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Abstract

Conditional independence (CI) testing is a fundamental yet challenging task in
modern statistics and machine learning. One pivotal class of methods for assess-
ing conditional independence encompasses kernel-based approaches, known for
assessing CI by detecting general conditional dependence without imposing strict
assumptions on relationships or data distributions. As with any method utilizing
kernels, selecting appropriate kernels is crucial for precise identification. However,
it remains underexplored in kernel-based CI methods, where the kernels are often
determined manually or heuristically. In this paper, we analyze and propose a
kernel parameter selection approach for the kernel-based conditional independence
test (KCI). The kernel parameters are selected based on the ratio of the statistic
to the asymptotic variance, which approximates the test power for the given pa-
rameters at large sample sizes. The search procedure is grid-based, allowing for
parallelization with manageable additional computation time. We theoretically
demonstrate the consistency of the proposed criterion while explicitly accounting
for model estimation bias, which is a distinctive challenge specific to CI testing task.
Furthermore, we conduct extensive experiments on both synthetic and real-world
datasets to empirically validate the effectiveness of our method.

1 Introduction

Conditional independence (CI) test is a cornerstone of statistics and machine learning. Let X, Y and
Z be the random variables, then the conditional independence relationship between X and Y given
Z, denoted by X 1 Y | Z, indicates that knowing the values of Z, the knowledge of X does not
yield any extra information about Y. This conditional independence relationship enables the removal
of redundant variables when constructing probabilistic models for a given variable set. Therefore, the
utilization of CI has expanded across diverse domains, including causality [Spirtes et al., 2000, 1995,
Pearl et al., 2000, Huang et al., 2020, Chi et al., 2024], fairness representation learning [Mehrabi
etal., 2021, Han et al., 2025], feature selection [Fukumizu et al., 2009, Song et al., 2012].

Traditional CI testing methods either address the discrete case [Margaritis, 2005] or rely on simplifying
assumptions to handle the continuous case [Lawrance, 1976, Linton and Gozalo, 1996]. These
assumptions can be restrictive, and when violated or when data are limited, these methods often
yield biased estimates and erroneous inferences, leading to unreliable conclusions. Daudin [1980]
extended the concept of partial correlation to general scenarios involving nonlinear and non-Gaussian
noise, redefining conditional independence as the zero correlation of any regression residual functions
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within constrained L? spaces. While this definition can identify general CI relationships, it requires
considering all possible functions within these constrained L? spaces, which is infeasible.

To make it practical, Zhang et al. [2011] relaxed the function spaces to reproducing kernel Hilbert
spaces (RKHS) using kernel methods, simplifying computation while preserving the ability to capture
general CI relationships. In kernel methods, there exists a special class known as characteristic kernels,
[Fukumizu et al., 2007] such as the Gaussian and Laplace kernels, which are capable of measuring
distributional homogeneity [Gretton et al., 2012a, Song et al., 2009]. Building on this, Zhang
et al. [2011] introduce the Kernel-based Conditional Independence (KCI) statistic, which replaces
regression residuals with kernel-based analogues. They adopt the framework of conditional mean
embeddings (CME) [Song et al., 2009, Griinewilder et al., 2012] to model nonlinear relationships, and
define the test statistic as the Hilbert-Schmidt norm of the cross-covariance operator between residuals
in RKHS, replacing the original cross-covariance defined in L? space [Gretton et al., 2005a]. This
formulation enables KCI to directly assess whether Pxy |z Pz = Px|z Py|z Pz, without requiring
explicit estimation of complex conditional marginals. Due to the reproducing property of kernels, a
zero value of this statistic implies that all partial correlations between residual functions, represented
in the RKHS induced by the chosen kernels, are also zero. Consequently, by employing characteristic
kernels whose RKHS are dense in L? [Sriperumbudur et al., 2008], KCI is capable of capturing a
broad class of conditional dependencies, extending beyond the linear relationships. However, as with
all kernel-based methods, the performance of KCI is highly sensitive to the choice of kernels.

