
cloning (Pomerleau, 1988 Torabi et al.,[2018]). Prior work shows that behavioral cloning approaches
suffer causal confusion due to “causal misidentification,” where giving imitation learning policies
more information leads to worse performance (De Haan et al., 2019) due to temporally correlated
noise in expert actions (Swamy et al., 2022). Similarly, we find strong evidence of causal misiden-
tification when expert noise is present. |[Zhang et al.|(2020) use causal diagrams to investigate causal
confusion for simplified imitation learning tasks with discrete actions and small numbers of states
when the features available to the demonstrator are different from those of the imitator. By contrast,
we study the effects of changes to the observation space when performing preference learning over
continuous states and actions and when using non-linear reward function approximation.

Goal Misgeneralization happens when an RL agent has a known goal and some environment fea-
tures are correlated and predictive of the reward on the training distribution but not out of distri-
bution (Langosco et al., 2022} [Shah et al.l [2022). This setting is similar to ours in that there is
misidentification of the state features that are causal with respect to the reward. However, goal mis-
generalization assumes that the ground-truth reward signal is always present during training. We
show that when learning a reward function, the learned reward can be misidentified, leading to poor
RL performance. By contrast, [Langosco et al.| (2022)) and [Shah et al.| (2022) show that even if the
learned reward is perfect, RL can still fail due to spurious correlations during training.

1.2 BACKGROUND: REWARD LEARNING FROM PREFERENCES

We model the environment as a finite horizon MDP (Puterman, 2014)), with state space S, action
space A, horizon T, and reward function : S x A — R. The reward function is unobserved
and must be learned from preferences over trajectories. Using the Bradley-Terry model (Bradley &
Terryl, |1952), the probability a trajectory 7p is preferred over another trajectory 74 is given by

exp(r(7B))
exp(r(ra)) +exp(r(rg))’

P(TA<TB): (1)

Published as a conference paper at ICLR 2023

Figure 1: Causal structure of preference-based reward learning. The reward function 7 is learned
from preference labels over trajectory pairs (7;,7;). Unobserved variables are denoted by dashed
lines. Unobservable user noise 7 affects the preference node. In (a) the true reward is not affected
by nuisance variables z. In (b) the true reward is based on unobserved state features .

where 7(7) = 32, o)e, 7(8,a) and T = (s0, ao, - . ., ST, Q7).

To learn a reward function from preferences, we assume access to a set of pairwise preference labels
P over trajectories 71, ..., Ty, where (¢, j) € P implies that 7; < 7;. We then optimize a reward
function ¢ : S x A — R parameterized by 6 that maximizes the following likelihood (see Alg. [I):

_ exp(ro(7;))
0= 11 ot + exptrtmn @

2 REWARD MISIDENTIFICATION

Fig. [T]displays the causal structure of preference-based reward learning where pairwise preferences
(in the form of a binary label) are given based on an observed reward function r (Fig.[Ta). There are
features x! that are causal and influence 7(x), as well as other features z; that are nuisance variables
and have no bearing on r(z). Note that z} may very well exhibit correlations with x¢, potentially
due to their sharing of the same causal parent or there being biases during data collection. Given
preference labels over trajectory pairs, the goal of preference-based reward learning is to learn a
reward function #(x, z) that best matches the stated preferences. In Fig. there are state features
u which are causal with respect to the true reward, but are unobserved by the learning agent. In both
cases, unobserved human bias and noise, denoted by 7, also affects the preferences labels.

The learned reward 7 may be able to achieve low and even near-perfect performance on a held-
out test set by making use of 1) nuisance variables that correlate with causal variables or 2)
faulty/incomplete correlations between causal variables and 7 that happen to hold true for the train-
ing data distribution. However, performing reinforcement learning on misidentified learned reward
values 7([x, z]) leads to distribution shift, resulting in behaviors with low performance under the
true reward function . We define this behavior of learning a reward that achieves low test error but
results in poor performance (under the true reward function) when the learned reward function is op-
timized via RL as reward misidentification. We note that the causal graphs we provide in Fig. [I] are
meant to shed light on a typical way misidentification can occur. In reality, the sources of misiden-
tification can vary widely—a variable may be causal in a certain context and not in another, causal
variables may not be combined properly, etc.

3 EXPERIMENTAL SETUP

To facilitate reproducibility and encourage future research on causal reward learning,
we open-source our code and training datasets: https://sites.google.com/view/
causal-reward-confusion! This combination of domains and training data forms the first
set of benchmarks for studying reward misidentification and causal reward confusion.

https://sites.google.com/view/causal-reward-confusion
https://sites.google.com/view/causal-reward-confusion

Published as a conference paper at ICLR 2023

Environments for Preference Learning. We Test Data Learned Policy

identify a set of benchmarks that exhibit re-
ward misidentification. In Reacher (Brockman|
(Fig. [2a), the goal is to move an

end effector to a desired goal location. In Feed-

ing (Erickson et al., 2020) (Fig. [2b), the goal is

to feed the human using a spoon carrying pieces
of food. Finally, in Ifch Scratching (Erickson (a) Reacher
2020) (Fig. [2c), the goal is to scratch an Test Data Learned Policy

itch location on the human’s arm.

8.8 142.5

True Rewards and Preference Generation.
Each domain has a predefined “true” reward
function r (see Appx.[A5). This enables us
to create synthetic demonstrations and prefer-

ence labels via noise injection: adding differ- 1364 1432 566.3
ent amounts of noise to an expert policy trained

on r (details in Appx. [A.Z). As shown by (b) Feeding

Brown et al/ (2020b), adding this type of dis- Test Data Learned Policy

turbance will result in monotonically decreas-
ing performance in expectation and produce a
diverse dataset for preference learning.
(2020) propose a similar approach that
switches between an expert policy and a ran-
dom policy to produce a good coverage dis-
tribution over states. In Appx. [A-T2] we com-
pare generating trajectories using noise injec- () Itch Scratching
tion versus using different RL checkpoints, as
proposed by [Brown et al| (2019), and find that
noise injection leads to similar or better perfor-
mance. Note that while we use the ground-truth
reward function for obtaining preference labels,
we assume no access to this reward function
during policy learning; we first learn a model
rg of the true reward function from preference
labels P, and then use RL on the learned reward
function to produce a policy. We then evaluate the learned policy on the true reward function r.

Figure 2: Poor behaviors resulting from learned
rewards (rightmost column), despite high accu-
racy on the test data (left two columns). The pre-
dicted trajectory rewards produced by the learned
reward function are displayed under each image;
each image corresponds to a trajectory.

Evaluating Learned Reward Functions. To establish that a learned reward misidentifies the causal
structure, we first check for low test error and establish that the learned reward performs well on
unseen in-distribution test data (thereby ruling out model selection and training failures like not
having enough data, capacity, or regularization). We then show that the learned reward fails in
two ways: 1) it leads to a policy (called PREF) that has poor performance with respect to the true
reward, and 2) it prefers its poorly-performing optimized policy PREF over the optimal policy with
respect to the true reward (GT), indicating that PREF’s poor performance is not due to RL failures.
Finally, we analyze the learned reward qualitatively via gradient saliency maps and quantitatively
via the EPIC pseudometric (Gleave et al.} [2020) and KL divergence to elucidate the effects of the
reward error by quantifying the distribution shift induced by policy optimization of the learned
reward. Details on hyperparameters and evaluation methods are in Appx.[A.T|and[A.6]

4 EVIDENCE OF CAUSAL CONFUSION

Before varying different factors that affect the performance of the learned reward, we start with a
generous setting where we provide large amounts of data and add features to the default observation
such that all necessary information needed to infer the ground truth reward, TRUE, is available. We
produce the preference training data as detailed in the previous section. Table [T]details the results.

