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Abstract

Answering complex logical queries over incom-001
plete knowledge graphs (KGs) is challenging.002
Most previous works have focused on learn-003
ing entity/relation embeddings and simulating004
first-order logic operators with various neural005
networks. However, they are bottlenecked by006
the inability to share world knowledge to im-007
prove logical reasoning, thus resulting in sub-008
optimal performance. In this paper, we pro-009
pose a complex logical reasoning schema over010
knowledge graphs upon large language models011
(LLMs), containing a curriculum-based logical-012
aware instruction tuning framework, named013
LACT. Specifically, we augment the arbitrary014
first-order logical queries via binary tree de-015
composition, to stimulate the reasoning ca-016
pability of LLMs. To address the difficulty017
gap among different types of complex queries,018
we design a simple and flexible logic-aware019
curriculum learning framework. Experiments020
across widely used datasets demonstrate that021
LACT has substantial improvements (brings022
an average +5.5% MRR score) over advanced023
methods, achieving the new state-of-the-art.024

1 Introduction025

Large-scale knowledge graphs (KGs) such as Free-026

Base (Bollacker et al., 2008), YAGO (Suchanek027

et al., 2007) and WikiData (Vrandečić and028

Krötzsch, 2014) stores structural knowledge in a029

collection of fact triplets and are widely adopted030

by many domains. Unfortunately, KGs are often in-031

complete, leaving many missing triplets undiscov-032

ered. Thus, complex logical reasoning over such033

KGs (Hamilton et al., 2018; Ren and Leskovec,034

2020) is challenging and has attracted much atten-035

tion in the recent years. A complex logical query036

can be represented with First-Order Logic (FOL)037

that includes logical operators such as conjunction038

(∧), disjunction (∨), negation (¬), and existen-039

tial quantifier (∃), etc. A more direct approach040

involves the representation of computation graphs041

as Directed Acyclic Graphs (DAGs), which can be 042

resolved through the systematic traversal of Knowl- 043

edge Graphs (KG). This process entails the alloca- 044

tion of suitable entities to intermediate variables 045

based on their structural attributes (Dalvi and Suciu, 046

2007). 047

Inspired by the success of knowledge graph em- 048

bedding (KGE) (Bordes et al., 2013; Bai et al., 049

2021), a line of research proposes to answer com- 050

plex logical queries by learning query embed- 051

ding and simulating logical operators with well- 052

designed neural networks (Chen et al., 2022; 053

Zhu et al., 2022; Zhang et al., 2021; Arakelyan 054

et al., 2020) Current research based on embed- 055

dings primarily focuses on the creation of diverse 056

latent space geometries, such as vectors (Hamil- 057

ton et al., 2018), boxes (Ren et al., 2019), hyper- 058

boloids (Choudhary et al., 2021), and probabilistic 059

distributions (Ren et al., 2019), to effectively cap- 060

ture the semantic position and logical coverage of 061

knowledge graph entities. 062

However, these approaches are limited in their 063

performance due to the following. (1) Limited 064

information: The information contained in a 065

knowledge graph is usually incomplete and limited. 066

When only the information from the knowledge 067

graph can be used, it is difficult to answer some 068

complex reasoning that lacks relevant information. 069

(2) High complexity of logical queries: The intri- 070

cacies of world knowledge determine the complex- 071

ity of reasoning in practical applications, which de- 072

termines that it is difficult to model the relationship 073

of world knowledge through simple space geome- 074

tries figures that may lose potentially complex rela- 075

tionship information (Choudhary et al., 2021), thus 076

limiting the effect of complex logical reasoning. 077

(3) Generalizability: KGE method for a particular 078

KG can not generalize to other KGs which limits 079

the applicability of these approaches in real-world 080

scenarios where KGs can vary widely in terms of 081

their structure and content. 082
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• ( Major League Soccer,affiliated,CF Montreal)

• ...

Answer the question:

    Let us assume that the set of entities E is 

connected to entity Major League Soccer by 

relation affiliated, F is the set of entities 

connected to entity Beckham by relation 

owner, and G is the set of entities in the 

intersection of E and F. Then, what are the 

entities connected to entities in set G by 

relation caption? 
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Let's think step by step. The question 

can be split into 4 questions.
1.Which entities are connected connected to entity Major 

League Soccer by relation affiliated?The entity set of the 

answer is represented by [PP1].

2.Which entities are connected to entity Beckham by relation 

owner?The entity set of the answer is represented by [PP2]

3.What are the entities in the intersection of entity sets [PP1] 

and [PP2]?\nThe entity set of the answer is represented by 

[PP3].

4.What are the entities connected to entity set [PP3] by 

relation caption?

With reference to the relevant triplet 

above,the final answer is Leon Messi
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Figure 1: Schematic illustration: a) Answering logical query over KG with LACT. b) The framework of Logic-Aware
Curriculum Tuning over LLama. We leverage binary tree decomposition strategy (Seen in Section 4.2) to construct
logic-rich FT corpus and Curriculum learning strategy (Seen in Section 4.3) to fine-tune a base LLM. c) Performing
reasoning using well-designed prompts.