It is well known that the effectiveness of kernel-based methods critically depends on the choice of
kernels across a wide range of tasks [Brockmann et al., 1993, Chapelle and Vapnik, 1999], particularly
the choice of kernel parameters [Scholkopf et al., 2002]. A commonly used strategy is the median
heuristic, which sets the kernel bandwidth to the median of pairwise distances between data points.
While simple and widely adopted, this approach is often suboptimal for a given dataset [Ramdas
et al., 2015, Garreau et al., 2017]. Consequently, data-driven selection of kernel parameters is crucial
for maximizing the performance of kernel-based methods. Gretton et al. [2012b] propose a statistic-
to-variance ratio criterion that leverages the properties of U-statistics to estimate test power under
given kernel parameters, and use this to guide kernel selection. Variants of this criterion have been
extended to tasks such as two-sample testing [Liu et al., 2021, Biggs et al., 2023] and unconditional
independence testing [Albert et al., 2022], with some methods further incorporating deep kernels [Liu
et al., 2020, Xu et al., 2024]. These approaches perform continuous optimization to learn near-optimal
or even oracle kernel choices for the tasks above. However, such optimization-based strategies are
not directly applicable to conditional independence testing, which requires additional consideration
of regression-induced estimation bias—a distinguishing challenge unique to the CI test task. As a
result, suitable kernel selection methods for CI testing remain largely underexplored.

Contributions. In this paper, we propose a kernel selection method to optimize the kernel parameters
involved in the widely used KCI statistic. Our criterion remains grounded in the statistic-to-variance
ratio framework, but explicitly accounts for the characteristics of the CI task, which require indirect
consideration of regression residuals and the associated estimation bias. To this end, we first
decompose the original KCI statistic to isolate the kernel component associated with the conditioning
set, which was previously entangled within the residuals. This decomposition effectively reduces
such estimation bias, thereby enabling more effective kernel selection in subsequent steps. We use
the ratio of the statistic to the asymptotic variance as a criterion, which approximates the test power
at large sample sizes. Then, the kernel parameters are selected based on the maximum ratio from a
list of potential candidates using a grid search approach. Unlike existing continuous optimization
approaches, this practical search strategy accounts for regression estimation bias and leverages the
parallelizability of regression learning under different kernel parameters. Theoretically, we provide
the first convergence result for this power-based criterion under the conditional independence testing
setting, explicitly accounting for model estimation bias. Extensive experiments on both synthetic and
real data demonstrate the efficacy of our method with manageable computation time.

2 Preliminaries

2.1 Related Works

CI testing and its hardness. A central difficulty in conditional independence (CI) testing is fun-
damental: without extra structure, a valid test cannot be uniformly powerful against all alternatives



[Shah and Peters, 2020]. This has led to two pragmatic lines. One imposes side information (e.g.,
Model-X—style knowledge of part of the conditional law) to stabilize null simulation or calibration
[Candes et al., 2018, Berrett et al., 2020, Doran et al., 2014]. The other residualizes X and/or Y’
on Z and then tests for remaining dependence; kernel-based CI tests fall in this camp, using RKHS
embeddings to assess higher-order partial dependence without parametric assumptions [Fukumizu
et al., 2007, Sun et al., 2007, Zhang et al., 2011, Huang et al., 2022]. In both cases, bias from estimat-
ing conditionals (or their surrogates) flows directly into Type-I error control and power—unlike in
two-sample or unconditional independence tests—so reducing residualization error is both distinctive
and pivotal in CI testing.

Kernel selection. Kernel tests are highly sensitive to hyperparameters (often more than the kernel
family), yet practice commonly defaults to the median-distance bandwidth, which can be suboptimal
[Scholkopf et al., 2002]. Outside CI, data-driven criteria optimize kernels by maximizing a statistic
or statistic-to-variance ratio that proxies power, yielding strong results in two-sample, unconditional
independence, and goodness-of-fit testing, including with deep kernels [Fukumizu et al., 2009,
Gretton et al., 2012b, Liu et al., 2021, Biggs et al., 2023, Albert et al., 2022, Ren et al., 2024a,b, Liu
et al., 2020, Xu et al., 2024]. CI, however, is qualitatively different: the target is conditional structure
and the test statistic typically depends on regression residuals (e.g., KCI/GCM), introducing additional
estimation bias/variance beyond finite-sample variability of a direct discrepancy [Zhang et al., 2011,
Shah and Peters, 2020]. This distinction limits the direct transfer of existing selection rules and
motivates CI-aware kernel selection that explicitly couples kernel choice with the residualization
step—aimed at better Type-I control and power for kernel-based CI. For more related papers and
discussion, please refer to Appendix A.