We find that the learned reward achieves high preference test accuracies that are comparable to the
training accuracy. This indicates that the learned model does not overfit, and there is sufficient

Published as a conference paper at ICLR 2023

Table 1: Empirical evidence of causal confusion. We compare policies optimized with a reward
learned from preferences (PREF) against policies optimized with the true reward (GT). State fea-
tures on which preferences are based are fully-observable. Reward functions were trained with
52326 unique pairwise preferences. Both PREF and GT are optimized with 1M RL iterations and
averaged over 3 seeds. Despite high pairwise preference classification test accuracy, the policy per-
formance achieved by PREF under the true reward is very low compared with GT. However, the
reward learned from preferences consistently prefers PREF over GT. This suggests that preference-
based reward learning fails to learn a good reward for each of these tasks.

PREF. LEARNING ACC. RL PoLICY PERFORMANCE
LEARNED TRUE SUCCESS
DoMAIN TRAIN VAL TEST (PREF/GT) (PREF/GT) (PREF/GT)
REACHER 0.954 0.956 0.966 44.988/3.395 -42.716/-5.560 0.100/0.827

FEEDING 0.987 0.976 0.976 277.152/124.016 -27.432/128.933 0.603/0.990
ITCHING 0.954 0.933 0.928 16.588/10.282 -47.190/248.397 0.013/0.970

model capacity and data. In later sections, we observe that even models with over 99% test accuracy
sometimes fail to produce good polices. We also find that the learned reward prefers PREF to GT.
This shows that the poor performance is not due to an issue in RL training. Unfortunately, the actual
performance of PREF is disastrous: it has poor TRUE reward (compared to GT) and poor success
rates. Overall, the learned reward incentivizes poor behavior, despite high test accuracy.

For Reacher, we observe that PREF chooses to simply spin very fast rather than reaching for the
target. We note, however, that the learned reward correctly classifies the leftmost image in Fig.
(where the agent just folds its arm) as being worse than the middle image (where the agent success-
fully reaches the target), and does so with 96.6% accuracy on such diverse pairs of comparisons.
One would think that this would apply to the behavior in the rightmost image, where the agent folds
its arm as well (and subsequently spins), but the learned reward turns out to strongly prefer the right-
most case. For Feeding, the learned reward encourages minimizing the signed difference between
the spoon and the mouth rather than the absolute value of the difference. This is because the ma-
jority of trajectories approach the mouth from in front. Fig. [8b]shows that there are far more states
that have low reward at negative ‘diff_y’ values than states that have low reward at positive ‘diff_y’
values. As a result, the learned reward (Fig. [Ob) correctly identifies spilling food (left) as being
worse than feeding (middle), but goes further and incentivizes bringing the spoon towards and even
behind the head in an attempt to minimize the signed difference. For Itch Scratching, the learned
reward correctly identifies flailing (left) as being worse than actual scratching (middle). However,
as seen in Fig.[9c| the Itch Scratching agent (spuriously) learns a higher weight on two components
of the action (corresponding to two robot arm joints), which results in the agent turning the last
section of the arm in a circle while trying to keep the end effector close to the itch target—another
type of flailing! It also falls into the same trap as the Feeding agent in minimizing the signed rather
than the absolute difference (Fig. [8c|shows there is a bias toward negative values of ‘diff_x’ rather
than an even distribution of states across both positive and negative values). Fig. [2|summarizes this
behavior. Appx. [A.3] provides plots of the aforementioned features’ spurious correlations with the
true reward and gradient saliency maps of the learned rewards.

5 FACTORS THAT MAY LEAD TO CAUSAL REWARD CONFUSION

We examine various factors of the preference-based reward learning problem setup and their effects
on reward misidentification. The motivation for exploring each is as follows: Our experiments
with Distractor Features draw directly from the findings in Sec. 4] where we find that certain non-
causal features may be spuriously correlated with the reward. Experiments on Model Capacity
are inspired by [Pan et al.| (2022))’s findings on the effects of increased agent capabilities on reward
hacking. Exploring Noise in Stated Preferences is inspired by the fact that preference data collected
from humans is often rife with various biases and noise. Studying Partial Observability of Causal
Features is motivated by the fact that it is not always possible to fully-observe all causal features in
the real world. Complex Causal Features is inspired by the observation that the causal reward is

Published as a conference paper at ICLR 2023

(W With distractors Without distractors 0
I
s —20 B 5] e
5 g DATASET DISTRACTORS
é —40 & 10 S SIZE WITH WITHOUT
60 M 53.731 6.762
oo 25 50 75 L 46.032 7.366
M L Distractor features
(a) RL Performance (b) Removing distractors (c) KL Divergence

Figure 3: Distractor features. Fig. compares performance with distractors present in the learned
reward with performance without distractors present in the learned reward across two dataset sizes.
Fig. Bb]is a sensitivity analysis on the number of distractor features done on the M dataset size case
from Fig.[3a] In Fig.[3c] we see that distractor features result in a much larger distribution shift (as
measured by the KL divergence between state-action pair distributions at reward learning and RL).

Gradient per timestep

Feature Ranges

snl sin2 targetx targety vell vel2 difx dify diffz torgue 1 torque 2
feature

sl s2 snl sin2 targetx taaety vel 1 vel2 dff x diffy Gff z toraue 1 toraue 2

(a) Gradients - With distractors (b) Feature Ranges - With distractors

Figure 4: Saliency maps: distractor features. Fig. is a gradient saliency map of the (misidenti-
fied) learned reward. Fig.[4b]is a heatmap displaying the ranges of each feature over the course of a
trajectory produced by the learned reward. The large range of the ‘vel_1’ feature and its correspond-
ing positive gradient are the reason why the trajectory does well under the learned reward.

often a complex function of state variables and, in complex tasks, features may be causal in some
contexts and non-causal in others. The above factors (which may often be overlooked) can contribute
significantly to reward misidentification and the eventual success or failure of the reward model.

5.1 DISTRACTOR FEATURES

One reason for reward misidentification is the presence of nuisance features in the input that are
spuriously correlated with preference labels. To study this effect, we incrementally remove such
‘distractor’ features and test the impact this has on the learned reward. For example, for Reacher, we
know that joint angles and angular velocities are not causal to the ground truth reward, which is based
purely on distance between end effector and target and the norm of the action (a control penalty)
(see Appx.[A.4]for a complete list of causal and distractor features). As we see in Fig. 3} removing
all distractors drastically improves performance, and, indeed, the more such features are left in the
input, the worse the performance gets in Reacher, almost linearly. Granted, removing distractors
does also slightly improve the validation and test performance in this case—indicating that there is
some signal in the training data to help discern the spuriousness of certain features. Nonetheless,
over the several experiments in this paper, we find that the validation error is not strongly correlated
to performance—in some cases, increasing the validation accuracy results in worse performance.

Fig. 24| depicts the policy of the learned reward with distractors—the Reacher robot learns to simply
fold its arm and spin. Looking at the gradient saliency maps (Fig. [) illuminates why this is the
case. Firstly, in Fig.[da] we observe that the learned reward is misaligned with respect to ‘diff_y*, the
feature corresponding to the difference between end effector position and target position along the y-
axis; specifically, we note that the learned reward actually rewards an increase in ‘diff_y’, rather than
a decrease. Next, we notice that the reward doesn’t penalize action evenly. It penalizes ‘torque_1’
(the one responsible for the spinning), but rewards ‘torque_2’ across nearly all timesteps. It should
instead be largely a negative penalty, as seen in Fig.[TTa] Lastly and perhaps most importantly, we
observe in Fig. fib]that ‘vel_1" and ‘vel 2’ have very large feature ranges, corresponding to the large

Published as a conference paper at ICLR 2023

variations in angular velocity achieved by the Reacher robot’s spinning behavior. Looking back to
the gradient for each of these velocity features in Fig. we observe that the reward has a slight
positive gradient with respect to each which stems from a slight correlation between angular velocity
and reward. Fig. [8a] shows this correlation; there is a slight bias in the training data toward states
with high reward and high velocity. By spinning fast, the Reacher robot is thus able to achieve much
higher (learned) reward than performing the proper reaching action. The KL divergence (Table [3c)
between the distribution of observation-action pairs seen during reward learning and those seen
during policy optimization provides further insights—in incentivizing the Reacher robot to spin fast,
it leads the RL optimization toward states that were not seen during reward learning (specifically,
states where the robot is spinning very fast).

