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ABSTRACT

Efficient training strategies for large-scale diffusion models have recently empha-
sized the importance of improving discriminative feature representations in these
models. A central line of work in this direction is representation alignment with
features obtained from powerful external encoders, which improves the representa-
tion quality as assessed through linear probing. Alignment-based approaches show
promise but depend on large pretrained encoders, which are computationally expen-
sive to obtain. In this work, we propose an alternative regularization for training,
based on promoting the Linear SEParability (LSEP) of intermediate layer repre-
sentations. LSEP eliminates the need for an auxiliary encoder and representation
alignment, while incorporating linear probing directly into the network’s learning
dynamics rather than treating it as a simple post-hoc evaluation tool. Our results
demonstrate substantial improvements in both training efficiency and generation
quality on flow-based transformer architectures such as SiTs, achieving an FID of
1.46 on 256× 256 ImageNet dataset.

Figure 1: (a) Overview of the proposed Linear SEParability (LSEP) regularization. Unlike the linear
probing test (Alain & Bengio, 2016), where separability of a target layer is evaluated on a frozen
model, LSEP unlocks the layers and jointly optimizes a linear probe branch/classifier along with the
denoising process. This actively drives the target layers toward higher linear separability of features,
substantially enhancing the generative model’s effectiveness on the denoising task without relying on
any large-scale external encoder. (b) SiT-XL with LSEP exhibits markedly faster FID improvement
(without classifier-free guidance) than baseline SiT-XL, and by 4M iterations, its performance is
comparable to that of the alignment-based model (REPA).

1 INTRODUCTION

Diffusion models have demonstrated remarkable generative quality in a wide range of visual tasks,
motivating additional architectural innovations to further improve their performance (Dhariwal &
Nichol, 2021; Karras et al., 2022; Peebles & Xie, 2023; Ma et al., 2024). These models inherently
learn semantically meaningful representations through the noise-prediction objective used in de-
noising (Baranchuk et al., 2022; Xiang et al., 2023; Chen et al., 2025). However, their learned
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representations are not explicitly optimized for representation learning and are often less expressive
than models trained specifically for this purpose (Xiang et al., 2023; Yu et al., 2025).

From a representational perspective, a growing body of research has examined how improving learned
representations can benefit diffusion training (Zhu et al., 2024; Yu et al., 2025; Jiang et al., 2025; Leng
et al., 2025; Yao et al., 2025). These studies have explored methods to improve the training efficiency
and generative performance of transformer-based diffusion models through representation alignment.
In particular, they have consistently shown that acquiring strong representations at specific network
depths by aligning with high-quality internal (Zhu et al., 2024; Jiang et al., 2025) or external (Yu
et al., 2025; Leng et al., 2025; Yao et al., 2025) representations significantly accelerates convergence
and enhances the quality of generated outputs.

A recent powerful approach, representation alignment (REPA) (Yu et al., 2025), leverages high-quality
representations extracted from large-scale pre-trained transformer models, such as DINOv2 (Oquab
et al., 2024) and CLIP (Radford et al., 2021). REPA explicitly aligns early-stage diffusion transformer
features with clean image features from external encoders, thereby encouraging stronger represen-
tational capacity. This alignment enables deeper layers to concentrate on high-frequency content,
ultimately improving generative performance. However, training such pre-trained visual encoders
demands access to large-scale datasets and involves substantial computational costs.

An alternative approach leverages self-representation alignment (Zhu et al., 2024; Jiang et al., 2025)
without external encoders. In this framework, self-representation alignment (SRA) (Jiang et al., 2025)
adapts teacher–student discriminative pair structures within diffusion models to enable self-supervised
knowledge distillation (Zhu et al., 2024). Using the observation that deeper layers produce richer
representations (Xiang et al., 2023; Yu et al., 2025), the teacher is assigned to deeper layers with
lower noise, while the student is associated with the earlier layers. This strategy has been shown to
enhance training effectiveness without relying on pre-trained encoders. Nevertheless, the approach
remains fundamentally constrained by the representational capacity of the diffusion model itself.

To assess the effectiveness of learned representations, prior work commonly employs linear prob-
ing (Alain & Bengio, 2016). In this evaluation protocol, the trained diffusion model is frozen,
and features from specific layers are extracted to train a lightweight linear probe (classifier). The
classifier’s accuracy serves as a measure of the degree of linear separability of the feature space.
Linear probing accuracy has been shown to correlate strongly with both the training efficiency and
the generative quality of diffusion transformers (Leng et al., 2025; Yu et al., 2025). These findings
suggest that a key factor underlying the success of prior approaches is the refinement of feature
representations, thereby promoting linear separability.

Our Approach: This work is motivated by a simple yet fundamental question:

“Can diffusion models learn highly linearly separable representations that improve training efficiency
while producing higher-quality outputs without representation alignment or external encoders?”

