
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE UNREASONABLE EFFECTIVENESS OF SCALING
AGENTS FOR COMPUTER USE

Anonymous authors
Paper under double-blind review

ABSTRACT

Computer use agents (CUAs) hold promise for automating everyday digital tasks,
but their unreliability and high variance hinder their application to long-horizon,
complex tasks. We introduce Behavior Best-of-N (bBoN), a method that scales
over agents by generating multiple rollouts and selecting among them using be-
havior narratives that describe the agents’ rollouts. It enables both wide explo-
ration and principled trajectory selection, substantially improving robustness and
success rates. On OSWorld, our bBoN scaling method establishes a new state of
the art (SoTA) at 69.9%, significantly outperforming prior methods and approach-
ing human-level performance at 72%, with comprehensive ablations validating
key design choices. We further demonstrate strong generalization results to differ-
ent operating systems on WindowsAgentArena and AndroidWorld. Crucially, our
results highlight the unreasonable effectiveness of scaling CUAs, when you do it
right: effective scaling requires structured trajectory understanding and selection,
and bBoN provides a practical framework to achieve this.

1 INTRODUCTION

Figure 1: Performance on OSWorld at 100 steps. Our
method beats the previous SoTA by 10% absolute improve-
ment, nearly reaching human level performance.

Computer-use agents (CUAs) offer
the promise of automating everyday
digital tasks across operating systems
and applications (Xie et al., 2024;
Song et al., 2025; Guo et al., 2025b;
Yang et al., 2025b; Xie et al., 2025b;
Wang et al., 2025b;c). Yet despite
rapid advances, current CUAs remain
unreliable on long-horizon, complex
problems. The difficulty lies not
only in solving individual steps but
also in sustaining correctness across
dozens or even hundreds of inter-
actions. Small mistakes accumu-
late, feedback is often delayed, so-
lution paths branch in unpredictable
ways, and environmental noise (UI
changes, pop-ups, latency) further
destabilizes performance (Yang et al., 2025a). Together, these factors cause high variance in out-
comes: the same agent may succeed on one attempt but fail catastrophically on another.

A natural way to mitigate this fragility is wide scaling: instead of simply accepting a single rollout
from one agent, we can scale the number of agents to generate multiple rollouts in parallel and select
the best. This wide scaling perspective leverages the fact that agents, while suboptimal individually,
often succeed on complementary subsets of tasks, as shown in Figure 2. However, scaling CUAs in-
troduces unique challenges. First, long-horizon trajectories are information-dense with multimodal
details, most of which are irrelevant to task success, making them difficult to represent, interpret,
and compare. Second, evaluation itself is non-trivial: many computer-use tasks admit multiple valid
solutions, and automatic evaluation struggles to decide whether a trajectory is correct (Xie et al.,
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Figure 2: Disjoint task success across rollouts by three agent instances. Behavior Best-of-N (bBoN)
leverages this complementarity by selecting the best trajectory among multiple rollouts.

2024; Rawles et al., 2025; Bonatti et al., 2024). Therefore, scaling CUAs effectively demands new
methods for compactly representing trajectories and reliably evaluating them.

To address these challenges, we introduce Behavior Best-of-N (bBoN), a novel framework that
enables wide scaling of CUAs. Our approach first converts raw trajectories into behavior narratives:
concise summaries that capture what the agent actually did and how it affected the environment,
preserving task-relevant action–effect summaries while filtering away irrelevant detail at individual
steps. These narratives provide a compact yet faithful representation that makes it easier for a judge
to compare candidates. bBoN then performs selection directly over narratives, enabling reliable
selection among multiple rollouts. In addition, we build upon existing CUAs and introduce an
improved baseline computer use agentic framework to generate high quality trajectories for bBoN.

Our method delivers unreasonably strong performance on computer-use benchmarks. On OS-
World (Xie et al., 2024), it achieves a new state of the art with a 69.9% success rate (100 steps),
surpassing the previous best of 59.9% and approaching human-level performance at 72% (Fig-
ure 1). Beyond OSWorld, our approach also demonstrates strong zero-shot generalizability on Win-
dowsAgentArena (Bonatti et al., 2024) and AndroidWorld (Rawles et al., 2025).

Our contributions are four-fold:

• We introduce the wide scaling paradigm for CUAs, showing that generating multiple trajec-
tories in parallel and selecting among them substantially improves robustness and coverage.

• We propose Behavior Best-of-N (bBoN), a framework that converts dense trajectories into
compact behavior narratives and uses them for principled trajectory selection.

• Our method, together with an improved CUA baseline, achieves a new SoTA of 69.9%
on OSWorld, surpassing prior work by a large margin (10% absolute improvement) and
approaching human performance at 72%.

• We provide extensive ablations validating our design choices and demonstrate strong zero-
shot generalizability on WindowsAgentArena and AndroidWorld.

2 BACKGROUND

2.1 COMPUTER-USE AGENTS

Computer-use agents (CUAs) executing user instructions can be framed as a partially observable
Markov Decision Process (POMDP) defined as M = ⟨S,O,A, T , I, R⟩, where S is the state space
encoding the computer state, O is the observation space such as desktop screenshots, A is the action
space of the agent (e.g. agent.click(...) and agent.type(...)), T : S × A → ∆(S)
is a stochastic transition function, I is the space of possible user instructions represented in natural
language, and R : (S × A)∗ × I → [0, 1] denotes the instruction reward function that assigns a
scalar reward to a trajectory of states and actions τ := (s0, a0, . . . , aT−1, st) on task I . We use
ht := (o0, a0, . . . , ot−1, at−1, ot) to denote a time-ordered history of all consecutive observations
and actions up to and including ot.

A broad spectrum of computer agents has been explored including general agentic frameworks (Song
et al., 2025; Yang et al., 2025b; Agashe et al., 2025; 2024), generalist agents (Anthropic, 2025;
OpenAI, 2024; Guo et al., 2025a) and graphical user interface (GUI) agents (Wang et al., 2025a; Xu
et al., 2025). These prior work consider a single model as the policy π(a|ht, I) that, when executed,
yields one trajectory τ = (o0, a0, . . . , oT ) where at ∼ π(·|ht, I). In contrast, our work is the first,
to our knowledge, that focuses on scaling the number of candidate solution trajectories by using
multiple base models and policies, and we propose effective methods to select the optimal solution.
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Figure 3: Behavior Best-of-N generates multiple rollouts consisting of screenshots and actions.
These trajectories are converted into behavior narratives via the behavior narrative generator, using
the executed action and before/after screenshots to describe what was changed. Finally, the behavior
narratives are provided to the judge which selects the best trajectory through comparison.