Appx. displays results for the other tasks. Similar to the Reacher task, we find that removing
distractor features generally helps performance. Note that the reason removing non-causal distractor
features does not appear beneficial for Feeding is that the main spurious correlation (discussed in
Section[d) involves one of the causal features—namely, the difference between spoon position and
target position. Thus, removing purely non-causal features fails to address this issue in Feeding.

5.2 MODEL CAPACITY

In Appx. we study the effect of model capacity on the learned reward. We find that, despite
careful tuning of hyperparameters with each model and dataset size, increasing the capacity of the
reward model does not necessarily result in an increase in subsequent policy performance.

5.3 NOISE IN STATED PREFERENCES

Because user noise is often inevitable, we explore the effect of various types of user noise on reward
misidentification. Following|Lee et al.|(2021), we modify Eq. [I|to include a rationality constant 3
and a myopic discount factor v € (0, 1]:

H _
exp(B32,—, 7" 'r(sP, a))
H H
exp(B 3y v (s aft)) +exp(B 32,1 7t (sP o))
Using Eq. 3] we explore four types of user noise (varied independently of each other): STOCHAS-
TIC, where the user is rational with 3 = 1; MYOPIC, where earlier rewards are discounted with
a~y = 0.99; SKIP, where the user skips a pair of trajectories if both have rewards below a certain

threshold; and MISTAKES, where the preference label is randomly flipped with probability e = 0.1.
ORACLE has 3 = co. Results are displayed in Fig. [5]

P(TA < TB) =

. 3)

We find that noise in the stated preferences exacerbates reward misidentification—test accuracy stays
high while policy performance plunges (Fig.[5a). Notably, two instances of user noise, Stochastic
and Skip, have test accuracies greater than or equal to the Oracle (despite far worse performance).
Importantly, the poor performance of the learned policies is not well predicted by the validation
accuracies, with models achieving 0.995 resulting in worse alignment than models trained on less
data with lower validation accuracy of 0.985. Additional results are located in Appx.

We use EPIC (Gleave et al.l 2020) as one way to measure the difference betweeen reward functions.
Table [9] shows that when the coverage distribution for EPIC is chosen as the distribution of state-
action pairs seen during reward learning, the misidentified rewards due to user noise are closer to the
ground truth rewards, in EPIC distance, than rewards learned without user noise. However, the op-
posite is the case when the coverage distribution is chosen to be the distribution of state-action pairs
seen during RL. This implies that the misidentified reward model “mimics” the ground truth reward
on the reward learning distribution but fails to generalize when taken out of distribution by RL. We
further observe in Table[8]that the KL divergence between reward learning and reinforcement learn-
ing state distributions is greater when the learned reward contains noise (Stochastic). This indicates
that the rewards trained with noisy data are misidentified: they have low test error but incentivize
RL to deviate from the optimal behavior encountered during reward learning.

5.4 PARTIAL OBSERVABILITY OF CAUSAL FEATURES

Partial observability over aspects of the state on which the user’s preferences are based is nearly
inevitable in the real world. Interestingly, RL with the ground truth reward is able to learn proper

Published as a conference paper at ICLR 2023

Oracle WM Stochastic ~ EEEE Myopic Skip W Mistakes
.U s

0.51

Task success

0.0 0.978 0.980 0.861 0.978 0.897 — test acc.

(a) Feeding, User Noise

Figure 5: Noise in stated preferences results in significantly degraded performance.

PERFORMANCE
OBSERVABILITY REWARD SUCCESS
PREF-FULL 126.120 0.973
PREF-PART -120.825 0.040
GT-PART 128.933 0.990

Figure 6: Partial observability. Minimizing spoon-mouth distance without observability of food
leads to spilling food (left). PREF and GT refer to policies optimized with the learned and true
reward, respectively. FULL and PART refer to the amount of observability over causal features.

feeding behavior in spite of this lack of critical state information. However, as displayed in Fig. [6]
reward learning is only successful when the model is able to observe all the causal reward features.

In Appx. [A.10] we analyze gradient saliency plots and find that partial observability causes the
reward model to incorrectly over-weigh causal features that are available and pick up on spurious
correlations with non-causal variables. With Feeding, we observe that the reward model learns
stronger weights on one of the joint angles and two components of the action, all of which have no
bearing on the true reward. Simultaneously, the reward also learns a greater weight on the second
component of the feature corresponding to the vector distance between the end effector and the
mouth. This results in the behavior depicted in Fig. [6—the robot manipulator is able to successfully
maneuver the spoon close to the patient’s mouth (by observing the distance feature), but does so
without ensuring that the food particles themselves stay on the spoon and end up in the patient’s
mouth.

5.5 COMPLEX CAUSAL FEATURES

To explore how results may differ as we increase the complexity of the task, we evaluate reward
misidentification on the complex task of Itch Scratching. We find that even after increasing the
amount of training data for reward learning (Fig.[7a)), increasing the reward model capacity (Fig.[7D)),
removing distractor features that are not causally related to the ground truth reward, having per-
fectly stated preferences, and ensuring full observability over all the features that are involved in the
ground truth reward, performing preference-based reward learning still fails to produce a policy that
successfully scratches the itch location on the patient. However, as shown in Table [T} a standard
model-free RL algorithm trained using the ground truth reward is able to solve such a task.

The task’s scratching motion requires not only making contact with the target using the end-effector,
but also that the target contact position be greater than a § away from the previous target contact
position and that the exerted force be no more than a F,,,,. Although the preferences are based on
how well this motion is performed and despite the reward model having access to all the necessary
aforementioned information (including information about the state at the previous timestep; see
Appx. |A.4), we find that the reward model is not able to learn the scratching motion. As seen in
Fig. ce we explicitly include a high-level indicator feature, “scratched” (whether the robot
has successfully performed the scratching motion), performance drastically increases. We suspect
that the reward model’s tendency to pick up on spurious correlations that occur consistently over
the course of the trajectory involving just a few variables prevents it from learning the true causal

Published as a conference paper at ICLR 2023

(mmm With distractors Without distractors (mmm With distractors Without distractors 20(]_ With . Without

S B
-50 0
1 N =
‘ —100
M L

100

Reward
Reward
Reward

M L —100 128x64 256x256x256

(a) Increasing dataset size (b) Increasing model capacity (c) With ‘scratched’ indicator

Figure 7: Complex causal features. Learning the “scratched” feature from low-level causal features
is difficult, despite increasing dataset size and model capacity. Performance significantly improves
when given access to a high-level ‘scratched’ feature.

relation that involves many variables, each of which are causal only in a particular context. In
Appx.[ATT|we analyze this further and find that the learned reward without an explicit “scratched”
feature leads to a greater amount of distribution shift. Future work should address the problem of
learning this kind of complex, multi-feature causal relationship.

6 CONCLUSION

Our work provides an analysis of reward misidentification and causal reward confusion. We identify
three tasks where preference learning often results in misaligned learned reward models. Interest-
ingly, these models have good validation and test accuracy—sometimes even 99.5%—and seem to
distinguish the basics of task success versus failure. However, optimizing these rewards via RL
pushes the policy outside of the training distribution, where the model falsely believes the reward
is higher—we demonstrate this via saliency maps, EPIC distance, and KL divergence and by ex-
amining the resulting behaviors. This out-of-distribution effect results in policies that achieve high
learned rewards but have poor true rewards. We find that it is easy for reward models to pick up
on non-causal features, as some issues go away when we eliminate these non-causal features from
the input. Furthermore, noisy preference data aggravates poor generalization. And when not all
causal features are observable, the learned reward model will struggle even though there exists a
high-performing policy that only uses observable state information.

