

THE UNREASONABLE EFFECTIVENESS OF SCALING AGENTS FOR COMPUTER USE

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
191

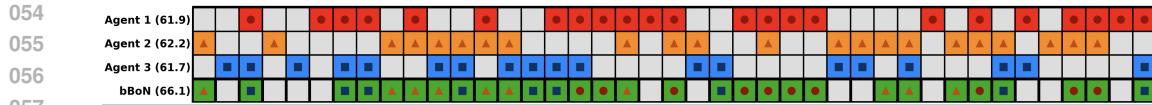


Figure 2: Disjoint task success across rollouts by three agent instances. Behavior Best-of-N (bBoN) leverages this complementarity by selecting the best trajectory among multiple rollouts.

2024; Rawles et al., 2025; Bonatti et al., 2024). Therefore, scaling CUAs effectively demands new methods for compactly representing trajectories and reliably evaluating them.

To address these challenges, we introduce Behavior Best-of-N (bBoN), a novel framework that enables wide scaling of CUAs. Our approach first converts raw trajectories into behavior narratives: concise summaries that capture what the agent actually did and how it affected the environment, preserving task-relevant action–effect summaries while filtering away irrelevant detail at individual steps. These narratives provide a compact yet faithful representation that makes it easier for a judge to compare candidates. bBoN then performs selection directly over narratives, enabling reliable selection among multiple rollouts. In addition, we build upon existing CUAs and introduce an improved baseline computer use agentic framework to generate high quality trajectories for bBoN.

Our method delivers unreasonably strong performance on computer-use benchmarks. On OS-World (Xie et al., 2024), it achieves a new state of the art with a 69.9% success rate (100 steps), surpassing the previous best of 59.9% and approaching human-level performance at 72% (Figure 1). Beyond OSWorld, our approach also demonstrates strong zero-shot generalizability on WindowsAgentArena (Bonatti et al., 2024) and AndroidWorld (Rawles et al., 2025).

Our contributions are four-fold:

- We introduce the wide scaling paradigm for CUAs, showing that generating multiple trajectories in parallel and selecting among them substantially improves robustness and coverage.
- We propose Behavior Best-of-N (bBoN), a framework that converts dense trajectories into compact behavior narratives and uses them for principled trajectory selection.
- Our method, together with an improved CUA baseline, achieves a new SoTA of 69.9% on OSWorld, surpassing prior work by a large margin (10% absolute improvement) and approaching human performance at 72%.
- We provide extensive ablations validating our design choices and demonstrate strong zero-shot generalizability on WindowsAgentArena and AndroidWorld.

2 BACKGROUND

2.1 COMPUTER-USE AGENTS

Computer-use agents (CUAs) executing user instructions can be framed as a partially observable Markov Decision Process (POMDP) defined as $\mathcal{M} = \langle \mathcal{S}, \mathcal{O}, \mathcal{A}, \mathcal{T}, \mathcal{I}, R \rangle$, where \mathcal{S} is the state space encoding the computer state, \mathcal{O} is the observation space such as desktop screenshots, \mathcal{A} is the action space of the agent (e.g. `agent.click(...)` and `agent.type(...)`), $\mathcal{T} : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ is a stochastic transition function, \mathcal{I} is the space of possible user instructions represented in natural language, and $R : (\mathcal{S} \times \mathcal{A})^* \times \mathcal{I} \rightarrow [0, 1]$ denotes the instruction reward function that assigns a scalar reward to a trajectory of states and actions $\tau := (s_0, a_0, \dots, a_{T-1}, s_t)$ on task I . We use $h_t := (o_0, a_0, \dots, o_{t-1}, a_{t-1}, o_t)$ to denote a time-ordered history of all consecutive observations and actions up to and including o_t .

A broad spectrum of computer agents has been explored including general agentic frameworks (Song et al., 2025; Yang et al., 2025b; Agashe et al., 2025; 2024), generalist agents (Anthropic, 2025; OpenAI, 2024; Guo et al., 2025a) and graphical user interface (GUI) agents (Wang et al., 2025a; Xu et al., 2025). These prior work consider a single model as the policy $\pi(a|h_t, I)$ that, when executed, yields one trajectory $\tau = (o_0, a_0, \dots, o_T)$ where $a_t \sim \pi(\cdot|h_t, I)$. In contrast, our work is the first, to our knowledge, that focuses on scaling the number of candidate solution trajectories by using multiple base models and policies, and we propose effective methods to select the optimal solution.

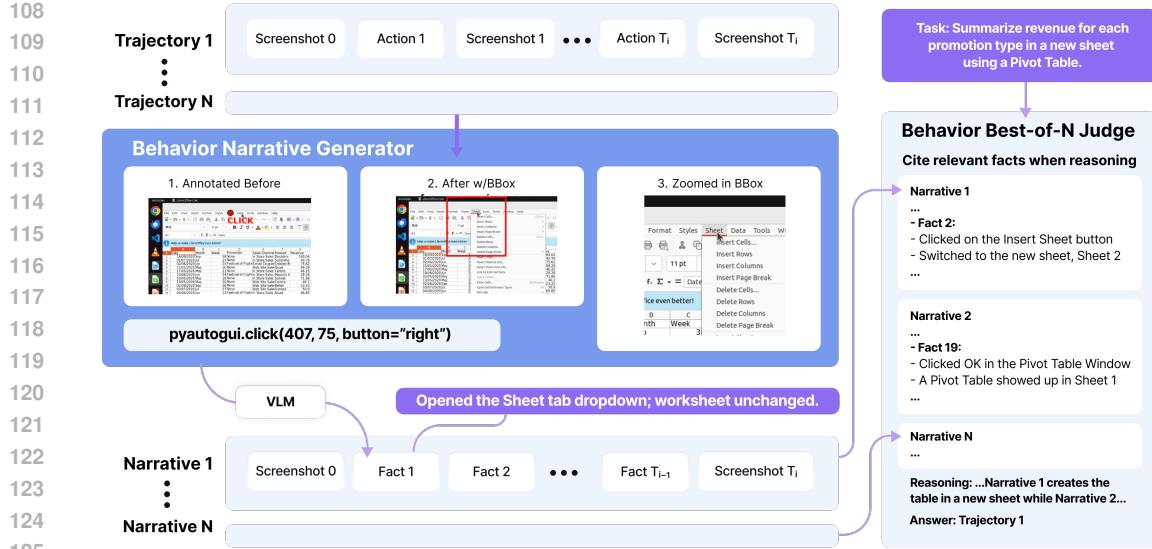


Figure 3: Behavior Best-of-N generates multiple rollouts consisting of screenshots and actions. These trajectories are converted into behavior narratives via the behavior narrative generator, using the executed action and before/after screenshots to describe what was changed. Finally, the behavior narratives are provided to the judge which selects the best trajectory through comparison.

2.2 TEST-TIME SCALING

A common strategy for improving large multimodal models and their agentic extensions is through test-time scaling (Zhu et al., 2025), where multiple solutions are generated either in parallel or sequentially, followed by selection a final response using a reward model or iterative generation of new solutions (Snell et al., 2024; Lightman et al., 2024). Recent work (Yang et al., 2025b) has adapted this idea for CUAs with *step-wise BoN* (Zhu et al., 2025), where at each step the agent π generates K candidate actions $\mathcal{C}_t = \{a_t^{(k)}\}_{k=1}^K \sim \pi(\cdot | h_t, I)$ and then a judge J selects the best action $\hat{a} = J(\mathcal{C}_t)$. While this can help with local improvements, it commits the rollout to the current agent plan. In tasks with multiple valid solutions paths, this can lead the agent to over-commit to a harder route, missing easier alternatives. In contrast, our work investigates the *wide scaling* approach using trajectory-level BoN, where a final best trajectory is selected among a set of candidates trajectories generated by multiple base agents or models.

However, implementing trajectory-level BoN is non-trivial because trajectory evaluation is still a fundamental challenge. Most existing benchmarks such as OSWorld (Xie et al., 2024), WindowsAgentArena (Bonatti et al., 2024), and AndroidWorld (Rawles et al., 2025) use evaluation scripts written by humans which cannot be scaled. In contrast, work on web-agent benchmarks, a subset of CUA focused on browsers, has explored using vision-language models (VLMs) as judges (He et al., 2024; Deng et al., 2023; Xue et al., 2025). However, these judges are typically tuned for the web domain, require human-defined rubrics, and do not generalize well to the broader tasks faced by CUAs. In addition, aligning such judges with human judgment requires substantial manual effort, such as in Mind2Web 2 (Gou et al., 2025) that achieved 99% agreement using code-generated rubrics but still relied on extensive human verification. Moreover, all these evaluation methods only work with a single trajectory. Our work aims to augment trajectory-level BoN to handle trajectory evaluation by (1) improving trajectory understanding by converting trajectories into a behavior narrative that describes what an agent did and (2) comparing trajectories using the behavior narratives to effectively distinguish the best.

3 METHOD

Our **Behavior Best-of-N** framework, shown in Figure 3, is designed to enable wide scaling over many agent rollouts. We improve upon Agent S2 (Agashe et al., 2025), a top-performing open-

source agentic framework, and introduce two key components: *Behavior Narrative Generator* and *Behavior Best-of-N Judge*. Given a rollout, the Behavior Narrative Generator derives facts from each transition, yielding a behavior narrative that describes what the agent did (action-effects) while discarding irrelevant details. The Behavior Best-of-N Judge then conducts a comparative evaluation of the candidate narratives across multiple rollouts to determine the best solution.

