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Abstract

Multi-label text classification is a big chal-
lenging subtask in text classification, where
labels generally form a tree structure. Ex-
isting solutions learn the label tree structure
in a shallow manner and ignore the distinc-
tive information between labels. To address
this problem, we propose a Hierarchical Con-
trastive Learning for Multi-label Text Clas-
sification (HCL-MTC), which constructs the
graph based on the contrastive knowledge be-
tween labels. Specifically, we formulate the
MTC as a multi-task learning by introducing a
sampling hierarchical contrastive loss, which
learns both the correlative and distinctive label
information and is beneficial in learning deep
label hierarchy. The experimental results show
that the proposed model can achieve consid-
erable improvements on both public datasets
(i.e., RCV1-v2 and WoS).

1 Introduction

Text classification is a fundamental task in natural
language processing, which has attracted increas-
ing attention recently. Text classification has been
widely used in many applications such as sentiment
analysis (Pang and Lee, 2008; Li et al., 2020; Ding
et al., 2020), document classification (Yang et al.,
2016), medical codes prediction (Mullenbach et al.,
2018), law study (Chalkidis et al., 2019), patent cat-
egorization (Tang et al., 2020), and financial study
(Maia et al., 2021). Multi-label text classification
(MTC) is one of the most challenging subtasks,
where the classification result contains more than
one label where label set generally forms a tree
structure, i.e., there exists relationships between
each label and one label can be inferred based on
the information of another.

Existing solutions for MTC task can be divided
into two groups: 1) predicting labels simply from
text information and 2) predicting labels from hy-
brid information of both labels and texts. The first
group predicts text labels by utilizing the local and
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Figure 1: Sample of label tree structure from RCV1-
v2 dataset where grey, yellow, green, blue denotes root,
first-level, second-level, third-level labels respectively.
The variable s;; indicates the similarity between label
1 and label j .

global information extracted from text encoders.
Previous works (Shimura et al., 2018; Yang et al.,
2020a) proposed CNN-based models to overcome
the data imbalance problem caused by lack of child
label samples. Some other works (e.g. Lin et al.,
2018) tend to utilize the semantic information from
text. These methods only focus on text information
but ignore the information between labels. The
second group tends to combine text information
with label information, such as weight initializa-
tion (Baker and Korhonen, 2017), label hierarchy
learning (Huang et al., 2019), and capsule network
(Chen et al., 2020). While these approaches in-
creased the efficiency of multi-label text classifica-
tion by including label information, they learned
the label hierarchy in a shallow manner. The GCN-
based model proposed by Zhou et al. (2020) is able
to learn deep label hierarchy. However, they do
not take full advantage of the label information as
they only learned label correlative information but
ignore the label distinctive information.

Learning both correlative and distinctive infor-
mation is beneficial in learning deep label hier-
archy and thus improves classification effect for
MTC. For instance, in Figure 1, the similarity so3



between node 2 and node 3 denotes the distinctive
information which is assumed to be as large as pos-
sible since there is no edge connects them and the
similarity so¢ denotes the correlative information
which is assumed to be as small as possible. In this
paper, we propose a Hierarchical Contrastive Learn-
ing for Multi-label Text Classification (HCL-MTC).
In order to demonstrate the efficiency of our con-
trastive learning method in modelling the label hi-
erarchy, we adopt the state-of-art GCN framework
and compare the results in Zhou et al. (2020). The
HCL-MTC explicitly models the hierarchical label
structure as a directed graph and formulates the
graph edge as the contrastive knowledge between
labels. To further increase the performance of the
label contrastive learning, we introduce a sampling
hierarchical contrastive loss function. The goal of
the contrastive loss is to maximize the distinction
between parent labels and minimize the similarity
between parent and child labels.

Specifically, given train texts, the model first gen-
erates text features based on the local and global in-
formation extracted from the text encoder. A single
linear transformer then transforms the text feature
to the label-wise feature. Finally, the contrastive
learner aggregates the information of each label
from its correlated labels based on their contrastive
knowledge.

Our main contributions can be summarized as
follows:

* We propose a Hierarchical Contrastive Learn-
ing for Multi-label Text Classification (HCL-
MTC). The HCL-MTC models the label tree
structure as a directed graph and constructs
the graph based on the contrastive knowledge
between labels.

* To further utilize the label contrastive knowl-
edge, we propose a sampling hierarchical con-
trastive loss which can increase the perfor-
mance for MTC.