To this end, we introduce Linear SEParability (LSEP), a training regularization strategy that incorpo-
rates a linear probe into diffusion models to simultaneously improve the separability of early-stage
hidden representations and optimize the denoising objective.

In particular, we insert a trainable linear probe into an intermediate layer of the diffusion model,
as shown in Fig. 1, similar in spirit to linear probing evaluations, but without freezing the model
parameters. Unlike prior alignment-based approaches, our method does not require an external visual
encoder or explicit representation alignment, while still promoting stronger linear separability at the
intended depth of the diffusion model. Experiments show that LSEP substantially boosts both the
training efficiency and the generative output quality on flow-based transformer SiTs (Ma et al., 2024).
Our main contributions are as follows:

• We introduce Linear SEParability (LSEP), a framework that integrates a linear probe (classifier)
into generative model training to simultaneously enhance linear separability and the standard
denoising objective.

• To enable the two objectives to mutually reinforce each other, we propose novel training techniques
for the classification term while keeping the denoising training unchanged: (1) classification-
specific conditioning for the linear probe branch, (2) random cropping to enhance patch-level linear
separability, and (3) time-dependent weighting of the classification loss.
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• We demonstrate that LSEP substantially enhances both training efficiency and generative quality
in flow-based transformer architectures, without relying on an external visual encoder or explicit
representation alignment.

• SiT-XL with LSEP converges to lower FID significantly faster than the baseline SiT-XL, reaching
performance comparable to the alignment-based model REPA, as shown in Fig. 1 (b). Moreover, it
achieves an FID of 1.46 with classifier-free guidance using the guidance interval, establishing the
best performance among models without relying on external encoder architectures.

• Finally, we show that LSEP synergistically combines with alignment-based methods to enhance
linear separability of representations through distinct mechanisms, and to further improve both
training efficiency and generative performance.

2 PRELIMINARIES

2.1 TRAINING FLOW-BASED DIFFUSION TRANSFORMER

Flow-based approaches (Lipman et al., 2023) learn a velocity field vθ(xt, t) that defines a probability
flow ordinary differential equation (PF-ODE), characterizing the deterministic evolution of a data
point xt. SiT (Ma et al., 2024) adopts this framework to model a continuous-time forward process:

xt = αtx0 + σtϵ, ϵ ∼ N (0, I), (1)

where αt and σt are time-dependent functions such that αt decreases and σt increases with t ∈ [0, T ],
satisfying α0 = σT = 1 and αT = σ0 = 0. The PF-ODE is given by dxt

dt = vθ(xt, t), where the
distribution of the ODE solution at time t matches the marginal distribution of the forward process.
To train the velocity model vθ(xt, t), the following velocity matching loss is minimized:

Lvelocity = Ex0,ϵ,t

[
∥vθ(xt, t)− α̇tx0 − σ̇tϵ∥2

]
, (2)

where α̇t =
dαt

dt and σ̇t =
dσt

dt denote the time derivatives of αt and σt, respectively.

In practice, to incorporate class guidance via classifier-free guidance (CFG) (Ho & Salimans, 2021),
the velocity model vθ is trained conditionally on a label c ∈ C, resulting in a model of the form
vθ(xt, t | c) (Peebles & Xie, 2023; Ma et al., 2024; Yu et al., 2025). Here, C includes both the dataset
class labels {cclass} and an unconditional label c∅, i.e. C = {cclass} ∪ c∅. Both types of conditions
are employed during training, where the unconditional label is used with a small probability, ρD ≪ 1.

2.2 REPRESENTATION ALIGNMENT FOR GENERATIVE MODELS

To improve training efficiency and generation quality of diffusion transformers, REPA (Yu et al.,
2025) aligns a model’s hidden-layer representations with large-scale pretrained self-supervised visual
encoders such as DINOv2 (Oquab et al., 2024) and CLIP (Radford et al., 2021). Specifically,
REPA introduces a regularization term that maximizes patch-wise similarity between features yclean,
extracted from the pretrained external encoder, and kth hidden layer features hk

t of the diffusion
transformer encoder at timestep t. The representation alignment loss is defined as:

Lrepa = −Exclean,ϵ,t

[
1

N

N∑
n=1

simcos

(
yn

clean, MLP(hk,n
t )

)]
, (3)

where N is the total number of patches, ϵ is the noise level at timestep t, and MLP is a trainable
multilayer perceptron that projects hk,n

t to adaptively align it with the representation space of yn
clean,

while simcos(·, ·) denotes the cosine similarity function. This regularization term is incorporated into
the original diffusion-based objective in Eq. 2 during training, yielding the combined loss:

LREPA = Lvelocity + λ · Lrepa. (4)

Large-scale pretrained encoders (e.g., DINOv2) are optimized not only with image-level but also
with patch-level objectives, enabling them to learn more robust representations (Zhou et al., 2022;
Oquab et al., 2024). From the perspective of the patch-level manifold space (Hao et al., 2022),
REPA leverages patch-wise representation alignment to capture these finer-grained structures, thereby
maximizing the effectiveness of alignment with such pretrained encoders.
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2.3 LINEAR PROBING