2.2 Kernel-based measures of conditional dependence

CI definition and testing procedure. Suppose there are three random variables X, Y and Z with
observational points, and their joint distribution is absolutely continuous with respect to Lebesgue
measure with density P. The problem of testing CI between X and Y given Z can be written in the
form of a hypothesis testing:

Ho: X 1Y |Z vs. H1: X LY |Z

CI testing typically involves the following steps: define a test statistic 7" and a significance level «
(typically set at 0.05); compute the observed statistic T'; calculate the p-value under Hy; and reject
H, if the p-value is less than or equal to a.. We evaluate the performance of a CI testing method using
Type I error (False Positive) and Type II error (False Negative): a reliable CI test controls the Type I
error below the significance level while minimizing the Type II error.

We provide the general characterization of conditional independence from the perspective of partial
association:

Definition 1. [Daudin, 1980] Random variables X and Y are independent conditioned on Z, denoted
X 1Y | Z,if for all functions g € L%, and h € L}, we have almost surely in Z that

Elg(X,2) h(Y) | Z] =E[9(X, Z) | Z]E[A(Y) | Z].
Theorem 2. [Daudin, 1980] X 1 Y | Z if and only if
Elg(X,Z)h(Y)] =0 VgeFEi,heFE,, €))
where By = {ge L%, :E[g(X,Z) | Z] =0} and B> = {h e L} : E[h(Y) | Z] = 0}.

Since g(X, Z) can represent any general relationship between X and Z, Theorem 2 can be intuitively
understood as asserting that the residuals obtained from regressing any function mappings of (X, Z)
and Y, defined in the L? space, onto Z are uncorrelated. Therefore, this definition can capture general
CI relationships but requires considering all possible functions in L?.

Kernel-based CI statistic (KCI). To use this characterization in practice, Zhang et al. [2011]
introduce it within the RKHS. For the random variable X with its domain X', we define the RKHS
Hx on X with a symmetric positive-definite function kx : X x X — R. The kernel can be represented
as an inner product in H x via a mapping ¢, : X — Hy, whichis kx (x,2") = (¢, (), ¢ (x")). And
with the reproducing property, we have Vo € X and Vf € Hx, f(z) = (f, ¢ (z)). Similar to the
notation on X, we define (ky, ¢, (Y),Hy), (kz,¢.(Z),Hz) and (kxz,¢,.(X, Z), Hxz) with



kxz = kxkz . Building upon the cross-covariance operator [Fukumizu et al., 2007], Zhang et al.
[2011] then propose the Kernel-based Conditional Independence (KCI) statistic for CI testing, which
is defined as follows:

Yxviz = Bl(92:(X, 2) = ux72(2)) ® (64 (Y) - py12(2))], 2)

where X = (X,Z), ® is the tensor product, py 7|z and piy|z represent the conditional mean
embeddings given by jix zz(Z) = E[¢..(X, Z) | Z] and py|z(Z) = E[¢,(Y') | Z]. Utilizing the
property that for any g € Hxz and h € Hy (see e.g. Gretton [2013, Lecture 5]), the tensor product
operates as (¢, ® ¢y)g = (dz2, g) ¢y, We can derive the following equation:

(h B y129) = EL(9(X, 2) - Elg(X, 2) | Z])(h(Y) ~E[A(Y) | Z])],

which holds for any g € Hx z and h € Hy. For a class of kernel functions known as characteristic
kernels (such as Gaussian kernel), their RKHSs are dense in 2 spaces [Sriperumbudur et al.,
2008]. With characteristic kernels employed, if X Xv|z = 0, Eq. 1 holds forany g € By nHxz
and h € Ey nHy, encompassing sufficient functions by continuity and density. This implies that
by Xyiz = 0 if and only if X 1 Y | Z. Therefore, we can test conditional independence by evaluating

whether the Hilbert-Schmidt norm of the operator is zero, i.e. ||X ¢y 7l = 0.