» Experimental results on two public datasets
demonstrate the effectiveness of HCL-MTC.

2 Related Work

Multi-label Text Classification aims to assign
labels with hierarchical structure to the given text.
Existing solution for MTC can be categorized
into text information based approach and hybrid
information based approach.

Text Information based Approaches: Since a
text contains rich information from both word
level and sentence level, previous studies (e.g.
Yang et al., 2016) have developed various methods
to take advantage of this information to predict
hierarchical labels. Convolutional Neural Net-
work (CNN) (Kim, 2014) based methods have
been widely used in MTC task due to its local
performance. To name a few, Lin et al. (2018)
proposed a Seq2Seq model which utilizes dilated
convolution and hybrid attention method to capture
the semantic unit from texts. Shimura et al. (2018)
proposed a fine-tuning technique in CNN which
attempts to contribute upper level information
to lower levels. Yang et al. (2020a) integrated
two single CNNs using siamese approach for tail
categories. However, the above mentioned models
only used information extracted from texts and
ignored the relationship between labels.

Hybrid Information based Approaches: In
order to incorporate label information, various
approaches have been proposed. For instance,
Baker and Korhonen (2017) initialized the final
hidden layer of a CNN model such that it can
leverage the label co-occurrence relations. Chen
et al. (2020) proposed a capsule network which
incorporates the label probabilities. Some existing
methods incorporate label embedding vectors to
the model and learn the label structure from upper
levels to lower levels (Huang et al., 2019; Yang
et al., 2018). However, these methods learn the
label hierarchy in a shallow manner. Since labels
in MTC task can be formulated as tree structure or
directed acyclic graph (DAG) structure. Recently,
GCN-based models (Peng et al., 2018; Zhou et al.,
2020) have obtained promising performance on
the MTC task. These models formulate the edge
feature based on word co-occurrence or label
dependencies which are over-reliance on the prior
probability.

Edge Feature Formulation in GCN-based
Model: Traditional GCN-based models (Marcheg-
giani and Titov, 2017; Lu et al., 2020) formulate
the adjacency matrix by random initialization.
Some works (Yao et al., 2018; Henaff et al., 2015;
Peng et al., 2018) define weight of edge by word
information such as word co-occurrence, word
similarity and point-wise mutual information. In



contrast, we formulates the edge feature based on
contrastive knowledge between labels.

3 Model

We propose a Hierarchical Contrastive Learning
for Multi-label Text Classification (HCL-MTC) in
which the contrastive learning methods are rep-
resented in two aspects: 1) the transition matrix
parameter of GCN, and 2) the sampling hierarchi-
cal contrastive loss. We first introduce the problem
formulation, then describe our proposed Hierar-
chical Contrastive Learning for Multi-label Text
Classification (HCL-MTC).

3.1 Problem Formulation

In the MTC task, there are m predefined la-
bels L = {ly,l2,...,l;n}. Given a training set
{(Tl, Yi), (TQ, }/2), cony (TN, YN)}, where T =
{x1,29, ..., 2, } indicates the i*" text, n indicates
the text length, x; indicates the it" word and Y;
is the subset of L assigned to 7;. The goal of the
MTC task is to predict g; for each test text. Note
that: 1) every text has one or more labels; ii) labels
generally form a tree structure, which indicates that
there exists both correlative and distinctive infor-
mation between labels; iii) The sample size of the
child node is much lower than that of its parent
node.

3.2 Hierarchical Contrastive Learning for
MTC

As demonstrated in Figure 2, our proposed model
contains four parts, a text encoder, a feature
extractor, a linear transformer and a hierarchical
contrastive learner. Given a sentence, the text
encoder and the feature extractor extract local
and global information as text feature. The
linear transformer transforms the text feature to
the label-wise feature, which directly changes
the text feature dimension to the label feature
dimension. The hierarchical contrastive learner
learns the contrastive knowledge between labels
and considers it as the transition probability. The
overall model structure is depicted in Figure 2.

Input: Before transferring to the text en-
coder, the original text is embedded by the
pre-trained embedding matrix. Given a text
T = {x1,x9,...,x,}, each of word x; will be
converted to the vector w; which constructs the
input matrix I = {wy,wa, ..., wp }.