Based on our results, we have identified several directions for future work. First, our results show
that reward misidentification induces a distribution shift such that the learned reward appears de-
ceptively close to the true reward on the training distribution, despite leading to misaligned be-
havior when optimized via RL. As such, future work should investigate methods for penalizing
excess exploration beyond the training data distribution. In Appx.[A-T3] we examine the effect of
adding a direct penalty on the KL divergence into the cost function during RL. We find that the RL
agent is again able to hack the learned reward—performance becomes even worse because of the
additional degree of freedom in the reward function afforded by the discriminator penalty. How-
ever, we hypothesize there are other ways to successfully incorporate such a penalty. Next, our
results demonstrate that spurious (“nuisance”) features can significantly increase the chance of re-
ward misidentification. Thus, in cases where we can query for human knowledge on exactly which
features are spurious or causal, we can use this feedback to learn which features are non-causal or
remove non-causal features entirely. Further, our results indicate that high-level features such as the
“scratch” feature are difficult for neural networks to learn, even when all the necessary low-level
information is available. Future work should examine incorporating methods for learning high-level
features (Bobu et al., [2021). Using alternatives to EPIC (Gleave et al.|[2020) such as DARD (Wulfe
et al.l 2022)) to compare learned rewards may also prove fruitful in detecting and alleviating reward
misidentification. Finally, we recognize that active and iterative methods for data acquisition is also
a widely popular solution—as such, we provide a preliminary exploration in Appx.[A.T4]

Our work cautions that reward learning is brittle—natural choices for acquiring data, deciding on
the amount of data, or defining the input space can lead to models that seem very close to the true
reward, but lead to spectacular failures when optimized. While active and iterative methods for data
acquisition may alleviate some of these issues, learning reward models when some of the causal
features are unobservable remains an open challenge.

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

The authors would like to thank the InterACT lab for their insightful feedback and fruitful discus-
sions over the course of this work. This work was supported in part by an ONR YIP award.

REFERENCES

Erdem Biyik and Dorsa Sadigh. Batch active preference-based learning of reward functions. In
Conference on robot learning, pp. 519-528. PMLR, 2018.

Andreea Bobu, Marius Wiggert, Claire Tomlin, and Anca D Dragan. Feature expansive reward learn-
ing: Rethinking human input. In Proceedings of the 2021 ACM/IEEE International Conference
on Human-Robot Interaction, pp. 216-224, 2021.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324-345, 1952.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
Conference on Machine Learning, pp. 783-792. PMLR, 2019.

Daniel Brown, Russell Coleman, Ravi Srinivasan, and Scott Niekum. Safe imitation learning via fast
bayesian reward inference from preferences. In International Conference on Machine Learning.
PMLR, 2020a.

Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Conference on robot learning, pp. 330-359. PMLR,
2020b.

Paul F Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In NIPS, 2017.

Pim De Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning. Ad-
vances in Neural Information Processing Systems, 32, 2019.

Zackory Erickson, Vamsee Gangaram, Ariel Kapusta, C Karen Liu, and Charles C Kemp. Assis-
tive gym: A physics simulation framework for assistive robotics. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pp. 10169—-10176. IEEE, 2020.

Adam Gleave, Michael D Dennis, Shane Legg, Stuart Russell, and Jan Leike. Quantifying differ-
ences in reward functions. In International Conference on Learning Representations, 2020.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Jerry Zhi-Yang He and Anca D Dragan. Assisted robust reward design. arXiv preprint
arXiv:2111.09884, 2021.

Ferenc Huszér. Variational inference using implicit distributions. arXiv preprint arXiv:1702.08235,
2017.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. arXiv preprint arXiv:1811.06521,
2018.

Zaynah Javed, Daniel S Brown, Satvik Sharma, Jerry Zhu, Ashwin Balakrishna, Marek Petrik, Anca
Dragan, and Ken Goldberg. Policy gradient bayesian robust optimization for imitation learning.
In International Conference on Machine Learning, pp. 4785-4796. PMLR, 2021.

10

Published as a conference paper at ICLR 2023

Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz, Tom Everitt, Ramana Ku-
mar, Zac Kenton, Jan Leike, and Shane Legg. Specification gaming: the flip side of ai ingenuity.
DeepMind Blog, 2020.

Cassidy Laidlaw and Anca Dragan. The boltzmann policy distribution: Accounting for systematic
suboptimality in human models. In International Conference on Learning Representations, 2021.

Lauro Langosco Di Langosco, Jack Koch, Lee D Sharkey, Jacob Pfau, and David Krueger. Goal
misgeneralization in deep reinforcement learning. In Proceedings of the 39th International Con-
ference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
12004-12019. PMLR, 17-23 Jul 2022.

Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking preference-based
reinforcement learning. arXiv preprint arXiv:2111.03026, 2021.

Yi Liu, Gaurav Datta, Ellen Novoseller, and Daniel S Brown. Efficient preference-based reinforce-
ment learning using learned dynamics models. In International Conference on Robotics and
Automation (ICRA). IEEE, 2023.

Eric J Michaud, Adam Gleave, and Stuart Russell. Understanding learned reward functions. arXiv
preprint arXiv:2012.05862, 2020.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278-287, 1999.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, et al. Training language models to follow
instructions with human feedback. In Advances in Neural Information Processing Systems, 2022.

Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The effects of reward misspecification: Mapping
and mitigating misaligned models. arXiv preprint arXiv:2201.03544, 2022.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Rohin Shah, Vikrant Varma, Ramana Kumar, Mary Phuong, Victoria Krakovna, Jonathan Uesato,
and Zac Kenton. Goal misgeneralization: Why correct specifications aren’t enough for correct
goals. arXiv preprint arXiv:2210.01790, 2022.

Daniel Shin, Anca Dragan, and Daniel S Brown. Benchmarks and algorithms for offline preference-
based reward learning. Transactions on Machine Learning Research, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008-3021, 2020.

Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Zhiwei Steven Wu. Causal imitation
learning under temporally correlated noise. arXiv preprint arXiv:2202.01312, 2022.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fiirnkranz, et al. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 18(136):1-46,
2017.

Blake Wulfe, Logan Michael Ellis, Jean Mercat, Rowan Thomas McAllister, and Adrien Gaidon.
Dynamics-aware comparison of learned reward functions. In International Conference on Learn-
ing Representations, 2022. URL https://openreview.net/forum?id=CALFyKVs87.

11

https://openreview.net/forum?id=CALFyKVs87

Published as a conference paper at ICLR 2023

Junzhe Zhang, Daniel Kumor, and Elias Bareinboim. Causal imitation learning with unobserved
confounders. Advances in neural information processing systems, 33:12263—12274, 2020.

12

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 PREFERENCE LEARNING TRAINING DETAILS

To learn a reward function from preferences, we assume access to a set of pairwise preference labels

P over trajectories 71, ..., Ty, where (4, j) € P implies that 7; < 7;. We then optimize a reward
function rg : S x A — R parameterized by 6 that maximizes the likelihood:
exp(ro(7;))
L(0) = : “)
O = 1 e+ eoam)

(i,7)€P

This likelihood function is differentiable, allowing us to leverage non-linear function approximation
to learn the reward function from trajectory preferences. In practice, we use the Adam optimizer in
PyTorch to learn the reward function, rg, and then use PPO|Schulman et al.|(2017)) or SAC Haarnoja
et al.| (2018) for policy optimization given rg.

We perform preference learning on three dataset sizes (given in terms of unique pairwise compar-
isons): SMALL (780), MEDIUM (7140), and LARGE (52326). Our test set is composed of 1770
unique pairwise preferences drawn from a disjoint set of 60 trajectories. See Appx. for dataset
generation details. Hyperparameters—Iearning rate and weight decay—are tuned coarsely using
the MEDIUM dataset size due to runtime limits and cost of computation. The tuned hyperparame-
ters (best performance on a held-out validation set) for each environment are as follows: Reacher:
weightdecay=0.0001, 1r=0.01, Feeding: weightdecay=0.00001, 1r=0.001, Itch Scratching: weight-
decay=0.001, Ir=0.001.