Linear probing evaluations (Alain & Bengio, 2016) were originally proposed to analyze deep neural
networks by measuring the degree of linear separability of features across layers. In this approach, the
model under investigation is frozen. Given an input x, the neural network encoder extracts features
hk at the kth layer, analogous to Section 2.2, which are subsequently reduced via global pooling to
yield the representation gk. A linear classifier fk is then trained on these pooled features to solve the
classification task by minimizing the cross-entropy loss:

Lclass = −E(x,c)

[
c⊤gt log

(
fk(gk)

)]
, (5)

where cgt is ground-truth label and fk(gk) = softmax(Wgk + b) with (W,b) as probe parameters.

Recent studies have demonstrated that both transformer-based and CNN-based diffusion models learn
semantically meaningful representations through the denoising task in training (Baranchuk et al.,
2022; Chen et al., 2025; Xiang et al., 2023), as evidenced by evaluations of their linear separability
via linear probing. Furthermore, alignment-based methods have employed linear probing to quantify
the improvements in the linear separability of the target layers’ representations, demonstrating how
such enhancements correlate with training efficiency (Jiang et al., 2025; Yu et al., 2025).

3 LSEP: PROMOTING LINEAR SEPARABILITY OF DENOISING NETWORKS

We introduce a simple yet novel trainable linear probe into an intermediate layer of the diffusion
model, in the spirit of linear probing evaluations, but train it without freezing its model parameters. We
conceptualize our proposed method as a harmonious integration of diffusion and linear classification
tasks, designed to enhance both simultaneously, as described in Fig. 1. All intermediate layers,
along with a linear probe inserted at a pre-specified depth, are simultaneously trained to enhance
linear separability of the intermediate representations. The entire diffusion model leverages these
well-separated features to perform effective denoising.

Consequently, our model should be carefully designed to accommodate the coexistence of these two
distinct tasks. To this end, we introduce several novel training strategies: (1) design of the linear
probe branch, (2) task-specific conditioning of the shared intermediate layers, (3) random cropping
for improving patch-level linear separability, and (4) time-dependent weighting scheduling of the
linear probing loss. Each subsequent subsection provides details on these components, and their
respective results are presented in Section 4.3.

3.1 LINEAR CLASSIFIER BUILT ON DIFFUSION MODEL

Figure 2: Architectures of the linear classifier.

As illustrated in Fig. 2, our linear classifier consists
of a normalization module followed by a linear layer,
similar in spirit to prior works (Alain & Bengio, 2016;
He et al., 2022; Chen et al., 2025; Yu et al., 2025).
Unlike these works, which may or may not employ
batch normalization, we adopt layer normalization to
ensure stable training in the presence of the denoising
objective. Thus, intermediate features extracted from
the SiT model are globally aggregated via average pooling for dimensionality reduction, followed
by layer normalization and a linear classification head. The diffusion transformer is trained up to
a specified target depth jointly with the classifier. This joint optimization encourages early-stage
representations to become more linearly separable, guided by supervision from the classifier. The clas-
sification loss is given in Eq. 5, with the only modification being the addition of layer normalization.

Our proposed total loss, which incorporates the scaling factor ωclass for the classification term to
control the trade-off between classification and denoising tasks, together with Eq. 2, is defined as:

LLSEP = Lvelocity + ωclass · Lclass. (6)

3.2 CONDITIONING TO LINEAR PROBE BRANCH

In practice, conditioning of the diffusion transformer consists of time and class embeddings, which
are summed and applied through projection operators. For time embedding, we use the same timestep

4
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conditioning for both tasks, which helps the classifier to align with the temporal dynamics of the
denoising process. However, we apply a different class conditioning to the linear probe branch, as
indicated by the blue path in Fig. 1 to enhance linear separability of intermediate features. This
is because the class embedding is a function of the class label, cclass. Thus, this information may
cause shortcut learning, where the linear classifier relies directly on class conditioning to perform
classification rather than learning linearly separable representations.

To mitigate this, we assign the unconditional class label (c∅) as cclass with probability ρL, chosen to
be close to 1. This withholds the class information from the classifier and prevents it from relying
solely on class conditioning. With probability 1− ρL, we assign another class label c ∈ C − {c∅} as
cclass, which exposes the classifier to non–affine-transformed features. Note this approach is different
from the class conditioning used for the denoising task of the diffusion model, where non-null class
information is included in the class conditioning with higher probability, 1 − ρD. Our combined
strategy encourages feature representations in the early stages to capture meaningful semantics.