Text Encoder: A variety of text encoders
have been used to extract global information
within texts, for instance, RNN (Werbos, 1990)
and its variants (e.g. LSTM (Hochreiter and
Schmidhuber, 1997), GRU (Cho et al., 2014)).
Recently, pretraining model with fine-tune pro-
cedure (e.g BERT (Devlin et al., 2019), XLNet
(Yang et al., 2020b))has shown great performance
in many NLP tasks and can also be utilised as
the text encoder. For the purpose of experimental
comparison, we adopt the same text encoder (i.e.
Bi-GRU) proposed in Zhou et al. (2020). The
input of the Bi-GRU encoder layer is a matrix
I = {w1,wo,...,wy,}, and the hidden vector of a
Bi-GRU is calculated as follows:

ﬁt = GRU(ﬁt—hwt)v

< <

ht = GRU(ht_;,_l,wt), (1)
-

ht = [hta ht]7

where E)t and %t are the forward hidden vector
and backward hidden vector at time step t.
The output h; € R2?" of the Bi-GRU is the
concatenation of ﬁt and %t where u indicates
the number of hidden units of each unidirectional
GRU. The resulting global feature maps are
H ={hy,ha,...,hp}.

Feature Extractor: We apply the CNN model to
extract n-gram feature from global feature maps H
get from the text encoder. Let F' € R9*?" denotes
a convolutional kernel and H;;y,_1 denotes a
global feature map region of g words. The local
feature can be formulated as follows:

¢i=FO®H;irg-1+Db, (2)

where ® denotes the component-wise multiplica-
tion, and b € R denotes a bias term. The feature
maps of f filters at 5*" channel can be denoted as
Ci = {c}, 2, ...l }. Next, we apply the k-max
pooling method to filter the top k most informa-
tive word combinations which can be formulated

as follows:

P =flatten(

3
max(k,[Cy,Cy, ... ©)

; Cn—g+1]))

Suppose K convolutional kernels are used and
the final text feature is the concatenation of the
output P denoted as O = [P', P2, ..., PK].
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Figure 2: The overall structure of our HCL-MTC model.

Linear Transformer: The linear transformer
transforms the text feature to the label feature:

V = Reshape(MO), 4)

where O € R% is the text feature, M € R% > js
the trainable weight matrix, V € R™*% denotes
the label feature, the reshape operation change the
size from d,, to (m x d,,), d., m, and d,, denotes
the text feature length, number of labels and label
feature dimension respectively.

Hierarchical Contrastive Learner: GCN
(Kipf and Welling, 2017) is a graph representations
of structural information between nodes (e.g
classification labels). The graph edge in a graph
represents the relationship between each node.
Traditional GCNs (Marcheggiani and Titov, 2017;
Lu et al., 2020) randomly initialize the transition
matrix and learn the relationship among nodes by
error back propagation method, which ignores the
node correlation information. Zhou et al. (2020)
overcomes the issue by formulating the edge fea-
ture by the prior probability of label dependencies.
While they learn the label correlative information,
they ignore the label distinctive information. In
contrast to Zhou et al. (2020), we propose the

hierarchical contrastive learner which connects
graph nodes by label contrastive knowledge.

Our proposed hierarchical contrastive learner
adopts the framework of Hierarchy-GCN proposed
in Zhou et al. (2020). The label tree constructs a
directed graph where the current node can aggre-
gate the information transferred from parent nodes,
child nodes and itself. This operation is realized
by a weighted adjacent matrix learned from the
contrastive information between label nodes.

Let G = (V, &) be a directed graph where V €
R™>4n indicates set of nodes, £ indicates set of
edges. We define v, € R9" as the feature of node
k and N (k) = {ng,child(k),parent(k)} as its
connected neighbourhood. The hidden state of
node k are computed as follows:

(N
‘H%H vkl
Wik = ajkvj + by,
gige = o (W, 1+ 8),

hi=ReLU( Y gjn- 1ik);
JeEN(K)

&)

where W; Uk) ¢ R™ indicates the gate weight in
the direction from node j to node k, bf and b’gC in-
dicate the transferring bias and gate bias of node



k respectively. 1 € R™ denotes the information
of node j transfers to node k and g;, € R" con-
trols the flow of information. Edge d(j, k) contains
three directions, including top-down, bottom-up
and self-loop. a; is the contrastive knowledge
computed by cosine similarity, which indicates the
transition probability from node j to node k. With
the decrease of the similarity, one node is more
likely to transfer to another. Thus, the model can
learn deep along hierarchical label structure. Note
that a; x, from top-down flow and a, ; from bottom-
up flow is equal and for self-loop, ay = 1. Fi-
nally, the output hidden state hj of node k denotes
the aggregation of information transferred from its
neighborhood in N (k) activated by ReLU activa-
tion function.