2.2 TEST-TIME SCALING

A common strategy for improving large multimodal models and their agentic extensions is through
test-time scaling (Zhu et al., 2025), where multiple solutions are generated either in parallel or
sequentially, followed by selection a final response using a reward model or iterative generation of
new solutions (Snell et al., 2024; Lightman et al., 2024). Recent work (Yang et al., 2025b) has
adapted this idea for CUAs with step-wise BoN (Zhu et al., 2025), where at each step the agent π
generates K candidate actions Ct = {a(k)t }Kk=1 ∼ π(·|ht, I) and then a judge J selects the best
action â = J(Ct). While this can help with local improvements, it commits the rollout to the
current agent plan. In tasks with multiple valid solutions paths, this can lead the agent to over-
commit to a harder route, missing easier alternatives. In contrast, our work investigates the wide
scaling approach using trajectory-level BoN, where a final best trajectory is selected among a set of
candidates trajectories generated by multiple base agents or models.

However, implementing trajectory-level BoN is non-trivial because trajectory evaluation is still
a fundamental challenge. Most existing benchmarks such as OSWorld (Xie et al., 2024), Win-
dowsAgentArena (Bonatti et al., 2024), and AndroidWorld (Rawles et al., 2025) use evaluation
scripts written by humans which cannot be scaled. In contrast, work on web-agent benchmarks, a
subset of CUA focused on browsers, has explored using vision-language models (VLMs) as judges
(He et al., 2024; Deng et al., 2023; Xue et al., 2025). However, these judges are typically tuned
for the web domain, require human-defined rubrics, and do not generalize well to the broader tasks
faced by CUAs. In addition, aligning such judges with human judgment requires substantial manual
effort, such as in Mind2Web 2 (Gou et al., 2025) that achieved 99% agreement using code-generated
rubrics but still relied on extensive human verification. Moreover, all these evaluation methods only
work with a single trajectory. Our work aims to augment trajectory-level BoN to handle trajectory
evaluation by (1) improving trajectory understanding by converting trajectories into a behavior nar-
rative that describes what an agent did and (2) comparing trajectories using the behavior narratives
to effectively distinguish the best.

3 METHOD

Our Behavior Best-of-N framework, shown in Figure 3, is designed to enable wide scaling over
many agent rollouts. We improve upon Agent S2 (Agashe et al., 2025), a top-performing open-
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source agentic framework, and introduce two key components: Behavior Narrative Generator and
Behavior Best-of-N Judge. Given a rollout, the Behavior Narrative Generator derives facts from
each transition, yielding a behavior narrative that describes what the agent did (action-effects) while
discarding irrelevant details. The Behavior Best-of-N Judge then conducts a comparative evaluation
of the candidate narratives across multiple rollouts to determine the best solution.

3.1 BEHAVIOR NARRATIVE GENERATION

Long-horizon trajectories are information-dense, with every step producing a new screenshot. We
argue that it is not necessary or even optimal to judge all of the raw visual content directly to un-
derstand what actually occurred. We propose to extract the task-relevant changes caused by the
agent’s actions from screenshots in order for a downstream judge to focus on the changes that
matter. We construct a behavior narrative composed of facts that describe what the agent did
at each step. Concretely, given a generator G (instantiated using a VLM) and an agent rollout
τ = (s0, a1, s1, . . . , aT−1, sT ) where s denotes a screenshot and a denotes an agent action, we
feed in transitions (si, ai, si+1) to the generator and derive facts ϕi = G(si, ai, si+1), for each
i ∈ {0, . . . , T − 1}.

To generate accurate facts, the Behavior Narrative Generator takes in a screenshot before action
execution, the action to execute, and the screenshot after execution as depicted in Figure 3. The gen-
erator applies targeted visual augmentations for pointer interactions (clicks, taps, moves, and drags),
as these actions require pixel-level precision and are more prone to agent hallucination. For exam-
ple, a step-level hallucination where a click on the Save button fails but the agent believes otherwise
can be the difference between a success or failure. On the screenshot before action execution si, we
overlay a marker centered at the pointer coordinate (xi, yi) where ai will occur. On the screenshot
after action execution si+1, we extract a zoomed crop szi+1 of a fixed-size square centered at the final
pointer coordinate (xi+1, yi+1) and outline the crop in si+1 to indicate the region of interest. The
zoom provides the generator with fine-grained evidence to verify that the intended change occurred.
To handle cases where changes are delayed (e.g. clicking a hyperlink), screenshot si+1 is taken 3
seconds after action execution.

Once facts have been derived from each transition, we construct a behavior narrative τ̃ =
(s0, ϕ0, ϕ1 . . . , ϕT−1, sT ) that retains only task-relevant changes. We include the initial and fi-
nal screenshot to ground where changes begin from and what they result in. This allows Behavior
Best-of-N to focus solely on what the agent did differently between trajectories.

3.2 BEHAVIOR BEST-OF-N JUDGE

While generating multiple rollouts increases the chance that at least one rollout is successful, the
benefits can only be realized if we can reliably select the correct trajectory. Selection is challeng-
ing because a judge must both interpret long-horizon behavior within each rollout (to verify task
requirements) and discriminate among candidates. To simplify this, we decide to separate these
responsibilities by generating a concise behavior narrative that describes the long-horizon behavior
so the bulk of the judge’s responsibility lies on selecting between candidates. We therefore ap-
ply Behavior Best-of-N (bBoN) to the behavior narratives τ̃ produced through behavior narrative
generation, so the judge can focus on differences between agent behaviors.

Concretely, given a set of base policies {πm}Mm=1, we generate candidates C =
⋃M

m=1{τ
(n)
m }Nm

n=1

where each candidate τ (n)m is sampled via stochastic decoding from a base policy πm. This allows us
to capture diversity from variance within the same model (n = 1 . . . Nm) and differing capabilities
across different models (m = 1 . . .M ). Our objective is to select the candidate trajectory that
maximizes task return τ̂ ∈ argmaxτ∈C R(τ, I). The candidate set C is converted to a corresponding
set of behavior narrative candidates C̃ := {τ̃ (n)}|C|

n=1, according to the behavior narrative generation
in Section 3.1. Then a VLM judge J is prompted to run comparative evaluation using all narratives
in C̃ and select a single best narrative candidate, which corresponds to the final selected trajectory
τ̂ ∈ C. In this work, we instantiate comparative evaluation using a single-round multiple-choice
question (MCQ) format, which enables a more informed comparison than independent ranking while
being more token-efficient and faster than multi-round tournament-style comparisons of subsets of
candidates. The system prompt (Section H) emphasizes on citing and contrasting facts to ensure each
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candidates’ behaviors are carefully observed, which we find gives small improvements (Section F).
By comparing behavior narratives altogether, we enable wide scaling over many agents.

3.3 AN IMPROVED AGENTIC FRAMEWORK BASELINE

As Behavior Best-of-N operates on multiple full-length trajectories generated by base agents, we
can improve the overall performance and latency of bBoN by starting with the best frameworks for
the base agents. Inspired by Agashe et al. (2025) and Song et al. (2025), we created an improved
baseline agentic framework, Agent S3, which achieves a new SoTA even before incorporation into
bBoN. It draws upon two key ideas: 1) performance gains of programmatic edits over direct GUI
manipulation when needed (up to the agent itself), and 2) speedup by using a flat (worker only)
policy instead of a manager-worker hierarchy.