3.3 RANDOM CROPPING FOR IMPROVING PATCH-LEVEL LINEAR SEPARABILITY

Figure 3: t-SNE 3D projection visualization of the patch-level manifold space of SiT-XL using
baseline, REPA, and our method with and without random cropping (400K iters, t=0.7). Each patch
within the 8th layer intermediate features is represented by a square, with distinct colors for 7 classes.

Our linear probe uses a summary statistic of the intermediate features, obtained via global pooling, to
perform its classification task. While this ensures linear separability of the pooled feature vector, the
patch-level features may not be as optimally separated in the patch-level manifold space (Hao et al.,
2022). To further investigate this, we performed a t-SNE (Maaten & Hinton, 2008) 3D visualization
in the patch-level manifold space, as illustrated in Fig. 3. In Fig. 3 (b), the alignment-based method
(REPA) forms well-separated clusters by leveraging patch-wise alignment with an extensively pre-
trained external encoder. Our method (Fig. 3 (c)), optimized with globally pooled features, achieves
improved clustering compared to the baseline (a). However, certain patches (in light orange and light
blue) exhibit a dispersed distribution.

To address this, we randomly crop the intermediate feature map into n× n patches and compute the
mean over this subset before feeding it to the linear classifier as illustrated in Fig. 2. Concretely, we
first reshape the intermediate features from hk ∈ RT×D to Rt×t×D, where T is the length of features,
D is the channel dimension, and t2 = T . We then randomly crop the features to Rn×n×D, with
n ≤ t. This strategy enhances the separability of both the mean vectors and subsets of patch-level
features, while also introducing diversity similar to data augmentation. As illustrated in Fig. 3 (d),
this promotes clearer cluster formation and further contributes to improved denoising training.

3.4 TIME-DEPENDENT WEIGHTING SCHEDULING OF Lclass

One of the major differences between standard classification and classification within our designed
diffusion model is that the inputs are combined with different noise levels, resulting in a multitude
of input distributions. Although the time embedding effectively tracks these variations and guides
the corresponding denoising tasks, a single linear probe has limitations in classifying across such
diverse distributions. While incorporating a time-dependent embedding into the classifier or using
multiple classifiers for different time steps may be viable, our focus is not on enhancing the classifier
head. Instead, we maintain a single classifier and introduce diversity through weight scheduling
to improve the linear separability of intermediate transformer blocks.
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Table 1: Performance comparison of the proposed key training strategies on the SiT-L/2 model. Each
strategy is distinguished by a different color, and dark colors indicate the best option within each
component. The symbols ↑ and ↓ indicate that higher and lower values are better, respectively.

Iter. Uncond. Prob. Target Rand. Crop (n×n) ωclass FID↓ sFID↓ IS↑ Pre↑ Rec↑
400K Baseline SiT-L/2 18.5 5.20 72.2 0.64 0.63

400K

0.1 8

n = 16 0.03

20.6 5.47 70.2 0.62 0.65
0.8 8 13.1 5.33 95.2 0.67 0.63
0.9 8 12.9 5.37 96.2 0.67 0.64
1.0 8 14.1 5.34 91.0 0.66 0.64

400K 0.9

6

n = 16 0.03

12.8 5.41 96.2 0.67 0.64
7 12.7 5.34 98.1 0.67 0.64
8 12.9 5.37 96.2 0.67 0.64
9 13.9 5.37 91.5 0.66 0.65

10 13.4 5.43 93.0 0.66 0.64

400K 0.9

7 n = 16 0.03 12.7 5.34 98.1 0.67 0.64
7 n ∈ [11, 16] ∩ Z 0.03 13.0 5.33 95.8 0.67 0.64
7 n ∈ [12,16] ∩ Z 0.03 12.5 5.34 98.8 0.67 0.64
7 n ∈ [13, 16] ∩ Z 0.03 13.2 5.33 95.2 0.67 0.64
7 n ∈ [14, 16] ∩ Z 0.03 12.5 5.37 97.6 0.68 0.64

400K 0.9

7 n = 16 0.03 12.7 5.34 98.1 0.67 0.64
7 n = 16 [0.02, 0.03]10 Bins 12.5 5.33 97.4 0.67 0.64
7 n = 16 [0.02, 0.03]5 Bins 12.5 5.36 98.6 0.67 0.64
7 n ∈ [12, 16] ∩ Z [0.02, 0.025]10 Bins 12.5 5.32 97.9 0.67 0.63
7 n ∈ [12, 16] ∩ Z [0.0275, 0.0325]5 Bins 12.6 5.41 97.7 0.67 0.64
7 n ∈ [12, 16] ∩ Z [0.0275,0.0325]10 Bins 12.3 5.40 98.3 0.68 0.64

To this end, we apply a time-dependent piecewise constant weighting scheme to the linear probe loss,
allowing the linear probe to assign different weights according to the noise level and thus learn more
effectively. This approach divides the different noise level distributions into k groups, allowing the
linear probe to be optimized for each group. It also assigns larger weights to higher noise levels,
which helps the classifier perform more effectively on noisier inputs. The time-dependent weight,
ωclass(t) with k bins is defined as:

ωclass(t, k) = ωstart + ⌊t · k⌋ ·∆ω, t ∈ [0, 1] (7)

where ∆ω = (ωmax − ωmin)/k, and ωmin and ωmax are the minimum and maximum weighting values,
respectively. We denote this as ωclass(t, k) = [ωstart, ωend]k bins for future reference.

