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Abstract

In many real-world problems, there is a limited set of training data, but an abun-
dance of unlabeled data. We propose a new method, Generative Posterior Net-
works (GPNs), that uses unlabeled data to estimate epistemic uncertainty in high-
dimensional problems. A GPN is a generative model that, given a prior distribution
over functions, approximates the posterior distribution directly by regularizing the
network towards samples from the prior. We prove theoretically that our method
indeed approximates the Bayesian posterior and show empirically that it improves
epistemic uncertainty estimation and scalability over competing methods.

1 Introduction

In supervised learning tasks, the distribution of labeled training data often does not match exactly with
the distribution of data the model will see at deployment. This distributional shift can cause significant
problems in safety-critical environments where mistakes can be catastrophic. Ideally, we want our
learned models to be able to estimate their epistemic uncertainty – uncertainty deriving from lack of
data samples. Unfortunately, deep learning models struggle to estimate this type of uncertainty. While
there are many proposed methods for addressing this problem, epistemic uncertainty estimation in
deep learning remains an open problem due to out of distribution (OOD) performance and scalability.

(a) 2D embedding samples (b) Corresponding posterior samples

Figure 1: Samples from a GPN using a 2D embedding trained on a simple sine-function. On the
top are samples from the embedding with corresponding posterior samples underneath. Black ‘x’s
represent observed data points.
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Figure 2: Predicted posterior distributions of different methods using the same observed data.

Concurrently, many recent works have shown incredible performance using unlabeled data (Radford
et al., 2019; Chen et al., 2020). While labeled training data is expensive to collect, in many real-world
problems, such as image classification, there is an abundance of unlabeled data. Moreover, this
unlabeled data is often much more representative of the deployment distribution. In this work, we
propose a new method for estimating epistemic uncertainty that leverages this unlabeled data.

Our work builds off of the extensive ensembling literature. Neural network ensembling is a method
that predicts epistemic uncertainty by looking at the disagreement between the ensemble members.
Additionally, under the right regularization, ensembles approximate samples from the Bayesian
posterior Pearce et al. (2020); He et al. (2020). However, these methods have one main drawback,
namely that each new sample from the posterior requires training a new network from scratch.

To address this challenge, we introduce Generative Posterior Networks (GPNs), a generative neural
network model that directly approximates the posterior distribution by regularizing the output of
the network towards samples from the prior distribution. By learning a low-dimensional latent
representation of the posterior, our method can quickly sample from the posterior and construct
confidence intervals (CIs). We prove that our method approximates the Bayesian posterior over
functions and show empirically that our method can improve uncertainty estimation over competing
methods. While not motivated by the Bayesian Inference problem, Osband et al. (2021) (a concurrent
work) propose Epistemic Neural Networks, which is very similar to our method. The key difference
between our method and Epistemic NNs is in the regularization: our method takes advantage of
unlabeled data to regularize towards outputs as opposed to the parameters of the prior networks. In
our experiments we show empirically our method improves posterior sampling and OOD detection.

2 Generative Posterior Networks

Randomized MAP Sampling We consider a slight variation on the usual Bayesian Inference
problem: instead of finding the posterior of the parameters of a function, we will instead find the
posterior of the outputs of that function. Specifically, consider the transformed random variable
Ŷ = f(xsample;θ) for some function f parameterized by θ and some set of unlabeled sample points
xsample. We assume a known prior over parameters P (θ) ∼ N (µθ,Σθ) as well as access to a noisy
dataset (xobs,yobs) = {(x1

obs, y
1
obs) . . . , (x

N
obs, y

N
obs)}, where the observations yiobs = f(xi

obs;θ) + ϵ
depend on an unknown parameter θ and are corrupted by Gaussian noise ϵ ∼ N (0, σϵ). The goal of
this Bayesian Inference problem is to approximate samples from the posterior,

P (Ŷ |yobs) ∝ P (yobs | Ŷ)P (Ŷ). (1)

Pearce et al. (2020) showed how we can use a method called Randomized MAP Sampling (RMS) to
approximately sample from the posterior distribution. The idea behind RMS is to use the fact that the
parameters that minimize the regularized MSE loss are equal to the maximum a posteriori (MAP)
solution for the posterior. Thus, using optimization techniques, like gradient descent, we can easily
find MAP solutions. However, the challenge of sampling from the posterior remains. Instead, RMS
randomly samples shifted prior distributions such that the resulting MAP solutions for each of these
shifted distributions form samples from the desired posterior.