3.1 BEHAVIOR NARRATIVE GENERATION

Long-horizon trajectories are information-dense, with every step producing a new screenshot. We argue that it is not necessary or even optimal to judge all of the raw visual content directly to understand what actually occurred. We propose to extract the task-relevant changes caused by the agent’s actions from screenshots in order for a downstream judge to focus on the changes that matter. We construct a behavior narrative composed of facts that describe what the agent did at each step. Concretely, given a generator G (instantiated using a VLM) and an agent rollout $\tau = (s_0, a_1, s_1, \dots, a_{T-1}, s_T)$ where s denotes a screenshot and a denotes an agent action, we feed in transitions (s_i, a_i, s_{i+1}) to the generator and derive facts $\phi_i = G(s_i, a_i, s_{i+1})$, for each $i \in \{0, \dots, T-1\}$.

To generate accurate facts, the Behavior Narrative Generator takes in a screenshot before action execution, the action to execute, and the screenshot after execution as depicted in Figure 3. The generator applies targeted visual augmentations for pointer interactions (clicks, taps, moves, and drags), as these actions require pixel-level precision and are more prone to agent hallucination. For example, a step-level hallucination where a click on the Save button fails but the agent believes otherwise can be the difference between a success or failure. On the screenshot before action execution s_i , we overlay a marker centered at the pointer coordinate (x_i, y_i) where a_i will occur. On the screenshot after action execution s_{i+1} , we extract a zoomed crop s_{i+1}^z of a fixed-size square centered at the final pointer coordinate (x_{i+1}, y_{i+1}) and outline the crop in s_{i+1} to indicate the region of interest. The zoom provides the generator with fine-grained evidence to verify that the intended change occurred. To handle cases where changes are delayed (e.g. clicking a hyperlink), screenshot s_{i+1} is taken 3 seconds after action execution.

Once facts have been derived from each transition, we construct a behavior narrative $\tilde{\tau} = (s_0, \phi_0, \phi_1, \dots, \phi_{T-1}, s_T)$ that retains only task-relevant changes. We include the initial and final screenshot to ground where changes begin from and what they result in. This allows Behavior Best-of-N to focus solely on what the agent did differently between trajectories.

3.2 BEHAVIOR BEST-OF-N JUDGE

While generating multiple rollouts increases the chance that at least one rollout is successful, the benefits can only be realized if we can reliably select the correct trajectory. Selection is challenging because a judge must both interpret long-horizon behavior within each rollout (to verify task requirements) and discriminate among candidates. To simplify this, we decide to separate these responsibilities by generating a concise behavior narrative that describes the long-horizon behavior so the bulk of the judge’s responsibility lies on selecting between candidates. We therefore apply Behavior Best-of-N (bBoN) to the behavior narratives $\tilde{\tau}$ produced through behavior narrative generation, so the judge can focus on differences between agent behaviors.

Concretely, given a set of base policies $\{\pi_m\}_{m=1}^M$, we generate candidates $\mathcal{C} = \bigcup_{m=1}^M \{\tau_m^{(n)}\}_{n=1}^{N_m}$ where each candidate $\tau_m^{(n)}$ is sampled via stochastic decoding from a base policy π_m . This allows us to capture diversity from variance within the same model ($n = 1 \dots N_m$) and differing capabilities across different models ($m = 1 \dots M$). Our objective is to select the candidate trajectory that maximizes task return $\hat{\tau} \in \arg \max_{\tau \in \mathcal{C}} R(\tau, I)$. The candidate set \mathcal{C} is converted to a corresponding set of behavior narrative candidates $\tilde{\mathcal{C}} := \{\tilde{\tau}^{(n)}\}_{n=1}^{|\mathcal{C}|}$, according to the behavior narrative generation in Section 3.1. Then a VLM judge J is prompted to run comparative evaluation using all narratives in $\tilde{\mathcal{C}}$ and select a single best narrative candidate, which corresponds to the final selected trajectory $\hat{\tau} \in \mathcal{C}$. In this work, we instantiate comparative evaluation using a single-round multiple-choice question (MCQ) format, which enables a more informed comparison than independent ranking while being more token-efficient and faster than multi-round tournament-style comparisons of subsets of candidates. The system prompt (Section H) emphasizes on citing and contrasting facts to ensure each

216 candidates' behaviors are carefully observed, which we find gives small improvements (Section F).
 217 By comparing behavior narratives altogether, we enable wide scaling over many agents.
 218

219 **3.3 AN IMPROVED AGENTIC FRAMEWORK BASELINE**
 220

221 As Behavior Best-of-N operates on multiple full-length trajectories generated by base agents, we
 222 can improve the overall performance and latency of bBoN by starting with the best frameworks for
 223 the base agents. Inspired by Agashe et al. (2025) and Song et al. (2025), we created an improved
 224 baseline agentic framework, *Agent S3*, which achieves a new SoTA even before incorporation into
 225 bBoN. It draws upon two key ideas: 1) performance gains of programmatic edits over direct GUI
 226 manipulation when needed (up to the agent itself), and 2) speedup by using a flat (worker only)
 227 policy instead of a manager-worker hierarchy.
 228

229 **Coding Agent** To encourage diverse solution paths, our GUI policy $\pi(a_t | I, h_t)$ reasons what approach
 230 might be best suited for the next step: generate a GUI action $a_t \in \mathcal{A}_{\text{gui}}$ or invoke the *coding agent*
 231 for programmatic edits (e.g., bulk operations, file transforms, structured parsing). A code call
 232 launches a bounded inner loop with budget B that iterates on generated code and terminal *feedback*.
 233 At inner step k , the coding agent conditions on $c_k^{\text{code}} = (I, o_t, F_{1:k-1})$, where $F_{1:k-1}$ aggregates ex-
 234 ecution signals (status, return code, stdout/stderr) from prior iterations. It either emits Python/Bash
 235 to be executed in a sandboxed VM, or returns a control token `DONE/FAIL`. On termination, a brief
 236 summary of the session—logic, observed effects, and a verifiable inspection checklist—is appended
 237 to the GUI agent's history to aid on-screen verification and subsequent planning by the GUI policy.
 238 Different from Song et al. (2025), our coding agent implementation does not use the AutoGen Wu
 239 et al. (2023) framework nor does it use an orchestrator to divide and delegate tasks across the GUI
 240 and coding agents. Our coding agent implementation is natively integrated into our GUI agent's
 241 action space, allowing GUI agent to reason when best to delegate the next step to the coding agent.
 242

243 **Flat Policy** We remove hierarchical planning in favor of a flat policy that can replan at any time
 244 based on (I, h_t) . Contemporary foundation models exhibit strong GUI understanding and can maintain
 245 short-horizon plans in context, making a separate high-level planner unnecessary and sometimes
 246 counterproductive (e.g., when subgoals become stale). We evaluate these design choices in Table 2;
 247 implementation details appear in Section D.

248 **4 EXPERIMENTS AND ANALYSIS**

249 In the following experiments, we systematically investigate the effectiveness of Behavior Best-of-
 250 N (bBoN) across several dimensions of computer-use agents. Specifically, we aim to address the
 251 following research questions:
 252

- 253 1) **Performance.** How does bBoN perform compared with other CUA baselines?
 254
- 255 2) **Scalability.** How does performance scale with increasing number of rollouts?
 256
- 257 3) **Ensembling.** How should we select a mixture-of-models ensemble?
 258
- 259 4) **Representation.** How do behavior narratives compare to other trajectory representations?
 260
- 261 5) **Selection mechanism.** How does comparative selection compare to independent ranking?
 262
- 263 6) **Failure modes.** How accurate is the bBoN Judge and what are its main failure modes?
 264
- 265 7) **Generalizability.** How does bBoN generalize to other domains and benchmarks?
 266

267 **4.1 EXPERIMENTAL SETUP**

268 **Benchmarks** We focus on *OSWorld* (Xie et al., 2024), which comprises 369 real-world Ubuntu
 269 tasks across five domains (OS, Office, Daily, Professional, Workflow). Following common practice
 270 (Xie & et al., 2024), we use the 361-task subset that omits eight multi-application tasks requiring
 271 Google Drive credentials not available in the sandbox. We further assess generality beyond Ubuntu
 272 on two additional benchmarks: *WindowsAgentArena* (Bonatti et al., 2024), a 154-task Windows
 273 benchmark, spanning LibreOffice Writer/Calc, Edge/Chrome, File Explorer/Windows Settings, VS

Method	Model	50-step	100-step
Jedi-7B w (Xie et al., 2025b)	o3	50.6	51.0
GTA1 (step-wise scaling) (Yang et al., 2025b)	o3	48.6	53.1
CoAct-1 (Song et al., 2025)	OAI CUA + o3 + o4-mini	56.4	59.9
<i>Our Improved Baselines (No Scaling)</i>			
Agent S3	o3	60.6	61.1
Agent S3	GPT-5 Mini	48.1	49.8
Agent S3	GPT-5	61.1	62.6
<i>Our Scaling Results</i>			
Agent S3 w/ bBoN (N=10)	GPT-5 Mini	55.9	60.2
Agent S3 w/ bBoN (N=10)	GPT-5	63.5	69.9

Table 1: OSWorld success rate (%) on 50-steps and 100-steps across 361 tasks. We introduce the baseline Agent S3, which reaches state-of-the-art (SoTA) with GPT-5 at 62.6%. Our method, Behavior Best-of-N, achieves SoTA with 69.9% (GPT-5) and 60.2% (GPT-5 Mini).

Code, VLC, and utilities; and *AndroidWorld* (Rawles et al., 2025), a 116-task Android benchmark with step budgets specified by the benchmark authors.¹

Baselines On OSWorld, we introduce Agent S3 as an improved baseline for scaling results. We additionally compare against other top methods including Jedi (Xie et al., 2025a), GTA1 (Yang et al., 2025b) and CoACT-1 (Song et al., 2025). For AndroidWorld, we compare with 3 top-performing open-source frameworks using screen-shot only representations including MobileUse (Li et al., 2025), UI-Venus (Gu et al., 2025), and Agent S2 (Agashe et al., 2025). For WindowsAgentArena, we compare with Navi (Bonatti et al., 2024) and Agent S2 (Agashe et al., 2025). For ablation of the judge for scaling, we compare against an adaptation of WebJudge (Xue et al., 2025), which has 85% agreement with human judgment, for isolating the effect of comparative versus independent trajectory selection mechanisms. We also implement and compare against two baselines when isolating the effect of representation: 1) a naive captioner that captions each screenshot individually, and 2) using screenshots only.