Recently, large language models (LLMs)083

(Achiam et al., 2023; Touvron et al., 2023a; Zeng084

et al., 2022) show outperforming capabilities to085

a wide range of tasks (Zhao et al., 2023; Ouyang086

et al., 2022). (Choudhary and Reddy, 2023) con-087

struct prompt templates and apply LLMs as text-088

generators to answer complex queries. However, it089

suffers from hallucination problem (Zhang et al.,090

2023c) Besides, a KG preserves intricate structural091

information such as subgraph structure, relational092

patterns, relative entities/relations. Due to the in-093

herent hallucination problem of LLMs, overlook-094

ing these information results in a significant loss.095

Finally, the overhead of using the current closed-096

source LLM in work (Choudhary and Reddy, 2023)097

and the source overhead caused by multiple infer-098

ences also have to be considered.099

In this paper, we propose Logic-Aware100

Curriculum Tuning (LACT ), a novel fine-tune101

framework for answering complex logical query,102

which stimulates the ability of LLMs to perform103

complex reasoning on knowledge graphs. We pro-104

pose a strategy to incorporate the knowledge con-105

tained in the KGs into our training corpus to ac-106

tivate the corresponding knowledge of the LLMs107

and supplement the missing relevant knowledge108

of the LLMs during the fine-tuning process. At109

the same time, we have proven that data argument110

by binary tree decomposition can arouse the cor-111

responding capabilities of LLMs and effectively112

improve their reasoning performance. At last, we113

show that curriculum learning(Bengio et al., 2009)114

can effectively smooth the difficulty differences115

between different types of queries and greatly im-116

prove the results of difficult queries. In summary,117

our contribution is three-folded: 118

• We propose a logic-aware curriculum fine- 119

tuning (LACT) paradigm for complex logical 120

reasoning over KGs. 121

• LACT achieves state-of-the-art performance 122

beyond embedding-based and PLM-based 123

methods, using just a 7B llama2 model. 124

• Through extensive experimentation, we found 125

that fine-tuning corpus constructed with rigor- 126

ous logical context over KGs and curriculum 127

learning can significantly enhance LLM logi- 128

cal reasoning ability. 129

2 Related Works 130

2.1 Logical Reasoning over Knowledge Graph 131

Given a FOL query over a KG, complex logical 132

reasoning aims to answer correct entities, which 133

contains not only multi-hop paths but logical opera- 134

tors(Guu et al., 2015; Hamilton et al., 2018). Most 135

of current approaches concentrated on learning 136

meaningful query embeddings (Chen et al., 2022; 137

Zhu et al., 2022; Zhang et al., 2021; Arakelyan 138

et al., 2020; Wang et al., 2023b). Neuralizing 139

logical operators through a specific embedding 140

space, thereby embedding FOL queries into a vec- 141

tor space(Hamilton et al., 2018; Ren et al., 2019; 142

Choudhary et al., 2021), or probabilistic distribu- 143

tion(Ren et al., 2019), and predict answers by locat- 144

ing nearest neighbours to answer set representation. 145

Additionally, approaches such as CQD(Arakelyan 146

et al., 2020) have focused on improving the per- 147

formance of complex reasoning tasks through the 148

answer composition of simple intermediate queries, 149
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and QTO (Bai et al., 2023) proposes query com-150