Unlike Pearce et al. (2020), we consider using the RMS technique on our modified Bayesian Inference
problem, to estimate the posterior of the outputs Ŷ as opposed to the parameters θ. Specifically,
RMS in this setting samples “anchor points” Ŷanc from some distribution Ŷanc ∼ N (µanc,Σanc).
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Table 1: Superconductor regression (Hamidieh, 2018) results.

Methods In Dist. Loss In Dist. CI-width OOD CI-correct OOD-detect. AUC

Dropout 0.10 0.32 17.7% 0.56
DKL GP 0.11 0.74 37.9% 0.52
SNGP 0.10 1.45 87.8% 0.82
Ensemble - PR 0.12 0.23 83.8% 0.93
Ensemble - OR 0.11 0.23 75.4% 0.95
Epistemic NN 0.12 1.07 95.3% 0.92
GPN (Ours) 0.11 0.31 86.2% 0.97

Table 2: CIFAR-10 results with Out of Distribution (OOD) evaluation on SVHN.

Methods In Dist. Accuracy In Dist. Entropy OOD Entropy OOD-detect. AUC

Dropout 80.7% 0.579 1.214 0.76
DKL GP 79.3% 0.027 0.372 0.76
SNGP 77.2% 0.386 0.794 0.77
Ensemble - PR 80.9% 0.882 1.344 0.68
Ensemble - OR 80.7% 0.706 2.018 0.98
Epistemic NN 77.9% 0.630 1.145 0.76
GPN (Ours) 79.4% 0.621 2.256 1.00

Each anchor point corresponds to the mean of a shifted prior distribution Panc(Ŷ) = N (Ŷanc,ΣŶ).
Now we define the MAP function which finds the MAP solution using this shifted prior:

YMAP(Ŷanc) = argmax
Ŷ

P (yobs | Ŷ)Panc(Ŷ). (2)

By sampling different anchor points, we can then construct a probability distribution over MAP
solutions P (YMAP(Ŷanc)). If we assume that the prior over Ŷ is Gaussian, this distribution is
equivalent to the posterior distribution P (Ŷ |yobs) for a specific anchor distribution. While this
Gaussian prior assumption does not hold exactly in general, it will hold exactly when f is linear or
has an infinitely wide final layer.

Theorem 2.1. Assume that the prior distribution of Ŷ is Gaussian, P (Ŷ) = N (µŶ,ΣŶ). If
we choose the distribution over Ŷanc to be P (Ŷanc) = N (µanc,Σanc), where µanc = µŶ and
Σanc = ΣŶ +ΣŶΣ−1

likeΣŶ, then P (ŶMAP(Ŷanc)) = P (Ŷ |yobs).

Our proof follows a similar technique to Pearce et al. (2020) and is provided in Appendix E.1.
Just as in Pearce et al. (2020), we use the approximation Σanc ≈ ΣŶ to make it tractable to
sample from the anchor distribution. 1 With this assumption, the anchor point sampling distribution
Ŷanc ∼ N (µanc,Σanc) becomes approximately equal to the output prior distribution P (Ŷ).