Coding Agent To encourage diverse solution paths, our GUI policy π(at | I, ht) reasons what ap-
proach might be best suited for the next step: generate a GUI action at ∈ Agui or invoke the coding
agent for programmatic edits (e.g., bulk operations, file transforms, structured parsing). A code call
launches a bounded inner loop with budget B that iterates on generated code and terminal feedback.
At inner step k, the coding agent conditions on ccode

k = (I, ot, F1:k−1), where F1:k−1 aggregates ex-
ecution signals (status, return code, stdout/stderr) from prior iterations. It either emits Python/Bash
to be executed in a sandboxed VM, or returns a control token DONE/FAIL. On termination, a brief
summary of the session—logic, observed effects, and a verifiable inspection checklist—is appended
to the GUI agent’s history to aid on-screen verification and subsequent planning by the GUI policy.
Different from Song et al. (2025), our coding agent implementation does not use the AutoGen Wu
et al. (2023) framework nor does it use an orchestrator to divide and delegate tasks across the GUI
and coding agents. Our coding agent implementation is natively integrated into our GUI agent’s
action space, allowing GUI agent to reason when best to delegate the next step to the coding agent.

Flat Policy We remove hierarchical planning in favor of a flat policy that can replan at any time
based on (I, ht). Contemporary foundation models exhibit strong GUI understanding and can main-
tain short-horizon plans in context, making a separate high-level planner unnecessary and sometimes
counterproductive (e.g., when subgoals become stale). We evaluate these design choices in Table 2;
implementation details appear in Section D.

4 EXPERIMENTS AND ANALYSIS

In the following experiments, we systematically investigate the effectiveness of Behavior Best-of-
N (bBoN) across several dimensions of computer-use agents. Specifically, we aim to address the
following research questions:

1) Performance. How does bBoN perform compared with other CUA baselines?

2) Scalability. How does performance scale with increasing number of rollouts?

3) Ensembling. How should we select a mixture-of-models ensemble?

4) Representation. How do behavior narratives compare to other trajectory representations?

5) Selection mechanism. How does comparative selection compare to independent ranking?

6) Failure modes. How accurate is the bBoN Judge and what are its main failure modes?

7) Generalizability. How does bBoN generalize to other domains and benchmarks?

4.1 EXPERIMENTAL SETUP

Benchmarks We focus on OSWorld (Xie et al., 2024), which comprises 369 real-world Ubuntu
tasks across five domains (OS, Office, Daily, Professional, Workflow). Following common practice
(Xie & et al., 2024), we use the 361-task subset that omits eight multi-application tasks requiring
Google Drive credentials not available in the sandbox. We further assess generality beyond Ubuntu
on two additional benchmarks: WindowsAgentArena (Bonatti et al., 2024), a 154-task Windows
benchmark, spanning LibreOffice Writer/Calc, Edge/Chrome, File Explorer/Windows Settings, VS
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Method Model 50-step 100-step

Jedi-7B w (Xie et al., 2025b) o3 50.6 51.0
GTA1 (step-wise scaling) (Yang et al., 2025b) o3 48.6 53.1
CoAct-1 (Song et al., 2025) OAI CUA + o3 + o4-mini 56.4 59.9

Our Improved Baselines (No Scaling)

Agent S3 o3 60.6 61.1
Agent S3 GPT-5 Mini 48.1 49.8
Agent S3 GPT-5 61.1 62.6

Our Scaling Results

Agent S3 w/ bBoN (N=10) GPT-5 Mini 55.9 60.2
Agent S3 w/ bBoN (N=10) GPT-5 63.5 69.9

Table 1: OSWorld success rate (%) on 50-steps and 100-steps across 361 tasks. We introduce
the baseline Agent S3, which reaches state-of-the-art (SoTA) with GPT-5 at 62.6%. Our method,
Behavior Best-of-N, achieves SoTA with 69.9% (GPT-5) and 60.2% (GPT-5 Mini).

Code, VLC, and utilities; and AndroidWorld (Rawles et al., 2025), a 116-task Android benchmark
with step budgets specified by the benchmark authors.1

Baselines On OSWorld, we introduce Agent S3 as an improved baseline for scaling results. We
additionally compare against other top methods including Jedi (Xie et al., 2025a), GTA1 (Yang et al.,
2025b) and CoACT-1 (Song et al., 2025). For AndroidWorld, we compare with 3 top-performing
open-source frameworks using screen-shot only representations including MobileUse (Li et al.,
2025), UI-Venus (Gu et al., 2025), and Agent S2 (Agashe et al., 2025). For WindowsAgentArena,
we compare with Navi (Bonatti et al., 2024) and Agent S2 (Agashe et al., 2025). For ablation of the
judge for scaling, we compare against an adaptation of WebJudge (Xue et al., 2025), which has 85%
agreement with human judgment, for isolating the effect of comparative versus independent trajec-
tory selection mechanisms. We also implement and compare against two baselines when isolating
the effect of representation: 1) a naive captioner that captions each screenshot individually, and 2)
using screenshots only.

Implementation Details Agent S3 is an improvement over Agent S2 that removes hierarchical
planning and adds a coding agent (details in Appendix D). We use Agent S3 to generate rollouts for
bBoN trajectory selection. The coding agent is enabled for OSWorld and WindowsAgentArena but
disabled for AndroidWorld due to emulator constraints that preclude program execution and inspec-
tion. We also adapt WebJudge to do comparative selection by individually ranking each trajectory
with a score 1-5 and choosing the highest score, tie-breaking at random, and we adapted the sys-
tem prompt to the OS setting. For our Screenshot Only baseline, we pass 50/N screenshots per
trajectory chosen at uniform intervals across the trajectory, due to context length limitations.

4.2 MAIN RESULTS

As shown in Table 1, Agent S3 already establishes a strong foundation, achieving new SoTA results
on 50- and 100-step success rate for OSWorld. Building on this, our core contribution, Behavior
Best-of-N (bBoN), further surpasses Agent S3 on both 50 and 100 steps. For example, it achieves
69.9% SR with GPT-5 (a 7.3% absolute improvement over Agent S3) and 60.2% SR with GPT-5
Mini (a 10.4% absolute improvement). Given that human performance is approximately 72% (Xie
et al., 2024), these results highlight that bBoN not only surpasses existing methods by a large margin
but also approaches human-level capability.

In addition, Table 2 reports the performance and efficiency gains of our improved agentic framework
baseline, Agent S3, compared to Agent S2 (Agashe et al., 2025) that it was built upon. Agent S3
yields a 13.8% improvement in success rate, a 52.3% reduction in LLM calls per task, and a 62.4%
reduction in average task completion time.