Using the dataset of preferences (SMALL, MEDIUM, or LARGE) obtained offline, we train a neural
network reward function approximator with two hidden layers (128 units and 64 units, respectively)
and Leaky ReLLU activations, after which we perform 1,000,000 timesteps of reinforcement learning
with PPO|Schulman et al.[(2017) (for Feeding and Itch Scratching) and SAC Haarnoja et al.| (2018))
(for Reacher) using the learned reward function in place of the ground-truth reward function. We
optimize the reward function approximator using Adam with weight decay and early-stopping on the
validation loss (with a patience of 10 epochs). The full preference-based reward learning procedure
we use is detailed in Alg.[I] The hyperparameters for the PPO and SAC agents are as follows (if not
specified, then hyperparameters are set to RLLib’s default values):

PPO:

* training batch size = 19200

* number of SGD iterations = 50

* SGD minibatch size = 128

e lambda =0.95

* dimensions of fcnet hidden layers = [100, 100]

SAC:

* timesteps_per_iteration = 400

* learning_starts = 1000

¢ Q_model fcnet_hiddens = [100, 100]

¢ policy_model fcnet_hiddens = [100, 100]
* train_batch_size = 4096

* actor_learning_rate = 3e-3

* critic_learning_rate = 3e-3

* entropy_learning_rate = 3e-3

13

Published as a conference paper at ICLR 2023

Algorithm 1 Preference-Based Reward Learning

Input: Training dataset of pairwise preferences d¢yqin

7 <— initialize network (random)
for epoch € (0,100) do
for traj;, traj;, label € dirqin do
7%‘ — f(tT‘CLji)
T‘Aj < f(trajj)
loss < CrossEntropyLoss(7;, 7, label)
loss.backward()
end for
loss,g < calculate cross-entropy loss on validation set
if [0ss,4; doesn’t decrease for 10 epochs then
break
end if
end for
7 <— Run RL (PPO or SAC) using 7 as reward for 1M iterations

Output: 7, 7

A.2 SYNTHETIC PREFERENCE GENERATION

To enhance scalability and reproducibility, we automatically generate a large amount of synthetic
trajectory preferences. This was done using an expert RL policy trained using the ground-truth
reward function provided with each of environment. We then generate a large number of diverse
trajectories by adding e-greedy noise during policy rollouts, where € is the probability that the policy
takes an action uniformly at random from its action space. Thus, € = 0 corresponds to the fully
trained RL policy and € = 1 corresponds to a uniformly random policy. As noted by [Brown et al.
(2020b), adding this type of disturbance will result in monotonically decreasing performance in
expectation.

To generate pairwise preferences over trajectories, we select all pairs of trajectories from a set of 40,
120, and 324 total trajectories (for the SMALL, MEDIUM, and LARGE dataset sizes, respectively)
generated with e-greedy rollouts for e € {0,0.2,0.4,0.6,0.8,1}. We use held-out sets of trajec-
tories for validation and testing. We then use the ground-truth reward functions provided by each
environment to provide ground-truth preference labels.

A.3 EVIDENCE OF CAUSAL CONFUSION

Table [2] displays results when dataset size is varied (S, M, L). Table [3] displays additional results
for the Half Cheetah environment (Brockman et al., 2016), where we notice that, unlike the other
environments presented, results vary depending on dataset size. We observe the same pattern in
the S data size of high reward model performance on a held-out set, low subsequent policy (PREF)
performance when the reward model is optimized, and the reward model’s preference for the learned
suboptimal policy rather than the expert policy (GT). However, in the M and L dataset sizes, we ob-
serve that the learned reward is more or less aligned with the true reward—it recognizes that the GT
policy is better (L) or about the same (M). Thus, the poor performance of the policy in HalfChee-
tah (L) is more due to a failure in RL, and one could reasonably expect that running RL for more
carefully-tuned hyperparameters and iterations on this reward model would result in good perfor-
mance. This agrees with the HalfCheetah results in|Brown et al.[(2019). Nonetheless, we maintain
that this is due to the simplicity of the true HalfCheetah reward (with which preferences are gener-
ated), which essentially only depends on one feature: the x-velocity (which the reward model has
explicit access to as one of the features in the observation).

Fig. [§] provides plots of select features’ spurious correlations with the true reward. Fig. 0] shows
gradient saliency maps of the learned rewards that elucidate how the learned reward may improperly
weight a feature.

14

Published as a conference paper at ICLR 2023

150 - ¥ = 382434x + 1.01
& r=013977
s . P =0.00000
L
5 1004 P
© g5 -
5 -
g 50 M
4
254
=
0 .
o = -
~10 05 0.0 05 10
‘diff y*
(a) Reacher, ‘vel_1° (feature 6) (b) Feeding, ‘diff_y‘ (feature 8)
o«
4
vy =1.76055x + 0.68
1 =10.08651
o 2 P = 0.0000
<
5
0
XTI
. .
21 .
.
:
06 -04 -02 00 02 04 06 08 10
‘diff x*

(c) Itch Scratching, ‘diff_x* (feature 7)

Figure 8: Correlations of Spuriously Weighted Features with Reward.

Gradient per timeste

Gradient per timestep "
075 B
050 »
o g
g 000 s
g s
£ 025
050
05 -
100
i1 sz snl sn2 frgeix Brgely vell velz difix Gfily iz torguel torque? o »
feature EX) EE]

(a) Reacher (b) Feeding

(c) Itch Scratching

Figure 9: Gradient Saliency Maps for Fig. @ Fig. @ shows the slight positive gradient
for the angular velocity feature ‘vel_1’, which results in spinning behavior. Fig. [9b] shows the
nearly constant positive gradient in the ‘diff_y’ feature (feature 8) that incentivizes the robot
to move into, past, and behind the human’s head. A properly learned reward would exhibit
a gradient that ‘flips’ to negative the moment the robot arm goes behind the human’s head.
Fig. shows significant positive gradients for features 7, 9, 35, and 36, which correspond to
‘diff],, ‘di f f., andthelasttwodegreesof freedominthe? — DO Frobotarm, respectively.

15

Published as a conference paper at ICLR 2023

Table 2: Empirical evidence of causal confusion (different dataset sizes). We compare policies
optimized with a reward learned from preferences (PREF) against policies optimized with the true
reward (GT). State features on which preferences are based are fully-observable in all three tasks. S,
M, and L correspond to training dataset sizes of 780, 7140, and 52326 unique pairwise preferences,
respectively. Both PREF and GT are optimized with 1M RL iterations and averaged over 3 seeds.
Despite high pairwise classification accuracy, the policy performance achieved by PREF under the
true reward is very low compared with GT, irrespective of data size. However, the reward learned
from preferences consistently prefers PREF over GT. This, combined with the low success rates of
PREF compared to GT, suggests that preference-based reward learning fails to learn a good reward,
even as the amount of data increases, for all of these tasks. (Lunar Lander does not have a predefined
success metric, so we leave this column blank.)

PREF. LEARNING ACC. RL PoLICY PERFORMANCE

LEARNED TRUE SUCCESS
DOMAIN TRAIN. VAL TEST (PREF/GT) (PREF/GT) (PREF/GT)
REACHER (S) 0.955 0913 0.939 -1.097 /-6.002 -13.331/-5.560 0.040/0.827
REACHER (M) 0.957 0.949 0.962 -12.002/-14.936 -11.890/-5.560 0.053/0.827
REACHER (L) 0.954 0.956 0.966 44.988 / 3.395 -42.716/-5.560 0.100/0.827
FEEDING (S) 0.976 0.902 0.891 90.671/13.206 -153.012/128.933 0.057/0.990
FEEDING (M) 0.979 0.968 0.960 106.415/ 68.835 -45.427/128.933 0.437/0.990
FEEDING (L) 0.987 0.976 0.976 277.152/124.016 -27.432/128.933 0.603/0.990
ITCHING (S) 0.974 0.908 0.869 18.757/10.337 -56.591/248.397 0.000/0.970
ITCHING (M) 0.967 0.924 0.918 17.871/12.685 -68.024 /248.397 0.003/0.970
ITCHING (L) 0.954 0.933 0.928 16.588 /10.282 -47.190/248.397 0.013/0.970
LUNAR (S) 0.967 0.920 0.921 12.730/1.548 -5496.430/178.617 —_
LUNAR (M) 0.947 0.945 0.937 73.342/-4.511 -6272.095/178.617 —_
LUNAR (L) 0.940 0.948 0.943 -1.375/-6.307 -747.081/178.617 —_

Table 3: Empirical evidence of causal confusion (addt’l.). We observe that the the learned reward
(LEARNED) is more or less aligned with the true reward (TRUE) in the M and L dataset sizes and
only really misidentified in S.