Implementation Details Agent S3 is an improvement over Agent S2 that removes hierarchical planning and adds a coding agent (details in Appendix D). We use Agent S3 to generate rollouts for bBoN trajectory selection. The coding agent is enabled for OSWorld and WindowsAgentArena but disabled for AndroidWorld due to emulator constraints that preclude program execution and inspection. We also adapt WebJudge to do comparative selection by individually ranking each trajectory with a score 1-5 and choosing the highest score, tie-breaking at random, and we adapted the system prompt to the OS setting. For our Screenshot Only baseline, we pass $50/N$ screenshots per trajectory chosen at uniform intervals across the trajectory, due to context length limitations.

4.2 MAIN RESULTS

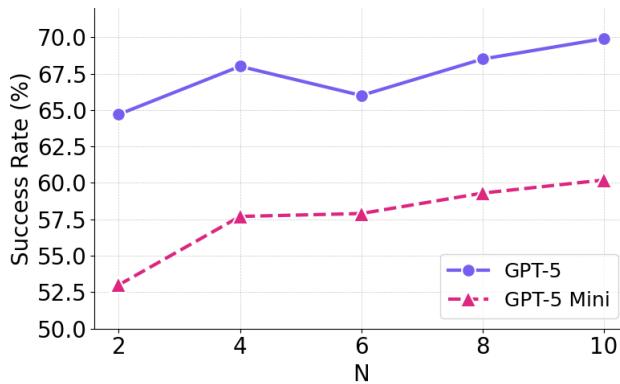
As shown in Table 1, Agent S3 already establishes a strong foundation, achieving new SoTA results on 50- and 100-step success rate for OSWorld. Building on this, our core contribution, Behavior Best-of-N (bBoN), further surpasses Agent S3 on both 50 and 100 steps. For example, it achieves 69.9% SR with GPT-5 (a 7.3% absolute improvement over Agent S3) and 60.2% SR with GPT-5 Mini (a 10.4% absolute improvement). Given that human performance is approximately 72% (Xie et al., 2024), these results highlight that bBoN not only surpasses existing methods by a large margin but also approaches human-level capability.

In addition, Table 2 reports the performance and efficiency gains of our improved agentic framework baseline, Agent S3, compared to Agent S2 (Agashe et al., 2025) that it was built upon. Agent S3 yields a 13.8% improvement in success rate, a 52.3% reduction in LLM calls per task, and a 62.4% reduction in average task completion time.

¹Experiments were conducted under the AndroidWorld step budget guidelines as of September 20, 2025.

324
325
326
327
328

Method	100-step SR (%)	LLM calls/task	Time/task (s)
Agent S2 (Agashe et al., 2025)	48.8	73.62	2366.80
Agent S2 (no hier.)	57.9 (+9.1)	41.39 (-43.8%)	1132.91 (-52.1%)
Agent S3	62.6 (+13.8)	35.12 (-52.3%)	891.21 (-62.4%)

329
330
331
332
333 Table 2: OSWorld success rate and efficiency statistics using GPT-5. Baseline is Agent S2 with
334 hierarchical planning; values in parentheses show Δ vs. Agent S2 (for SR and efficiency metrics).335
336 4.3 HOW DOES BEHAVIOR BEST-OF-N SCALE WITH INCREASING ROLLOUTS?
337338
339
340
341
342
343
344
345
346
347
348 Figure 4 shows the performance of
bBoN using both GPT-5 and GPT-5
Mini generally increases with the
number of rollouts. There is a small
dip in performance for GPT-5 at N=6
which is recovered at N=8, showing
that even though some rollouts
can decrease perform, it can still be
recovered with more rollouts. This
serves as an experimental validation
that incrementally increasing rollouts
could improve overall results. This
trend suggests that both larger and
smaller models can benefit from wide
scaling.349
350 Figure 4: Performance of bBoN on OSWorld with increasing
351 number of rollouts.352
353 4.4 HOW SHOULD WE SELECT A MIXTURE-OF-MODELS ENSEMBLE?
354355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377 Table 3 shows the success rate and task coverage
of bBoN using various mixture-of-model combi-
nations. Task coverage is calculated by setting a
task successful if at least one trajectory is correct,
or Pass@N (Chen et al., 2021). We observe that
from the single model mixtures, GPT-5 performs
the strongest at 66.5% followed by Gemini 2.5 Pro
at 60.9%, demonstrating that strong model capa-
bilities lead to overall higher success with selec-
tion. We also observe that the most diverse mix-
ture (All) achieves higher task coverage than single-
model mixtures at 75.4%, demonstrating that diver-
sity is key to increasing the upper bound on success.
Finally, we observe that the GPT-5 + Gemini 2.5 Pro
mixture achieves the highest success rate of 66.7%
and task coverage of 78.0%, suggesting that select-
ing a mixture-of-models ensemble with highly di-
verse capable models achieves the best performance
with the highest upper bound.

Mixture	SR (%)	Pass@N (%)
GPT-5	66.5	74.7
GPT-5 Mini	57.0	68.2
Gemini 2.5 Pro	60.9	71.7
Claude 4 Sonnet	57.2	64.6
GPT-5 + Mini	64.9	74.1
GPT-5 + Gemini	66.7	78.0
GPT-5 + Claude	64.2	75.6
Mini + Gemini	64.0	72.8
Mini + Claude	58.0	71.0
Gemini + Claude	61.9	72.7
All	65.9	75.4

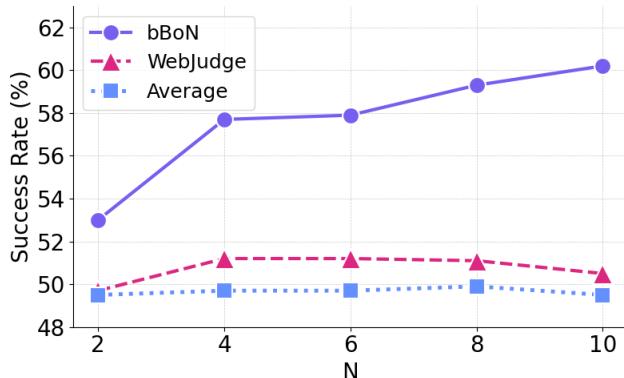
378
379 Table 3: Success rate and task coverage for
380 bBoN using mixture-of-model combinations
381 with GPT-5, GPT-5 Mini, Gemini-2.5 Pro,
382 and Claude-4-Sonnet. Each mixture’s suc-
383 cess rate is on N=4 runs split evenly.384
385 4.5 HOW DO BEHAVIOR NARRATIVES COMPARE TO OTHER TRAJECTORY REPRESENTATIONS?
386

Representation	Sucess Rate (%)
Screenshot Only	56.0
Trajectory Summary	55.0
Naive Captioning	56.8
Behavior Narratives	60.2

387
388 Table 4: Ablation on bBoN’s behavior narrative representation with 10 GPT-5 Mini rollouts.

378
 379 Table 4 shows an ablation on our behavior narrative representation. We compare against a
 380 screenshot-only baseline, a [trajectory summary baseline that summarizes the trajectory in 3-6 sentences](#), and a naive captioning baseline that captions each screenshot individually. We find that
 381 behavior narratives are an effective representation for bBoN, providing a 3.4% improvement over
 382 the best baseline. This suggests that it is difficult to understand screenshots alone and that it is
 383 necessary to generate facts over transitions rather than individual states.
 384

385 4.6 HOW DOES COMPARATIVE SELECTION COMPARE TO INDEPENDENT RANKING?



400 Figure 5: Comparison of bBoN against WebJudge on OSWorld using GPT-5 Mini’s rollouts. *Average*
 401 represents the average performance of the rollouts.
 402

403 Figure 5 shows a comparison between bBoN and WebJudge. We modify WebJudge to choose over
 404 many trajectories by independently ranking trajectories and selecting the highest rank. We find
 405 that overall bBoN achieves better performance than WebJudge, with WebJudge providing limited
 406 benefit over the average performance of rollouts. We also find that bBoN shows better scaling as
 407 we increase the number of rollouts. While WebJudge has some slight improvements around N=4, it
 408 plateaus quickly and drops around N=10. This suggests that it is necessary to compare trajectories
 409 against each other for effective, scalable selection.
 410

411 4.7 BBoN JUDGE ACCURACY AND FAILURE ANALYSIS

Category	Judge Subset Accuracy	Full Set Accuracy
Benchmark Alignment	78.4%	69.9%
Human Alignment	92.8%	76.3%

417 Table 5: bBoN accuracies on Judge Subset and Full Set with 10 GPT-5 rollouts on OSWorld. The
 418 Judge Subset consists of a subset of 159 OSWorld problems that could be improved on due to disjoint
 419 task success.
 420

421 Table 5 shows the accuracy of bBoN with respect to OSWorld evaluation scripts and to our human
 422 alignment. We find that on 159 problems (Judge Subset) where the judge can improve performance
 423 (i.e. where there is at least one correct and one incorrect trajectory), it achieves 78.4% accuracy
 424 during selection. After manual inspection over the remaining 35 problems, we found through human
 425 evaluation that the accuracy is 92.8%, as the OSWorld evaluation scripts are imperfect and can only
 426 strictly evaluate one pre-defined solution. This suggests that bBoN is highly effective at selecting
 427 the right trajectories from multiple candidates.
 428

429 For the remaining 12 failures, we categorize these as behavior narrative generation hallucinations (8)
 430 and Code-GUI handoff failures (4). We observe generation hallucination occur in instances where
 431 the underlying VLM has difficulty with visual understanding such as missing fine-grained details in
 text which zooming has little effect on (e.g. the negative sign on a number as shown in Appendix G).
 We also observe some cases where the GUI-Agent failed to recognize the Coding Agent’s changes,

432 and perform GUI actions overwriting Coding Agent’s changes and cause evaluation to fail. These
 433 kind of failed rollouts generate rich GUI-related behavioral narratives, which are preferred by our
 434 bBoN judge compared to the rollouts whereas the Coding Agent performs everything in one step
 435 and completes, outputting limited behavioral narratives.
 436

437 4.8 GENERALIZATION TO OTHER BENCHMARKS

440 Method	441 Model	442 SR (%)
441 Agent S2	442 Claude 3.7 Sonnet	443 54.3
442 MobileUse	443 Qwen2.5-VL-72B	444 62.9
443 UI-Venus	444 UI-Venus-Navi-72B	445 65.9
444 Agent S3	445 GPT-5	446 68.1
445 bBoN (N=3)	446 GPT-5	447 71.6

448 Table 6: AndroidWorld success rate (%). Behavior Best-of-N (N=3) achieves a 3.5% im-
 449 provement over the baseline Agent S3.