putation tree optimization that can efficiently find151

the exact optimal solutions. However, embedding-152

based methods usually lack interpretability as there153

is no explicit mapping between the embedding and154

the set of entities, and this limits their generaliza-155

tion ability to more complicated query structures.156

2.2 LLMs for KG Reasoning157

In recent years, substantial advancements have158

been witnessed in the domain of LLMs (Achiam159

et al., 2023; Touvron et al., 2023b; Peng et al., 2023;160

Zhong et al., 2023). Among these, instruction tun-161

ing (IT) (Ouyang et al., 2022) and the alignment of162

the model (Wang et al., 2023c) with human prefer-163

ences stand out.164

Within the realm of LLM, the integration of165

LLMs with Knowledge Graphs (KG) (Pan et al.,166

2024; Wang et al., 2023a; Luo et al., 2024) con-167

stitutes a prominent and consequential research168

avenue.169

Leveraging its potent generative capabilities,170

LLMs prove invaluable in addressing Knowledge171

Graph-related tasks, including but not limited to172

Knowledge Graph Completion (KGC) (Zhu et al.,173

2023; Zhang et al., 2023b), entity alignment (Zhang174

et al., 2023a), Knowledge Graph Question Answer-175

ing (KGQA) (Luo et al., 2024), and others (Luo176

et al., 2023). Consequently, the synergy between177

Knowledge Graphs for LLMs (KG4LLM) and178

LLMs for Knowledge Graphs (LLM4KG) emerges179

as an essential focal point, bearing significance in180

advancing the collective capabilities of both enti-181

ties.182

We focus on applying LLMs in the Complex183

Logical Reasoning task, which has not been care-184

fully studied yet. (Choudhary and Reddy, 2023)185

made the initial attempt by prompt engineer but it186

lacks in-depth research and simply uses LLMs as187

text generators.188

3 Preliminary189

3.1 Knowledge Graph190

In our work, a knowledge graph is G = (E ,R, T )191

where E ,R are the set of entity and relation respec-192

tively. With regard to generality, KG can be orga-193

nized as a set of triplets {T = (vs, r, vt)|vs, vt ∈194

E , r ∈ R}, where vs/vt denotes the head/tail en-195

tity.196

3.2 Complex logical query 197

Complex logical query is used for retrieving and 198

manipulating data stored in knowledge graphs, 199

which is grounded in a subset of FOL. The pro- 200

cess of answering a complex logical query involves 201

trying to match a suitable results using the compo- 202

sition of queries: 203

q[v?] = ∃v : q1 ∧ q2 ∧ · · · ∧ qn, (1) 204

or, 205

q[v?] = ∃v : q′1 ∨ q′2 ∨ · · · ∨ q′n, (2) 206

where q denotes a FOL query. Note that Eq. (1) 207

is conjunctive normal form (CNF) and Eq. (2) is 208

disjunctive normal form (DNF). The two can be 209

equivalently converted to each other via De Mor- 210

gan’s law. Following previous works (Ren et al., 211

2019), we focus on modeling the operations: pro- 212

jection r(·), conjunction (∧), disjunction (∨), and 213

negation (¬). Additionally, note that existential 214

positive first-order (EPFO) queries only includes 215

projection, conjunction (∧), and disjunction (∨). 216

4 Methodology 217

4.1 Instruction Tuning on LLMs 218

In this section, we introduce how to incorporate the 219

KG information in the text-based prompt. 220

When applying LLMs to complex logical rea- 221

soning, we denote an LLM as M which is a text 222

decoder to generate the corresponding output. If 223

we start from the above definition, this task can be 224

modelled as a text generation task. However, triplet 225

generation is different from vanilla text generation 226

because the entities and the relation in the triplet 227

prompt have complex semantic information defined 228

by the given KG. In fact, we want the generated an- 229

swers to be entities that exist in KG itself. Without 230

these knowledge, the predicted answers are unre- 231

liable and unstable. Thus, incorporating the KG 232

information into the prompt to provide more aux- 233

iliary information is the key to engage LLMs in 234

complex logical reasoning. 235

In particular, when we fine-tune M, we can treat 236

the training corpus as a set of question-answer pairs 237

(S,A). For the task of complex logical reasoning 238

over knowledge graph, the input textual sequence 239

S consists of the description of question D, knowl- 240

edge graph neighbourhood information(i.e. related 241

triplets) X and logical query. In our work, we 242

used a simple but effective method called greedy 243
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depth traversal algorithm to search for neighbour-244