1Experiments were conducted under the AndroidWorld step budget guidelines as of September 20, 2025.
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Method 100-step SR (%) LLM calls/task Time/task (s)

Agent S2 (Agashe et al., 2025) 48.8 73.62 2366.80
Agent S2 (no hier.) 57.9 (+9.1) 41.39 (-43.8%) 1132.91 (-52.1%)
Agent S3 62.6 (+13.8) 35.12 (-52.3%) 891.21 (-62.4%)

Table 2: OSWorld success rate and efficiency statistics using GPT-5. Baseline is Agent S2 with
hierarchical planning; values in parentheses show ∆ vs. Agent S2 (for SR and efficiency metrics).

4.3 HOW DOES BEHAVIOR BEST-OF-N SCALE WITH INCREASING ROLLOUTS?

Figure 4: Performance of bBoN on OSWorld with increas-
ing number of rollouts.

Figure 4 shows the performance of
bBoN using both GPT-5 and GPT-
5 Mini generally increases with the
number of rollouts. There is a small
dip in performance for GPT-5 at N=6
which is recovered at N=8, show-
ing that even though some rollouts
can decrease perform, it can still be
recovered with more rollouts. This
serves as an experimental validation
that incrementally increasing rollouts
could improve overall results. This
trend suggests that both larger and
smaller models can benefit from wide
scaling.

4.4 HOW SHOULD WE SELECT A MIXTURE-OF-MODELS ENSEMBLE?

Mixture SR (%) Pass@N (%)

GPT-5 66.5 74.7
GPT-5 Mini 57.0 68.2
Gemini 2.5 Pro 60.9 71.7
Claude 4 Sonnet 57.2 64.6
GPT-5 + Mini 64.9 74.1
GPT-5 + Gemini 66.7 78.0
GPT-5 + Claude 64.2 75.6
Mini + Gemini 64.0 72.8
Mini + Claude 58.0 71.0
Gemini + Claude 61.9 72.7
All 65.9 75.4

Table 3: Success rate and task coverage for
bBoN using mixture-of-model combinations
with GPT-5, GPT-5 Mini, Gemini-2.5 Pro,
and Claude-4-Sonnet. Each mixture’s suc-
cess rate is on N=4 runs split evenly.

Table 3 shows the success rate and task coverage
of bBoN using various mixture-of-model combi-
nations. Task coverage is calculated by setting a
task successful if at least one trajectory is correct,
or Pass@N (Chen et al., 2021). We observe that
from the single model mixtures, GPT-5 performs
the strongest at 66.5% followed by Gemini 2.5 Pro
at 60.9%, demonstrating that strong model capa-
bilities lead to overall higher success with selec-
tion. We also observe that the most diverse mix-
ture (All) achieves higher task coverage than single-
model mixtures at 75.4%, demonstrating that diver-
sity is key to increasing the upper bound on success.
Finally, we observe that the GPT-5 + Gemini 2.5 Pro
mixture achieves the highest success rate of 66.7%
and task coverage of 78.0%, suggesting that select-
ing a mixture-of-models ensemble with highly di-
verse capable models achieves the best performance
with the highest upper bound.

4.5 HOW DO BEHAVIOR NARRATIVES COMPARE TO OTHER TRAJECTORY REPRESENTATIONS?

Representation Sucess Rate (%)
Screenshot Only 56.0
Trajectory Summary 55.0
Naive Captioning 56.8

Behavior Narratives 60.2

Table 4: Ablation on bBoN’s behavior narrative representation with 10 GPT-5 Mini rollouts.
7
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Table 4 shows an ablation on our behavior narrative representation. We compare against a
screenshot-only baseline, a trajectory summary baseline that summarizes the trajectory in 3-6 sen-
tences, and a naive captioning baseline that captions each screenshot individually. We find that
behavior narratives are an effective representation for bBoN, providing a 3.4% improvement over
the best baseline. This suggests that it is difficult to understand screenshots alone and that it is
necessary to generate facts over transitions rather than individual states.

4.6 HOW DOES COMPARATIVE SELECTION COMPARE TO INDEPENDENT RANKING?

Figure 5: Comparison of bBoN against WebJudge on OSWorld using GPT-5 Mini’s rollouts. Aver-
age represents the average performance of the rollouts.

Figure 5 shows a comparison between bBoN and WebJudge. We modify WebJudge to choose over
many trajectories by independently ranking trajectories and selecting the highest rank. We find
that overall bBoN achieves better performance than WebJudge, with WebJudge providing limited
benefit over the average performance of rollouts. We also find that bBoN shows better scaling as
we increase the number of rollouts. While WebJudge has some slight improvements around N=4, it
plateaus quickly and drops around N=10. This suggests that it is necessary to compare trajectories
against each other for effective, scalable selection.

4.7 BBON JUDGE ACCURACY AND FAILURE ANALYSIS

Category Judge Subset Accuracy Full Set Accuracy

Benchmark Alignment 78.4% 69.9%
Human Alignment 92.8% 76.3%

Table 5: bBoN accuracies on Judge Subset and Full Set with 10 GPT-5 rollouts on OSWorld. The
Judge Subset consists of a subset of 159 OSWorld problems that could be improved on due to disjoint
task success.

Table 5 shows the accuracy of bBoN with respect to OSWorld evaluation scripts and to our human
alignment. We find that on 159 problems (Judge Subset) where the judge can improve performance
(i.e. where there is at least one correct and one incorrect trajectory), it achieves 78.4% accuracy
during selection. After manual inspection over the remaining 35 problems, we found through human
evaluation that the accuracy is 92.8%, as the OSWorld evaluation scripts are imperfect and can only
strictly evaluate one pre-defined solution. This suggests that bBoN is highly effective at selecting
the right trajectories from multiple candidates.

For the remaining 12 failures, we categorize these as behavior narrative generation hallucinations (8)
and Code-GUI handoff failures (4). We observe generation hallucination occur in instances where
the underlying VLM has difficulty with visual understanding such as missing fine-grained details in
text which zooming has little effect on (e.g. the negative sign on a number as shown in Appendix G).
We also observe some cases where the GUI-Agent failed to recognize the Coding Agent’s changes,
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and perform GUI actions overwriting Coding Agent’s changes and cause evaluation to fail. These
kind of failed rollouts generate rich GUI-related behavioral narratives, which are preferred by our
bBoN judge compared to the rollouts whereas the Coding Agent performs everything in one step
and completes, outputting limited behavioral narratives.

4.8 GENERALIZATION TO OTHER BENCHMARKS

Method Model SR (%)

Agent S2 Claude 3.7 Sonnet 54.3
MobileUse Qwen2.5-VL-72B 62.9
UI-Venus UI-Venus-Navi-72B 65.9

Agent S3 GPT-5 68.1
bBoN (N=3) GPT-5 71.6

Table 6: AndroidWorld success rate (%). Be-
havior Best-of-N (N=3) achieves a 3.5% im-
provement over the baseline Agent S3.

Method Model 50-step 100-step

UI-TARS-1.5 - 42.1 -

Agent S3 GPT-5 49.0 50.2
bBoN (N=3) GPT-5 54.1 56.6

Table 7: WindowsAgentArena success rate
(%) within 50 steps and 100 steps. Behavior
Best-of-N (N=3) consistently outperforms the
baseline Agent S3, with a 6.4% improvement
on 100-step SR.