Generative Model While RMS can be used to sample from the posterior, every new sample requires
solving a new optimization problem. Instead, we propose to learn a generative model to approximate
the MAP function itself. Let g be a neural network parameterized by some vector, ϕ, that takes as
input a sample from the anchor distribution, Ŷanc, and outputs the MAP solution ŶMAP(Ŷanc). Since
we are using the prior distribution as our anchor distribution, we can sample anchor points using
Ŷanc = f(xsample;θanc), where θanc ∼ N (µθ,Σθ). If we assume that g has enough expressive power
to represent the MAP function, then g(Ŷanc;ϕ) = ŶMAP(Ŷanc), if ϕ is equal to:

argmin
ϕ

Eθanc

N∑
i=1

(
∥yiobs − g(xi

obs,θanc;ϕ)∥22 + σ2
ϵδ

TΣ−1

Ŷ
δ
)

(3)

1Pearce et al. (2020) argue that this approximation, in general, causes RMS to only over-estimate the posterior
variance.
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Figure 3: OOD detection AUC vs. training time on the Superconductor and CIFAR-10 datasets for
parameter and output-regularized ensembles and our method (GPN).

where δj = g(xj
sample,θanc;ϕ)− f(xj

sample;θanc). See Appendix E.2 for a step-by-step derivation.

In practice, of course, it is expensive to compute the regularization term, σ2
ϵδ

TΣ−1

Ŷ
δ, for a large set

of sample points xsample. Instead, we approximate this term with β∥δ∥22 where β is a hyper-parameter.
This assumes independence and uniform variance of the prior, but we found it to work well in
practice. Finally, optimizing the generative function g over the the space of all anchor parameters
θanc is impractical, as this space is too high dimensional. Instead, we construct a low-dimensional
embedding for θanc. Details for how we construct this embedding are provided in Appendix B.

3 Experiments

The goal of our experiments is to illustrate the ability of our method to accurately model epistemic
uncertainty for OOD data while retaining high performance on in distribution data. To do so, similar
to related work (Liu et al., 2020; Van Amersfoort et al., 2020), we consider two separate datasets, “In
Distribution” and “Out of Distribution” (OOD). At training time, we provide labeled data from the In
Distribution dataset and unlabeled data from both datasets. We evaluate each model on a hold-out set
of In Distribution and OOD data. Our first experiment is a small 1-dimensional regression problem
where we can easily compute the ground truth (Figure 2). For our high-dimensional regression task,
we use a Superconductivity prediction task (Hamidieh, 2018), splitting the data into In Distribution
and OOD based on target values (Table 1). For our classification tasks, we use the MNIST and CIFAR
data for In Distribution data and Fashion MNIST and SVHN for OOD data (Tables 2 and 3).

One desired property of posterior approximators is that they have low variance on in distribution data
and high variance on OOD data. Thus, along with test loss/accuracy, we report confidence interval
width/correctness (for regression) and posterior entropy (for classification). We also use posterior
sample variance to construct ROC curves for OOD-detection and measure the area under the curve
(AUC). Finally, to evaluate scalability of our method, we trained increasingly larger ensembles and
measured their OOD-detection performance vs. training time. See Appendix D for full details.

While all methods are able to achieve high In Distribution performance (loss or accuracy), the GPN
is able to consistently achieve the highest OOD-detection AUC. The SNGP and OR-ensemble are
also able to achieve high OOD-detection AUC, but have other drawbacks. Specifically, SNGP has
a very high CI-width on In Distribution data for the regression task and a very small contrast in
sample entropy between the In Distribution and OOD data for the classification tasks. And, while the
OR-ensemble performs well, Figure 3 shows GPN scales much better.

4 Conclusion

In this paper we introduce Generative Posterior Networks (GPNs), a method that uses unlabeled
data to learn a generative model of the Bayesian posterior distribution. We prove that under mild
assumptions, GPNs approximate samples from the true posterior. We then show empirically that
our method significantly outperforms competing epistemic uncertainty predictions techniques on
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high-dimensional classification tasks and scales much better than ensembling methods, the closest
performing baseline.
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A Related Work

There are two primary methods of formalizing epistemic uncertainty: (1) as a Gaussian Process (GP)
or (2) as a Bayesian Inference problem. The GP framework is often used in practice, specifically
in low-dimensional, low-data settings where the problem can be solved exactly (Hensman et al.,
2013; Titsias, 2009). Many GP approximation methods have been proposed to improve scalability
(Wilson & Nickisch, 2015; Wilson et al., 2016), but each have their drawbacks. We highlight Spectral-
normalized Neural Gaussian Processes (SNGP) (Liu et al., 2020) as one of the best GP approximation
methods for high dimensional problems. While SNGP shows impressive out of distribution prediction
performance, we show in our experiments that the learned posterior does not adequately capture the
true posterior.