3 Power-based kernel selection for conditional independence testing

In all kernel-involved methods, the choice of kernel parameters is crucial, and KCI is no exception.
The original KCI relies on the median heuristic to determine its kernel parameters, which does not
fully capture the inherent characteristics of the data. In this section, we introduce our power-based
kernel selection method for KCI, named Power.

Decomposition of KCI. We begin our method by decomposing the kernel mapping of the conditioning
set Z from the concatenated ¢, (X, Z) in its original form (i.e., Eq. 1), as suggested by Pogodin
et al. [2022, 2024]. According to [Mastouri et al., 2021], the RBF kernels (e.g. the Gaussian
and Laplace kernel) of ¢., (X, Z) can be decomposed into ¢, (X) ® ¢.(Z). For the conditional
expectation, we can derive that pux 77 (Z) = E[¢.(X) ® ¢.(Z) | Z] = E[¢.(X) | Z] ® ¢.(Z).
Then, the decomposed form of the KCI statistic, which isolates ¢ (Z) from the regression residual
of ¢, (X, Z) with respect to Z, has the following form [Pogodin et al., 2024]:

Yxviz = Bl(¢2(X) — px12(2)) ® (94 (V) - py12(2)) ® $-(2)]- 3)

This decomposition significantly reduces the estimation error of the conditional mean embedding
involved in KCI. Theoretically, it avoids estimating the identity operator jiz; = ¢(Z), which is not
norm-bounded and, therefore, not a Hilbert-Schmidt operator, leading to an ill-specified regression
problem. Empirically, under finite samples, if we approximate it as a finite-dimensional vector-valued
regression, the estimation of y1x 7|z in its original form is much less smooth compared to 1 x|z. This
implies a lower /3 value (slower decay rate of the function’s eigenvalues) in vector-valued regression
[Fischer and Steinwart, 2020, Li et al., 2022], which corresponds to a lower learning rate and higher
estimation error (See Appendix F.5 for further discussion with a toy example.)

Asymptotic Normality. Our kernel selection criterion for KCI is based on the asymptotic normality
of U-statistics. We denote the KCI statistic |2 5yl as Cicy for clarity. Then, we express Cic;
as follows:

Ckey :IE[kg(z,z')rm‘z(s,s')rmz(&s')], 4)
where s and s’ represents two different and independent copies of (X,Y,Z) with s =
(z,y,2).  74.(s,s") is the inner product of regression residuals given by r,.(s,s") =
(60(2) - pix12(2), 62 (27) = pix| (")) and similasly for 7. (s, 5").

Suppose we have n i.i.d. observational points .S = {s;}I, with s; = (z;, y;, 2;) being the one sample
of (X,Y, Z). We can intuitively give an unbiased U-statistic estimator for C%CI, given by:

Cen = ()3" 2 hije and hyj = kz (i, 2))apz (50,8 (50, 85), (5)

1,J#1



where 7, (si, ;) = (¢2(2:) = fix|z(2:), bu(z) - ﬂX‘Z(zj)) and 7. (s, s;) are the estimated
residuals with estimated i x|z and fiy|z 2, C% o, has expectation zero under the null hypothesis Hy:
X 1LY | Z, and has a positive expected value under Hj.

For a sufficiently large sample size n, CI2(CIu can be considered as the asymptotic average of
independent and identically distributed random variables. Based on the properties of U-statistics
(see, e.g., Lee [2019, Section 3.2.1]), the asymptotic distribution of C%{CIu can be given by the
Central Limit Theorem. If E(h?) < co (which holds true for bounded continuous kernels): under the
alternative hypothesis H;, where X ) Y| Z, we have:

Vi (G - Cher) S N(0,40%), ©)

where of = Var[hy(s)] is the asymptotic variance with hy(s) = By [kz (2, 2) 7). (5,8 )7y (s, 8")].
With the fact that Es[hy(s)] = C%y. we can derive that

o1 = Var[hi(s:)] = Es,[(h1(s:) = B, [h1(5)])*] = Es, [Es, [hij] - Cier]” T

Test Power. Based on the asymptotic normality in Eq. 6, we can estimate the test power, which
represents the probability of correctly rejecting Hy when H; is true for a given case. For large enough
n, assuming that the conditional expectations are well estimated, the power is thus, using Pr; to
denote the probability under H,