Table 6 and 7 demonstrate strong generalizability of bBoN to different operating systems. For
AndroidWorld, we compare with top 3 performing open-source, screenshot-only methods including
AgentS2 (Agashe et al., 2025), MobileUse (Li et al., 2025), and UI-Venus (Gu et al., 2025) For
WindowsAgentArena, we compare with Agent S2 and UI-TARS-1.5 (Seed, 2025). We find that
Behavior Best-of-N can achieve an improvement of with N = 3 achieves a performance boost of
3.5% and 6.4% respectively, demonstrating that our method can generalize well to other domains.

5 LIMITATIONS

Behavior Best-of-N assumes access to an agent capable of producing multiple independent rollouts
from the same initial state. This assumption aligns with research benchmarks, where tasks are eval-
uated under controlled, repeatable initializations to ensure independence and reproducibility across
runs. It also applies to real-world practice where user requests can be executed inside a virtual
machine (VM) that supports snapshots and duplication, allowing repeated rollouts from a fixed ini-
tial state and low-cost parallelization, keeping wall-clock latency comparable to a single-run agent.
Running outside a VM (e.g., on a user’s actual desktop) would violate the independence assump-
tion since concurrent rollouts can interfere with each other, and isolating side effects is nontrivial.
Even with separate VMs, some tasks interact with shared online resources (e.g., Amazon shopping
carts, email, Google Drive), introducing cross-run interference via shared accounts. Future work
can extend parallel rollouts to real desktops and manage shared online resources so Behavior Best-
of-N can operate over all CUA tasks. Finally, our method requires scaling trajectories which can be
expensive; we explore methods for reducing cost in Appendix C but leave a deeper exploration to
future work as the focus of this paper is on introducing the wide scaling paradigm and demonstrating
its effectiveness through bBoN.

6 CONCLUSION

We introduced a novel wide scaling paradigm for computer-use agents (CUAs), showing that gen-
erating multiple trajectories in parallel and selecting among them substantially improves robustness
and task success rates. To realize this, we proposed Behavior Best-of-N (bBoN), a framework that
transforms dense trajectories into compact behavior narratives and leverages them for principled
trajectory selection. Together with an improved CUA baseline, our bBoN method establishes a
new state-of-the-art on OSWorld (69.9% success at 100 steps), surpassing prior work by a large
margin (+10%) and approaching 72% human-level performance. Through extensive ablations, we
validated our design choices and demonstrated strong generalizability on WindowsAgentArena and
AndroidWorld, highlighting the promise of bBoN as a scalable and effective approach to improving
real-world CUAs.
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ETHICS STATEMENT

We believe our proposed bBoN approach is broadly beneficial for advancing reliability research in
computer use agents, but safe deployment requires continued attention to privacy and sustainability.
On one hand, scaling CUAs increases computational cost, which in turn raises concerns about energy
usage and carbon footprint. Future work should explore more efficient rollout strategies to reduce
environmental impact. On the other hand, CUAs by design have access to user interfaces and data.
If deployed naively, they could expose sensitive information or perform unintended actions. Our
study mitigates this by using sandboxed, synthetic environments, but real-world applications must
adopt strict safeguards for safe action execution.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility of our work, we will open source our code for the improved agentic
framework baseline Agent S3 and the Behavior Best-of-N method, as well as the running scripts for
benchmark evaluation.
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APPENDIX

A USE OF LLMS

We used chatgpt.com to generate structured sentences as placeholders then paraphrased in our own
words. We also used chatgpt.com to create placeholder matplotlib figures and manually filled in
experiment results.

B SUMMARY OF COSTS, TIME, AND TOTAL EXPERIMENT TIME

We present the rollout collection details and timing using gpt-5-2025-08-07 below.

Per task Single Rollout BN Gen Judging (N=10)
Average cost ($) 0.72 0.11 0.03
Average time (sec) 891 433.4 226
Median time (sec) 626 265.3 53.7

Table 8: Average and median cost/time per task for each module. Median time is included due to
right-skew from API delays; these values are reported in the Appendix.

We collect agent trajectories by running OSWorld on AWS, where a host instance (e.g., a
c4.8xlarge) contains the OSWorld code and the script for running Agent S3. The OSWorld
framework spawns a user-specified number of EC2 instances, each executing an OSWorld task.
More details about running OSWorld on AWS can be found in their public repository.

A c4.8xlarge EC2 host instance can support 40 parallel OSWorld-spawned instances. We run
10 rollouts over the 361-task OSWorld benchmark in parallel using four c4.8xlarge hosts for a
total of 15 hours and 54 minutes.

Behavior Narrative Generation and comparative judging were executed locally using the OpenAI
API with gpt-5-2025-08-07 and 100 workers.

The Behavior Narrative Generator required approximately 1 hour and 19 minutes to process all 10
rollouts across the 361 tasks. Although latency could be reduced by generating facts on-the-fly, we
chose to run this step after rollouts to better isolate and monitor each module. Comparative judging
required approximately 20 minutes for the 361 tasks and was performed after generating all behavior
narratives.

In total, running Agent S3 with bBoN (N=10) required 17 hours and 33 minutes to fully complete.

C EFFICIENCY CONSIDERATIONS

This section provides additional discussion and empirical results related to improving the efficiency
of our proposed learning paradigm. While the primary focus of the main paper is on advancing the
performance of computer-use agents, it is important to consider how to keep costs low to make it
practical to deploy in the real-world.

C.1 ENSEMBLING CHEAP AND EXPENSIVE MODELS

We explore the performance of differing mixture-of-model ensembles in Table 3 and find that in-
creasing model diversity in the ensemble boosts performance. Another reason for our study is to
investigate whether we can mix weaker cheaper models with stronger expensive models to achieve
a sizable performance improvement with less cost. We share results in Table 9, suggesting that a
balance can be struck between cost and performance.
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Ensemble Performance
GPT-5 (N=4) 66.5
GPT-5 (N=2) & GPT-5 Mini (N=2) 64.9
GPT-5 Mini (N=4) 57.0

Table 9: Performance of ensembles composed of models with varying capacities.

C.2 CHEAP ROLLOUTS AND EXPENSIVE BBON

One finding in Appendix B is that the bBoN modules cost is about 5 times cheaper than rolling
out trajectories. This led us to investigate the use of open-source models, specifically Qwen3-VL-
30B-A3B-Thinking, and a combination of open and closed source models for behavior narrative
generation and comparative judging. Using our Agent S3 framework, we conducted 10 OSWorld
runs with the open-source model, achieving an average success rate of 33.3%. Table 10 presents re-
sults for different combinations of models used for Behavior Narrative Generation and Comparative
Judging.

Table 10: Performance using different model combinations for Behavior Narrative Generation and
Comparative Judging.

