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Abstract
Multi-label text classification is a big chal-001
lenging subtask in text classification, where002
labels generally form a tree structure. Ex-003
isting solutions learn the label tree structure004
in a shallow manner and ignore the distinc-005
tive information between labels. To address006
this problem, we propose a Hierarchical Con-007
trastive Learning for Multi-label Text Clas-008
sification (HCL-MTC), which constructs the009
graph based on the contrastive knowledge be-010
tween labels. Specifically, we formulate the011
MTC as a multi-task learning by introducing a012
sampling hierarchical contrastive loss, which013
learns both the correlative and distinctive label014
information and is beneficial in learning deep015
label hierarchy. The experimental results show016
that the proposed model can achieve consid-017
erable improvements on both public datasets018
(i.e., RCV1-v2 and WoS).019

1 Introduction020

Text classification is a fundamental task in natural021

language processing, which has attracted increas-022

ing attention recently. Text classification has been023

widely used in many applications such as sentiment024

analysis (Pang and Lee, 2008; Li et al., 2020; Ding025

et al., 2020), document classification (Yang et al.,026

2016), medical codes prediction (Mullenbach et al.,027

2018), law study (Chalkidis et al., 2019), patent cat-028

egorization (Tang et al., 2020), and financial study029

(Maia et al., 2021). Multi-label text classification030

(MTC) is one of the most challenging subtasks,031

where the classification result contains more than032

one label where label set generally forms a tree033

structure, i.e., there exists relationships between034

each label and one label can be inferred based on035

the information of another.036

Existing solutions for MTC task can be divided037

into two groups: 1) predicting labels simply from038

text information and 2) predicting labels from hy-039

brid information of both labels and texts. The first040

group predicts text labels by utilizing the local and041

Figure 1: Sample of label tree structure from RCV1-
v2 dataset where grey, yellow, green, blue denotes root,
first-level, second-level, third-level labels respectively.
The variable sij indicates the similarity between label
i and label j .

global information extracted from text encoders. 042

Previous works (Shimura et al., 2018; Yang et al., 043

2020a) proposed CNN-based models to overcome 044

the data imbalance problem caused by lack of child 045

label samples. Some other works (e.g. Lin et al., 046

2018) tend to utilize the semantic information from 047

text. These methods only focus on text information 048

but ignore the information between labels. The 049

second group tends to combine text information 050

with label information, such as weight initializa- 051

tion (Baker and Korhonen, 2017), label hierarchy 052

learning (Huang et al., 2019), and capsule network 053

(Chen et al., 2020). While these approaches in- 054

creased the efficiency of multi-label text classifica- 055

tion by including label information, they learned 056

the label hierarchy in a shallow manner. The GCN- 057

based model proposed by Zhou et al. (2020) is able 058

to learn deep label hierarchy. However, they do 059

not take full advantage of the label information as 060

they only learned label correlative information but 061

ignore the label distinctive information. 062

Learning both correlative and distinctive infor- 063

mation is beneficial in learning deep label hier- 064

archy and thus improves classification effect for 065

MTC. For instance, in Figure 1, the similarity s23 066
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between node 2 and node 3 denotes the distinctive067