hood information (Detailed algorithm can be found245

in Appendix A). The logical query contains the246

textual information about the query qτ with the247

query structure τ and specific query content Qτ248

that needs to be processed, which can be denoted249

as f1(qτ ). Likewise,we can denote the output an-250

swer A as f2(Vτ ), where f2 indicates textualization251

of Vτ here. In summary, the fine-tune training cor-252

pus C can be expressed in the following form:253

C = (S,A) = (D ⊕X ⊕ f1(qτ ), f2(Vτ )). (3)254

The model M(parameterized by θ) is fine-tuned255

by the next token prediction task. We fine-tune M256

to obtain the final model by maximizing the log-257

likelihood of the next token. The training objective258

can be formulated as259

L = − 1

|C|

|C|∑
i=1

logPM (ci | c<i) , (4)260

where ci(i = 1, 2, ..., |C|) represents the textual261

tokens of the training corpus C. For our task, the262

training objective can be transferred as263

L = − 1

|C|

|C|∑
i=1

logPM (A | S) . (5)264

4.2 Data Augmentation by Binary Tree265

Decomposition266

This section introduces how to build fine-tuning267

corpora that make LLMs (Large Language Models)268

logic-aware based on instruction tuning.269

Chain of thought (COT) enables models to270

decompose multi-step problems into intermedi-271

ate steps, subsequently improving the reasoning272

abilities of LLMs (Wei et al., 2022). However,273

pure-prompt based reasoning needs more incon-274

text memory to perform complex logical reasoning.275

Considering complex logical queries, which query276

structure can be transferred into the form of a DAG277

and its hierarchical structure becomes a natural fit278

for decomposition into a series of sub-problems. So279

we propose a method for data augment based on Bi-280

nary Tree Decomposition Mechanism to stimulate281

LLMs with the potential to decompose a complex282

query into a chain of simple queries. Binary Tree283

Decomposition Mechanism. The Binary Tree De-284

composition Mechanism is divided into the follow-285

ing three steps:286

Query Computation Tree. For a complex FOL 287

query, like the example shown in Figure 1, its com- 288

putation graph that is a directed acyclic graph can 289

be converted into a tree where the root node is 290

v?. query computation tree. The answer variable 291

and the constant entities in the query correspond to 292

root and leaf nodes in the query computation tree. 293

Each edge in the query computation tree points 294

from the child node to the parent node. It can be 295

recursively deduced that the subtree rooted at any 296

non-leaf node in the tree corresponds to a subquery. 297

In Appendix B, we provide a systematical proce- 298

dure for transforming an FOL query to its query 299

computation tree. 300

Binary Tree Decomposition. For the one-to- 301

many intersection/union structures in the tree, we 302

separate each parent node into two child nodes. 303

Note that the union branches merging step may 304

create one-to-many structures that consist of both 305

intersection and union edges, take Figure 1 for an 306

example. This can be taken care of by first sep- 307

arating v? into an intersection structure (v′3 and 308

v′5 in the example), and then separating the child 309

node into an intersection structure (v′1 and v′2 for 310

v′3, v′4, v3 for v′5), where v′ denotes an intermediate 311

entity retrieved by Neighborhood Retrieval Algo- 312

rithm (Seen in Appendix A). 313

Reverse Level Traversal. Finally, we decom- 314

pose the binary computation tree into independent 315

branches. Since the root node of the calculation 316

tree is the answer entity, we perform a hierarchical 317

traversal of all non-leaf nodes of the binary tree in 318

reverse. As shown in Figure 1, the complex FOL 319

query is decomposed into a sequence: 320

[(v1, r, v
′
1), (v2, r, v

′
2), (v3, r, v

′
5), (v4, r, v

′
4), 321

(v′1, r, v
′
3),∧, (v′2, r, v′3),¬, (v′4, r, v′5),∧, (v3, r, v′5), 322

(v′3, r, v?),∧, (v′5, r, v?)]. 323

324Data Augmentation. Now we can turn any loop- 325

less FOL query into a series of separate subqueries. 326

We use a defined template to integrate the decom- 327

position process into the answers to the training 328

corpus. So, the training corpus C can be transferred 329

into the following form: 330

C = (S,A) = (D ⊕X ⊕ f1(qτ ), f2(Vτ,Decomposed)), (6) 331

where Vτ,Decomposed indicates the answer corre- 332

sponding to the logical query with the decomposi- 333

tion reasoning path. 334
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4.3 Fine-tuning Enhanced by Curriculum335

Learning336

As mentioned in previous sections, though decom-337

posing into chain responses, complex queries still338

vary greatly in difficulty and complexity due to339

differences between query structure.340

Naturally, we believe that these different types341

of samples should not be simply lumped together.342

Intuitively, we incorporate curriculum learning into343

our training. To be specific, In view of the par-344

ticularity of complex reasoning data, when we de-345

compose it into logical chains, naturally, we can346

use the number of decomposed sub-logical queries347

as a natural difficulty discriminator to select dif-348

ferent types of queries, e.g., a 1p query would be349

defined as difficulty-1, while a 2p query, which can350

be decomposed into two projection queries and an351

intersection query, would be defined as difficulty-3.352

The detailed difficulty discriminating process will353

be shown in Appendix (Table S1).354

Finally, we divided samples into three parts: easy355

samples, medium samples and difficult samples ac-356

cording to the difficulty level. Correspondingly, our357

training process is also divided into three stages.358

After we did some exploratory experiments, we did359

not simply train three data sets in the order of easy-360

medium-difficult. On the contrary, we decided to361

first use 80% easy samples, 10% medium samples,362

and 10% difficult samples for the first stage of train-363

ing and the subsequent two-stage training process364

is a Leto, and experimental results in the next few365

sections also proved that this is effective.366

4.4 Reasoning Module367

We use the final LACT LLM as the answer genera-368

tor, as shown in Figure 1(c). We retrieve relevant369

information and textualize the FOL query, and fi-370

nally we populate it into the template in Prompt 1371

to generate responses.372

We use the LLM to do a simple text generation373

task to get the answer. After fine-tune, LACT LLM374

can follow the output mode in training stage in375

Figure 1, so we can extract final answers through376

simple regular expressions with the template in377

Prompt 2.378

Prompt 1: Query Prompt Template of LACT.
Query Prompt Template

Given the following (h,r,t) triplets where entity h is related to entity t by relation r.
<Related Triplets>

Answer the question:
<question>

379

Prompt 2: Answer Template of LACT.
Expected Answer Template

Let's think step by step. The question can be split into <k> question.
<k decomposed subqueries>

With reference to the relevant triplet above, the final answer is 
<answer entities>.

380

5 Experiments 381

5.1 Training Settings 382

Training datasets We opt for the the most popular 383

datasets: FB15K, FB15K-237, NELL995. De- 384

tailed information about dataset is listed in D.1. 385

We used the training set of the above dataset as the 386

original training data. 387

Training Details We use open-source model 388

LLaMA-2-base, including two different parame- 389

ter sizes: 7B and 13B, as the base model for fine- 390

tuning. All LLaMA-2-7B and LLaMA-2-13B mod- 391

els are trained by fully fine-tuning. 392

For the fully fine-tuning setting, we use the 393

AdamW optimizer to train the model with 1 epoch 394

and the batch size is 128. We use 8 NVIDIA A100 395

GPUS for training with the learning rate of 3e-6. 396

5.2 Experimental Settings 397

Baseline Methods For comparing with KGE, 398

we chose the following representative meth- 399

ods as baselines: GQE (Hamilton et al., 400

2018), Query2Box(Q2B) (Choudhary and Reddy, 401

2023), BetaE (Ren and Leskovec, 2020), 402

CQD (Arakelyan et al., 2020), ConE (Zhang et al., 403

2021), GNN-QE (Zhu et al., 2022), QTO (Bai 404

et al., 2023). We also compared our method to 405

an LLM-based method, LARK (Choudhary and 406

Reddy, 2023). 407

Evaluation Protocol Following previous works 408

(Ren et al., 2019), we use mean reciprocal rank 409

(MRR) as standard evaluation protocols for eval- 410

uating complex reasoning over knowledge graph. 411

In the filtered setting, all easy and hard answers 412

are filtered out during ranking. The detail could be 413

found in Appendix D.3. 414

5.3 Main Results 415

The main experiment results of three datasets are 416

shown in Table 1. The baselines were trained on 417

1p/2p/3p/2i/3i queries, hence other than these 4 418

types of EPFO queries serve as OOD queries, and 419

we report the average result on these queries in 420

avgood. We observe that LACT significantly out- 421

performs baseline methods across all datasets. No- 422

tably, LACT yields an averag gain of 7.3%, 2.9%, 423

and 6.3% on avgp, avgodd, and avgn, compared to 424
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Method avgp avgood avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15K