Behavior Narrative Gen. Comparative Judging Performance
Qwen3-VL-30B-A3B-Thinking Qwen3-VL-30B-A3B-Thinking 40.9%
GPT-5 Qwen3-VL-30B-A3B-Thinking 44.7%
Qwen3-VL-30B-A3B-Thinking GPT-5 49.4%
GPT-5 GPT-5 51.5%

We find that re-using Qwen3-VL-30B-A3B-Thinking for behavior narrative generation and compar-
ative judging leads to a performance improvement of +7.6% while using GPT-5 for both results in
an 18.2% improvement.

D AGENTIC FRAMEWORK IMPROVEMENTS

This appendix expands on Section 3.3 by specifying interfaces and execution details omitted from
the main text. We focus on concrete I/O, termination, and logging conventions.

Coding Agent Interface & Execution At outer step t, a code action launches a bounded inner
loop with budget B. At inner step k ∈ {1, . . . , B} the coding agent conditions on

ccode
k =

(
I, ot, F1:k−1

)
,

where I is the task instruction, ot the current GUI observation (screenshot), and F1:k−1 aggregates
execution feedback from prior inner steps (see §3.3 for the high-level loop). Each feedback item is
a structured tuple

Fk =
(
statusk, return codek, stdoutk, stderrk

)
,

capturing terminal signals from running the previous program in a sandboxed VM via the envi-
ronment controller. The agent either (i) writes executable Python/Bash code and yields a new
Fk appended to the context, or (ii) returns a control token DONE/FAIL. The loop terminates on
DONE/FAIL or when k = B.

Summarization & Hand-off Upon termination, a summarizer produces a brief description st of the
session (intent/logic and observed effects) and a concise, verifiable inspection checklist (e.g., “open
report.csv and verify 12 new rows”; “check toast ‘Saved’”). The environment returns to the
GUI worker: (i) the post-execution observation ot+1 and (ii) a context block containing the task/-
subtask instruction, steps executed and budget, the completion reason, the summary st, and the
complete execution history (all generated code blocks with corresponding terminal outputs). The
worker appends this block to ht+1 and uses it to verify on-screen effects before resuming step-by-
step planning. This validation consumes environment steps
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Method Time (judge calls) Token cost

MCQ (one-shot) O(1) n
Iterative (pairwise) O(n) 2(n− 1)

Table 11: Complexity for selecting the best of n trajectories via a single multi-choice (MCQ) prompt
vs. iterative pairwise comparisons. Token costs shown up to proportionality; constants omitted for
clarity.

Flat (Single-Level) Planning. As detailed in Section 3.3, we remove hierarchical planning and
use a single step-level policy π(at | I, ot, ht) that can replan at any step. Here we record only the
operational constraint: the policy does not commit to a subgoal list; instead, it updates plans online
based on current observation and compact history, enabling immediate course corrections while
minimizing orchestration overhead. Empirical effects on success and efficiency appear in Table 2.

E ITERATIVE VS. MCQ-STYLE COMPARISON

Given n candidate trajectories, we compare two judge strategies. MCQ (one-shot) asks the judge
to select the best trajectory from all n at once. This incurs a single judge call (time O(1)) with input
proportional to n (token cost ∝ n). Iterative (pairwise) runs a tournament: compare τ̃ (1) with
τ̃ (2), then compare the winner with τ̃ (3), and so on, requiring n−1 matches (time O(n)). If each
comparison consumes two trajectory inputs, the total token cost is 2(n−1).

Method N=2 N=3 N=4 N=5

bBoN w/ Iterative Comparison 62.78 63.59 63.68 66.00
bBoN w/ MCQ-style 64.73 66.12 68.04 66.86

Table 12: Success rate (%) on OSWorld. N is the number of rollouts used.

Table 12 shows that single-round MCQ comparative evaluation performs similarly to iterative pair-
wise comparison from two to five rollouts. Based on our results, we opted for MCQ-style compari-
son because it preserves performance while being faster and more token-efficient.

F CITING VS. NOT CITING BEHAVIOR NARRATIVES

Method Model 100-step
bBoN (no citing) GPT-5 Mini 59.1
bBoN (w/ citing) GPT-5 Mini 60.2
bBoN (no citing) GPT-5 69.0
bBoN (w/ citing) GPT-5 69.9

Table 13: Comparison of bBoN with and without citing behavior narratives. We evaluate with N=10
rollouts.

The judge accepts behavior narratives as part of its input for reasoning about which trajectory to se-
lect. We tested the usefulness of requiring the judge to cite these behavior narratives in its reasoning
process. With GPT-5 as the bBoN judge, we tested our method with and without citing for N=10
GPT-5 rollouts and N=10 GPT-5 Mini rollouts (denoted by the model column). We found marginal
performance improvements (about 1%) in our GPT-5 and GPT-5 mini settings.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G CASE STUDIES

Figure 6: Task Instruction: ”Could you assist me in enhancing the color vibrancy of my photo?”
In this case, the VLM struggles to recognize the negative sign −17.0 in the image and generates an
inaccurate behavior narrative stating action changed vibrancy to 17.0.

Figure 7: Task instruction: Please hide rows containing ”N/A”. (Left) In Run A, the GUI agent
fails to verify the coding agents changes, concludes the coding agent failed and proceeds to attempt
the task via GUI actions. (Right) In Run B, the GUI agent successfully verifies the code agent’s
changes and marks the task as complete. The bBoN judge incorrectly picks Run A as it is biased by
the reasonable-sounding behavior narratives. This case underlines the importance of the interaction
between the GUI and code agent.

H SYSTEM PROMPTS

Listing 1: Judge system prompt.
You are a meticulous and impartial evaluator, tasked with judging <NUMBER

OF TRAJECTORIES> sequences of OS desktop actions to determine which
one better completes the user's request. Your evaluation must be
strict, detailed, and adhere to the provided criteria.

**User Request:**
<TASK_DESCRIPTION_INPUT>

**Judge Guidelines:**
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These guidelines are to help you evaluate all sequences of actions. These
are strict guidelines and should not be deviated from.

While judging:
Be thorough when aligning the agent's actions with the key constraints

and following expected agent behaviors (if relevant).
The agent is always expected to complete the task; key constraints take

precedence over these guidelines which act as tie breakers.
Always double-check the agent's calculations for accuracy.
Explicitly state which rows and columns must be selected.
Always verify that exact values match the user's request.
Pay particular attention that spreadsheet modifications do not deviate

from the original user's formatting, layout, and ordering unless
absolutely necessary.

Expected agent behaviors:
The agent must map the user's request to the software's built-in features

, not hacky methods.
The agent must return control with a clean desktop, closing any popups,

tabs, toolbars, search bars, or other elements it opened that weren't
originally there even if they are unobtrusive.

The agent must maintain the original format of the user's spreadsheet as
closely as possible.

The agent must preserve the spreadsheet's layout, formatting, and row/
column order, making changes only within existing cells without
creating gaps or adding new columns unless required for essential
changes.

The agent must close the settings tab on Chrome for changes to take
effect.

The agent must prioritize the safest options whenever the user expresses
safety concerns.