PREF. AccC. RL POLICY PERFORMANCE
LEARNED TRUE SUCCESS
DOMAIN TRAIN VAL (PREF/GT) (PREF/GT) (PREF/GT)

HALFCHEETAH (S) 1.000 0.971 1608.492/1101.144 1626.549/3446.618 0.397/0.860
HALFCHEETAH (M) 0.999 0.993 684.118/676.197 2968.347 /3446.618 0.647/0.860
HALFCHEETAH (L) 0.999 0.997 190.574 /815.975 1236.655/3446.618 0.330/0.860

A.4 INPUT FEATURES FOR ENVIRONMENTS

Features that are distractors are labeled with a D. Features that are causal are labeled with a C. The
dimensions of each feature are included in parentheses. Lunar Lander:

¢ C - z-coordinates of the lander (1)

* C - y-coordinates of the lander (1)

* C - Linear velocity in (1)

* C - Linear velocity in y (1)

* C - Angle of the lander (1)

* D - Angular velocity of the lander (1)

* C - Whether each leg is in contact with ground (2)

* C - Action — one of {do nothing, fire left orientation engine, fire main engine, fire right
orientation engine} (1)

16

Published as a conference paper at ICLR 2023

Reacher:

D - Cos of angle of first and second arm (2)

D - Sin of angle of first and second arm (2)

D - Coordinates of target (2)

D - Angular velocity of first and second arm (2)

C - Position_fingertip - position_target (3)

C - Action — Torque applied at first and second hinge (2)

Feeding:

D - Spoon_pos_real (3)

D - Spoon _orient_real (4)

C - spoon_pos_real - target_pos_real (3)

D - Robot_joint_angles (7)
D - Head_pos_real (3)

D - Head _orient_real (4)

C - Spoon_force_on_human (1)
C - Action (7)

C - Foods_in_mouth (1)

C - Foods_on_floor (1)

C - Foods_hit_human (1)

C - Sum_food_mouth_velocities (1)

C - Prev_spoon_pos_real (3)

C - Robot_force_on_human (1)

Itch Scratching:

e C - Tool_pos_real (3)

* D - Tool_orient_real (4)

* C - Tool_pos_real - target_pos_real (3)
* D - Target_pos_real (3)

* D - Robot_joint_angles (7)

* D - Shoulder_pos_real (3)

* D - Elbow_pos_real (3)

* D - Wrist_pos_real (3)

e C - Tool _force (1)

e C- Action (7)

* C - Prev_tool_pos_real (3)

* C - Robot_force_on_human (1)
e C - Prev_tool_force (1)

17

Published as a conference paper at ICLR 2023

A.5 GROUND TRUTH REWARD FUNCTIONS FOR ENVIRONMENTS

We outline the ground truth reward functions for each environment below. We also refer the reader
to the publicly available code repositories for each environment, which describe the rewards in more
detail.

Lunar Lander (https://github.com/openai/gym):

S(x) = —100\/(position§ + position?)

+ —100\/(velocity§ + velocity?)

+ —100]angle]

+ 10(contactic i) + 10(contact,ight)
R(z) = 5(x) = Sprev(x)
R(z) = R(x) — 0.3(action)

Reacher (https://github.com/openai/gym):

R(z) = —||position ingertip — POSitioniarget||2 + —||action||§

Feeding (https://github.com/Healthcare-Robotics/assistive-gymn):

Tdistance = _||p08target - PosspoonHz
Taction = —||action||s
Tfood = f(Foods_in_mouth, Foods_on_floor)
preferences_score = g(Foods_hit_human, Sum_food_mouth velocities,
Spoon_pos_real, Prev_spoon_pos_real, Robot_force_on_human)

R(l‘) = Wdistance * Tdistance T Waction * Taction T+ Wfood * 7T food + preferences,score

Itch Scratching (https://github.com/Healthcare-Robotics/assistive—gym):

Tdistance = —| |p05target — POSspoon \ |2
Taction = —||action]|s
Tseratch = f(Tool_pos_real, Target_pos_real, Prev_tool_pos_real,
Tool_force, Prev_tool_force)
preferences_score = g(Spoon_pos_real, Prev_spoon_pos_real,
Robot_force_on_human, Tool_force, Target_pos_real)

R(‘T") = Wdistunce * Tdistance + Waction * Taction + Wsm'atch * T food + preferences,score

A.6 EVALUATING LEARNED REWARD FUNCTIONS

Saliency maps are one of the few methods that allow one to interpret learned reward functions in
an isolated, relatively lightweight manner. Following [Michaud et al|(2020), we use raw gradient
saliencies, or %—the gradient with respect to each element of the input. We extend upon this

by examining gradient saliencies per timestep along with feature spread maps—maps of each input
feature’s variation (standard deviation, variance, range) over the course of a trajectory.

We produce saliency maps of the learned reward as follows: we forward propagate a single rollout
from the learned reward’s policy through the reward network. Then, with the reward model’s weights
fixed, we backpropagate the output from the forward pass through the network and into the input
(the policy rollout) to obtain the gradient with respect to each feature in the observation-action pair
at each timestep.

EPIC, or Equivalent-Policy Invariant Comparison, is a pseudometric proposed by |Gleave et al.
(2020) that quantifies the difference between two reward functions on a given coverage distribution
and proposes to be predictive of policy performance without the need for policy optimization. We
apply the EPIC pseudometric to compare the distance between various learned rewards and the

18

https://github.com/openai/gym
https://github.com/openai/gym
https://github.com/Healthcare-Robotics/assistive-gym
https://github.com/Healthcare-Robotics/assistive-gym

Published as a conference paper at ICLR 2023

Table 4: KL Divergence: Distractor Features.

ENvV WITH WITHOUT
FEEDING 4.732 6.985
ITCH SCRATCHING 18.749 8.570

ground truth reward on the coverage distributions seen during reward learning and those seen during
policy training. Using other metrics to compare learned rewards (such as DARD, by Wulfe et al.
(2022)) may also prove fruitful in future work.

Kullback-Leibler divergence: We use a discriminator trained to minimize the cross-entropy loss
on states from two different distributions following the approach proposed by |[Huszar (2017) and
Laidlaw & Dragan|(2021)). Specifically, we approximate the KL divergence between the distribution
of state-action pairs seen during reward learning and those seen during RL on the learned reward.
We use this to measure the amount of distribution shift from the reward learning distribution induced
by optimizing (potentially misidentified) learned rewards during policy training.

Specifically, for each learned reward, we sample 50 trajectories from the reward’s training data and
from the resulting policy (taking care to label each trajectory’s origin distribution). From these 50x2
trajectories, we create the training and validation splits and then flatten each group of trajectories
into a dataset of observation-action pairs. We train a discriminator model (hidden dimensions of
128x128x128) to distinguish between observation-action pairs seen during reward learning and those
during RL by minimizing the binary cross-entropy loss. We tune hyperparameters (learning rate,
weight decay) on the validation loss and accuracy.

With this trained discriminator model, we calculate D, (p||q) by taking the discriminator’s nega-
tive mean return/logit of all reward learning observation-action pairs, where p is the reward learning
distribution and ¢ is the policy optimization distribution. Similarly, we calculate Dk, (g||p) by tak-
ing the mean return of all RL observation-action pairs. Since the KL divergence is not symmetric,
we report Dy, (pllg) + Dxr(q||p), or the symmetric KL divergence. For a proof on why a dis-
criminator can be used to approximate the KL divergence, we refer the reader to Appendix B.2 of
Laidlaw & Dragan| (2021}).

A.7 DISTRACTOR FEATURES

Fig. [10| shows the additional results for removing distractors. Fig. [l 1] shows the saliency map for
the Reacher learned reward without distractors. Table] shows additional KL divergences for the
Feeding and Itch Scratching environments. We note here that the reason removing non-causal dis-
tractor features appears to not benefit for Feeding is that the main spurious correlation (discussed in
Section) involves one of the causal features—namely, the difference between spoon position and
target position. Thus, removing purely non-causal features fails to address this issue in Feeding.