GQE 28.0 20.1 - 54.6 15.3 10.8 39.7 51.4 27.6 19.1 22.1 11.6 - - - - -
Query2Box 38.0 29.3 - 68.0 21.0 14.2 55.1 66.5 39.4 26.1 35.1 16.7 - - - - -
BetaE 41.6 34.3 11.8 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2 14.3 14.7 11.5 6.5 12.4
CQD-CO 46.9 35.3 - 89.2 25.3 13.4 74.4 78.3 44.1 33.2 41.8 21.9 - - - - -
CQD-Beam 58.2 49.8 - 89.2 54.3 28.6 74.4 78.3 58.2 67.7 42.4 30.9 - - - - -
ConE 49.8 43.4 14.8 73.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 17.9 18.7 12.5 9.8 15.1
GNN-QE 72.8 68.9 38.6 88.5 69.3 58.7 79.7 83.5 69.9 70.4 74.1 61.0 44.7 41.7 42.0 30.1 34.3
QTO 74.0 71.8 49.2 89.5 67.4 58.8 80.3 83.6 75.2 74.0 76.7 61.3 61.1 61.2 47.6 48.9 27.5
LARK 56.1 43.1 18.4 72.8 50.7 36.2 66.9 60.4 56.1 23.5 52.4 40.6 16.2 5.7 33.7 26.1 10.0

LACT 82.6 71.9 56.9 93.5 73.5 59.6 92.3 82.3 76.8 75.9 74.6 60.4 81.2 61.6 52.0 43.5 41.7

FB15K-237

GQE 16.3 10.3 - 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7 - - - - -
Query2Box 20.1 15.7 - 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6 - - - - -
BetaE 20.9 14.3 5.5 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 5.1 7.9 7.4 3.5 3.4
CQD-CO 21.8 15.6 - 46.7 9.5 6.3 31.2 40.6 23.6 16.0 14.5 8.2 - - - - -
CQD-Beam 22.3 15.7 - 46.7 11.6 8.0 31.2 40.6 21.2 18.7 14.6 8.4 - - - - -
FuzzQE 24.0 17.4 7.8 42.8 12.9 10.3 33.3 46.9 26.9 17.8 14.6 10.3 8.5 11.6 7.8 5.2 5.8
ConE 23.4 16.2 5.9 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 5.4 8.6 7.8 4.0 3.6
GNN-QE 26.8 19.9 10.2 42.8 14.7 11.8 38.3 54.1 31.1 18.9 16.2 13.4 10.0 16.8 9.3 7.2 7.8
QTO 33.5 27.6 15.5 49.0 21.4 21.2 43.1 56.8 38.1 28.0 22.7 21.4 16.8 26.7 15.1 13.6 5.4
LARK 50.7 41.0 10.6 73.6 40.5 26.8 46.1 43.1 49.9 22.9 62.8 28.3 6.5 3.4 23.2 16.5 3.2

LACT 57.0 44.4 21.9 76.5 54.3 30.3 56.0 54.5 54.6 36.9 56.5 29.7 17.6 33.1 27.1 19.8 11.2

NELL995

GQE 18.6 12.5 - 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 8.8 - - - - -
Query2Box 22.9 15.2 - 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3 - - - - -
BetaE 24.6 14.8 5.9 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 5.1 7.8 10.0 3.1 3.5
CQD-CO 28.8 20.7 - 60.4 17.8 12.7 39.3 46.6 30.1 22.0 17.3 13.2 - - - - -
CQD-Beam 28.6 19.8 - 60.4 20.6 11.6 39.3 46.6 25.4 23.9 17.5 12.2 - - - - -
FuzzQE 27.0 18.4 7.8 47.4 17.2 14.6 39.5 49.2 26.2 20.6 15.3 12.6 7.8 9.8 11.1 4.9 5.5
ConE 27.2 17.6 6.4 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 5.7 8.1 10.8 3.5 3.9
GNN-QE 28.9 19.6 9.7 53.3 18.9 14.9 42.4 52.5 30.8 18.9 15.9 12.6 9.9 14.6 11.4 6.3 6.3
QTO 32.9 24.0 12.9 60.7 24.1 21.6 42.5 50.6 31.3 26.5 20.4 17.9 13.8 17.9 16.9 9.9 5.9
LARK 52.9 26.9 12.4 87.8 45.7 33.5 51.3 48.7 23.1 22.2 20.6 41.1 9.9 5.9 24.5 13.3 7.3

LACT 60.1 32.0 17.2 91.4 53.6 40.6 62.2 54.9 31.4 34.8 27.0 34.0 16.0 21.2 21.0 16.3 11.6

Table 1: Test MRR results (%) on complex query answering across all query types. avgp is the average on EPFO
queries; avgood is the average on out-of-distribution (OOD) queries; avgn is the average on queries with negation.
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Figure 2: Results of Ablation Studies.(a) Comparison
PPL and train loss results of whether to use BTD based
on FB15k.(b) Comparison PPL results of whether use
CL based on FB15K high-difficulty queries.

the previous SOTA method, especially more chal-425

lenging datasets like FB15K-237 and NELL995.426

This suggests that our method has better reasoning427

capability and captures a broad range of relations428

to effectively utilize this capability for enhancing429

the performance of complex queries.430

5.4 Ablation Studies431

To verify the effectiveness of the LACT design, we432

conduct a two-part ablation study. The first part is433

KFBpavg 15,

KFBoavg 15,

KFBnavg 15,
23715,p _KFBavg

23715, _KFBoavg

23715, _KFBnavg

NELLpavg ,

NELLavg ,o

NELLavg ,n

Figure 3: The results of the main experiment. We
evaluate the performance of three current state-of-the-
art methods on three datasets.