information which is assumed to be as large as pos-068

sible since there is no edge connects them and the069

similarity s26 denotes the correlative information070

which is assumed to be as small as possible. In this071

paper, we propose a Hierarchical Contrastive Learn-072

ing for Multi-label Text Classification (HCL-MTC).073

In order to demonstrate the efficiency of our con-074

trastive learning method in modelling the label hi-075

erarchy, we adopt the state-of-art GCN framework076

and compare the results in Zhou et al. (2020). The077

HCL-MTC explicitly models the hierarchical label078

structure as a directed graph and formulates the079

graph edge as the contrastive knowledge between080

labels. To further increase the performance of the081

label contrastive learning, we introduce a sampling082

hierarchical contrastive loss function. The goal of083

the contrastive loss is to maximize the distinction084

between parent labels and minimize the similarity085

between parent and child labels.086

Specifically, given train texts, the model first gen-087

erates text features based on the local and global in-088

formation extracted from the text encoder. A single089

linear transformer then transforms the text feature090

to the label-wise feature. Finally, the contrastive091

learner aggregates the information of each label092

from its correlated labels based on their contrastive093

knowledge.094

Our main contributions can be summarized as095

follows:096

• We propose a Hierarchical Contrastive Learn-097

ing for Multi-label Text Classification (HCL-098

MTC). The HCL-MTC models the label tree099

structure as a directed graph and constructs100

the graph based on the contrastive knowledge101

between labels.102

• To further utilize the label contrastive knowl-103

edge, we propose a sampling hierarchical con-104

trastive loss which can increase the perfor-105

mance for MTC.106

• Experimental results on two public datasets107

demonstrate the effectiveness of HCL-MTC.108

2 Related Work109

Multi-label Text Classification aims to assign110

labels with hierarchical structure to the given text.111

Existing solution for MTC can be categorized112

into text information based approach and hybrid113

information based approach.114

115

Text Information based Approaches: Since a 116

text contains rich information from both word 117

level and sentence level, previous studies (e.g. 118

Yang et al., 2016) have developed various methods 119

to take advantage of this information to predict 120

hierarchical labels. Convolutional Neural Net- 121

work (CNN) (Kim, 2014) based methods have 122

been widely used in MTC task due to its local 123

performance. To name a few, Lin et al. (2018) 124

proposed a Seq2Seq model which utilizes dilated 125

convolution and hybrid attention method to capture 126

the semantic unit from texts. Shimura et al. (2018) 127

proposed a fine-tuning technique in CNN which 128

attempts to contribute upper level information 129

to lower levels. Yang et al. (2020a) integrated 130

two single CNNs using siamese approach for tail 131

categories. However, the above mentioned models 132

only used information extracted from texts and 133

ignored the relationship between labels. 134

135

Hybrid Information based Approaches: In 136

order to incorporate label information, various 137

approaches have been proposed. For instance, 138

Baker and Korhonen (2017) initialized the final 139

hidden layer of a CNN model such that it can 140

leverage the label co-occurrence relations. Chen 141

et al. (2020) proposed a capsule network which 142

incorporates the label probabilities. Some existing 143

methods incorporate label embedding vectors to 144

the model and learn the label structure from upper 145

levels to lower levels (Huang et al., 2019; Yang 146

et al., 2018). However, these methods learn the 147

label hierarchy in a shallow manner. Since labels 148

in MTC task can be formulated as tree structure or 149

directed acyclic graph (DAG) structure. Recently, 150

GCN-based models (Peng et al., 2018; Zhou et al., 151

2020) have obtained promising performance on 152

the MTC task. These models formulate the edge 153

feature based on word co-occurrence or label 154

dependencies which are over-reliance on the prior 155

probability. 156

157

Edge Feature Formulation in GCN-based 158

Model: Traditional GCN-based models (Marcheg- 159

giani and Titov, 2017; Lu et al., 2020) formulate 160

the adjacency matrix by random initialization. 161

Some works (Yao et al., 2018; Henaff et al., 2015; 162

Peng et al., 2018) define weight of edge by word 163

information such as word co-occurrence, word 164

similarity and point-wise mutual information. In 165
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contrast, we formulates the edge feature based on166