R CQ _ CQ _ CQ
Pr, (ncicm S r) - Pr, n(Cker ~ Ckar) S ket
2\/50’1 2\/%0’1
LD ViCar T
20’1 2\/5 01 ’
where ® is the CDF of the standard normal distribution and 7 is the rejection threshold, which is a
constant for a specified significance level. The test power therefore can be maximized by maximizing

the argument in ®. Since CI2<CI and the asymptotic variance o are also constant, for reasonable large
sample size n, the power is asymptotically dominated by the first term, i.e. \/nCgkcq/2071.

®)

Kernel selection. Following [Gretton et al., 2012b, Liu et al., 2020, Sutherland et al., 2021], we
adopt the ratio of C%{CI to oy as our criterion, which asymptotically estimates the test power for the
given kernel parameters. Both C%; and ;1 depend not only on the underlying distribution but also
the kernel parameters. In practice, we use their empirical estimators from training samples to estimate
the test power under the given kernels:

J(S,w) = Cheruw/G1.w: ©)

where w denotes the kernel parameters to be selected, and &1 ,, is the estimated asymptotic variance:

2
1 1 N R
g Z [( Z h’LJ) - C%{CIu,w] . (10)

n—-1753

b 1 .
Uf,w = g Z[hl(sl) - C%(CIu,w]2 =

A %

We evaluate this criterion across a candidate set of kernel parameters and select the one that maximizes
J(S,w), which corresponds to the highest estimated test power.

Grid search-based kernel selection. We adopt grid search for kernel parameter selection rather than
continuous optimization. Specifically, we predefine a candidate set of kernel parameters, estimate
the test power for each using Eq. 9, and select the one that maximizes the criterion for the final
CI test. This design is motivated by the unique challenges of the CI testing setting. On one hand,
KCIT involves estimating CMEs, which introduce intrinsic model estimation bias. This bias renders
gradient-based optimization unreliable for improving test power, as convergence is not guaranteed—a
limitation we also verify empirically in Appendix F.4. Consequently, power-based continuous
optimization fails to identify optimal kernel parameters, undermining one of its main advantages.

2One may also consider using an HSIC-like unbiased estimator [Song et al., 2012, Theorem 5]; however, it is
more complex and analytically intractable. This added complexity arises from the centralization of the kernel
matrix in HSIC, which is unnecessary for KCI since the residuals are already estimated to have zero mean.



Nevertheless, while gradient information may be unreliable, the criterion itself remains informative.
In particular, we show theoretically that under a sufficiently large sample size, the proposed criterion
can still reliably rank candidate kernel parameters, even when continuous optimization is infeasible.
On the other hand, continuous optimization in CI testing involves repeated regression estimation,
resulting in significant computational cost and rendering it impractical for real-world applications. In
contrast, grid search naturally supports parallelization, providing a more tractable alternative. We
therefore adopt grid search as a practical and effective strategy for kernel selection in CI testing. The
complete procedure is detailed in Appendix B.

4 Theoretical Result

In this section, we establish the convergence properties of the proposed kernel selection criterion.
Since CI testing indirectly measures the dependence between residuals, it is essential to consider both
the regression-induced estimation bias introduced by regressions and the random error resulting from
finite data.

Thus, we impose the following assumptions on the boundedness of the kernels and CME estimators:

. (Boundedness) Under the kernel parameters w = (wy, Wy, w, ), the kernel k,,_, the residuals 7 X‘ o

and their empirical counterparts 7 are bounded:

Y|Z x|z’ Y|Z
sup |rX|Z|<V sup |TX‘Z|<V sup  kw, <y,
(z,2)e(X,2) (y,2)e(¥,2) zeZ
AW . AW
sup |TX|Z| <y, sup |7'Xﬁz| <v.
(z,2)e(X,2) (v,2)e(¥,2)

Then h;; and h;; are bounded within [-v.12, v, 12].