3.3 Sampling Hierarchical Contrastive Loss

Let s(vp,,vp,) denote the similarity between par-
ent node i and parent node j; s(vp,, v, ) denote the
similarity between parent node i and its child node
k. In a label tree, a parent-child label pair is able to
transfer information in both directions but a parent
can not transfer information to other parents. This
indicates that there exists correlative and distinc-
tive information between labels which is the pur-
pose of the hierarchical contrastive loss. Thus, the
goal of the hierarchical contrastive loss is to max-
imize the distinctive information s(vy,, vp;) and
minimize the correlative information s(vy,, ve, ).
The hierarchical contrastive loss can be formulated
as follows:

. Up; * Up;
0 02 = | Tlog,
Up; * Ve,
$(Vp,, Ve, ) = B
PO o || - (6)

L-Y Y %

pi€V p; €V ¢ Echild(i)

exp(s(vpm Upj) - S(Upivvck))

However, to enumerate all node pairs can be time-
consuming. Instead, we apply the sampling mecha-
nism. For each level, only two randomly selected
parent nodes and one randomly selected child node
will participate in the calculation of the hierarchical
contrastive loss.

3.4 Classification

The final node features are fed into a fully con-
nected layer and the probability of node k can be

formulated as follows:
P = o(Wihy + %), (7

where W), € R" and b* € R”. The model will as-
sign labels with probability greater than the preset
threshold 6 to a test text.

3.5 Loss Function

The HCL-MTC applies three losses, including bi-
nary cross-entropy loss, recursive regularization
loss(Gopal and Yang, 2013) and sampling hierar-
chical distance loss. The total loss can be formu-
lated as:

m
== lyilog(y})

=1
+(1-

L—ZZ

1€V jechild(i )
L=L.+ )\lLT‘ + )\2Ldu

where L, utilizes the parameters of the final fully
connected layer, y; indicates the ground truth and
y} denotes the predicted probability of label i.

4 Experiments

4.1 Dataset Description

We evaluate the effectiveness of our proposed
model on two published dataset, including
RCV1-v2 and Web-of-Science (WoS).

Reuters Corpus Volume I (RCV1-v2): This
dataset is a correction version of the original data
RCV1-vl provided by (Lewis et al., 2004) for
research purposes. It includes a total of 804,414
manually categorized newswire stories and 103
topics where each newswire stories can be assigned
multiple topics.

Web of Science (WoS): The WoS dataset is
a collection of meta-data on 46985 published
papers provided by (Kowsari et al., 2017) which
consists of abstract, domain and keywords. The ab-
stract is regarded as the input for text classification
and the domain is the label with hierarchy. The
keywords are descriptions of the next label level.
There are 141 domains in total.



Dataset # Total # Train # Valid #Test ICI #Depth Avg Words AvgICI
RCV1-v2 804414 22917 232 781265 103 4 136.54 3.24
WoS 46985 30070 7518 9397 141 2 131.19 2.0
Table 1: Statistics of the datasets where IC| indicates total label numbers and Avg ICl indicates average label

numbers in each text.
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Figure 3: Text number distribution in label hierarchy of
RCV1-v2 dataset.
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Figure 4: Text number distribution in label hierarchy of
WoS dataset.

Figure 3 and Figure 4 show the text number dis-
tribution in label hierarchy of RCV1-v2 dataset
and WoS dataset respectively. From two distribu-
tions, we can observe that most texts are in high
levels and with the label hierarchy goes deeper,
the number of texts decreases, which lead to the
data imbalance problem. The explanation of this
phenomenon is that labels form a tree structure
and the lower leaves are constructed based on the
upper leaves. Therefore, it is important to learn
the label hierarchy and contribute high-level label
information to the low-level labels.

We remove the English stop words for the two
datasets and divide each each dataset into training,
validation and test follows Zhou et al. (2020). The
only difference is that we choose 1% training set
as the validation set. The statistics of the datasets
is shown in Table 1.

4.2 Experimental Setup

Evaluation Metrics: We use the standard evalua-
tion metrics of Micro-F1 and Macro-F1 (Gopal and
Yang, 2013) to measure our experimental results.

* Micro-F1 considers the overall performance

of the model which is calculated by overall
precision and recall of all the labels.

* Macro-F1 considers the local performance
of the model which gives equal weight to all
labels.