contrastive knowledge between labels.167

3 Model168

We propose a Hierarchical Contrastive Learning169

for Multi-label Text Classification (HCL-MTC) in170

which the contrastive learning methods are rep-171

resented in two aspects: 1) the transition matrix172

parameter of GCN, and 2) the sampling hierarchi-173

cal contrastive loss. We first introduce the problem174

formulation, then describe our proposed Hierar-175

chical Contrastive Learning for Multi-label Text176

Classification (HCL-MTC).177

3.1 Problem Formulation178

In the MTC task, there are m predefined la-179

bels L = {l1, l2, ..., lm}. Given a training set180

{(T1, Y1), (T2, Y2), ..., (TN , YN )}, where Ti =181

{x1, x2, ..., xn} indicates the ith text, n indicates182

the text length, xi indicates the ith word and Yi183

is the subset of L assigned to Ti. The goal of the184

MTC task is to predict ŷi for each test text. Note185

that: i) every text has one or more labels; ii) labels186

generally form a tree structure, which indicates that187

there exists both correlative and distinctive infor-188

mation between labels; iii) The sample size of the189

child node is much lower than that of its parent190

node.191

3.2 Hierarchical Contrastive Learning for192

MTC193

As demonstrated in Figure 2, our proposed model194

contains four parts, a text encoder, a feature195

extractor, a linear transformer and a hierarchical196

contrastive learner. Given a sentence, the text197

encoder and the feature extractor extract local198

and global information as text feature. The199

linear transformer transforms the text feature to200

the label-wise feature, which directly changes201

the text feature dimension to the label feature202

dimension. The hierarchical contrastive learner203

learns the contrastive knowledge between labels204

and considers it as the transition probability. The205

overall model structure is depicted in Figure 2.206

207

Input: Before transferring to the text en-208

coder, the original text is embedded by the209

pre-trained embedding matrix. Given a text210

T = {x1, x2, ..., xn}, each of word xi will be211

converted to the vector ωi which constructs the212

input matrix I = {ω1, ω2, ..., ωn}.213

214

Text Encoder: A variety of text encoders 215

have been used to extract global information 216

within texts, for instance, RNN (Werbos, 1990) 217

and its variants (e.g. LSTM (Hochreiter and 218

Schmidhuber, 1997), GRU (Cho et al., 2014)). 219

Recently, pretraining model with fine-tune pro- 220

cedure (e.g BERT (Devlin et al., 2019), XLNet 221

(Yang et al., 2020b))has shown great performance 222

in many NLP tasks and can also be utilised as 223

the text encoder. For the purpose of experimental 224

comparison, we adopt the same text encoder (i.e. 225

Bi-GRU) proposed in Zhou et al. (2020). The 226

input of the Bi-GRU encoder layer is a matrix 227

I = {ω1, ω2, ..., ωn}, and the hidden vector of a 228

Bi-GRU is calculated as follows: 229

−→
h t = GRU(

−→
h t−1, ωt),

←−
h t = GRU(

←−
h t+1, ωt),

ht = [
−→
h t,
←−
h t],

(1) 230

where
−→
h t and

←−
h t are the forward hidden vector 231

and backward hidden vector at time step t. 232

The output ht ∈ R
2u of the Bi-GRU is the 233

concatenation of
−→
h t and

←−
h t where u indicates 234

the number of hidden units of each unidirectional 235

GRU. The resulting global feature maps are 236

H = {h1, h2, ..., hn}. 237

238

Feature Extractor: We apply the CNN model to 239

extract n-gram feature from global feature maps H 240

get from the text encoder. Let F ∈ Rg×2u denotes 241

a convolutional kernel and Hi:i+g−1 denotes a 242

global feature map region of g words. The local 243

feature can be formulated as follows: 244

ci = F �Hi:i+g−1 + b, (2) 245

where � denotes the component-wise multiplica- 246

tion, and b ∈ R denotes a bias term. The feature 247

maps of f filters at ith channel can be denoted as 248

Ci = {c1i , c2i , ..., c
f
i }. Next, we apply the k-max 249

pooling method to filter the top k most informa- 250

tive word combinations which can be formulated 251

as follows: 252

P =flatten(

max(k, [C1, C2, ..., Cn−g+1]))
(3) 253

Suppose K convolutional kernels are used and 254

the final text feature is the concatenation of the 255

output P denoted as O = [P 1, P 2, ..., PK ]. 256
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Figure 2: The overall structure of our HCL-MTC model.