The Bayesian Inference formulation, considers a different problem: given a prior distribution over
functions and some labeled data, the goal is to construct a posterior distribution in the Bayesian sense.
Because this posterior distribution is usually intractable to compute exactly, approximate sampling
methods are used instead (Tanner & Wong, 1987; Blei et al., 2017). For high-dimensional problems,
Bayesian Neural Networks (BNNs) (Blundell et al., 2015) and Bayesian Dropout (Blundell et al.,
2015) are alternative methods for approximating Bayesian Inference on neural networks.

Neural network ensembling is a method that predicts out-of-distribution data well in practice, requires
very little fine-tuning and, under the right regularization, approximates samples from the Bayesian
posterior Pearce et al. (2020); He et al. (2020). However, these methods have one main drawback,
namely that each new sample from the posterior requires training a new network from scratch. Our
method, on the other hand, seeks to construct a generative posterior model using similar regularization
techniques to Pearce et al. (2020), allowing for quick sampling from the posterior. Epistemic Neural
Networks Osband et al. (2021) are a concurrent work to ours that, while not motivated by the
Bayesian Inference problem, arrived at a very similar technique to ours. The key difference between
our method and Epistemic NNs is in the regularization: our method requires unlabeled data from the
test-distribution for our regularization, but results in improved posterior sampling.

B Algorithm details

B.1 Low-Dimensional Embedding

As mentioned in the main paper, optimizing the generative function g over the the space of all anchor
parameters θanc is impractical, as this space is too high dimensional. Instead, we seek to learn a
low-dimensional representation of the anchor parameters. There are two key reasons why we would
expect to be able to decrease the representational power of the anchor distribution and maintain
the same of fidelity in the posterior estimation. (1) Because of the nature of neural networks, there
are many settings of parameters θ that would result in the same output vector Ŷ. Because we are
focusing on the posterior of Ŷ, we need less representational power to model Ŷ. (2) And, maybe
more importantly, because the posterior parameters are highly correlated, we would expect to need
less expressive power to represent the posterior distribution than the prior distribution.

Thus, we would like to construct a simpler estimate of the prior space using a low-dimensional
embedding vector, z. That is, we want our generative model to take as input the embedding vector
z ∼ N (0, I), instead of θanc, in order to estimate the MAP function. To do this, we need to learn
a mapping from anchor parameters θanc to embedding vectors z. For our experiments, we used a
1-1 embedding scheme where we sample k parameters from the true prior θ1, . . . ,θk ∼ Pprior(θ)
and k independent samples from our embedding z1, . . . , zk. We then jointly optimize over ϕ and
z1, . . . , zk as follows:

argmin
ϕ,z1,...,zk

Exsample

k∑
j=1

N∑
i=1

∥yiobs − g(xi
obs, zj + ϵ;ϕ)∥22 + β∥δ∥22 + Lreg(z1, . . . , zk), (4)

where δj = g(xj
sample, zj + ϵ;ϕ) − f(xj

sample;θj), x
j
sample ∼ Psample(x), ϵ ∼ N (0, I) is a noise

injection vector that improves the smoothness of interpolations between embedding vectors, and
Lreg(z1, . . . , zk) is a regularizer to keep z1, . . . , zk roughly normally distributed, which allows us to
easily sample from the embedding space. For our experiments we use the KL divergence between z
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Figure 4: Boxplots of 100 posterior samples from every method for 2 test images, one from the In
Distribution dataset and one from the OOD dataset.
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(c) Classification - CIFAR-10

Figure 5: ROC curves for out of distribution prediction based on sample variance from 100 samples.

and the normal distribution, Lreg(z1, . . . , zk) = DKL(N (z̄, sz),N (0, 1)). Figure 1 illustrates how
we can sample from this embedding space to construct posterior functions.