designed to verify the effectiveness of logical chain 434

decomposition and the second part is designed to 435

verify the effectiveness of curriculum learning. 436

Effect of Binary Tree Decomposition (BTD). As 437

shown in Figure 2, logical chain decomposition 438

can stimulate LLM’s ability of logical decomposi- 439

tion, thereby greatly improving the performance of 440

difficult queries. 441

6



Method 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

Llama2 67.2 42.3 38.3 61.6 44.8 34.1 36.9 44.2 28.4 44.7 38.5 36.9 32.1 30.0
+ IT 94.6 68.8 60.2 84.5 66.7 56.0 60.2 69.5 42.3 66.5 54.4 41.0 38.8 36.9

+BTD 91.5 72.3 65.6 89.7 75.2 60.1 65.4 72.5 49.9 74.3 66.4 48.9 46.5 42.5

Table 2: Accuracy results (%) of whether to use BTD on hard complex query answering across all query types,
evaluated on FB15k.

BTD CL 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

Llama2 w/IT 94.6 68.8 60.2 84.5 66.7 56.0 60.2 69.5 42.3 66.5 54.4 41.0 38.8 36.9

✓ 94.2 72.3 65.6 89.7 75.2 60.1 65.4 72.5 49.9 74.3 66.4 48.9 46.5 42.5
✓ 94.6 70.9 61.3 84.4 72.7 58.2 63.2 69.5 47.3 68.5 64.0 42.3 40.9 37.1

✓ ✓ 94.8 78.7 69.2 94.8 88.1 79.3 80.5 80.7 67.1 90.6 70.4 59.3 53.6 46.7

Table 3: Accuracy results (%) of whether to use CL on hard complex query answering across all query types,
evaluated on FB15k.
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Figure 4: Performance of scaling LACT on FB15K-237
with different a) model and b) data scales.

From a training perspective, as shown in Fig-442

ure 2, although perplexity (PPL) and training loss443

of decomposed queries before training was slightly444

higher than that of ordinary queries, we found that445

as training progresses, the loss and PPL of decom-446

posed queries will quickly decrease to levels much447

lower than ordinary queries, proving that chain de-448

composition is effective to reduce the difficulty of449

learning complex queries.450

Effect of Curriculum Learning. Curriculum451

learning, as illustrated in Table 3, greatly allevi-452

ates the gap between difficult training samples and453

the understanding ability of LLMs.454

We can observe from Figure 2 that compared455

with random shuffle sequence training, difficult456

training samples under curriculum learning gradu-457

ally become easier to understand. It is worth men-458

tioning that we found that the gain of curriculum459

learning on training corpus that has not been de-460

composed by logical chains is very small, which461

supports our theory from the side. It is difficult462

for LLMs to understand the difficulty difference463

between undecomposed samples, so curriculum464

learning is also difficult to take effect.465

5.5 Transferability Study466

Considering the diversity of complex reasoning467

tasks, we can divide transferability into two levels,468

Metric pi ip 2u up

Prodecomposed 98.7 100.0 97.8 100.0
Protrue,decomposed 98.6 99.9 97.8 99.6

Table 4: In OOD queries, the proportion of queries that
can be decomposed and the proportion of queries that
can be decomposed correctly on fb15k.

task-level and dataset-level transferability. 469

Task-level transferability. The results in Table 1 470

show that our method achieves a relative gain of 471

9.9% on the OOD task, which demonstrates the 472

strong generalization of our fine-tuning framework. 473

Even in the OOD queries, as shown in Table 4, 474

more than 95% of test samples can still follow 475

logical chain reasoning. These phenomena indicate 476

strong generalization ability of LACT. 477

Dataset-level transferability. In fact, almost all 478

KGE methods, even if some of the optimization 479

methods claim not to require training, require a 480

KGE base model adapted to a specific dataset, 481

which leads to the inherent defect of extremely poor 482

Transferability of the KGE method. However, as 483

previous research has shown, fine-tuning of LLMs 484

is mainly to stimulate the knowledge and capabili- 485

Figure 5: Ablation experimental results of Accuracy
(%) trained on FB15k and tested on FB15K-237, com-
pared to models trained on all mixed training data.

7



+3.9

+7.1

+13.9

Low Medium High

M
R

R
 (

%
)

0

90

80

70

60

50

40

30

20

10

Previous best

LACT

0.0 0.80.60.40.2 1.0
30

90

80

70

60

50

40

A
c
c
u

ra
c
y
 (

%
)

Completeness of relevant 

information

Various difficulty
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vious SOTA methods at different difficulties based on
FB15K. (right) The correlation between related in-
formation completeness and accuracy evaluated on
FB15K-237, we selected 3p query and pi query with
the same inference path length as the task types. We
assume that the completeness of all simple queries is 1.

ties of potentially relevant downstream tasks con-486

tained in LLM pre-training. This has also become487

the theoretical basis for the transferability of fine-488

tuning methods for LLMs. The results in Figure 5489

show that the reasoning ability stimulated by one490

dataset can still be demonstrated in another dataset,491

which reflects well in the query performance which492

only dropped less than 5%.493

5.6 Scalability Study494

For verifying the scalability of LACT, we scale495

LACT to different model sizes and data volumes.496

Performance on different model size. We tried497

scaling model size to see if LACT would have an498

impact when operating on a larger scale. As Fig-499

ure 4 shows, the performance of our method im-500

proves as the model size increases.501

Performance on different data size. We con-502

ducted experiments on different ratios of training503

data to verify the robustness of LACT.504

6 Discussion505

6.1 When and Where Does LACT Work?506

The performance of LACT would be related to507

the following two aspects: I. The completeness of508

relevant information extracted from KG. II. So-509

phistication of complex reasoning.510

LACT performs consistently better with more511

complete information. We take the form of a pos-512

teriori that set the completeness of relevant triplets513

to the proportion of triplets in the inference path514

of complex reasoning in the provided context, and515

set the completeness of simple queries that can516

be directly inferred to 1, to obtain the relation be-517

tween Accuracy and correlation information com-518

pleteness. As seen in Figure 6, LACT obtains a519

significant gain when the completeness of relevant520

information increased, though, with zero relevant521

Let's think step by step.The question can be split into 3 question.