257

Linear Transformer: The linear transformer258

transforms the text feature to the label feature:259

V = Reshape(MO), (4)260

where O ∈ Rdc is the text feature, M ∈ Rdw×dc is261

the trainable weight matrix, V ∈ Rm×dn denotes262

the label feature, the reshape operation change the263

size from dw to (m× dn), dc, m, and dn denotes264

the text feature length, number of labels and label265

feature dimension respectively.266

267

Hierarchical Contrastive Learner: GCN268

(Kipf and Welling, 2017) is a graph representations269

of structural information between nodes (e.g270

classification labels). The graph edge in a graph271

represents the relationship between each node.272

Traditional GCNs (Marcheggiani and Titov, 2017;273

Lu et al., 2020) randomly initialize the transition274

matrix and learn the relationship among nodes by275

error back propagation method, which ignores the276

node correlation information. Zhou et al. (2020)277

overcomes the issue by formulating the edge fea-278

ture by the prior probability of label dependencies.279

While they learn the label correlative information,280

they ignore the label distinctive information. In281

contrast to Zhou et al. (2020), we propose the282

hierarchical contrastive learner which connects 283

graph nodes by label contrastive knowledge. 284

Our proposed hierarchical contrastive learner 285

adopts the framework of Hierarchy-GCN proposed 286

in Zhou et al. (2020). The label tree constructs a 287

directed graph where the current node can aggre- 288

gate the information transferred from parent nodes, 289

child nodes and itself. This operation is realized 290

by a weighted adjacent matrix learned from the 291

contrastive information between label nodes. 292

Let G = (V, E) be a directed graph where V ∈ 293

R
m×dn indicates set of nodes, E indicates set of 294

edges. We define vk ∈ Rdn as the feature of node 295

k and N(k) = {nk, child(k), parent(k)} as its 296

connected neighbourhood. The hidden state of 297

node k are computed as follows: 298

aj,k =

∣∣∣∣ vj · vk
||vj || · ||vk||

∣∣∣∣ ,
µj,k = aj,kvj + bkl ,

gj,k = σ(W d(j,k)
g vj + bkg),

hk = ReLU(
∑

j∈N(k)

gj,k · µj,k),

(5) 299

where W d(j,k)
g ∈ Rn indicates the gate weight in 300

the direction from node j to node k, bkl and bkg in- 301

dicate the transferring bias and gate bias of node 302
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k respectively. µj,k ∈ Rn denotes the information303

of node j transfers to node k and gj,k ∈ Rn con-304

trols the flow of information. Edge d(j, k) contains305

three directions, including top-down, bottom-up306

and self-loop. aj,k is the contrastive knowledge307

computed by cosine similarity, which indicates the308

transition probability from node j to node k. With309

the decrease of the similarity, one node is more310

likely to transfer to another. Thus, the model can311

learn deep along hierarchical label structure. Note312

that aj,k from top-down flow and ak,j from bottom-313

up flow is equal and for self-loop, ak,k = 1. Fi-314

nally, the output hidden state hk of node k denotes315

the aggregation of information transferred from its316

neighborhood in N(k) activated by ReLU activa-317

tion function.318

3.3 Sampling Hierarchical Contrastive Loss319

Let s(vpi , vpj ) denote the similarity between par-320

ent node i and parent node j; s(vpi , vck) denote the321

similarity between parent node i and its child node322

k. In a label tree, a parent-child label pair is able to323

transfer information in both directions but a parent324

can not transfer information to other parents. This325

indicates that there exists correlative and distinc-326

tive information between labels which is the pur-327

pose of the hierarchical contrastive loss. Thus, the328

goal of the hierarchical contrastive loss is to max-329

imize the distinctive information s(vpi , vpj ) and330

minimize the correlative information s(vpi , vck).331

The hierarchical contrastive loss can be formulated332

as follows:333

s(vpi , vpj ) =

∣∣∣∣ vpi · vpj
||vpi || · ||vpj ||

∣∣∣∣ ,
s(vpi , vck) =

∣∣∣∣ vpi · vck
||vpi || · ||vck ||

∣∣∣∣ ,
Ld =

∑
pi∈V

∑
pj∈V

∑
ck∈child(i)

exp(s(vpi , vpj )− s(vpi , vck))

(6)334

However, to enumerate all node pairs can be time-335

consuming. Instead, we apply the sampling mecha-336

nism. For each level, only two randomly selected337

parent nodes and one randomly selected child node338

will participate in the calculation of the hierarchical339

contrastive loss.340

3.4 Classification341

The final node features are fed into a fully con-342

nected layer and the probability of node k can be343

formulated as follows: 344

pk = σ(Wkhk + bk), (7) 345

where Wk ∈ Rn and bk ∈ Rn. The model will as- 346

sign labels with probability greater than the preset 347

threshold θ to a test text. 348

3.5 Loss Function 349

The HCL-MTC applies three losses, including bi- 350

nary cross-entropy loss, recursive regularization 351

loss(Gopal and Yang, 2013) and sampling hierar- 352

chical distance loss. The total loss can be formu- 353

lated as: 354

Lc =−
m∑
i=1

[yilog(y
′
i)