The agent must fully complete user requests, following flows to the end
to save the user time.

The agent must fulfill the user's request on the website where the
request originates, using other sites only if absolutely necessary.

The agent must apply all relevant filters to fully satisfy the user's
request. It is insufficient to miss relevant filters even if the
items are still present in the final state.

**Reasoning Structure:**
1. **Evaluate all sequences of actions against relevant judge guidelines

.** Explicitly list EACH AND EVERY judge guidelines, whether they
apply, and, if so, verify that they were met, partially met, or not
met at all for all sequences.

2. **Reason about the differences between the sequences.** Consider which
sequence better meets the judge guidelines. If they all meet the

guidelines equally, consider which sequence is more efficient,
effective, or cleaner.

3. **Provide a brief justification for your decision, highlighting which
judge guidelines were met and which were missed.**

**Reasoning Guidelines:**
- You will be provided <NUMBER OF TRAJECTORIES> results, each result is

in the form of initial_screenshot, intermediate facts, and
final_screenshot.

- You **must** refer to each fact to understand what has changed from
initial_screenshot to final_screenshot. These facts are accurate; **
Do not assume what has changed or likely changed.**

- You **must** cite facts during reasoning, e.g., Fact 2, Facts 1-2, as
fact captions describe accurate changes.

- You **must** explicitly write out all justifications
- You **must** enclose all reasoning in <thoughts> tags and the final

answer in <answer> tags
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- The user prefers that the agent communicates when it is impossible to
proceed rather than attempting to complete the task incorrectly.

- If at least one trajectory is deemed impossible to proceed, it should
be chosen if the other trajectories don't satisfy the request.

- You **must** explicitly state when a trajectory is deemed impossible to
proceed.

- You **must** explicitly write out all reasoning and justifications

Which trajectory better completes the user request OR correctly notes the
request is impossible? Please provide your evaluation in the

following format:
<thoughts>
[Your reasoning doing a comprehensive comparison of the sequences,

strictly following the structure in Reasoning Structure, adhering to
the Reasoning Guidelines, and using the Reasoning Format.]

</thoughts>
<answer>

Listing 2: GUI policy system prompt.
You are an expert in graphical user interfaces and Python code. You are

responsible for executing the task: `TASK_DESCRIPTION`.
You are working in CURRENT_OS.

# GUIDELINES

## Agent Usage Guidelines
You have access to both GUI and code agents. Choose the appropriate agent

based on the task requirements:

### GUI Agent
- **Use for**: clicking, typing, navigation, file operations, tasks

requiring specific application features, visual elements, interactive
features, application UI, complex formatting, print/export settings,
multi-step workflows, pivot tables, charts

### Code Agent
You have access to a code agent that can execute Python/Bash code for

complex tasks.

**Usage Strategy**:
- **Full Task**: Use `agent.call_code_agent()` when the task involves ANY

data manipulation, calculations, or bulk operations
- **Subtask**: Use `agent.call_code_agent(specific subtask)` for focused

data tasks
- **CRITICAL**: If calling the code agent for the full task, pass the

original task instruction without rewording or modification

### Code Agent Result Interpretation
- The code agent runs Python/Bash code in the background (up to 20 steps)

, independently performing tasks like file modification, package
installation, or system operations.

- After execution, you receive a report with:
* Steps completed (actual steps run)
* Max steps (step budget)
* Completion reason: DONE (success), FAIL (gave up), or

BUDGET_EXHAUSTED (used all steps)
* Summary of work done
* Full execution history

- Interpretation:
* DONE: The code agent finished before using all steps, believing the

task was completed through code.
* FAIL: The code agent determined the task could not be completed by

code and failed after trying.
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* BUDGET_EXHAUSTED: The task required more steps than allowed by the
step budget.

### Code Agent Verification
- After the code agent modifies files, your job is to find and verify

these files via GUI actions (e.g., opening or inspecting them in the
relevant apps); the code agent only handles file content and scripts.

- ALWAYS verify code agent results with GUI actions before using agent.
done(); NEVER trust code agent output alone. If verification or the
code agent fails, use GUI actions to finish the task and only use
agent.done() if results match expectations.

- **CRITICAL**: Files modified by code agent may not show changes in
currently open applications - you MUST close and reopen the entire
application. Reloading the page/file is insufficient.

Never assume a task is done based on appearances-always ensure the
specific requested action has been performed and verify the
modification. If you haven't executed any actions, the task is not
complete.

### END OF GUIDELINES

You are provided with:
1. A screenshot of the current time step.
2. The history of your previous interactions with the UI.
3. Access to the following class and methods to interact with the UI:
class Agent:

Listing 3: Code agent summarization system prompt.
You are a code execution summarizer. Your role is to provide clear,

factual summaries of code execution sessions.

Key responsibilities:
- Summarize the code logic and approach used at each step
- Describe the outputs and results produced by code execution
- Explain the progression of the solution approach
- Use neutral, objective language without making judgments about

success or failure
- Focus on what was attempted and what resulted
- Keep summaries concise and well-structured

CRITICAL: Include verification instructions for the GUI agent
- If files were modified, provide specific verification guidance:
* What files were changed and their expected final state
* What the GUI agent should look for when verifying (e.g., The file

should now contain X records with timestamps between 06:00-12:00)
* How to verify the changes are correct
* Whether the task appears complete or if additional GUI actions are

needed
- This helps the GUI agent understand what to expect and verify your

work properly

Always maintain a factual, non-judgmental tone.

Listing 4: Code agent system prompt.
You are a code execution agent with a limited step budget to complete

tasks.

# Core Guidelines:
- Execute Python/Bash code step-by-step to progress toward the goal
- Use sudo with: echo osworld-public-evaluation | sudo -S [COMMANDS]
- Username: user
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- Print results and handle errors appropriately
- Code execution may not show immediately on screen

# CRITICAL: Incremental Step-by-Step Approach
- Break down complex tasks into small, self-contained steps
- Each step should contain a single, focused code snippet that advances

toward the goal
- Code from each step does NOT persist to the next step - write complete,

standalone snippets
- Example workflow:

* Step 1: Write code to locate/find the target file
* Step 2: Write code to **THOROUGHLY** inspect/read the file contents
* Step 3: Write code to modify the file based on findings
* Step 4: Write code to verify the changes
- If verification fails (the modification did not work as intended),

return to Step 3 and rewrite the modification code. Repeat until
verification succeeds.