B.2 Classification

Our method uses the assumption that the prior over Ŷ is approximately normally distributed. Of
course, this approximation is only exact when either the network is linear or the final layer is infinitely
wide and does not have an activation function (assuming the prior parameters are normally distributed).
Thus, in classification tasks, where it is beneficial to a soft-max to the final output, this assumption is
violated. To get around this, we add the anchor loss to the pre-softmax outputs for classification tasks.

C Additional Experiment Results

Figure 4 illustrates our methods ability to form credible posterior distributions. Specifically, the
figure shows two informative test images, one from the In Distribution dataset and one from the
OOD dataset, for both MNIST/Fashion MNIST and CIFAR-10/SVHN, along with box plots of
sampled PMFs from each of the learned models. While all methods predict the correct label with
high precision on the in distribution example, ours has a uniquely wide sample distribution on the
OOD example, illustrating high predicted epistemic uncertainty.

Figures 5 show the full ROC curves for the OOD prediction tasks.

D Experiment Details

Small Scale Regression Our first experiment is a small 1-dimensional regression problem where
we can easily compute the ground truth. We provide each method with the same 6 observations. We
compute 100 samples from the approximate posterior for each method. For ground truth, we use the
Metropolis-Hastings MCMC algorithm.
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Table 3: MNIST results with Out of Distribution (OOD) evaluation on Fashion MNIST.

Methods In Dist. Accuracy In Dist. Entropy OOD Entropy OOD-detect. AUC

Dropout 99.0% 0.018 0.581 0.96
DKL GP 98.9% 0.091 1.223 0.99
SNGP 98.5% 2.300 2.300 0.99
Ensemble - PR 98.1% 0.062 0.952 0.97
Ensemble - OR 99.1% 0.085 2.066 1.00
Epistemic NN 98.8% 0.024 0.833 0.99
GPN (Ours) 99.1% 0.272 2.076 1.00

Table 4: Training and test datasets used for each experiment task.

Task Training Testing

Labeled Unlabeled In Dist. OOD

Small Scale 6 points U [−2, 2] N/A U [−2, 2]

Superconductor train set where
yi ∈ [13.9,+∞)

full train set test set where
yi ∈ [13.9,+∞)

test set where
yi ∈ [0, 13.9)

MNIST MNIST train 50% MNIST train
50% F-MNIST train MNIST test F-MNIST test

CIFAR-10 CIFAR-10 train 50% CIFAR-10 train
50% SVHN train CIFAR-10 test SVHN test

High-Dimensional Regression For a high-dimensional regression task, we used a Superconductiv-
ity prediction dataset (Hamidieh, 2018), the goal of which is to predict the critical temperature of
different superconductive materials based on 81 features. For the In Distribution and OOD datasets,
we split the full dataset based on the target values. Specifically, the In Distribution and OOD datasets
contained data with a target values in the intervals [13.9,+∞) and [0, 13.9), which is roughly 58% of
the data in distribution and 42% out of distribution. The unlabeled dataset we provide our method and
the Output-Regularized ensemble method is the full training set. Regularization hyper-parameters
were chosen by running each method with 5 different settings, then choosing the model with both a
low validation loss and high CI-correct on a validation set.

Classification We run two different classification experiments: for one, we use the MNIST as
our In Distribution dataset and Fashion MNIST as the OOD dataset, and for the other, we use the
CIFAR-10 dataset as our In Distribution dataset and SVHN as the OOD dataset. The unlabeled
dataset we provide our method and the Output-Regularized ensemble method consists of unlabeled
data 50% from the In Distribution and 50% from the OOD datasets. As in the regression experiments,
we ran each method with 5 different regularization parameters, then chose the model with both a high
validation accuracy and OOD prediction performance on a validation set.