To be specific, the computation of Micro-F1
score and Macro-F1 score are illustrated below:

QZZGLTB
z:leL2TPl—{—FPl—|—FNl7
1 2T P,
macroF'l = — ,
|L| E2TPZ+FPZ+FNZ

microF'l =

®

where T'P;, F'P;, F'N, indicates the true-positives,
false-positives and false-negatives for the label [ €
L.

Baselines: We compare our proposed model with
multiple traditional MLP baselines for all datasets
and the state-of-art models on RCV1-v2 dataset.
The baselines and their performance are reported
in Zhou et al. (2020).

* Traditional MLP baselines: CNN (Kim, 2014)
is a local method which uses multiple con-
volution kernels to extract text information
and MLP to predict labels. RNN is a global
method which employs a variational Bi-GRU
network (Cho et al., 2014) to learn the word
dependencies in a long distance. RCNN is a
combination of above two methods which first
extracts global text features and then feeds to
the CNN architecture to extract the local in-
formation.

* State-of-art models: HR-DGCNN (Peng et al.,
2018) employs deep CNN to extract the lo-
cal text information from graph word embed-
ding of documents for HMTC and add the
recursive regularization to the final MLP. HE-
AGCRCNN (Peng et al., 2019) is similar to
HR-DGCNN which proposes an attentional
capsule RCNN netwrok for HMTC. HiLAP
(Mao et al., 2019) is a deep reinforcement



Description Values Description Values Description \ Values
GRU depth 1 Learning rate 0.0001 | Train batch size 64
GRU hidden units 64 Prediction threshold 0.5 Test batch size 512
CNN depth 3 Dropout 0.5 Momentum (3 0.9
CNN filter region size | {2,3,4} GRU dropout 0.1 Momentun S 0.999
Token length 256 Node dropout 0.05 Momentum e | 1 x 1076

Table 2: Implementation details: Dropout shows the dropout rate in the embedding layer and MLP layer, GRU
dropout shows the dropout rate in the Bi-GRU layer and Node dropout shows the dropout rate in the node transfor-

mation layer.

learning based model which aims to learn the
label assignment policy for HMTC. HMCN
(Wehrmann et al., 2018) is a deep neural net-
work for HMTC which aggregates the infor-
mation of local and global data flow in the la-
bel hierarchy. HFT(M) (Shimura et al., 2018)
is a CNN-based model with fine-tune mech-
anism which forces the low-level inference
utilize the high-level information. Similar to
HFT, HTrans (Banerjee et al., 2019) learns
the label hierarchy by utilizing the parame-
ter of parent category classifiers to fine-tune
the child category classifiers. SGM (Yang
et al., 2018) models HMTC as a Seq2Seq task
which predicts the current label based on the
previous predicted label. HHAGM (Zhou et al.,
2020) employs RCNN to extract the text in-
formation and structure encoder to learn the
label hierarchy.

Inplementation Details: All experiments are im-
plemented in PyTorch (Paszke et al., 2017). To
be comparable with (Zhou et al., 2020), we take
the similar implementation parameters. The word
embedding vector is initialized by 300-dimentional
word embedding pretrained by GloVe (Pennington
et al., 2014). We use a maximum size of 60000
most frequent words as vocabulary and remove
words under the minimum count of 2. We use
Adam (Kingma and Ba, 2017) optimizer to mini-
mize the total loss. We set the penalty coefficient of
recursive regularization to 1 x 10~% and the penalty
coefficient of sampling hierarchical distance loss to
1 x 1075, The maximum number of epochs is set
to 400 and the model is stopped when there is no
improvement in 50 epochs. Other implementation
details is shown in Table 2.

4.3 Experimental Results

We evaluate our proposed model on two public
datasets and compare it with 12 MLP baselines

and state-of-art models in terms of micro-F1 and
macro-F1. The results of our proposed model is
evaluated on the test subset with the best model on
the validation subset. The experimental results is
shown in Table 3.

According to the experimental results, the fol-
lowing conclusions can be drawn. First, our pro-
posed model outperforms all existing models in
both RCV1-v2 and WoS datasets. Second, for
RCV1-v2 dataset, HCL-MTC achieves an improve-
ment of 0.02% micro-F1 score and 0.38% macro-
F1 score compared with HHAGM-TPg¢n model.
For WoS dataset, HCL-MTC also achieves a con-
siderable improvement by 0.23% and 0.35% in
terms of micro-F1 and macro-F1.