+ (1− yi)log(1− y′i)],

Lr =
∑
i∈V

∑
j∈child(i)

1

2
||ωi − ωj ||2,

L =Lc + λ1Lr + λ2Ld,

(8) 355

where Lr utilizes the parameters of the final fully 356

connected layer, yi indicates the ground truth and 357

y′i denotes the predicted probability of label i. 358

4 Experiments 359

4.1 Dataset Description 360

We evaluate the effectiveness of our proposed 361

model on two published dataset, including 362

RCV1-v2 and Web-of-Science (WoS). 363

364

Reuters Corpus Volume I (RCV1-v2): This 365

dataset is a correction version of the original data 366

RCV1-v1 provided by (Lewis et al., 2004) for 367

research purposes. It includes a total of 804,414 368

manually categorized newswire stories and 103 369

topics where each newswire stories can be assigned 370

multiple topics. 371

372

Web of Science (WoS): The WoS dataset is 373

a collection of meta-data on 46985 published 374

papers provided by (Kowsari et al., 2017) which 375

consists of abstract, domain and keywords. The ab- 376

stract is regarded as the input for text classification 377

and the domain is the label with hierarchy. The 378

keywords are descriptions of the next label level. 379

There are 141 domains in total. 380

381
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Dataset # Total # Train # Valid # Test |C| # Depth Avg Words Avg |C|
RCV1-v2 804414 22917 232 781265 103 4 136.54 3.24

WoS 46985 30070 7518 9397 141 2 131.19 2.0

Table 1: Statistics of the datasets where |C| indicates total label numbers and Avg |C| indicates average label
numbers in each text.

Figure 3: Text number distribution in label hierarchy of
RCV1-v2 dataset.

Figure 4: Text number distribution in label hierarchy of
WoS dataset.

Figure 3 and Figure 4 show the text number dis-382

tribution in label hierarchy of RCV1-v2 dataset383

and WoS dataset respectively. From two distribu-384

tions, we can observe that most texts are in high385

levels and with the label hierarchy goes deeper,386

the number of texts decreases, which lead to the387

data imbalance problem. The explanation of this388

phenomenon is that labels form a tree structure389

and the lower leaves are constructed based on the390

upper leaves. Therefore, it is important to learn391

the label hierarchy and contribute high-level label392

information to the low-level labels.393

We remove the English stop words for the two394

datasets and divide each each dataset into training,395

validation and test follows Zhou et al. (2020). The396

only difference is that we choose 1% training set397

as the validation set. The statistics of the datasets398

is shown in Table 1.399

4.2 Experimental Setup400

Evaluation Metrics: We use the standard evalua-401

tion metrics of Micro-F1 and Macro-F1 (Gopal and402

Yang, 2013) to measure our experimental results.403

• Micro-F1 considers the overall performance404

of the model which is calculated by overall 405

precision and recall of all the labels. 406

• Macro-F1 considers the local performance 407

of the model which gives equal weight to all 408

labels. 409

To be specific, the computation of Micro-F1 410

score and Macro-F1 score are illustrated below: 411

microF1 =
2
∑

l∈L TPl∑
l∈L 2TPl + FPl + FNl

,

macroF1 =
1

|L|
∑
l∈L

2TPl

2TPl + FPl + FNl
,

(9) 412

where TPt, FPt, FNt indicates the true-positives, 413

false-positives and false-negatives for the label l ∈ 414

L. 415

416

Baselines: We compare our proposed model with 417

multiple traditional MLP baselines for all datasets 418

and the state-of-art models on RCV1-v2 dataset. 419

The baselines and their performance are reported 420

in Zhou et al. (2020). 421

• Traditional MLP baselines: CNN (Kim, 2014) 422

is a local method which uses multiple con- 423

volution kernels to extract text information 424

and MLP to predict labels. RNN is a global 425

method which employs a variational Bi-GRU 426

network (Cho et al., 2014) to learn the word 427

dependencies in a long distance. RCNN is a 428

combination of above two methods which first 429

extracts global text features and then feeds to 430

the CNN architecture to extract the local in- 431

formation. 432

• State-of-art models: HR-DGCNN (Peng et al., 433

2018) employs deep CNN to extract the lo- 434

cal text information from graph word embed- 435

ding of documents for HMTC and add the 436

recursive regularization to the final MLP. HE- 437

AGCRCNN (Peng et al., 2019) is similar to 438

HR-DGCNN which proposes an attentional 439

capsule RCNN netwrok for HMTC. HiLAP 440

(Mao et al., 2019) is a deep reinforcement 441
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Description Values Description Values Description Values
GRU depth 1 Learning rate 0.0001 Train batch size 64