440 Method	441 Model	442 50-step	443 100-step
441 UI-TARS-1.5	442 -	443 42.1	444 -
442 Agent S3	443 GPT-5	444 49.0	445 50.2
443 bBoN (N=3)	444 GPT-5	445 54.1	446 56.6

447 Table 7: WindowsAgentArena success rate
 448 (%) within 50 steps and 100 steps. Behavior
 449 Best-of-N (N=3) consistently outperforms the
 450 baseline Agent S3, with a 6.4% improvement
 451 on 100-step SR.

452 Table 6 and 7 demonstrate strong generalizability of bBoN to different operating systems. For
 453 AndroidWorld, we compare with top 3 performing open-source, screenshot-only methods including
 454 AgentS2 (Agashe et al., 2025), MobileUse (Li et al., 2025), and UI-Venus (Gu et al., 2025) For
 455 WindowsAgentArena, we compare with Agent S2 and UI-TARS-1.5 (Seed, 2025). We find that
 456 Behavior Best-of-N can achieve an improvement of with N = 3 achieves a performance boost of
 457 3.5% and 6.4% respectively, demonstrating that our method can generalize well to other domains.

458 5 LIMITATIONS

459 Behavior Best-of-N assumes access to an agent capable of producing multiple independent rollouts
 460 from the same initial state. This assumption aligns with research benchmarks, where tasks are eval-
 461 uated under controlled, repeatable initializations to ensure independence and reproducibility across
 462 runs. It also applies to real-world practice where user requests can be executed inside a virtual
 463 machine (VM) that supports snapshots and duplication, allowing repeated rollouts from a fixed ini-
 464 tial state and low-cost parallelization, keeping wall-clock latency comparable to a single-run agent.
 465 Running outside a VM (e.g., on a user’s actual desktop) would violate the independence assump-
 466 tion since concurrent rollouts can interfere with each other, and isolating side effects is nontrivial.
 467 Even with separate VMs, some tasks interact with shared online resources (e.g., Amazon shopping
 468 carts, email, Google Drive), introducing cross-run interference via shared accounts. Future work
 469 can extend parallel rollouts to real desktops and manage shared online resources so Behavior Best-
 470 of-N can operate over all CUA tasks. [Finally, our method requires scaling trajectories which can be](#)
 471 [expensive; we explore methods for reducing cost in Appendix C but leave a deeper exploration to](#)
 472 [future work as the focus of this paper is on introducing the wide scaling paradigm and demonstrating](#)
 473 [its effectiveness through bBoN.](#)

474 6 CONCLUSION

475 We introduced a novel wide scaling paradigm for computer-use agents (CUAs), showing that gen-
 476 erating multiple trajectories in parallel and selecting among them substantially improves robustness
 477 and task success rates. To realize this, we proposed Behavior Best-of-N (bBoN), a framework that
 478 transforms dense trajectories into compact behavior narratives and leverages them for principled
 479 trajectory selection. Together with an improved CUA baseline, our bBoN method establishes a
 480 new state-of-the-art on OSWorld (69.9% success at 100 steps), surpassing prior work by a large
 481 margin (+10%) and approaching 72% human-level performance. Through extensive ablations, we
 482 validated our design choices and demonstrated strong generalizability on WindowsAgentArena and
 483 AndroidWorld, highlighting the promise of bBoN as a scalable and effective approach to improving
 484 real-world CUAs.

486 ETHICS STATEMENT
487

488 We believe our proposed bBoN approach is broadly beneficial for advancing reliability research in
489 computer use agents, but safe deployment requires continued attention to privacy and sustainability.
490 On one hand, scaling CUAs increases computational cost, which in turn raises concerns about energy
491 usage and carbon footprint. Future work should explore more efficient rollout strategies to reduce
492 environmental impact. On the other hand, CUAs by design have access to user interfaces and data.
493 If deployed naively, they could expose sensitive information or perform unintended actions. Our
494 study mitigates this by using sandboxed, synthetic environments, but real-world applications must
495 adopt strict safeguards for safe action execution.

496
497 REPRODUCIBILITY STATEMENT
498

500 To facilitate reproducibility of our work, we will open source our code for the improved agentic
501 framework baseline Agent S3 and the Behavior Best-of-N method, as well as the running scripts for
502 benchmark evaluation.

503 REFERENCES
504

505 Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s:
506 An open agentic framework that uses computers like a human, 2024. URL <https://arxiv.org/abs/2410.08164>.

508 Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2:
509 A compositional generalist-specialist framework for computer use agents, 2025. URL <https://arxiv.org/abs/2504.00906>.

511 Anthropic. Claude-4, 2025. URL <https://www.anthropic.com/news/clause-4>.

513 Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
514 Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows
515 agent arena: Evaluating multi-modal os agents at scale, 2024. URL <https://arxiv.org/abs/2409.08264>.

517 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
518 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
519 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
520 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
521 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
522 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebbgen Guss, Alex Nichol, Alex
523 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
524 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
525 Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
526 Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
527 language models trained on code, 2021. URL <https://arxiv.org/abs/2107.03374>.

528 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
529 Yu Su. Mind2web: Towards a generalist agent for the web, 2023. URL <https://arxiv.org/abs/2306.06070>.

531 Boyu Gou, Zanming Huang, Yuting Ning, Yu Gu, Michael Lin, Weijian Qi, Andrei Kopanev,
532 Berta Yu, Bernal Jiménez Gutiérrez, Yiheng Shu, Chan Hee Song, Jiaman Wu, Shijie Chen,
533 Hanane Nour Moussa, Tianshu Zhang, Jian Xie, Yifei Li, Tianci Xue, Zeyi Liao, Kai Zhang,
534 Boyuan Zheng, Zhaowei Cai, Viktor Rozgic, Morteza Ziyadi, Huan Sun, and Yu Su. Mind2web
535 2: Evaluating agentic search with agent-as-a-judge, 2025. URL <https://arxiv.org/abs/2506.21506>.

538 Zhangxuan Gu, Zhengwen Zeng, Zhenyu Xu, Xingran Zhou, Shuheng Shen, Yunfei Liu, Beiting
539 Zhou, Changhua Meng, Tianyu Xia, Weizhi Chen, Yue Wen, Jingya Dou, Fei Tang, Jinzhen Lin,
Yulin Liu, Zhenlin Guo, Yichen Gong, Heng Jia, Changlong Gao, Yuan Guo, Yong Deng, Zhenyu

Guo, Liang Chen, and Weiqiang Wang. Ui-venus technical report: Building high-performance UI agents with RFT. *CoRR*, abs/2508.10833, 2025. doi: 10.48550/ARXIV.2508.10833. URL <https://doi.org/10.48550/arXiv.2508.10833>.

Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang, Jianyu Jiang, Jiawei Wang, Jingji Chen, Jingjia Huang, Kang Lei, Liping Yuan, Lishu Luo, Pengfei Liu, Qinghao Ye, Rui Qian, Shen Yan, Shixiong Zhao, Shuai Peng, Shuangye Li, Si-hang Yuan, Sijin Wu, Tianheng Cheng, Weiwei Liu, Wencian Wang, Xianhan Zeng, Xiao Liu, Xiaobo Qin, Xiaohan Ding, Xiaojun Xiao, Xiaoying Zhang, Xuanwei Zhang, Xuehan Xiong, Yanghua Peng, Yangrui Chen, Yanwei Li, Yanxu Hu, Yi Lin, Yiyuan Hu, Yiyuan Zhang, Youbin Wu, Yu Li, Yudong Liu, Yue Ling, Yujia Qin, Zanbo Wang, Zhiwu He, Aoxue Zhang, Bairen Yi, Bencheng Liao, Can Huang, Can Zhang, Chaorui Deng, Chaoyi Deng, Cheng Lin, Cheng Yuan, Chenggang Li, Chenhui Gou, Chenwei Lou, Chengzhi Wei, Chundian Liu, Chunyuan Li, Deyao Zhu, Donghong Zhong, Feng Li, Feng Zhang, Gang Wu, Guodong Li, Guohong Xiao, Haibin Lin, Haihua Yang, Haoming Wang, Heng Ji, Hongxiang Hao, Hui Shen, Huixia Li, Jiahao Li, Jialong Wu, Jianhua Zhu, Jianpeng Jiao, Jiashi Feng, Jiaze Chen, Jianhui Duan, Jihao Liu, Jin Zeng, Jingqun Tang, Jingyu Sun, Joya Chen, Jun Long, Junda Feng, Junfeng Zhan, Junjie Fang, Junting Lu, Kai Hua, Kai Liu, Kai Shen, Kaiyuan Zhang, Ke Shen, Ke Wang, Keyu Pan, Kun Zhang, Kunchang Li, Lanxin Li, Lei Li, Lei Shi, Li Han, Liang Xiang, Liangqiang Chen, Lin Chen, Lin Li, Lin Yan, Liying Chi, Longxiang Liu, Mengfei Du, Mingxuan Wang, Ningxin Pan, Peibin Chen, Pengfei Chen, Pengfei Wu, Qingqing Yuan, Qingyao Shuai, Qiuyan Tao, Renjie Zheng, Renrui Zhang, Ru Zhang, Rui Wang, Rui Yang, Rui Zhao, Shaoqiang Xu, Shihao Liang, Shipeng Yan, Shu Zhong, Shuaishuai Cao, Shuangzhi Wu, Shufan Liu, Shuhan Chang, Songhua Cai, Tenglong Ao, Tianhao Yang, Tingting Zhang, Wanjun Zhong, Wei Jia, Wei Weng, Weihao Yu, Wenhao Huang, Wenjia Zhu, Wenli Yang, Wenzhi Wang, Xiang Long, XiangRui Yin, Xiao Li, Xiaolei Zhu, Xiaoying Jia, Xijin Zhang, Xin Liu, Xinchen Zhang, Xinyu Yang, Xiongcai Luo, Xiuli Chen, Xuantong Zhong, Xuefeng Xiao, Xujing Li, Yan Wu, Yawei Wen, Yifan Du, Yihao Zhang, Yining Ye, Yonghui Wu, Yu Liu, Yu Yue, Yufeng Zhou, Yufeng Yuan, Yuhang Xu, Yuhong Yang, Yun Zhang, Yunhao Fang, Yuntao Li, Yurui Ren, Yuwen Xiong, Zehua Hong, Zehua Wang, Zewei Sun, Zeyu Wang, Zhao Cai, Zhaoyue Zha, Zhecheng An, Zhehui Zhao, Zhengzhuo Xu, Zhipeng Chen, Zhiyong Wu, Zhuofan Zheng, Zihao Wang, Zilong Huang, Ziyu Zhu, and Zuquan Song. Seed1.5-v1 technical report, 2025a. URL <https://arxiv.org/abs/2505.07062>.

Liangxuan Guo, Bin Zhu, Qingqian Tao, Kangning Liu, Xun Zhao, Xianzhe Qin, Jin Gao, and Guangfu Hao. Agentic lybic: Multi-agent execution system with tiered reasoning and orchestration. *arXiv preprint arXiv:2509.11067*, 2025b.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models, 2024. URL <https://arxiv.org/abs/2401.13919>.

Ning Li, Xiangmou Qu, Jiamu Zhou, Jun Wang, Muning Wen, Kounianhua Du, Xingyu Lou, Qiuying Peng, Jun Wang, and Weinan Zhang. Mobileuse: A gui agent with hierarchical reflection for autonomous mobile operation. *arXiv preprint arXiv:2507.16853*, 2025. URL <https://arxiv.org/abs/2507.16853>.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=v8L0pN6EOi>.

OpenAI. Introducing o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2024.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry, Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmarking environment for autonomous agents, 2025. URL <https://arxiv.org/abs/2405.14573>.

ByteDance Seed. Ui-tars-1.5. <https://seed-tars.com/1.5>, 2025.

594 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 595 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.
 596

597 Linxin Song, Yutong Dai, Viraj Prabhu, Jieyu Zhang, Taiwei Shi, Li Li, Junnan Li, Silvio Savarese,
 598 Zeyuan Chen, Jieyu Zhao, Ran Xu, and Caiming Xiong. Coact-1: Computer-using agents with
 599 coding as actions, 2025. URL <https://arxiv.org/abs/2508.03923>.

600 Haoming Wang, Haoyang Zou, Huatong Song, Jiazhan Feng, Junjie Fang, Junting Lu, Longxiang
 601 Liu, Qinyu Luo, Shihao Liang, Shijue Huang, Wanjun Zhong, Yining Ye, Yujia Qin, Yuwen
 602 Xiong, Yuxin Song, Zhiyong Wu, Aoyan Li, Bo Li, Chen Dun, Chong Liu, Daoguang Zan,
 603 Fuxing Leng, Hanbin Wang, Hao Yu, Haobin Chen, Hongyi Guo, Jing Su, Jingjia Huang, Kai
 604 Shen, Kaiyu Shi, Lin Yan, Peiyao Zhao, Pengfei Liu, Qinghao Ye, Renjie Zheng, Shulin Xin,
 605 Wayne Xin Zhao, Wen Heng, Wenhao Huang, Wenqian Wang, Xiaobo Qin, Yi Lin, Youbin Wu,
 606 Zehui Chen, Zihao Wang, Baoquan Zhong, Xinchun Zhang, Xujing Li, Yuanfan Li, Zhongkai
 607 Zhao, Chengquan Jiang, Faming Wu, Haotian Zhou, Jinlin Pang, Li Han, Qi Liu, Qianli Ma,
 608 Siyao Liu, Songhua Cai, Wenqi Fu, Xin Liu, Yaohui Wang, Zhi Zhang, Bo Zhou, Guoliang Li,
 609 Jiajun Shi, Jiale Yang, Jie Tang, Li Li, Qihua Han, Taoran Lu, Woyu Lin, Xiaokang Tong, Xinyao
 610 Li, Yichi Zhang, Yu Miao, Zhengxuan Jiang, Zili Li, Ziyuan Zhao, Chenxin Li, Dehua Ma, Feng
 611 Lin, Ge Zhang, Haihua Yang, Hangyu Guo, Hongda Zhu, Jiaheng Liu, Junda Du, Kai Cai, Kuanye
 612 Li, Lichen Yuan, Meilan Han, Minchao Wang, Shuyue Guo, Tianhao Cheng, Xiaobo Ma, Xiaojun
 613 Xiao, Xiaolong Huang, Xinjie Chen, Yidi Du, Yilin Chen, Yiwen Wang, Zhaojian Li, Zhenzhu
 614 Yang, Zhiyuan Zeng, Chaolin Jin, Chen Li, Hao Chen, Haoli Chen, Jian Chen, Qinghao Zhao,
 615 and Guang Shi. Ui-tars-2 technical report: Advancing gui agent with multi-turn reinforcement
 learning, 2025a. URL <https://arxiv.org/abs/2509.02544>.

616 Haoming Wang, Haoyang Zou, Huatong Song, Jiazhan Feng, Junjie Fang, Junting Lu, Longxiang
 617 Liu, Qinyu Luo, Shihao Liang, Shijue Huang, et al. Ui-tars-2 technical report: Advancing gui
 618 agent with multi-turn reinforcement learning. *arXiv preprint arXiv:2509.02544*, 2025b.
 619

620 Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
 621 Guo, Yiheng Xu, Chen Henry Wu, et al. Opencua: Open foundations for computer-use agents.
 622 *arXiv preprint arXiv:2508.09123*, 2025c.

623 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
 624 Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen LLM applications via
 625 multi-agent conversation framework. *CoRR*, abs/2308.08155, 2023. doi: 10.48550/ARXIV.2308.
 626 08155. URL <https://doi.org/10.48550/arXiv.2308.08155>.

627 Tianbao Xie and Danyang Zhang et al. Osworld: Benchmarking multimodal agents for open-
 628 ended tasks in real computer environments. GitHub Pages, 2024. URL <https://os-world.github.io/>.
 629

630 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
 631 Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Sil-
 632 vio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal
 633 agents for open-ended tasks in real computer environments, 2024. URL <https://arxiv.org/abs/2404.07972>.
 634

635 Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
 636 Xinyuan Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu, and
 637 Caiming Xiong. Scaling computer-use grounding via user interface decomposition and synthesis.
 638 *CoRR*, abs/2505.13227, 2025a. doi: 10.48550/ARXIV.2505.13227. URL <https://doi.org/10.48550/arXiv.2505.13227>.
 639

640 Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
 641 Xinyuan Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu, and
 642 Caiming Xiong. Scaling computer-use grounding via user interface decomposition and synthesis,
 643 2025b. URL <https://arxiv.org/abs/2505.13227>.
 644

645 Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
 646 and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction, 2025.
 647 URL <https://arxiv.org/abs/2412.04454>.

648 Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and
649 Yu Su. An illusion of progress? assessing the current state of web agents, 2025. URL <https://arxiv.org/abs/2504.01382>.
650

651 Jingqi Yang, Zhilong Song, Jiawei Chen, Mingli Song, Sheng Zhou, Xiaogang Ouyang, Chun Chen,
652 Can Wang, et al. Gui-robust: A comprehensive dataset for testing gui agent robustness in real-
653 world anomalies. *arXiv preprint arXiv:2506.14477*, 2025a.
654

655 Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
656 Huang, Amrita Saha, Zeyuan Chen, Ran Xu, Liyuan Pan, Caiming Xiong, and Junnan Li. Gta1:
657 Gui test-time scaling agent, 2025b. URL <https://arxiv.org/abs/2507.05791>.
658

659 King Zhu, Hanhao Li, Siwei Wu, Tianshun Xing, Dehua Ma, Xiangru Tang, Minghao Liu,
660 Jian Yang, Jiaheng Liu, Yuchen Eleanor Jiang, Changwang Zhang, Chenghua Lin, Jun Wang,
661 Ge Zhang, and Wangchunshu Zhou. Scaling test-time compute for llm agents, 2025. URL
662 <https://arxiv.org/abs/2506.12928>.
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDIX

A USE OF LLMs

We used chatgpt.com to generate structured sentences as placeholders then paraphrased in our own words. We also used chatgpt.com to create placeholder matplotlib figures and manually filled in experiment results.

B SUMMARY OF COSTS, TIME, AND TOTAL EXPERIMENT TIME

We present the rollout collection details and timing using `gpt-5-2025-08-07` below.