4 EXPERIMENTAL SETUP

4.1 IMPLEMENTATION DETAILS

We closely follow the experimental setup of SiT (Ma et al., 2024) and REPA (Yu et al., 2025),
unless stated otherwise. All models are trained and evaluated on ImageNet (Deng et al., 2009),
where images are preprocessed to a resolution of 256×256 following the data preprocessing protocol
of ADM (Dhariwal & Nichol, 2021). We employ the Base, Large, and X-Large model variants
introduced in SiT (Ma et al., 2024), all configured with a patch size of 2. We insert a linear classifier
after the 4th, 7th, and 8th layers in the SiT-B/2, SiT-L/2, and SiT-XL/2 models, respectively.

To ensure fair comparison with prior work (Ma et al., 2024; Yu et al., 2025), we train all models
using a consistent global batch size of 256. Optimization is performed using AdamW (Kinga et al.,
2015; Loshchilov & Hutter, 2019) with a constant learning rate of 1× 10−4 for training the diffusion
model. We provide the detailed hyperparameters in Appendix A.

4.2 EVALUATION PROTOCOL

For evaluating image generation quality, we strictly follow the ADM evaluation protocol (Dhariwal &
Nichol, 2021). We report several standard metrics, including Fréchet Inception Distance (FID) (Heusel
et al., 2017), Structural FID (sFID) (Nash et al., 2021), Inception Score (IS) (Salimans et al., 2016),
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and Precision and Recall (Kynkäänniemi et al., 2019), all computed using 50K generated samples.
Following the sampling procedures from SiT (Ma et al., 2024) and REPA (Yu et al., 2025), we adopt
the SDE-based Euler–Maruyama sampler with 250 steps. All evaluations are performed on 50K
validation images from the ImageNet dataset (Deng et al., 2009), resized to 256×256 resolution.

4.3 ANALYSIS OF KEY STRATEGIES

We present detailed experimental results for the SiT-L/2 model in Tab. 1, effectively serving as an
ablation study for the training innovations outlined in Section 3.

Class Conditioning for Linear Probe The unconditioning probability ρL indicates the proportion
of the null class c∅, as in Section 3.2. When the unconditioning probability is set to 0.1, matching that
of the denoising model, the linear probe relies on the conditioning label for shortcut learning. This
not only fails to improve the linear separability of intermediate features but also degrades generative
performance. Conversely, setting it to ρL = 1.0 (i.e., using only c∅) prominently improves generative
performance. However, this also causes the class conditioning for the classifier and the denoiser to be
learned independently, leading to inconsistencies in class representation. Therefore, we find that using
ρL = 0.9 provides the optimal conditioning ratio. Further analysis is provided in Appendix B.1.

Target Depth Numerous works have demonstrated that efficient training of diffusion models
depends on representation quality in early layers (Yu et al., 2025; Jiang et al., 2025). Our results align
with these insights, showing that the optimal depth for incorporating the linear classifier corresponds
to the shallow layers of the model. When the depth is shifted toward the middle layers (e.g., 9 or
10 for SiT-L/2), the generative performance degrades, as the reduced capacity for denoising limits
overall effectiveness. Conversely, connecting to very early layers also hampers denoising training.
We empirically find that layer 7 yields the best results for SiT-L, and adopt this configuration in our
experiments. For SiT-B and SiT-XL, the optimal depths are found to be layers 4 and 8, respectively.

Random Cropping To enhance linear separability in the patch-level manifold space as shown
in Fig. 3, we investigated the effects of random cropping with varying box sizes. We found that
selecting a box size randomly from the range 12 to 16 yielded the best results. This introduces
variability, providing more diverse feature samples for the linear classifier and improving separability
not only of pooled features but also within the patch-level manifold space.

Time-dependent ωclass The first three rows compare a time-dependent ωclass to a constant ωclass in
the absence of random cropping. This demonstrates that assigning different weights to Lclass over
time, using a piecewise constant schedule with multiple bins for training a linear classifier improves
the generative results. The last three rows further examine different weight intervals and numbers
of bins when time-dependent ωclass is combined with random cropping approach. The results show
[0.0275, 0.0325]10 Bins achieves the best performance, and is used for the remainder of the study.