D.1 Baselines

We compare our method against 4 competing Bayesian methods: Bayesian Dropout (Gal & Ghahra-
mani, 2016), GPs, and anchor-regularized neural-network ensembles (Pearce et al., 2020) with
10 ensemble members. For the high-dimensional problems, we need to use approximate GPs.
Specifically, we use a grid-interpolated GP with Deep Kernel Learning (DKL) (Wilson et al., 2016)
implemented with the GPyTorch library (Gardner et al., 2018) and the Spectral-normalized Neural
Gaussian Process (SNGP) method (Liu et al., 2020). For the ensembles, since every member requires
a unique set of parameters (and anchor points) the number of ensemble members was limited by the
memory capacity of our GPUs.

As described in Equation 3, our method a method to sample unlabeled data points. In low-dimensional
problems, this can simply be a uniform sample from the interval of interest, for example [−2, 2] in
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Figure 2. However, in high-dimensional problems, this requires access to an additional dataset of
unlabeled training data. From a practical perspective, this is a reasonable setup as many real-world
datasets have far more unlabeled data than labeled data.

This additional data obviously favors our method over the baseline methods as our method is the only
method that is able to take advantage of this unlabeled data. To address this, we added an additional
ensemble regularized using the same regularization as Equation 3; in other words, we regularize the
outputs of the ensemble members towards outputs of sampled prior networks. We denote this new
method as an “Output-regularized (OR)” Ensemble to distinguish it from the “Parameter-regularized”
(PR) Ensemble. We show that despite having the access to the same additional unlabeled data, our
method outperforms and scales better than this OR Ensemble method.

Each model uses the same 4-layer (Superconductor), 5-layer (MNIST), or 7-layer (CIFAR) architec-
ture, except the ensembles, which use slightly smaller networks for each ensemble member (to fit on
a single GPU). Full experimental details are in Appendix D.

D.2 Metrics

Because we are interested in epistemic uncertainty estimation, we cannot use common aleatoric
uncertainty evaluation metrics, such as Expected Calibration Error (ECE) (Guo et al., 2017). Instead,
we evaluate each methods ability to construct useful posterior estimates using the following metrics.

OOD Detection One desired property of an epistemic uncertainty estimators is in predicting when
a data point is outside the training distribution and, thus, any prediction made on such a data point will
likely be incorrect. For this reason, OOD detection is a common metric used in epistemic uncertainty
literature (Liu et al., 2020; Van Amersfoort et al., 2020). For an ideal posterior distribution, we expect
high sample variance on OOD data and low sample variance from In Distribution data. Thus, in our
experiments, we use posterior sample variance to detect OOD data. Specifically, for each model, we
use posterior variance over 100 samples from each model as a score to construct ROC curves and
measure the measure the area under the curve (AUC).

Confidence Intervals / Entropy Another desired property of an epistemic uncertainty estimator for
a regression task is in constructing confidence intervals. We would expect such confidence intervals
(CIs) to contain the true class with high probability. We also expect that, on in distribution examples,
confidence intervals are narrow. To construct these intervals, we take 100 samples from each model on
every data point in the test data and compute the range of the middle 95% of the samples. CI-correct
refers to the percentage of true labels that fall in this interval. Note that, unlike the other methods
tested, ensembles are not a generative model. Thus, when trying to sample from the ensemble method,
we can only sample as many functions as there are members of the ensemble; for our experiments
this number is 10.

For classification, CIs are not as informative. Instead, we look at the posterior sample entropy. For
an ideal posterior distribution, we expect entropy to be low for data inside the training set (data the
model should have confidence on) and high for data outside the training set (which we expect the
model to be uncertain on). To measure this sample entropy, we take 100 samples from each model
on every data point and take the average of the post-softmax outputs. We then average this sample
entropy for both the In Distribution and OOD datasets.