Our proposed model is an improvement of
HiAGM-TPoon where we add the contrastive
learning method to the basic framework of HIAGM-
TPgcon. Specifically, we utilize the similarity be-
tween label pairs as the transition parameters in
the GCN network instead of using prior probability
of label dependencies. We also add a sampling
hierarchical contrastive loss to the total loss. The
results show that HCL-MTC improves the abil-
ity of learning label hierarchy. Moreover, HCL-
MTC mainly improves the macro-F1 score in both
datasets which indicates that HCL-MTC can get
access to deeper label hierarchy and has a strong
ability to tackle the data sparsity problem.

4.4 Ablation Test

We conduct an ablation test to analyze the impact
of the similarity transition matrix and sampling
hierarchical contrastive loss to the proposed model.
The results of the ablation study is shown in Table
4.

From the ablation study, we can observe that
HCL-MTC without sampling hierarchical con-
trastive loss outperforms HHAGM-TPgcn on two
datasets in terms of both Micro-F1 and Macro-F1.



Model RCV1-v2 WoS
Micro-F1 Macro-F1 Micro-F1 Macro-F1
CNN 79.37 55.45 82.00 76.18
RNN 81.10 51.09 717.94 69.65
RCNN 81.57 59.25 83.55 76.99
HR-DGCNN 76.18 43.34 - -
HE-AGCRCNN 77.80 51.30 - -
HiLAP 83.30 60.10 - -
HMCN 80.80 54.60 - -
HFT(M) 80.29 51.40 - -
HTrans 80.51 58.49 - -
SGM 77.30 47.49 - -
HiAGM-LAgon 82.21 61.65 64.61 79.37
HiAGM-TPqcon 83.96 63.35 85.82 80.28
HCL-MTC 83.98 63.73 86.05 80.63

Table 3: Experimental results of MLP baselines, state-of-art models and our proposed model.

RCV1-v2

Model Micro-F1 Macro-F1
HCL-MTC 83.98 63.73
w/o similarity 84.09 63.17
w/o contrastive loss 84.03 63.39

WoS

Model Micro-F1 Macro-F1
HCL-MTC 86.05 80.63
w/o similarity 86.00 80.26
w/o contrastive loss 85.93 80.42

Table 4: Ablation study of the HCL-MTC with varying
different components on RCV1-v2 and WoS datasets.
w/o similarity denotes the HCL-MTC without simi-
larity transition matrix and w/o contrastive loss de-
notes the HCL-MTC without sampling hierarchical
contrastive loss.

It shows that the similarity transition matrix is un-
doubtedly beneficial to the HCL-MTC. The single
contrastive loss does not help much for the HCL-
MTC according to the results shown in w/o simi-
larity. However, combining these two contrastive
learning methods, the HCL-MTC can achieve bet-
ter performance than only using single contrastive
learning method. It shows that the contrastive loss
increase the performance of similarity transition
matrix. The reason is: 1) We want the child node
aggregates more information from its parent or the
parent node aggregates more information from its
child nodes, so that the model can learn deep label
hierarchy along the correct path. We use the similar-
ity transition matrix to perform this process where

the closer label pairs have higher similarity and,
thus have higher transition probability. 2) The sam-
pling hierarchical contrastive loss helps the model
minimize the similarity information from parent
node to its child nodes and maximize the distinc-
tion information between parent nodes. Therefore,
the sampling hierarchical contrastive loss can help
the model find a better solution during the training
process.

5 Conclusions

We present a Hierarchical Contrastive Learning
for Multi-label Text Classification (HCL-MTC).
The HCL-MTC implements two contrastive learn-
ing methods based on the state-of-art framework
HiAGM-TPgcn where we apply the similarity
transition matrix to the GCN. Furthermore, a com-
plementary sampling hierarchical contrastive loss
is introduced to learn both the correlative and dis-
tinctive knowledge between labels and increase the
performance of the similarity transition matrix. Ex-
tensive experiments are carried out on two public
datasets, including RCV1-v2 and WoS datasets.
The experimental results show that our proposed
model outperforms all the existing model, espe-
cially in terms of Macro-F1. It indicates that our
model has a strong ability to get access to the deep
label hierarchy and is better to tackle with the data
sparsity problem. For RCV1-v2 dataset, our best
model obtains a Micro-F1 of 83.98% and a Macro-
F1 of 63.73%. Our best model also achieves a
Micro-F1 score of 86.05% and a Macro-F1 score
of 80.63% for WoS dataset.
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