5 RESULTS

5.1 LINEAR SEPARABILITY

We evaluate the effect of promoting linear separability using linear probing, 3D projections, and PCA
visualization for SiT-XL with our proposed method. Fig. 4 (a) shows that LSEP achieves higher overall
linear probing accuracy across layers, particularly at the early stages. Unsurprisingly, linear probing
performance is substantially improved using the LSEP training strategy that jointly targets a linear
classification task. In Fig. 4 (b), our proposed method produces well-defined clusters, comparable to
those observed in REPA, which indicates that the classes are clearly linearly separable, even though
no external encoder information is used. We also provide PCA visualizations in Appendix B.3, which
demonstrate that LSEP preserves clearly separable components across varying noise levels.

5.2 QUANTITATIVE RESULTS

Analysis Across Model Sizes. Tab. 2 summarizes generative performance of models of different
sizes with different training paradigms. Note the number of parameters for REPA excludes the addi-
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Figure 4: (a) Linear probing evaluation results on baseline SiT-XL and SiT-XL+LSEP with t = 0.1.
(b) t-SNE 3D projections for baseline SiT-XL (left), alignment-based REPA (middle), and proposed
method (right). Intermediate features are extracted from the 8th layer of each pre-trained SiT-XL
model with t = 0.1. Each feature is globally pooled and sampled from 20 randomly selected classes,
with 100 samples per class. The representations are then projected into 3D space, with each class
visualized using a distinct color. For all methods, the 400K-iteration checkpoint was used.

tional parameters related to the external encoder. Our method consistently improves the generation
FID compared to the baseline SiT baseline trained for the same 400K iterations. Notably, FID of
12.3 (Tab. 2) and IS of 98.3 (Tab. 1) achieved by our LSEP (SiT-L) outperform the 12.5 and 90.7,
respectively, reported for REPA (SiT-L) (Yu et al., 2025) with pretrained external MAE-L encoder (He
et al., 2022), which contains an additional 304M parameters in addition to the transformer diffusion
parameters.

Table 2: FID comparisons on 256×256 ImageNet,
without employing CFG. ↓ indicates lower values
are better.

Model #Params Iter. FID↓

SiT-B/2 130M 400K 33.0
SiT-B/2 + REPA 137M 400K 24.4
SiT-B/2 + LSEP (ours) 131M 400K 28.3
SiT-B/2 + REPA + LSEP (ours) 139M 400K 20.5

SiT-L/2 458M 400K 18.8
SiT-L/2 + REPA 466M 400K 9.7
SiT-L/2 + LSEP (ours) 459M 400K 12.3
SiT-L/2 + REPA + LSEP (ours) 467M 400K 9.5

SiT-XL/2 675M 400K 17.2
SiT-XL/2 + REPA 683M 400K 7.9
SiT-XL/2 + LSEP (ours) 676M 400K 10.4
SiT-XL/2 + REPA + LSEP (ours) 684M 400K 7.5

While LSEP shows substantial gains in early
stages of trainings, we emphasize that LSEP
continues to steadily improve FID throughout
training, with consistent gains: by 4M iterations,
its performance approaches that of REPA, while
remaining well beyond the reach of baseline
training at 7M iterations, as illustrated in Fig. 1
(b). Furthermore, our approach achieves these
promising results without relying on any pre-
trained external models or explicit represen-
tation alignment. Selected qualitative results
for SiT-XL/2 using our method are presented
in Fig. 5. More qualitative results are provided
in Appendix D.

Combining Alignment-Based Methods with LSEP. REPA improves the representations by per-
forming token-wise alignment, while our LSEP enhances linear separability by mainly utilizing mean
representation vectors. Both methods individually improve linear separability; however, when used
together, they are expected to provide more powerful representation geometry and improved training

Figure 5: Selected samples on ImageNet 256× 256 from the SiT-XL/2 model with LSEP. We use
classifier-free guidance with ωcfg = 4.0.
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Table 3: System-level comparison on ImageNet 256× 256 with CFG. Within each architecture, the
best on each metric are bolded. Arrows indicate whether lower (↓) or higher (↑) values are better.

Model Epochs Tokenizer FID↓ sFID↓ IS↑ Pre.↑ Rec.↑

Pixel diffusion
ADM-U (Dhariwal & Nichol, 2021) 400 - 3.94 6.14 186.7 0.82 0.52
VDM++ (Kingma & Gao, 2023) 560 - 2.40 - 225.3 - -
Simple diffusion (Hoogeboom et al., 2023) 800 - 2.77 - 211.8 - -
CDM (Ho et al., 2022) 2160 - 4.88 - 158.7 - -

Latent diffusion, U-Net
LDM-4 (Rombach et al., 2022) 200 LDM-VAE 3.60 - 247.7 0.87 0.48

Latent diffusion, Transformer with pre-trained external encoder
SiT + REPA (Yu et al., 2025) 800 SD-VAE 1.42 4.70 305.7 0.80 0.65
LightningDiT (Yao et al., 2025) 800 VA-VAE 1.35 4.15 295.3 0.79 0.65
REPA-E (Leng et al., 2025) 800 VA-VAE 1.26 4.11 314.9 0.79 0.66