A.8 MODEL CAPACITY

We study the effect of model capacity on the learned reward. We find that, despite careful tuning
of hyperparameters with each model and dataset size, increasing the capacity of the reward model
does not necessarily result in an increase in subsequent policy performance. In fact, as seen in
Fig. only the Feeding task trained with the large (L) dataset size (52326 preferences) benefits
from steadily increasing reward model capacity. Indeed, although increasing the capacity for the
Reacher task appears to initially increase performance for the large dataset case (Fig. [[2a), per-
formance drops back down to below the performance of the smallest model size when the model
size is further increased. Further, increasing model size seems to decrease the performance on the
small datasets. This is not surprising, as benefiting from larger capacity tends to require increasing
the amount of data. As such, the validation-set accuracies here tend to agree with learned reward
performance.

To examine these results further, we compare the learned rewards directly with the ground truth
reward (without performing policy optimization) using the EPIC pseudometric in Table [5] Inter-

19

Published as a conference paper at ICLR 2023

1 O(Hm With distractors [Without distractors 1 0(Em With distractors - Without distractors
0.751 0.75;
n n
N n
) 9]
g 0.501 g 0.501
3 3
N wn
0.25; 0.251
0.00- 0.00-
M L M L
(a) Reacher, Success (b) Feeding, Success
B With distractors - Without distractors 2 0 (,- With distractors B Without distractors
1001
= < 100
—~ ~
< 01 <
2 2 0
)]
= 100 = - -
—100-
M L M L
(c) Feeding, Reward (d) Itch Scratching, Reward

Figure 10: Distractor Features. In general, removing distractor features that have no influence on
preferences improves performance.

Table 5: EPIC Distances, Model Capacity. The reward model with larger capacity (hidden layer
dimensions of 256x256x256) appears closer to the ground truth than the reward model with smaller
capacity (hidden layer dimensions of 128x64) on the distribution of states seen during reward learn-
ing, but is much further from the ground truth on the distribution of states seen during reinforcement
learning.

REWL /RL 256X256X256 128x64
GROUND TRUTH 0.210/0.707 0.233/0.598

20

Published as a conference paper at ICLR 2023

Gradient per timestep

S

il

timestep

Feature Ranges

0.6

0.4

0.2

diff_x diff_y diff_z torque_L torque_2

R X 0.0
feature diff x diff v diff z torque 1 torque 2

(a) Gradients - W/out distractors (b) Feature Ranges - W/out distractors

Figure 11: Saliency Maps: Without Distractor Features.

01 - S L — L

_ZOA
E T o
% —40 z
R~ R~

—601 —2001

128x64 (256)° (256)* 128x64 (256)3 (256)*
(a) Reacher (b) Feeding

Figure 12: Model Capacity. Increasing model capacity increases performance when we use the
large (L) dataset ((334) = 52326 preferences), to a certain extent. However, increasing capacity
decreases performance on the small (S) dataset ((420) = 780 preferences).

estingly, the EPIC distances between the learned rewards and the ground truth reward vary widely
depending on the choice of coverage distribution. With the distribution of states seen during re-
ward learning (generated by randomly switching between an expert and random policy), the larger
(256x256x256) model appears closer to the ground truth reward than the smaller (128x64) one.
However, these results are flipped when we instead evaluate the pseudometric on the distribution
of states seen during policy optimization. This suggests that increasing the capacity of the reward
model allows it to more closely ‘mimic’ the ground truth reward on the reward learning distribution
(hence the lower EPIC distance) but worsens its ability to generalize to the reinforcement learning
distribution. We see a similar effect with the divergence metric in Table[6] .

A.9 NOISE IN STATED PREFERENCES

Fig. 13| shows additional results. Increasing the amount of preference data when noise is present
appears to have a negative effect (as seen in Fig. [[3b)), despite the proportion of mislabeled data

Table 6: KL Divergence Approximations, Model Capacity. Increasing model capacity may result
in a much larger distribution shift (as measured by the KL Divergence).

128x64 256X256X256 | 128Xx64 256X256X256 256X256X256X256

REACHER 64.165 57.724 | 46.031 22.187 88.927
FEEDING 25.352 32.836 | 16.900 4.732 9.909

21

Published as a conference paper at ICLR 2023

0. - Oracle B Stochastic 1 O- - Oracle B Stochastic

w0
&
T —2] O
Q
g 3

% @ 0.5
e —4 g
=

—6 - - 0.0

M L M L
(a) Reacher, Data Size (b) Reacher, Data Size
e Oracle B Stochastic 1 O_ 8 Oracle Bmm Stochastic
100 7
e o
:a Q
z 901 =
]

¢ .
0 =

With Without ~ With Without

(c) Feeding, Distractors (d) Feeding, Distractors

Figure 13: Noise in Stated Preferences.

Table 7: Percentage (%) of Mislabeled Data Provided by a Stochastic User. Numbers here
correspond to Fig.[T3b}

MEDIUM LARGE
STOCHASTIC 2.726 2.870

remaining constant across dataset sizes (Table [7). Further, there is a compounding effect with dis-
tractor features, where both noise and distractors result in a large loss in performance (Fig.[T3d).

To examine these results further, we compare the learned rewards directly with the ground truth
reward (without performing policy optimization) with the EPIC pseudometric in Table[9] Interest-
ingly, the EPIC distances between the learned rewards and the ground truth reward vary depending
on the choice of coverage distribution. With the distribution of observation-action pairs seen during
reward learning (generated by randomly switching between an expert and random policy), the re-
ward trained with labeling errors appears to be closer (in EPIC distance) to the ground truth than the
reward trained without labeling errors. However, these results are flipped when we instead evaluate
the pseudometric on the distribution of observation-action pairs seen during policy optimization.
This suggests that the misidentified reward model more closely ‘mimics’ the ground truth reward
on the reward learning distribution (hence the lower EPIC distance) but fails to generalize to the
reinforcement learning distribution.

Table[8]shows the KL divergences for each model configuration in Fig. 5]

22

Published as a conference paper at ICLR 2023

Table 8: KL Divergence Approximations, Noise in Stated Preferences.

ORACLE STOCHASTIC

REACHER, MEDIUM DATASET 6.762 8.856
REACHER, LARGE DATASET 7.365 6.739
FEEDING, WITH DISTRACTORS 4.732 13.188
FEEDING, WITHOUT DISTRACTORS 6.985 8.046

Table 9: EPIC Distances, Noise in Stated Preferences. Misidentified rewards (Stochastic) are
closer to the ground truth reward on the reward learning distribution (RewL) but further from it on
the RL distribution (RL) when compared to the properly learned rewards (Oracle). EPIC distances
are computed on the rewards learned with distractors in the Feeding environment in Fig. [[3d] and
averaged over three seeds.

REWL /RL GROUND TRUTH STOCHASTIC ORACLE
GROUND TRUTH 0.000/0.000 0.136/0.164 0.165/0.130
STOCHASTIC 0.136/0.164 0.000/0.000 0.220/0.209
ORACLE 0.165/0.130 0.220/0.209 0.000/0.000

A.10 PARTIAL OBSERVABILITY OF CAUSAL FEATURES

Fig. (14| displays gradient maps of a reward that partially observes the causal features and a reward
that fully observes the causal features. Table[I0|displays the EPIC distances. Unlike with previous
factors, EPIC distance on the reward learning distribution is predictive of eventual policy perfor-
mance. The KL divergences (Table again reveal that the misidentified reward (this time, due to
lack of information in the observation) leads to a greater distribution shift during RL training.