Per task	Single Rollout	BN Gen	Judging (N=10)
Average cost (\$)	0.72	0.11	0.03
Average time (sec)	891	433.4	226
Median time (sec)	626	265.3	53.7

Table 8: Average and median cost/time per task for each module. Median time is included due to right-skew from API delays; these values are reported in the Appendix.

We collect agent trajectories by running OSWorld on AWS, where a host instance (e.g., a `c4.8xlarge`) contains the OSWorld code and the script for running Agent S3. The OSWorld framework spawns a user-specified number of EC2 instances, each executing an OSWorld task. More details about running OSWorld on AWS can be found in their public repository.

A `c4.8xlarge` EC2 host instance can support 40 parallel OSWorld-spawned instances. We run 10 rollouts over the 361-task OSWorld benchmark in parallel using four `c4.8xlarge` hosts for a total of 15 hours and 54 minutes.

Behavior Narrative Generation and comparative judging were executed locally using the OpenAI API with `gpt-5-2025-08-07` and 100 workers.

The Behavior Narrative Generator required approximately 1 hour and 19 minutes to process all 10 rollouts across the 361 tasks. Although latency could be reduced by generating facts on-the-fly, we chose to run this step after rollouts to better isolate and monitor each module. Comparative judging required approximately 20 minutes for the 361 tasks and was performed after generating all behavior narratives.

In total, running Agent S3 with bBoN (N=10) required 17 hours and 33 minutes to fully complete.

C EFFICIENCY CONSIDERATIONS

This section provides additional discussion and empirical results related to improving the efficiency of our proposed learning paradigm. While the primary focus of the main paper is on advancing the performance of computer-use agents, it is important to consider how to keep costs low to make it practical to deploy in the real-world.

C.1 ENSEMBLING CHEAP AND EXPENSIVE MODELS

We explore the performance of differing mixture-of-model ensembles in Table 3 and find that increasing model diversity in the ensemble boosts performance. Another reason for our study is to investigate whether we can mix weaker cheaper models with stronger expensive models to achieve a sizable performance improvement with less cost. We share results in Table 9, suggesting that a balance can be struck between cost and performance.

Ensemble	Performance
GPT-5 (N=4)	66.5
GPT-5 (N=2) & GPT-5 Mini (N=2)	64.9
GPT-5 Mini (N=4)	57.0

Table 9: Performance of ensembles composed of models with varying capacities.

C.2 CHEAP ROLLOUTS AND EXPENSIVE BBoN

One finding in Appendix B is that the bBoN modules cost is about 5 times cheaper than rolling out trajectories. This led us to investigate the use of open-source models, specifically Qwen3-VL-30B-A3B-Thinking, and a combination of open and closed source models for behavior narrative generation and comparative judging. Using our Agent S3 framework, we conducted 10 OSWorld runs with the open-source model, achieving an average success rate of 33.3%. Table 10 presents results for different combinations of models used for Behavior Narrative Generation and Comparative Judging.

Table 10: Performance using different model combinations for Behavior Narrative Generation and Comparative Judging.

Behavior Narrative Gen.	Comparative Judging	Performance
Qwen3-VL-30B-A3B-Thinking	Qwen3-VL-30B-A3B-Thinking	40.9%
GPT-5	Qwen3-VL-30B-A3B-Thinking	44.7%
Qwen3-VL-30B-A3B-Thinking	GPT-5	49.4%
GPT-5	GPT-5	51.5%

We find that re-using Qwen3-VL-30B-A3B-Thinking for behavior narrative generation and comparative judging leads to a performance improvement of +7.6% while using GPT-5 for both results in an 18.2% improvement.

D AGENTIC FRAMEWORK IMPROVEMENTS

This appendix expands on Section 3.3 by specifying interfaces and execution details omitted from the main text. We focus on concrete I/O, termination, and logging conventions.

Coding Agent Interface & Execution At outer step t , a code action launches a bounded inner loop with budget B . At inner step $k \in \{1, \dots, B\}$ the coding agent conditions on

$$c_k^{\text{code}} = (I, o_t, F_{1:k-1}),$$

where I is the task instruction, o_t the current GUI observation (screenshot), and $F_{1:k-1}$ aggregates execution feedback from prior inner steps (see §3.3 for the high-level loop). Each feedback item is a structured tuple

$$F_k = (status_k, return_code_k, stdout_k, stderr_k),$$

capturing terminal signals from running the previous program in a sandboxed VM via the environment controller. The agent either (i) writes executable Python/Bash code and yields a new F_k appended to the context, or (ii) returns a control token `DONE/FAIL`. The loop terminates on `DONE/FAIL` or when $k = B$.

Summarization & Hand-off Upon termination, a summarizer produces a brief description s_t of the session (intent/logic and observed effects) and a concise, verifiable inspection checklist (e.g., “open `report.csv` and verify 12 new rows”; “check toast ‘Saved’”). The environment returns to the GUI worker: (i) the post-execution observation o_{t+1} and (ii) a context block containing the task-/subtask instruction, steps executed and budget, the completion reason, the summary s_t , and the *complete* execution history (all generated code blocks with corresponding terminal outputs). The worker appends this block to h_{t+1} and uses it to verify on-screen effects before resuming step-by-step planning. This validation consumes environment steps

Method	Time (judge calls)	Token cost
MCQ (one-shot)	$O(1)$	n
Iterative (pairwise)	$O(n)$	$2(n - 1)$

Table 11: Complexity for selecting the best of n trajectories via a single multi-choice (MCQ) prompt vs. iterative pairwise comparisons. Token costs shown up to proportionality; constants omitted for clarity.

Flat (Single-Level) Planning. As detailed in Section 3.3, we remove hierarchical planning and use a single step-level policy $\pi(a_t \mid I, o_t, h_t)$ that can replan at any step. Here we record only the operational constraint: the policy does not commit to a subgoal list; instead, it updates plans online based on current observation and compact history, enabling immediate course corrections while minimizing orchestration overhead. Empirical effects on success and efficiency appear in Table 2.

E ITERATIVE VS. MCQ-STYLE COMPARISON

Given n candidate trajectories, we compare two judge strategies. **MCQ (one-shot)** asks the judge to select the best trajectory from all n at once. This incurs a single judge call (time $O(1)$) with input proportional to n (token cost $\propto n$). **Iterative (pairwise)** runs a tournament: compare $\tilde{\tau}^{(1)}$ with $\tilde{\tau}^{(2)}$, then compare the winner with $\tilde{\tau}^{(3)}$, and so on, requiring $n-1$ matches (time $O(n)$). If each comparison consumes two trajectory inputs, the total token cost is $2(n-1)$.

Method	N=2	N=3	N=4	N=5
bBoN w/ Iterative Comparison	62.78	63.59	63.68	66.00
bBoN w/ MCQ-style	64.73	66.12	68.04	66.86

Table 12: Success rate (%) on OSWorld. N is the number of rollouts used.

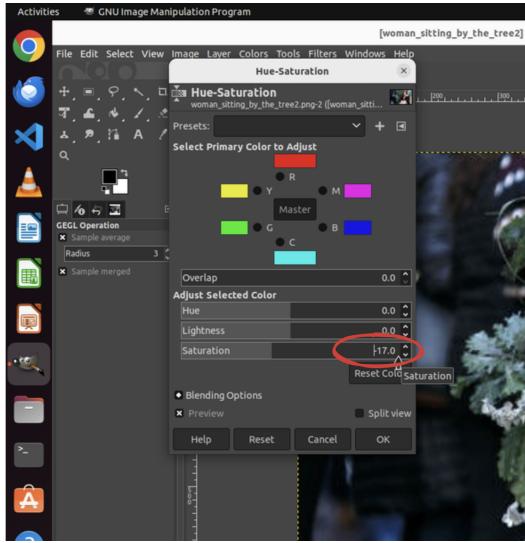
Table 12 shows that single-round MCQ comparative evaluation performs similarly to iterative pairwise comparison from two to five rollouts. Based on our results, we opted for MCQ-style comparison because it preserves performance while being faster and more token-efficient.

F CITING VS. NOT CITING BEHAVIOR NARRATIVES

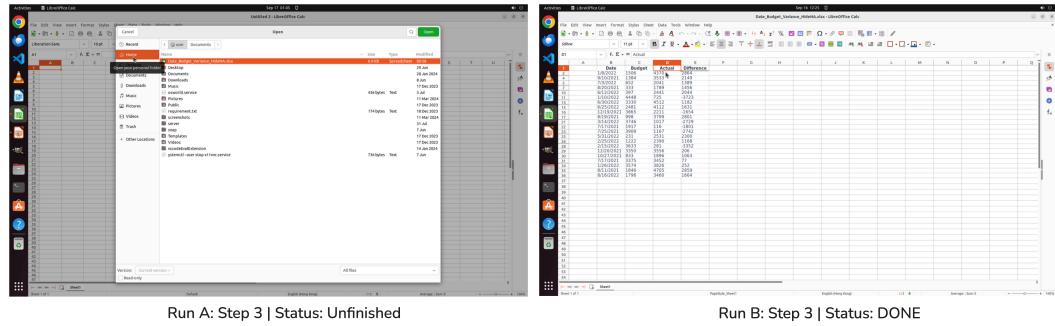
Method	Model	100-step
bBoN (no citing)	GPT-5 Mini	59.1
bBoN (w/ citing)	GPT-5 Mini	60.2
bBoN (no citing)	GPT-5	69.0
bBoN (w/ citing)	GPT-5	69.9

Table 13: Comparison of bBoN with and without citing behavior narratives. We evaluate with $N=10$ rollouts.

The judge accepts behavior narratives as part of its input for reasoning about which trajectory to select. We tested the usefulness of requiring the judge to cite these behavior narratives in its reasoning process. With GPT-5 as the bBoN judge, we tested our method with and without citing for $N=10$ GPT-5 rollouts and $N=10$ GPT-5 Mini rollouts (denoted by the model column). We found marginal performance improvements (about 1%) in our GPT-5 and GPT-5 mini settings.