Scalability One key benefit of a generative model over an ensemble is efficiency: every sample from
an ensemble method requires learning an entire new network from scratch. Generative models, on
the other hand, are able to produce new samples with a single pass through the network. To illustrate
the benefit of this efficiency in practice, we ran an experiment to measure OOD detection AUC vs.
computation time for both the Superconductor and CIFAR-10 tasks. We trained 2 (Superconductor)
and 5 (CIFAR) ensemble members at a time and computed the OOD-detection performance of the
cumulative combined ensembles (both parameter-regularized and output-regularized). Each method is
trained using an Nvidia 1080TI. Figure 3 shows our method is able to achieve high out of distribution
prediction performance in significantly less computation time.
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Table 5: GPN Hyper-parameters used for our experiments.

Hyper-parameter Value

# of sampled embeddings (k) 100
Embedding dimension 10
Regularization coefficient (β) 0.1
Bootstrap network (θ) 2-layer linear model
Prior variance (Σprior) 40 (layer 1), 10 (layer 2)
Bootstrap activation Tanh

D.3 Experiment datasets

Table 4 details the labeled and unlabeled data provided to the agent at training time and the In
Distribution and OOD data used for evaluation at test time.

D.4 Network Architectures

For the superconductor regression problem, we used a 4-layer network with 4 128-unit wide linear
layers for the ensemble methods and a 4-layer network with 4 512-unit wide linear layers for the
other methods. For the MNIST classification problem, we used a 5-layer network with 2 convolution
layers and 3 128-unit wide linear layers for our the ensemble methods and a 5-layer network with
2 convolution layers and 3 512-unit wide linear layers for our the other methods. For the CIFAR
classification problem, we used a 7-layer network with 3 convolution layers and 4 256-unit wide
linear layers for our the ensemble methods and a 7-layer network with 3 convolution layers and 4
512-unit wide linear layers for our the other methods.

D.5 Hyper parameters

The non-network architecture hyper-parameters we used for GPN were roughly consistent across all
experiments, except for the regularization coefficient, β. As stated in our experiments section, we
performed a small search over 5 values of β for each experiment. The full set of hyper-parameters
are shown in Table 5

E Proofs

E.1 Proof of Theorem 2.1

Proof. We will start by showing that P (yobs|Ŷ) is normally distributed.

Let Ŷ ′
i = f(xi

obs;θ) be a transformation of the random variable θ corresponding to the outputs of the
function f parameterized by θ evaluated at observation points xobs. Note that by definition of yobs,
for each i ∈ 1, . . . , N :

yiobs = f(xi
obs;θ) + ϵi = Ŷ ′

i + ϵi

where ϵi ∼ N (0, σϵ).

By assumption: [Ŷ, Ŷ′]T is normally distributed. Since ϵ is normally distributed and independent of
[Ŷ, Ŷ′]T , then the joint distribution [Ŷ, Ŷ′, ϵ]T is also normally distributed.

Now, by applying a linear transformation, we obtain the joint variable

 Ŷ

Ŷ′

yobs

 =

[
I 0 0
0 I 0
0 I I

] Ŷ

Ŷ′

ϵ

,

which is also normally distributed (as it is a linear transformation of a Gaussian random variable).

Now, since the conditional and marginal distributions of a Gaussian distribution are also Gaussian,
P (yobs, Ŷ

′|Ŷ) and P (yobs|Ŷ) are also Gaussian.
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Now, using Bayes’ rule, we can show P (Ŷ|yobs) is also normally distributed.

P (Ŷ |yobs) ∝ P (yobs | Ŷ)P (Ŷ)

= N (Ŷ|µlike,Σlike)N (Ŷ|µŶ,ΣŶ)

for some mean and covariance µlike,Σlike. Since the product of two multivariate Gaussians is a
Gaussian, we know that:

P (Ŷ |yobs) = N (µpost,Σpost) (5)
where

Σpost =
(
Σ−1

like +Σ−1

Ŷ

)−1

, µpost = ΣpostΣ
−1
likeµlike +ΣpostΣ

−1

Ŷ
µŶ. (6)

Now we consider at the distribution P (ŶMAP(Ŷanc)) where Ŷanc ∼ N (µanc,Σanc). We will show
that, when we set

µanc = µŶ, Σanc = ΣŶ +ΣŶΣ−1
likeΣŶ

the distribution P (ŶMAP(Ŷanc)) becomes equal to the posterior distribution N (µpost,Σpost). There
are three steps needed to show equality between these distributions:

1. Show that P (ŶMAP(Ŷanc)) is normally distributed for some mean and variance, µRMS
post ,Σ

RMS
post .