We see that without having access to all the causal reward features, an incorrect reward model is
learned due to over-weighting the causal features that are available and also due to spurious corre-
lations with non-causal variables. With Feeding, we observe both cases: the reward model learns
stronger weights on one of the joint angles and two components of the action (‘act’), all of which
have no bearing on the true reward. Simultaneously, the reward also learns a greater weight on the
second component of the feature corresponding to the vector distance between the end effector and
the mouth (‘diff’), which is causal in the ground truth reward. (Note that a similar weighting also
occurs in the learned reward that has access to all features of the true reward.) This results in the
behavior depicted in Fig. [6}—the robot manipulator is able to successfully maneuver the spoon close
to the patient’s mouth (by observing the distance feature), but does so without ensuring that the food
particles themselves stay on the spoon and end up in the patient’s mouth (since the reward is unable
to observe the number of food particles).

A.11 CoMPLEX CAUSAL FEATURES

In the Itch Scratching task rewards the robot needs to perform a ‘scratching’ motion, which entails
not only making contact with the target using the end-effector (being within a certain radius of the
target coordinates), but also requires that the target contact position be greater than a certain § away
from the previous target contact position and that the exerted force be no more than a specified

Table 10: EPIC Distances, Partial Observability.

REWL /RL GROUND TRUTH PARTIAL FULL
GROUND TRUTH 0.000/0.000 0.684/0.699 0.165/0.309
PARTIAL 0.684/0.699 0.000/0.000 0.685/0.697
FULL 0.165/0.309 0.685/0.697 0.000/0.000

23

Fo.08

t0.06

t0.04
0.02
0.00
~0.02
—0.04

- FULL

10ns

1at

Published as a conference paper at ICLR 2023

Gradient per timestep

______-_ 1___'___1__ ________-___ J__r 0 ____1_-____

Wil

daisawn

feature

(a) Gradients - PART

Gradient per timestep

° 0 o
< 2

n o [}

2 1 n o I
0 =] 0 =} n e
© <1 a A ~ S
B A 5 &

1
daysawn

feature

(b) Gradients - FULL

&

Feature Standard Deviations

e

(d) Feature Standard Dev

ions - PART

1at:

(c) Feature Standard Dev

Maps, Partial Observability.

Saliency

Figure 14

24

Published as a conference paper at ICLR 2023

Table 11: KL divergence: partial observability. The reward with partial observability on causal
features induces a greater distribution shift than the reward with full observability.

FULL PARTIAL
FEEDING 4.732 45.731

Table 12: KL Divergence: Complex Causal Features. Learning a reward without the ‘scratched*
indicator feature leads to a greater amount of distribution shift (KL divergence) during policy opti-
mization.

WITH ‘SCRATCHED® WITHOUT ‘SCRATCHED'
8.570 15.553

Frae. Although the preferences are based on how well the robot performs this scratching motion
and despite the reward model having access to all the necessary low-level information to infer this
scratching motion (including information about the state at the previous timestep; see Appx. [A.4]
for details), we find that the reward model is not able to learn the scratching motion. As seen in
Fig. once we explicitly include a high-level indicator feature, ‘scratched’, denoting whether the
robot has successfully performed the aforementioned scratching motion, performance drastically
increases. We suspect that the reward model’s tendency to pick up on spurious correlations that
occur consistently over the course of the trajectory involving just a few variables prevents it from
learning the true causal relation that involves many variables, each of which are causal only in a
particular context. This is supported by Fig. which shows gradients staying relatively constant
for each feature rather than varying with time and context. As a result, the learned reward without an
explicit ‘scratched’ feature leads to a greater amount of distribution shift. This is shown in Table [I2]
which shows the KL divergences with and without the hand-specified complex ‘scratch’ feature.

A.12 DATA GENERATION METHODS

Fig.[T5]displays a comparison of our method of generating a diverse dataset of trajectory preferences
and the method of using a checkpointed RL policy (proposed by (Brown et al.l 2019)).

A.13 PENALIZING THE KL DIVERGENCE

Inspired by the results showing that misidentified rewards result in greater distribution shifts during
policy optimization, we attempt to address this by adding a KL divergence penalty term to the
reward. Specifically, in addition to using the reward learned from preferences, we incorporate a
pretrained discriminator (trained to discriminate between state-action pairs from the reward learning
distribution and the RL distribution) to estimate the KL divergence, as detailed earlier in Section
and Appx. This KL divergence is scaled by a hyperparameter A and subtracted from the reward
learned from preferences.

We show results for A = 0,0.01,0.1, 1, 10 in Fig. Using a discriminator that is pretrained offline
(the discriminator isn’t updated during the RL process) to penalize the KL divergence does not
appear to help the performance or alleviate reward misidentification in any way. It appears that the
RL agent is again able to hack the reward—this time, the performance and reward misidentification
are even worse because of the additional degree of freedom in the reward function afforded by the
discriminator penalty.

A.14 ITERATIVE PREFERENCE-BASED REWARD LEARNING FROM ONLINE DATA

Following (Christiano et al.| (2017)), we verify the occurrence of reward misidentification when learn-
ing from data that is actively queried online (during the learning process). As before, we use the
initial set of offline trajectory and preference data (acquired via Appx.[A.2) to train a reward func-
tion, which we then use to optimize a policy using RL. We then sample 10 trajectories from the most

25

Published as a conference paper at ICLR 2023

B T-REX (synthetic checkpoints) mmm RL+noise

0.0
254

ol

S —50-

s .

g

g 759

-

=

5 ~10.04

g

5

2 125

o8]

()

= 1501
~17.5-

T T T
190 preferences 500 preferences 2000 preferences

Figure 15: TREX vs. RL+Noise. Our method of generating diverse trajectories for preference
learning performs on par with, if not better than, the method of using rollouts taken from a check-
pointed RL policy, as proposed by (Brown et al., 2019). Displayed are cumulative trajectory rewards
from the Reacher environment.

 \=0 [A=0.01 . A=0.1 . A=1.0 . A=10.0
. =0 e A=0.01 . \=0.1 . A=1.0 . A=10.0

. !Flll

Reward
Success

_75<

(a) Reacher, Reward (b) Reacher, Success

Figure 16: Penalizing the KL Divergence.

26

Published as a conference paper at ICLR 2023

o
w1

1.004

o

'S
ot
o
[

o

w
It
©
>

)

Test loss

S

N
ot
o
=

!

Test accuracy

(=}

—_
<
e}
N

g
o

; ; y 0.90

10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration
(a) Reacher, Test Loss (b) Reacher, Test Accuracy
—401 0.20
E —454 2 0.15+
[[}
2 191
& —50 2 0.10
g 5
£ £
S 0051 WWVMW
—60-— ; y y ; y 0.00= ; y y ; y
0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration
(c) Reacher, True Reward (d) Reacher, Success
0,
720,
el
S
g M
&
= —601
]
<
& —801
]
-
—100+
—120+ T v T T -
0 10 20 30 40 50
Iteration

(e) Reacher, Learned Reward

Figure 17: Training the reward and policy together iteratively.

recently optimized policy and generate preferences for all possible pairs (1) between sampled and of-
fline trajectories and (2) within the set of sampled trajectories, which we concatenate to our existing
training dataset. Using the (now augmented) dataset, we fine-tune the reward function and policy
for 10 epochs and 100 iterations, respectively. We repeat this process of taking rollouts from the
most recent policy and fine-tuning the existing learned reward and policy for 50 iterations. Results
are displayed in Fig.[I7] We observe that reward misidentification appears to still be present—test
error is very low, while resulting policy performance (measured by true reward and success) remains
poor.

27

	Introduction
	Related Work
	Background: Reward Learning from Preferences

	Reward Misidentification
	Experimental Setup
	Evidence of Causal Confusion
	Factors that May Lead to Causal Reward Confusion
	Distractor Features
	Model Capacity
	Noise in Stated Preferences
	Partial Observability of Causal Features
	Complex Causal Features

	Conclusion
	Appendix
	Preference Learning Training Details
	Synthetic Preference Generation
	Evidence of Causal Confusion
	Input Features for Environments
	Ground Truth Reward Functions for Environments
	Evaluating Learned Reward Functions
	Distractor Features
	Model Capacity
	Noise in Stated Preferences
	Partial Observability of Causal Features
	Complex Causal Features
	Data Generation Methods
	Penalizing the KL Divergence
	Iterative Preference-Based Reward Learning from Online Data