1.Which entities are connected to Tom Hardy by relation award?The entity set 

of the answer is represented by [PP1].

2.Which entities are connected to Spider-Man 3 by relation nominated for?The 

entity set of the answer is represented by [PP2].

3.What are the entities in the intersection of entity sets [PP1] and [PP2]?

With reference to the relevant triplet above,the final answer is MTV Movie 

Award for Best Villain,MTV Movie Award for Best Fight.

LACT:

Given the following (h,r,t) triplets where entity h is related to entity t by relation 

r:
(Spider-Man 3,nominated for,MTV Movie Award for Best Villain),(Spider-Man 

3,nominated for,BAFTA Award for Best Special Visual Effects),(Tom 

Hardy,award,MTV Movie Award for Best Fight),(Tom Hardy,award,MTV Movie 

Award for Best Villain).

Answer the question:Let us assume that the set of entities E is connected to 

entity Tom Hardy by relation award and the set of entities F is connected to 

entity Spider-Man 3 by relation nominated for. Then, what are the entities in 

the intersection of set E and F, i.e., entities present in both F and G? 

Query:

The entities in the intersection of set E and F, i.e., entities present in both F and 

G, are "MTV Movie Award for Best Villain" and "BAFTA Award for Best Special 

Visual Effects."

Regular:

Figure 7: Inference results of ChatGPT and LACT on
2i query case, respectively.

information, it remains a certain amount of com- 522

plex reasoning ability. 523

LACT performs consistently better on higher 524

difficulties As mentioned before, we simply divide 525

the difficulty of the query by the number of hops 526

in the query. The results in Figure 6 show that 527

our model yields more gain in tasks of higher-level 528

difficulty and complexity, which benefits from our 529

unique and sophisticated fine-tuning framework. 530

6.2 Case Study 531

To have a close look, we perform the case studies by 532

analyzing the results of LACT and ChatGPT (GPT- 533

3.5-turbo-0613). As shown in Figure 7, ChatGPT 534

cannot make good use of incomplete knowledge 535

graphs for reasoning in some cases. Conversely, 536

LACT performs reasoning through a complete log- 537

ical chain, making maximum use of the relevant 538

information provided and deducing the correct an- 539

swer, which greatly improves the reasoning ability. 540

541

7 Conclusion 542

In this paper, we present a simple and effective 543

fine-tuning framework LACT to boost the complex 544

logical reasoning ability over KGs. LACT is a 545

two-stage method that consists of both Binary Tree 546

Decomposition and Curriculum Learning and can 547

be applied to various size LLMs with different data 548

sizes. We empirically demonstrate the effectiveness 549

and universality of the LACT on a series of widely- 550

used knowledge graph datasets. Further analyses 551

reveal the underlying mechanism of our method, 552

and investigate When and Why Does LACT Work. 553

We hope that our work can inspire more research 554

on combining knowledge graphs and LLMs. 555
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Limitations556

Our work has several potential limitations. Al-557

though our work revealed the enhanced perfor-558

mance of LACT on complex logical reasoning, we559

do not focus much on the time cost of our method,560

which depends on inference speed for LLMs. It561

is meaningful to explore more efficient inference562

strategies to accelerate text generation, which is in563

our future work. Additionally, given the limited564

computational budget, we only fine-tune our model565

with the size of 7B and 13B, so there is a need for566

further research into introducing models of larger567

scales like 70B.568

Ethics Statement569

We take ethical considerations very seriously. This570

paper focuses on improving complex reasoning571

over incomplete knowledge graphs with logic-572

aware curriculum tuning. All experiments are con-573

ducted on publicly available datasets and models,574

and the findings and conclusions of this paper are575

reported accurately and objectively. Thus, we be-576

lieve that this research will not pose ethical issues.577
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Appendix748