2. Show that µRMS
post = µpost.

3. Show that ΣRMS
post = Σpost.

Using the same reasoning as above, in the limit as M → ∞,

P (ŶMAP(Ŷanc)) = argmax
Ŷ

P (yobs|Ŷ)Panc(Ŷ)

= argmax
Ŷ

N (Ŷ|µlike,Σlike)N (Ŷ|µanc,Σanc)

Since the max of a Gaussian is the mean, then
FMAP(Ŷanc) = AŶanc + b (7)

where we define:
A = ΣpostΣ

−1

Ŷ
(8)

b = ΣpostΣ
−1
likeµlike (9)

We will now show that E[ŶMAP(Ŷanc)] = µpost. Because we set µanc = µŶ:

E[ŶMAP(Ŷanc)] = E[AŶanc + b]

= AE[Ŷanc] + b

= AµŶ + b

= ΣpostΣ
−1

Ŷ
µŶ +ΣpostΣ

−1
likeµlike

= µpost

Finally, we will show that Var[ŶMAP(Ŷanc)] = Σpost.

Var[ŶMAP(Ŷanc)] = Var[AŶanc + b]

= AVar[Ŷanc]A
T

= (ΣpostΣ
−1

Ŷ
)(ΣŶ +ΣŶΣ−1

likeΣŶ)(ΣpostΣ
−1

Ŷ
)T

= (Σpost +ΣpostΣ
−1
likeΣŶ)(Σ−1

Ŷ
Σpost)

= ΣpostΣ
−1

Ŷ
Σpost +ΣpostΣ

−1
likeΣpost

= Σpost(Σ
−1

Ŷ
+Σ−1

like)Σpost

= Σpost
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So, P (ŶMAP(Ŷanc)) ∼ N (µRMS
post ,Σ

RMS
post ) where µRMS

post = µpost and ΣRMS
post = Σpost.

Thus, in the limit as M → ∞, P (ŶMAP(Ŷanc)) = P (Ŷ|yobs).

E.2 Derivation of loss function

We start with

ϕ = argmax
ϕ

Eθanc∼Pprior(θanc) logPlike(yobs | g(xsample,θanc;ϕ)) + logPanc(g(xsample,θanc;ϕ))

If we choose µanc = µŶ and Σanc = ΣŶ, we can simplify the logarithm of the likelihood and anchor
distributions as follows:

logPlike(yobs | g(xsample,θanc;ϕ)) =
∑
i

logN (yiobs|g(xi
sample,θanc;ϕ), σϵ)

= − 1

2σ2
ϵ

∑
i

∥yiobs − g(xi
sample,θanc;ϕ)∥22

logPanc(g(xsample,θanc;ϕ)) = logN (g(xsample,θanc;ϕ)|µŶ,ΣŶ)

= −1

2
δTΣ−1

Ŷ
δ

where δj = g(xj
sample,θanc;ϕ)− f(xj

sample;θanc).

Putting these together, we get:

ϕ = argmax
ϕ

Eθanc∼Pprior(θanc) −
1

2σ2
ϵ

∑
i

∥yiobs − g(xi
sample,θanc;ϕ)∥22 −

1

2
δTΣ−1

Ŷ
δ

= argmin
ϕ

Eθanc∼Pprior(θanc)
1

N

∑
i

∥yiobs − g(xi
sample,θanc;ϕ)∥22 +

1

N
σ2
ϵδ

TΣ−1

Ŷ
δ
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