GRU hidden units 64 Prediction threshold 0.5 Test batch size 512
CNN depth 3 Dropout 0.5 Momentum β1 0.9

CNN filter region size {2,3,4} GRU dropout 0.1 Momentun β2 0.999
Token length 256 Node dropout 0.05 Momentum ε 1× 10−6

Table 2: Implementation details: Dropout shows the dropout rate in the embedding layer and MLP layer, GRU
dropout shows the dropout rate in the Bi-GRU layer and Node dropout shows the dropout rate in the node transfor-
mation layer.

learning based model which aims to learn the442

label assignment policy for HMTC. HMCN443

(Wehrmann et al., 2018) is a deep neural net-444

work for HMTC which aggregates the infor-445

mation of local and global data flow in the la-446

bel hierarchy. HFT(M) (Shimura et al., 2018)447

is a CNN-based model with fine-tune mech-448

anism which forces the low-level inference449

utilize the high-level information. Similar to450

HFT, HTrans (Banerjee et al., 2019) learns451

the label hierarchy by utilizing the parame-452

ter of parent category classifiers to fine-tune453

the child category classifiers. SGM (Yang454

et al., 2018) models HMTC as a Seq2Seq task455

which predicts the current label based on the456

previous predicted label. HiAGM (Zhou et al.,457

2020) employs RCNN to extract the text in-458

formation and structure encoder to learn the459

label hierarchy.460

Inplementation Details: All experiments are im-461

plemented in PyTorch (Paszke et al., 2017). To462

be comparable with (Zhou et al., 2020), we take463

the similar implementation parameters. The word464

embedding vector is initialized by 300-dimentional465

word embedding pretrained by GloVe (Pennington466

et al., 2014). We use a maximum size of 60000467

most frequent words as vocabulary and remove468

words under the minimum count of 2. We use469

Adam (Kingma and Ba, 2017) optimizer to mini-470

mize the total loss. We set the penalty coefficient of471

recursive regularization to 1×10−6 and the penalty472

coefficient of sampling hierarchical distance loss to473

1× 10−5. The maximum number of epochs is set474

to 400 and the model is stopped when there is no475

improvement in 50 epochs. Other implementation476

details is shown in Table 2.477

4.3 Experimental Results478

We evaluate our proposed model on two public479

datasets and compare it with 12 MLP baselines480

and state-of-art models in terms of micro-F1 and 481

macro-F1. The results of our proposed model is 482

evaluated on the test subset with the best model on 483

the validation subset. The experimental results is 484

shown in Table 3. 485

According to the experimental results, the fol- 486

lowing conclusions can be drawn. First, our pro- 487

posed model outperforms all existing models in 488

both RCV1-v2 and WoS datasets. Second, for 489

RCV1-v2 dataset, HCL-MTC achieves an improve- 490

ment of 0.02% micro-F1 score and 0.38% macro- 491

F1 score compared with HiAGM-TPGCN model. 492

For WoS dataset, HCL-MTC also achieves a con- 493

siderable improvement by 0.23% and 0.35% in 494

terms of micro-F1 and macro-F1. 495

Our proposed model is an improvement of 496

HiAGM-TPGCN where we add the contrastive 497

learning method to the basic framework of HiAGM- 498

TPGCN . Specifically, we utilize the similarity be- 499

tween label pairs as the transition parameters in 500

the GCN network instead of using prior probability 501

of label dependencies. We also add a sampling 502

hierarchical contrastive loss to the total loss. The 503

results show that HCL-MTC improves the abil- 504

ity of learning label hierarchy. Moreover, HCL- 505

MTC mainly improves the macro-F1 score in both 506

datasets which indicates that HCL-MTC can get 507

access to deeper label hierarchy and has a strong 508

ability to tackle the data sparsity problem. 509

4.4 Ablation Test 510

We conduct an ablation test to analyze the impact 511

of the similarity transition matrix and sampling 512

hierarchical contrastive loss to the proposed model. 513

The results of the ablation study is shown in Table 514

4. 515

From the ablation study, we can observe that 516

HCL-MTC without sampling hierarchical con- 517

trastive loss outperforms HiAGM-TPGCN on two 518

datasets in terms of both Micro-F1 and Macro-F1. 519
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Model
RCV1-v2 WoS