Latent diffusion, Transformer without pre-trained external encoder
DiT-XL/2 (Peebles & Xie, 2023) 1400 SD-VAE 2.27 4.60 278.2 0.83 0.57
SiT-XL/2 (Ma et al., 2024) 1400 SD-VAE 2.06 4.50 270.3 0.82 0.59
SD-DiT (Zhu et al., 2024) 480 SD-VAE 3.23 - - - -
MaskDiT (Zheng et al., 2024) 1600 SD-VAE 2.28 5.67 276.6 0.80 0.61
DiT + TREAD (Krause et al., 2025) 740 SD-VAE 1.69 4.73 292.7 0.81 0.63
SiT + SRA (Jiang et al., 2025) 800 SD-VAE 1.58 4.65 311.4 0.80 0.63
SiT + LSEP (ours) 800 SD-VAE 1.46 4.94 296.8 0.80 0.64

efficiency. As shown in Tab. 2, combining REPA with LSEP consistently drives FID even lower,
proving that this synergy not only further accelerates training but also enhances generative quality.
Additional analysis using patch-level 3D projection visualizations is presented in Appendix B.2.

System-Level Comparison. In Tab. 3, we report evaluation results using CFG (Ho & Salimans,
2021) with the guidance interval (Kynkäänniemi et al., 2024) (please see Appendix C for details).
Our method achieves a best FID of 1.46 among models that do not use an external visual encoder and
is comparable to alignment-based models, such as REPA, which rely on pretrained external encoders.

6 DISCUSSION

Limitations. The scope of this paper does not cover advanced generative settings such as text-
to-image generation, video generation, and 2K higher-resolution images. Further investigation is
warranted to evaluate the applicability and scalability of our framework in these scenarios.

Future Directions. Similar to how REPA variants (Yao et al., 2025; Leng et al., 2025) improve
generative performance by tuning the VAE through representation alignment, LSEP inherently
offers an alternative means to achieve this. Furthermore, since most vision foundation models are
transformer-based, prior studies on representation alignment have focused mainly on transformer
diffusion models. In contrast, LSEP can also be applied to CNN-based models, broadening its
applicability. These ideas will be investigated in future studies.

7 CONCLUSION

In this paper, we proposed LSEP, a regularization approach that independently enhances the linear
separability of generative models without relying on large-scale pre-trained encoders or representation
alignment. We demonstrated that linear separability is a core principle of diffusion training and
repurposed linear probing, which is typically used for post-hoc evaluation, as an effective training
tool. Our results show that LSEP improves both training efficiency and generative performance,
achieving a state-of-the-art FID score of 1.46 with a single model, without the need for any alignment.
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A IMPLEMENTATION DETAILS

Table 4: Hyperparameter setup for different SiT models and LSEP.
SiT-B/2 SiT-L/2 SiT-XL/2

Architecture
Input dim. 32× 32× 4 32× 32× 4 32× 32× 4
Num. layers 12 24 28
Hidden dim. 768 1,024 1,152
Num. heads 12 16 16

LSEP
Uncon. Prob. 90% 90% 90%
Target depth 4 7 8
Rand. Crop [14, 16] [12, 16] [12, 16]
ω(t) [0.005, 0.01]10 bins [0.0275, 0.0325]10 bins [0.0225, 0.03]10 bins

lr for linear probes. 0.03 0.0001 0.0001

Optimization
Training iteration 400K 400K 400K / 4M (Fig. 1)
Batch size 256 256 256
Optimizer AdamW AdamW AdamW
lr 0.0001 0.0001 0.0001
(β1, β2) (0.9,0.999) (0.9,0.999) (0.9,0.999)

Interpolants
αt 1− t 1− t 1− t
σt t t t
wt σt σt σt

Training objective v-prediction v-prediction v-prediction
Sampler Euler-Maruyama Euler-Maruyama Euler-Maruyama
Sampling steps 250 250 250
Guidance - - ωcfg = 1.8, Interval : [0, 0.65] (Tab.3)

Strictly following the experimental setups of SiT (Ma et al., 2024) and REPA (Yu et al., 2025) for
the denoising loss, we integrate the linear probe into our model and employ the hyperparameters
listed in Tab. 4. We use an increased learning rate for the linear classifier in the SiT-B/2 model, which
significantly improves both training efficiency and generative performance. On the other hand, for
the Large and X-Large models, this adjustment does not lead to improvements in generative results.
All experiments were conducted using 4 NVIDIA A100 GPUs.

B ADDITIONAL ANALYSIS

B.1 CONDITIONING FOR LINEAR PROBE BRANCH

Figure 6: Comparison of Lclass across
training epochs with varying condition-
ing ratios in the linear probe branch.