864 G CASE STUDIES
865

884 Figure 6: Task Instruction: "Could you assist me in enhancing the color vibrancy of my photo?"
885 In this case, the VLM struggles to recognize the negative sign -17.0 in the image and generates an
886 inaccurate behavior narrative stating action changed vibrancy to 17.0.
887



900 Figure 7: Task instruction: Please hide rows containing "N/A". (Left) In Run A, the GUI agent
901 fails to verify the coding agents changes, concludes the coding agent failed and proceeds to attempt
902 the task via GUI actions. (Right) In Run B, the GUI agent successfully verifies the code agent's
903 changes and marks the task as complete. The bBoN judge incorrectly picks Run A as it is biased by
904 the reasonable-sounding behavior narratives. This case underlines the importance of the interaction
905 between the GUI and code agent.
906

907 H SYSTEM PROMPTS
908909 Listing 1: Judge system prompt.
910

911 You are a meticulous and impartial evaluator, tasked with judging <NUMBER
912 OF TRAJECTORIES> sequences of OS desktop actions to determine which
913 one better completes the user's request. Your evaluation must be
914 strict, detailed, and adhere to the provided criteria.

915 ****User Request:****
916 <TASK_DESCRIPTION_INPUT>
917
918 ****Judge Guidelines:****

918 These guidelines are to help you evaluate all sequences of actions. These
 919 are strict guidelines and should not be deviated from.
 920

921 **While judging:**
 922 Be thorough when aligning the agent's actions with the key constraints
 923 and following expected agent behaviors (if relevant).
 924 The agent is always expected to complete the task; key constraints take
 925 precedence over these guidelines which act as tie breakers.
 926 Always double-check the agent's calculations for accuracy.
 927 Explicitly state which rows and columns must be selected.
 928 Always verify that exact values match the user's request.
 929 Pay particular attention that spreadsheet modifications do not deviate
 930 from the original user's formatting, layout, and ordering unless
 931 absolutely necessary.

932 **Expected agent behaviors:**
 933 The agent must map the user's request to the software's built-in features
 934 , not hacky methods.
 935 The agent must return control with a clean desktop, closing any popups,
 936 tabs, toolbars, search bars, or other elements it opened that weren't
 937 originally there even if they are unobtrusive.
 938 The agent must maintain the original format of the user's spreadsheet as
 939 closely as possible.
 940 The agent must preserve the spreadsheet's layout, formatting, and row/
 941 column order, making changes only within existing cells without
 942 creating gaps or adding new columns unless required for essential
 943 changes.
 944 The agent must close the settings tab on Chrome for changes to take
 945 effect.
 946 The agent must prioritize the safest options whenever the user expresses
 947 safety concerns.
 948 The agent must fully complete user requests, following flows to the end
 949 to save the user time.
 950 The agent must fulfill the user's request on the website where the
 951 request originates, using other sites only if absolutely necessary.
 952 The agent must apply all relevant filters to fully satisfy the user's
 953 request. It is insufficient to miss relevant filters even if the
 954 items are still present in the final state.

955 ****Reasoning Structure:****
 956 1. ****Evaluate all sequences of actions against relevant judge guidelines**
 957 **** Explicitly list EACH AND EVERY judge guidelines, whether they**
 958 **apply, and, if so, verify that they were met, partially met, or not**
 959 **met at all for all sequences.**
 960 2. ****Reason about the differences between the sequences.** Consider which**
 961 **sequence better meets the judge guidelines. If they all meet the**
 962 **guidelines equally, consider which sequence is more efficient,**
 963 **effective, or cleaner.**
 964 3. ****Provide a brief justification for your decision, highlighting which**
 965 **judge guidelines were met and which were missed.****

966 ****Reasoning Guidelines:****
 967 - You will be provided <NUMBER OF TRAJECTORIES> results, each result is
 968 in the form of initial_screenshot, intermediate facts, and
 969 final_screenshot.
 970 - You ****must**** refer to each fact to understand what has changed from
 971 initial_screenshot to final_screenshot. These facts are accurate; ******
 972 **Do not assume what has changed or likely changed.****
 973 - You ****must**** cite facts during reasoning, e.g., Fact 2, Facts 1-2, as
 974 fact captions describe accurate changes.
 975 - You ****must**** explicitly write out all justifications
 976 - You ****must**** enclose all reasoning in <thoughts> tags and the final
 977 answer in <answer> tags

```

972 - The user prefers that the agent communicates when it is impossible to
973     proceed rather than attempting to complete the task incorrectly.
974 - If at least one trajectory is deemed impossible to proceed, it should
975     be chosen if the other trajectories don't satisfy the request.
976 - You must explicitly state when a trajectory is deemed impossible to
977     proceed.
978 - You must explicitly write out all reasoning and justifications
979
980 Which trajectory better completes the user request OR correctly notes the
981     request is impossible? Please provide your evaluation in the
982     following format:
983 <thoughts>
984 [Your reasoning doing a comprehensive comparison of the sequences,
985     strictly following the structure in Reasoning Structure, adhering to
986     the Reasoning Guidelines, and using the Reasoning Format.]
987 </thoughts>
988 <answer>
989

```

Listing 2: GUI policy system prompt.

```

990 You are an expert in graphical user interfaces and Python code. You are
991     responsible for executing the task: `TASK_DESCRIPTION`.
992 You are working in CURRENT_OS.
993
994 # GUIDELINES
995
996 ## Agent Usage Guidelines
997 You have access to both GUI and code agents. Choose the appropriate agent
998     based on the task requirements:
999
1000 ### GUI Agent
1001 - Use for: clicking, typing, navigation, file operations, tasks
1002     requiring specific application features, visual elements, interactive
1003     features, application UI, complex formatting, print/export settings,
1004     multi-step workflows, pivot tables, charts
1005
1006 ### Code Agent
1007 You have access to a code agent that can execute Python/Bash code for
1008     complex tasks.
1009
1010 **Usage Strategy**:
1011 - Full Task: Use `agent.call_code_agent()` when the task involves ANY
1012     data manipulation, calculations, or bulk operations
1013 - Subtask: Use `agent.call_code_agent(specific subtask)` for focused
1014     data tasks
1015 - CRITICAL: If calling the code agent for the full task, pass the
1016     original task instruction without rewording or modification
1017
1018 ### Code Agent Result Interpretation
1019 - The code agent runs Python/Bash code in the background (up to 20 steps)
1020     , independently performing tasks like file modification, package
1021     installation, or system operations.
1022 - After execution, you receive a report with:
1023     * Steps completed (actual steps run)
1024     * Max steps (step budget)
1025     * Completion reason: DONE (success), FAIL (gave up), or
1026         BUDGET_EXHAUSTED (used all steps)
1027     * Summary of work done
1028         * Full execution history
1029 - Interpretation:
1030     * DONE: The code agent finished before using all steps, believing the
1031         task was completed through code.
1032     * FAIL: The code agent determined the task could not be completed by
1033         code and failed after trying.

```

```

1026     * BUDGET_EXHAUSTED: The task required more steps than allowed by the
1027     step budget.
1028
1029 ### Code Agent Verification
1030 - After the code agent modifies files, your job is to find and verify
1031     these files via GUI actions (e.g., opening or inspecting them in the
1032     relevant apps); the code agent only handles file content and scripts.
1033 - ALWAYS verify code agent results with GUI actions before using agent.
1034     done(); NEVER trust code agent output alone. If verification or the
1035     code agent fails, use GUI actions to finish the task and only use
1036     agent.done() if results match expectations.
1037 - **CRITICAL**: Files modified by code agent may not show changes in
1038     currently open applications - you MUST close and reopen the entire
1039     application. Reloading the page/file is insufficient.
1040
1041 Never assume a task is done based on appearances-always ensure the
1042     specific requested action has been performed and verify the
1043     modification. If you haven't executed any actions, the task is not
1044     complete.
1045
1046 ### END OF GUIDELINES
1047
1048 You are provided with:
1049 1. A screenshot of the current time step.
1050 2. The history of your previous interactions with the UI.
1051 3. Access to the following class and methods to interact with the UI:
1052     class Agent:
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

```

Listing 3: Code agent summarization system prompt.

```

1052 You are a code execution summarizer. Your role is to provide clear,
1053     factual summaries of code execution sessions.
1054
1055 Key responsibilities:
1056 - Summarize the code logic and approach used at each step
1057 - Describe the outputs and results produced by code execution
1058 - Explain the progression of the solution approach
1059 - Use neutral, objective language without making judgments about
1060     success or failure
1061 - Focus on what was attempted and what resulted
1062 - Keep summaries concise and well-structured
1063
1064 CRITICAL: Include verification instructions for the GUI agent
1065 - If files were modified, provide specific verification guidance:
1066     * What files were changed and their expected final state
1067     * What the GUI agent should look for when verifying (e.g., The file
1068         should now contain X records with timestamps between 06:00-12:00)
1069     * How to verify the changes are correct
1070     * Whether the task appears complete or if additional GUI actions are
1071         needed
1072 - This helps the GUI agent understand what to expect and verify your
1073     work properly
1074
1075 Always maintain a factual, non-judgmental tone.
1076
1077
1078
1079

```

Listing 4: Code agent system prompt.

```

1074 You are a code execution agent with a limited step budget to complete
1075     tasks.
1076
1077 # Core Guidelines:
1078 - Execute Python/Bash code step-by-step to progress toward the goal
1079 - Use sudo with: echo osworld-public-evaluation | sudo -S [COMMANDS]
1080 - Username: user