A Neighborhood Retrieval Algorithm749

To strike a balance between the completeness of750

relevant information and the token number limit of751

LLMs, we search for as many relevant triplets as752

possible along the possible paths.753

Particularly, for the 1p query, we simply find all754

the triplets containing the entity or the relation.755

For another query, as shown in Figure S1 for756

each leaf node in DAG, we do depth traversal on757

the graph. For each step in the traversal process, if758

this step is a projection, we search for all the possi-759

ble triplets. Otherwise, we perform corresponding760

operations on intersection and union respectively761

to filter out the corresponding entities.762

We continue this traversal until the obtained en-763

tity is empty or reaches the root node. All triplets764

during the traversal are related to triplets.765

intermediate variables

related but wrong variables

easy answers

hard answers

Neighborhood Retrieval Algorithm

Figure S1: A case on Neighborhood Retrieval Algo-
rithm

B Conversion Between FOL Expression766

and Query Computation Tree767

The conversion from an FOL expression (disjunc-768

tive normal form) to its query computation tree769

involves two steps: dependency graph generation,770

and union branches duplication.771

Dependency Graph Generation. Upon encoun-772

tering a First-Order Logic (FOL) expression, our773

primary procedure entails the allocation of distinct774

nodes to individual variables, while assigning a775

unique node to the constant entity within each one-776

hop atom. It is important to acknowledge that mul-777

tiple nodes may represent the same constant en-778

tity, given its occurrence in various one-hop atoms.779

Subsequently, undirected edges are employed to780

establish connections between nodes in accordance781

with the defined one-hop atoms. Specifically, if782

eij = r(v′, v) (or r(c, v)), then we connect the783

nodes of v′ (or c) and v by an edge ri. Similarly,784

if eij = ¬r(v′, v) (or ¬r(c, v)), then we connect 785

the nodes of v′ (or c) and v by an edge ¬ri. The 786

variable i serves as a distinguishing label for edges 787

emanating from distinct conjunctions. The formu- 788

lated undirected dependency multigraph must con- 789

form to a tree structure, signifying a connected and 790

acyclic graph. Choosing the node v? as the root, 791

we establish edge directions ensuring that they uni- 792

formly point from child nodes to their respective 793

parent nodes, with due consideration to handling 794

inverse relations. Notably, constant entities inher- 795

ently function as leaf nodes within the tree, given 796

that each entity node exclusively connects to a sin- 797

gle variable node. 798

Union Branches Duplication Then we handle the 799

duplication branches in the query computation tree. 800

On the path τ from root to every leaf node, if exists, 801

we find the first node vi such that the edges between 802

vi and its child node vj are all of the same relations, 803

but in different conjunctions: rt1 , rt2 , . . . , rtp . We 804

merge these edges into a single edge rt1,t2,...tp , 805

since they all correspond to the same one-hop atom 806

but in different conjunctions, they can be merged 807

by the distributive law: 808

(A ∧B) ∨ (A ∧ C) ⇔ A ∧ (B ∨ C) (7) 809

We assert that there is a subpath from vi to some 810

vk within the path τ that only consists of edges 811

rt1,t2,...tp , and vk is connected to different child 812

nodes by relations from conjunctions t1, t2, . . . tp. 813

These edges are annotated as unions, while the re- 814

maining one-to-many structures are designated as 815

intersections. Consequently, the multigraph trans- 816

forms into a simple graph, devoid of multiple edges. 817

818

C Difficulty 819

We divide the difficulty by the number of decom- 820

posed subqueries. Query types and their corre- 821

sponding difficulties are shown in Table S1. 822

D Experiment Details 823

D.1 Dataset Details 824

• FB15K is based on Freebase, a large collabo- 825

rative knowledge graph project that was created 826

by Google. FB15k contains about 15,000 entities, 827

1,345 relations, and 592,213 triplets (statements 828

that assert a fact about an entity). 829

• FB15K-237 is a subset of FB15k, containing 830

14,541 entities, 237 relations, and 310,116 triplets. 831
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1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

Number of subqueries 1 2 3 3 5 4 4 3 4 3 5 4 4 4
Difficulty 1 1 2 2 3 3 3 2 3 2 3 3 3 3

Table S1: Difficulty of different query types where 1 means easy, 2 means medium, 3 means hard.

1p 2p 3p 2i

ip pi 2u up

u u

3i1p 2p 3p 2i

ip pi 2u up

3in2in inp

pni pin

n n n

n

n

Figure S2: Query structures, illustrated in their query computation graph representations

The relations in FB15k-237 are a subset of the rela-832

tions in FB15k, and were created to address some833

of the limitations of FB15k, such as the presence of834

many irrelevant or ambiguous relations, and to pro-835

vide a more challenging benchmark for knowledge836

graph completion models.837

• NELL995 was created using the Never-Ending838

Language Learning (NELL) system, which is a ma-839

chine learning system that automatically extracts840

knowledge from the web by reading text and infer-841

ring new facts. NELL995 contains 9,959 entities,842

200 relations, and 114,934 triplets. The relations in843

NELL995 cover a wide range of domains, includ-844

ing geography, sports, and politics.845

D.2 Query Structure846

For a fair comparison, we use the 14 types of com-847

plex queries generated by the same rules in (Ren848

and Leskovec, 2020). The query structure of each849

type is shown in Figure S2.850

For each complex query, its answers are divided851

into easy answers and hard answers, based on852

whether the answer can be derived by existing853

edges in the graph directly. Specifically, in the854

valid/test set, the easy answers are the entities that855

can be inferred by edges in the training/valid graph,856

while hard answers are those that need to be in-857

ferred by predicting missing edges in the valid/test858

graph. Referring to previous work, we calculate859

standard evaluation metrics including mean recip-860

rocal rank (MRR), in the filtered setting where all861

easy and hard answers are filtered out during rank-862

ing.863

D.3 Evaluation Protocol Detail 864

For each complex query, its answers are divided 865

into easy answers and hard answers, based on 866

whether the answer can be derived by existing 867

edges in the graph directly. Specifically, in the 868

valid/test set, the easy answers are the entities 869

that can be inferred by edges in the training/valid 870

graph, while hard answers are those that need to 871

be inferred by predicting missing edges in the 872

valid/test graph. Referring to previous work (Ren 873

and Leskovec, 2020), we calculate standard evalua- 874

tion metrics including mean reciprocal rank (MRR), 875

in the filtered setting where all easy and hard an- 876

swers are filtered out during ranking. 877
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