As discussed in Section 4.3, conditioning for linear prob-
ing plays an important role in improving both linear sep-
arability and generation quality. When the unconditioning
probability ρL in Section 3.2 is set to 0.1, matching that of
the denoising model, the linear probe tend to rely on short-
cut learning, as illustrated by the yellow curve in Fig. 6.
Moreover, as the unconditioning ratio increases, the clas-
sifier’s reliance on class information gradually diminishes,
leading to a more progressive learning process. How-
ever, as mentioned earlier, when the conditioning is fully
assigned to the unconditional class (i.e., ρL = 1.0), a mis-
match arises with the conditioning of the denoising model,
which prevents achieving optimal performance. Therefore,
incorporating a small proportion of the conditional class
cclass is necessary to obtain the best results.
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B.2 FURTHER ANALYSIS OF COMBINING LSEP AND REPA

Figure 7: t-SNE 3D projection visualization of baseline SiT-XL, SiT-XL with our method, SiT-XL
with REPA, and SiT-XL with REPA combined with our method in the patch-level manifold space
(400K iterations, t = 0.7), using the same settings as in Fig. 3.

In Section 5.2, we showed that combining LSEP with the alignment-based method (REPA) further
improves training efficiency and generative performance of the latter. The patch-level linear separa-
bility provided by REPA, together with the mean-vector linear separability from LSEP, enhances the
learned representations and thereby strengthens training. As shown in Fig. 7, in t-SNE 3D projection,
the combination of REPA and LSEP results in the strongest class-wise separability.

B.3 PCA VISUALIZATION

Figure 8: PCA visualizations at various noise levels and layers within the SiT-XL models. Checkpoints
at 400K iterations of baseline SiT-XL and SiT-XL + LSEP are used for the visualizations.

We plot the PCA visualization of intermediate features. These demonstrate that LSEP preserves
distinctly separable components across different noise levels., with particularly clear separation in the
early-stage layers and under higher noise conditions (e.g., layers up to 14, t = 0.6 and 0.8).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Evaluation results of SiT-XL + LSEP at 4M iteration with different CFG weight and guidance
interval.

Model #Params Iter. wcfg Interval FID↓ sFID↓ IS↑ Pre.↑ Rec.↑

SiT-XL/2 (Ma et al., 2024) 675M 7M [0, 1] 1.50 2.06 4.50 270.3 0.82 0.59

+ LSEP (ours) 675M 4M 1.95 [0, 0.75] 2.18 4.55 344.3 0.83 0.60
+ LSEP (ours) 675M 4M 1.95 [0, 0.70] 1.81 4.68 328.6 0.82 0.62
+ LSEP (ours) 675M 4M 1.95 [0, 0.65] 1.59 4.87 312.2 0.81 0.63
+ LSEP (ours) 675M 4M 1.95 [0, 0.60] 1.49 5.15 296.7 0.79 0.64
+ LSEP (ours) 675M 4M 1.90 [0, 0.60] 1.50 5.15 291.8 0.79 0.64
+ LSEP (ours) 675M 4M 1.85 [0, 0.60] 1.56 5.10 282.6 0.79 0.65
+ LSEP (ours) 675M 4M 1.80 [0, 0.65] 1.46 4.94 296.8 0.80 0.64
+ LSEP (ours) 675M 4M 1.80 [0, 0.60] 1.55 5.17 280.6 0.79 0.65

C DETAILED EVALUATION RESULTS WITH THE DIFFERENT CFG WEIGHTS
SCHEDULING

We provide detailed evaluation results of SiT-XL + LSEP under different classifier-free guidance
schedules in Tab. 5. With ωcfg in the interval [0, 0.65], our LSEP achieves the best performance.

D ADDITIONAL QUALITATIVE RESULTS

Figure 9: Uncurated samples from SiT-XL/2 + LSEP (ωCFG = 4.0, class = loggerhead turtle (33))

Figure 10: Uncurated samples from SiT-XL/2 + LSEP (ωCFG = 4.0, class = scorpion (71))
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Figure 11: Uncurated samples from SiT-XL/2 + LSEP (ωCFG = 4.0, class = golden retriever (207))

Figure 12: Uncurated samples from of SiT-XL/2 + LSEP (ωCFG = 4.0, class = border collie(232))

Figure 13: Uncurated samples from SiT-XL/2 + LSEP (ωCFG = 4.0, class = arctic fox (279))

Figure 14: Uncurated samples from SiT-XL/2 + LSEP (ωCFG = 4.0, class = wood rabbit (330))

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 15: Uncurated samples from SiT-XL/2 + LSEP (ωCFG = 4.0, class = panda (388))

Figure 16: Uncurated samples from SiT-XL/2 + LSEP (ωCFG = 4.0, class = castle (483))

Figure 17: Uncurated samples from SiT-XL/2 + LSEP (ωCFG = 4.0, class = valley (797))

Figure 18: Uncurated samples from SiT-XL/2 + LSEP (ωCFG = 4.0, class = space shuttle (812))
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