* (EVD) (u;)er are the eigenvalues of the operator Czz = E[¢,(Z) ® ¢.(Z)] in the kernel ridge
regression. For some ¢, >0 and p € (0,1] and for all i € I,

ni < Cui_l/p.
* (SRC) There exists 1 < 3 < 2 such that
Hx|z € [Hsmz]ﬁv Ky|z € [Hsyz]ﬁv

where [HS]? denotes the interpolation space of the original HS space (also written as [HS]!), the
eigenvalues decay of the functions in [FIS]? is lower bounded by 3.

Assumption (Boundedness) imposes boundedness constraints on the kernel function and residual
terms, which are mild and typically satisfied under appropriately chosen kernels and standard
regression algorithms. Assumptions EVD and SRC are standard in vector-valued regression theory
[Fischer and Steinwart, 2020, Li et al., 2022], and are widely used to characterize the convergence
behavior of conditional mean regressors. Following [Pogodin et al., 2024], we focus on the well-
specified cases with 8 € (1,2], and the corresponding Hilbert space norm is well-defined. The
parameter (3 reflects the smoothness of the regression functions, with larger values indicating higher
regularity. The choice of w, and w, in w will affect the corresponding value of 3. The following
theorem provides the convergence rate of the proposed criterion.

Theorem 3. Assuming the above assumptlons hold. Let ). be the subset of kernel parameters of
w such that the asymptotic variance o3 w2¢ 2 for some constant ¢ > 0. Then, for any w € ., with
probability at least 1 — §, we have a constant K >0 independent of n and ¢ that:

A2 2
CKCIu,w CKCI,w

) (Cm’% + an*%) (11)

01,w 01w

4 640201 2
whereC’l—(f 6 VsV ) VANGY lnfandC'g—( + )1/1, \/21ng.




The complete proof is provided in Appendix D, where we decompose the total error of the statis-
tic estimator into two components: the regression-induced estimation bias and the random error
arising from finite sampling, assuming accurate regression. The result shows that, for fixed kernel
parameters, the empirical criterion converges to its population counterpart, with a convergence rate
governed by both components. The first term reflects the regression bias, which is influenced by
both the smoothness of the true conditional mean functions and the choice of kernel parameters.
The second term corresponds to the random variation due to finite-sample effects. The appearance
of the bias term is intrinsic to CI testing, which evaluates dependence between residuals—unlike
standard testing problems [Gretton et al., 2012b, Albert et al., 2022], where only variance terms are
typically considered. Nevertheless, for a reasonably large sample size, the empirical criterion remains
sufficiently close to the population counterpart, providing a reliable basis for comparing test power
across different kernel choices.

5 Experimental Results

In this section, we empirically analyze our Power method and its variant on CI tests using synthetic
and real benchmarks, compare it with baseline methods, and assess its impact on causal discovery.

Implementation details. We use Gaussian kernels for all the kernels involved. For the kernel
parameters of ¢, and ¢,,, we use the median heuristic as the initial value and apply different weights.
Specifically, we take the median heuristic as a sensible initialization and use the candidate weight list
[0.1,0.3,0.75,0.88,1,1.25,1.5,3,5, 10], applying each weight as a multiplier to the median-based
bandwidth. For K, in the statistic, we decide it using the median heuristic without further selection.
That is, our method considers 10 x 10 = 100 possible parameter combinations. We evenly divide all
samples into a training set and a testing set. During the testing phase, we use the weighted sum of
chi-squared to compute p-value. The significance level is set to the default value of 0.05. Please refer
to Appendix E.1 for more implementation details.

5.1 Synthetic Data

In the synthetic experiment, we assume X and Y are dependent variables conditioned on Z. We
analyzed our method’s performance under varying dimensions of the conditioning set Z and different
sample sizes. To examine Type I errors, we generated X and Y, which should be independent given
Z, using the following nonlinear additive functional model:

X =f(W'Z)+E, (12)

where W ~ N (0, I, ) and d, represents the dimension of Z, f was randomly chosen from the linear,
sin, cos, 2, 2% and exp(x). When f is neither sin nor cos, an additional 1//d is multiplied to
f(WTZ) to balance the scale of the function and noise. The noise E was randomly chosen from
either a Gaussian or uniform distribution with the noise scale v = 1. To examine Type II errors, we
added an additional variable 7" to both X and Y, making them conditionally dependent given Z.
T ~N(0,1), and

X=f(W'2)+E+aT, (13)

with a = 0.5. For each setting, we randomly repeated the process 1000 times to obtain Type I and
Type 11 error. For further implementation details, please refer to Appendix E.2.