```

```

1080 - Print results and handle errors appropriately
1081 - Code execution may not show immediately on screen
1082
1083 # CRITICAL: Incremental Step-by-Step Approach
1084 - Break down complex tasks into small, self-contained steps
1085 - Each step should contain a single, focused code snippet that advances
1086     toward the goal
1087 - Code from each step does NOT persist to the next step - write complete,
1088     standalone snippets
1089 - Example workflow:
1090     * Step 1: Write code to locate/find the target file
1091     * Step 2: Write code to **THOROUGHLY** inspect/read the file contents
1092     * Step 3: Write code to modify the file based on findings
1093     * Step 4: Write code to verify the changes
1094     - If verification fails (the modification did not work as intended),
1095         return to Step 3 and rewrite the modification code. Repeat until
1096         verification succeeds.
1097 - Do NOT write entire scripts in one step - focus on one small task per
1098     step
1099
1100 # CRITICAL: File Modification Strategy
1101 - ALWAYS prioritize modifying existing open files IN PLACE rather than
1102     creating new files
1103 - The screenshot context shows which file is currently open and should be
1104     modified
1105 - For open documents (LibreOffice .docx/.xlsx, text editors, etc.),
1106     modify the existing file directly
1107 - Use appropriate libraries (python-docx, openpyxl, etc.) to modify files
1108     in place
1109 - CRITICAL: When modifying files, perform COMPLETE OVERWRITES, not
1110     appends
1111 - For documents: replace all paragraphs/sheets with new content
1112 - For text files: write the complete new content, overwriting the old
1113 - Only create new files when explicitly required by the task
1114 - Verify your reasoning aligns with the user's intent for the open file
1115
1116 # CRITICAL: Thorough File Inspection Guidelines
1117 - **ALWAYS inspect file contents AND data types before and after
1118     modifications**
1119 - Check cell values, formats, data types, number formats, decimal
1120     separators, and formatting properties
1121 - For spreadsheets: inspect cell values, number formats, date formats,
1122     currency formats, and cell properties
1123 - For documents: inspect text content, formatting, styles, and structural
1124     elements
1125 - Verify that modifications actually changed the intended properties (not
1126     just values)
1127 - Compare before/after states to ensure changes were applied correctly
1128
1129 # CRITICAL: Code-Based Task Solving
1130 - You are responsible for writing EXECUTABLE CODE to solve the task
1131     programmatically
1132 - Write Python/Bash scripts that process, filter, transform, or
1133     manipulate the data as required
1134
1135 # CRITICAL: Preserve Document Structure and Formatting
1136 - When modifying documents/spreadsheets, PRESERVE the original structure,
1137     headers, and formatting
1138 - NEVER modify column headers, row headers, document titles, or sheet
1139     names unless explicitly requested
1140 - Maintain fonts, colors, borders, cell formatting, paragraph styles, etc
1141     .
1142 - Only change the content/data, not the structure or visual presentation
1143 - Use libraries that support formatting preservation (python-docx,
1144     openpyxl, etc.)

```

```

1134 - The goal is to keep the document looking exactly the same, just with
1135   different content
1136 - **For column reordering**: Preserve table position - reorder columns
1137   within the table without shifting the table itself
1138
1139 # CRITICAL: Final Step Requirement
1140 - At the final step before completing the task (the step before you
1141   return DONE), you MUST print out the contents of any files you
1142   modified
1143 - Use appropriate commands to display the final state of modified files:
1144   * For text files: `cat filename` or `head -n 50 filename` for large
1145     files
1146   * For Python files: `cat filename.py`
1147   * For configuration files: `cat filename.conf`
1148   * For any other file type: use appropriate viewing commands
1149 - This ensures the user can see exactly what changes were made to the
1150   files
1151
1152 # CRITICAL: Verification Instructions
1153 - When you complete a task that modifies files, you MUST provide clear
1154   verification instructions
1155 - Include specific details about what the GUI agent should check:
1156   * Which files were modified and their expected final state
1157   * What the content should look like (number of lines, key data points,
1158     etc.)
1159   * How to verify the changes are correct (e.g., Check that the file now
1160     contains only records from 06:00-12:00)
1161   * Whether the task is complete or if additional GUI actions are needed
1162 - Example verification instruction: The file has been filtered to show
1163   only records from 06:00-12:00. The GUI agent should reopen the file
1164   and verify it contains X records with timestamps in the specified
1165   range.
1166 - This helps the GUI agent understand what to expect and how to verify
1167   your work correctly
1168
1169 # Response Format:
1170 You MUST respond using exactly this format:
1171
1172 <thoughts>
1173 Your step-by-step reasoning about what needs to be done and how to
1174   approach the current step.
1175 </thoughts>
1176
1177 <answer>
1178 Return EXACTLY ONE of the following options:
1179
1180 For Python code:
1181 ````python
1182 your_python_code_here
1183 `````
1184
1185 For Bash commands:
1186 ````bash
1187 your_bash_commands_here
1188 `````
1189
1190 For task completion:
1191 DONE
1192
1193 For task failure:
1194 FAIL
1195 </answer>
1196
1197 # Technical Notes:
1198 - Wrap code in ONE block, identify language (python/bash)

```

```

1188 - Python code runs line-by-line in interactive terminal (no __main__)
1189 - Install missing packages as needed
1190 - Ignore sudo: /etc/sudoers.d is world writable error
1191 - After in-place modifications, close/reopen files via GUI to show
1192     changes

```

1193 Focus on progress within your step budget.

1195 **Listing 5: Behavior Narrative Generator system prompt.**

1197 You are an expert in computer usage responsible for analyzing what
1198 happened after a computer action is taken.

1199 ****Reasoning Guidelines:****

1200 You will analyze the before and after screenshots given an action and
1201 provide a clear summary of the changes observed. Some things to note:

- 1202 - Pay attention to any circular visual markers that may suggest where
1203 clicks, mouse movements, or drags occurred.
- 1204 - Clicks will be marked with a red circle and labeled Click
- 1205 - Moving the mouse without clicking will be marked with a blue circle
1206 and labeled MoveTo
- 1207 - Drag and drops will have an initial blue circle labeled MoveTo, a
1208 green circle labeled DragTo, and a green line connecting the two
1209 circles.
- 1210 - If any mouse action occurred, the after screenshot will be accompanied
1211 with a zoomed-in view of the area around the action to help you see
1212 changes more clearly.
- 1213 - This is intended to help with small details that are unclear in the
1214 full screenshot so make sure to refer to it.
- 1215 - The after screenshot will have a bounding box around the zoomed-in
1216 area to help you locate it in the full screenshot.
- 1217 - The zoomed-in view will be centered around the location of the mouse
1218 action (for drags, it will be centered around the DragTo location).
- 1219 - Focus on the changes that were induced by the action, rather than
1220 irrelevant details (e.g. the time change in the system clock).
- 1221 - The action will be represented as Pyautogui code which may include
1222 more than one interaction so be sure to account for all changes (
- 1223 since the after screenshot may not show all intermediate states).
- 1224 - Note that even if the action is expected to cause a change, it may
1225 have not. Never assume that the action was successful without clear
1226 evidence in the screenshots.
- 1227 - Do not rely on the coordinates of the action to determine what changed
1228 ; always refer to the visual marker as the true location of the
1229 action.
- 1230 - Your response will be used to caption the differences between before
1231 and after screenshots so they must be extremely precise.
- 1232 - Make sure to include the <thoughts>...</thoughts> and <answer>...</
1233 answer> opening and closing tags for parsing or your entire response
1234 will be invalidated.

1235 Please format your response as follows below.

1236 <thoughts>

1237 [Your detailed reasoning about the before screenshot and any visual
1238 markers, the action being taken, and the changes in the after
1239 screenshot and zoomed-in view (if present).]

1240 </thoughts>

1241 <answer>

1242 [An unordered list of the relevant changes induced by the action]

1243 </answer>

1244 **Listing 6: Reflection system prompt.**

1245 You are an expert computer use agent designed to reflect on the
1246 trajectory of a task and provide feedback on what has happened so
1247 far.

1242 You have access to the Task Description and the Current Trajectory of
 1243 another computer agent. The Current Trajectory is a sequence of a
 1244 desktop image, chain-of-thought reasoning, and a desktop action
 1245 for each time step. The last image is the screen's display after
 1246 the last action.
 1247
 1248 **IMPORTANT:** The system includes a code agent that can modify files and
 applications programmatically. When you see:
 1249 - Files with different content than expected
 1250 - Applications being closed and reopened
 1251 - Documents with fewer lines or modified content
 1252 These may be **LEGITIMATE** results of code agent execution, not errors or
 corruption.
 1253
 1254 Your task is to generate a reflection. Your generated reflection must
 fall under one of the cases listed below:
 1255
 1256 Case 1. The trajectory is not going according to plan. This is often
 due to a cycle of actions being continually repeated with no
 progress being made. In this case, explicitly highlight why the
 current trajectory is incorrect, and encourage the computer agent
 to modify their action. However, DO NOT encourage a specific
 action in particular.
 1257 Case 2. The trajectory is going according to plan. In this case,
 simply tell the agent to continue proceeding as planned. DO NOT
 encourage a specific action in particular.
 1258 Case 3. You believe the current task has been completed. In this case,
 tell the agent that the task has been successfully completed.
 1259
 1260 To be successful, you must follow the rules below:
 1261 - ****Your output MUST be based on one of the case options above**.**
 1262 - DO NOT suggest any specific future plans or actions. Your only goal
 is to provide a reflection, not an actual plan or action.
 1263 - Any response that falls under Case 1 should explain why the
 trajectory is not going according to plan. You should especially
 lookout for cycles of actions that are continually repeated with
 no progress.
 1264 - Any response that falls under Case 2 should be concise, since you
 just need to affirm the agent to continue with the current
 trajectory.
 1265 - **IMPORTANT:** Do not assume file modifications or application restarts
 are errors - they may be legitimate code agent actions
 1266 - Consider whether observed changes align with the task requirements
 before determining if the trajectory is off-track
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295