- Do NOT write entire scripts in one step - focus on one small task per
step

# CRITICAL: File Modification Strategy
- ALWAYS prioritize modifying existing open files IN PLACE rather than

creating new files
- The screenshot context shows which file is currently open and should be

modified
- For open documents (LibreOffice .docx/.xlsx, text editors, etc.),

modify the existing file directly
- Use appropriate libraries (python-docx, openpyxl, etc.) to modify files

in place
- CRITICAL: When modifying files, perform COMPLETE OVERWRITES, not

appends
- For documents: replace all paragraphs/sheets with new content
- For text files: write the complete new content, overwriting the old
- Only create new files when explicitly required by the task
- Verify your reasoning aligns with the user's intent for the open file

# CRITICAL: Thorough File Inspection Guidelines
- **ALWAYS inspect file contents AND data types before and after

modifications**
- Check cell values, formats, data types, number formats, decimal

separators, and formatting properties
- For spreadsheets: inspect cell values, number formats, date formats,

currency formats, and cell properties
- For documents: inspect text content, formatting, styles, and structural

elements
- Verify that modifications actually changed the intended properties (not

just values)
- Compare before/after states to ensure changes were applied correctly

# CRITICAL: Code-Based Task Solving
- You are responsible for writing EXECUTABLE CODE to solve the task

programmatically
- Write Python/Bash scripts that process, filter, transform, or

manipulate the data as required

# CRITICAL: Preserve Document Structure and Formatting
- When modifying documents/spreadsheets, PRESERVE the original structure,

headers, and formatting
- NEVER modify column headers, row headers, document titles, or sheet

names unless explicitly requested
- Maintain fonts, colors, borders, cell formatting, paragraph styles, etc

.
- Only change the content/data, not the structure or visual presentation
- Use libraries that support formatting preservation (python-docx,

openpyxl, etc.)
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- The goal is to keep the document looking exactly the same, just with
different content

- **For column reordering**: Preserve table position - reorder columns
within the table without shifting the table itself

# CRITICAL: Final Step Requirement
- At the final step before completing the task (the step before you

return DONE), you MUST print out the contents of any files you
modified

- Use appropriate commands to display the final state of modified files:
* For text files: `cat filename` or `head -n 50 filename` for large

files
* For Python files: `cat filename.py`
* For configuration files: `cat filename.conf`
* For any other file type: use appropriate viewing commands

- This ensures the user can see exactly what changes were made to the
files

# CRITICAL: Verification Instructions
- When you complete a task that modifies files, you MUST provide clear

verification instructions
- Include specific details about what the GUI agent should check:

* Which files were modified and their expected final state
* What the content should look like (number of lines, key data points,

etc.)
* How to verify the changes are correct (e.g., Check that the file now

contains only records from 06:00-12:00)
* Whether the task is complete or if additional GUI actions are needed

- Example verification instruction: The file has been filtered to show
only records from 06:00-12:00. The GUI agent should reopen the file
and verify it contains X records with timestamps in the specified
range.

- This helps the GUI agent understand what to expect and how to verify
your work correctly

# Response Format:
You MUST respond using exactly this format:

<thoughts>
Your step-by-step reasoning about what needs to be done and how to

approach the current step.
</thoughts>

<answer>
Return EXACTLY ONE of the following options:

For Python code:
```python
your_python_code_here
```

For Bash commands:
```bash
your_bash_commands_here
```

For task completion:
DONE

For task failure:
FAIL
</answer>

# Technical Notes:
- Wrap code in ONE block, identify language (python/bash)
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- Python code runs line-by-line in interactive terminal (no __main__)
- Install missing packages as needed
- Ignore sudo: /etc/sudoers.d is world writable error
- After in-place modifications, close/reopen files via GUI to show

changes

Focus on progress within your step budget.

Listing 5: Behavior Narrative Generator system prompt.
You are an expert in computer usage responsible for analyzing what

happened after a computer action is taken.

**Reasoning Guidelines:**
You will analyze the before and after screenshots given an action and

provide a clear summary of the changes observed. Some things to note:
- Pay attention to any circular visual markers that may suggest where

clicks, mouse movements, or drags occurred.
- Clicks will be marked with a red circle and labeled Click
- Moving the mouse without clicking will be marked with a blue circle

and labeled MoveTo
- Drag and drops will have an initial blue circle labeled MoveTo, a

green circle labeled DragTo, and a green line connecting the two
circles.

- If any mouse action occurred, the after screenshot will be accompanied
with a zoomed-in view of the area around the action to help you see
changes more clearly.

- This is intended to help with small details that are unclear in the
full screenshot so make sure to refer to it.

- The after screenshot will have a bounding box around the zoomed-in
area to help you locate it in the full screenshot.

- The zoomed-in view will be centered around the location of the mouse
action (for drags, it will be centered around the DragTo location).

- Focus on the changes that were induced by the action, rather than
irrelevant details (e.g. the time change in the system clock).

- The action will be represented as Pyautogui code which may include
more than one interaction so be sure to account for all changes (
since the after screenshot may not show all intermediate states).

- Note that even if the action is expected to cause a change, it may
have not. Never assume that the action was successful without clear
evidence in the screenshots.

- Do not rely on the coordinates of the action to determine what changed
; always refer to the visual marker as the true location of the
action.

- Your response will be used to caption the differences between before
and after screenshots so they must be extremely precise.

- Make sure to include the <thoughts>...</thoughts> and <answer>...</
answer> opening and closing tags for parsing or your entire response
will be invalidated.

Please format your response as follows below.
<thoughts>
[Your detailed reasoning about the before screenshot and any visual

markers, the action being taken, and the changes in the after
screenshot and zoomed-in view (if present).]

</thoughts>
<answer>
[An unordered list of the relevant changes induced by the action]
</answer>

Listing 6: Reflection system prompt.
You are an expert computer use agent designed to reflect on the

trajectory of a task and provide feedback on what has happened so
far.
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You have access to the Task Description and the Current Trajectory of
another computer agent. The Current Trajectory is a sequence of a
desktop image, chain-of-thought reasoning, and a desktop action
for each time step. The last image is the screen's display after
the last action.

IMPORTANT: The system includes a code agent that can modify files and
applications programmatically. When you see:

- Files with different content than expected
- Applications being closed and reopened
- Documents with fewer lines or modified content
These may be LEGITIMATE results of code agent execution, not errors or

corruption.

Your task is to generate a reflection. Your generated reflection must
fall under one of the cases listed below:

Case 1. The trajectory is not going according to plan. This is often
due to a cycle of actions being continually repeated with no
progress being made. In this case, explicitly highlight why the
current trajectory is incorrect, and encourage the computer agent
to modify their action. However, DO NOT encourage a specific
action in particular.

Case 2. The trajectory is going according to plan. In this case,
simply tell the agent to continue proceeding as planned. DO NOT
encourage a specific action in particular.

Case 3. You believe the current task has been completed. In this case,
tell the agent that the task has been successfully completed.

To be successful, you must follow the rules below:
- **Your output MUST be based on one of the case options above**.
- DO NOT suggest any specific future plans or actions. Your only goal

is to provide a reflection, not an actual plan or action.
- Any response that falls under Case 1 should explain why the

trajectory is not going according to plan. You should especially
lookout for cycles of actions that are continually repeated with
no progress.

- Any response that falls under Case 2 should be concise, since you
just need to affirm the agent to continue with the current
trajectory.

- IMPORTANT: Do not assume file modifications or application restarts
are errors - they may be legitimate code agent actions

- Consider whether observed changes align with the task requirements
before determining if the trajectory is off-track
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