Micro-F1 Macro-F1 Micro-F1 Macro-F1
CNN 79.37 55.45 82.00 76.18
RNN 81.10 51.09 77.94 69.65

RCNN 81.57 59.25 83.55 76.99
HR-DGCNN 76.18 43.34 - -

HE-AGCRCNN 77.80 51.30 - -
HiLAP 83.30 60.10 - -
HMCN 80.80 54.60 - -
HFT(M) 80.29 51.40 - -
HTrans 80.51 58.49 - -
SGM 77.30 47.49 - -

HiAGM-LAGCN 82.21 61.65 64.61 79.37
HiAGM-TPGCN 83.96 63.35 85.82 80.28

HCL-MTC 83.98 63.73 86.05 80.63

Table 3: Experimental results of MLP baselines, state-of-art models and our proposed model.

Model RCV1-v2
Micro-F1 Macro-F1

HCL-MTC 83.98 63.73
w/o similarity 84.09 63.17

w/o contrastive loss 84.03 63.39

Model WoS
Micro-F1 Macro-F1

HCL-MTC 86.05 80.63
w/o similarity 86.00 80.26

w/o contrastive loss 85.93 80.42

Table 4: Ablation study of the HCL-MTC with varying
different components on RCV1-v2 and WoS datasets.
w/o similarity denotes the HCL-MTC without simi-
larity transition matrix and w/o contrastive loss de-
notes the HCL-MTC without sampling hierarchical
contrastive loss.

It shows that the similarity transition matrix is un-520

doubtedly beneficial to the HCL-MTC. The single521

contrastive loss does not help much for the HCL-522

MTC according to the results shown in w/o simi-523

larity. However, combining these two contrastive524

learning methods, the HCL-MTC can achieve bet-525

ter performance than only using single contrastive526

learning method. It shows that the contrastive loss527

increase the performance of similarity transition528

matrix. The reason is: 1) We want the child node529

aggregates more information from its parent or the530

parent node aggregates more information from its531

child nodes, so that the model can learn deep label532

hierarchy along the correct path. We use the similar-533

ity transition matrix to perform this process where534

the closer label pairs have higher similarity and, 535

thus have higher transition probability. 2) The sam- 536

pling hierarchical contrastive loss helps the model 537

minimize the similarity information from parent 538

node to its child nodes and maximize the distinc- 539

tion information between parent nodes. Therefore, 540

the sampling hierarchical contrastive loss can help 541

the model find a better solution during the training 542

process. 543

5 Conclusions 544

We present a Hierarchical Contrastive Learning 545

for Multi-label Text Classification (HCL-MTC). 546

The HCL-MTC implements two contrastive learn- 547

ing methods based on the state-of-art framework 548

HiAGM-TPGCN where we apply the similarity 549

transition matrix to the GCN. Furthermore, a com- 550

plementary sampling hierarchical contrastive loss 551

is introduced to learn both the correlative and dis- 552

tinctive knowledge between labels and increase the 553

performance of the similarity transition matrix. Ex- 554

tensive experiments are carried out on two public 555

datasets, including RCV1-v2 and WoS datasets. 556

The experimental results show that our proposed 557

model outperforms all the existing model, espe- 558

cially in terms of Macro-F1. It indicates that our 559

model has a strong ability to get access to the deep 560

label hierarchy and is better to tackle with the data 561

sparsity problem. For RCV1-v2 dataset, our best 562

model obtains a Micro-F1 of 83.98% and a Macro- 563

F1 of 63.73%. Our best model also achieves a 564

Micro-F1 score of 86.05% and a Macro-F1 score 565

of 80.63% for WoS dataset. 566
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