5.1.1 Comparison with baseline methods

Baselines. We first compare our proposed power-based method with CI baselines. Our proposed
method is denoted as Power, while the median heuristic-based method is denoted as Median. In
Median, we still decompose ¢(z, z) into ¢(z) ® ¢(z), and the kernel bandwidth is determined by
the median heuristic without selection. In Power, we perform a grid search to select the kernel
bandwidths involved in ¢, and ¢, choosing the parameters with the highest criterion for testing
on the test data. We further compare it with the kernel-based CIRCE [Pogodin et al., 2022], which
only considers the independence between one-sided residuals and the other dependent variable itself.
Additionally, we compare with regression-based methods GCM[Shah and Peters, 2020] and RBPT2
[Polo et al., 2023], which conduct the regression in L? space. (See Appendix E.4 for more details
about CIRCE, GCM and RBPT2).
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Figure 1: Performance comparison on synthetic data. Left: Type I error (a) and Type II error (b) when
increasing the dimension of Z dz, keeping the sample size n = 500 and noise scale v = 1. Middle:
Type I error (c) and Type II error (d) when increasing samples size, keeping dz = 5 and ~y = 0.5.
Right: Type I error (e) and Type II error (f) across different noise scales v (dz = 5, n = 500).

On the dimension of Z. Figure 1(a) and (b) illustrate the performance of Power and baseline
methods, with an increasing the dimension of Z. In terms of Type I error control, RBPT2 and CIRCE
failed to maintain Type I error below the given significance level, while GCM slightly exceeds the
given significance level. KCI-based Median and Power successfully controlled it, demonstrating the
robustness of KCI. Regarding Type II error, RBPT2 exhibited a slight increase in Type II error as
the dimension of Z increased, performing almost like random guessing in general. CIRCE accepted
all instances of H;, which consistent with the performance on Type I error. Both Median and
Power exhibit an increasing Type II error as d, increases. However, Power maintains a consistently
lower Type II error than Median by a substantial margin. With a similar lower Type I error, it
demonstrate that Power can effectively select more proper kernel parameters with higher test power
while maintaining Type I error control across different dimensions setting. The above results reflect
the robustness of KCI in controlling the Type I error across a range of dependency structures, as well
as the improvement of our Power over the median heuristic Median.

On the sample size. We also evaluated the performance by varying the sample size n, shown in
Figure 1(c) and (d). The performance of GCM and CIRCE remains consistent with previous analysis,
showing no clear convergence trend as the sample size increases. Meanwhile, the Type II error of
RBPT?2 decreases as n increases, but its Type I error remains uncontrolled. In contrast, our Power
consistently outperforms the median heuristic-based Median across different sample sizes, and the
gap between them does not diminish as n increases.

On the noise scale. In Figure 1(e) and (f), we also analyzed the performance under different noise
scales -, with the scale of the latent variable 7" fixed at a = 0.5 (in Eq. 49). From the results, we
observe that when the noise scale is relatively low, Power struggles to achieve further improvements
through kernel selection. Conversely, when = is too large, making it difficult to separate 7" from the
noise variable, Power also loses its effectiveness. This indicates that the improvement of Power over
Median primarily stems from its ability to handle the overlapping region between Hy and H;, where
different parameter choices correspond to different levels of overlap. However, when the overlap is
either too small (y is very low) or too large (7y is too high), the region that can be adjusted by kernel
parameters becomes insignificant, reducing the effectiveness of our method.

Due to space constraints, additional results are provided in the appendix: experiments on a real-world
conditional independence benchmark (car insurance dataset) in Appendix F.1.1, extended baseline
comparisons and results on non-additive synthetic data in Appendix F.2, and evaluations under
high-dimensional conditioning settings in Appendix F.3.

5.1.2 Ablation Study

In this section, we take a closer look at our method by studying its variants, with the results presented
in Figure 2.

On the selectable kernels. In Figure 2(a) and (b), we examine the impact of kernel selection on
different components by selecting only ¢(z) in the statistic (but not in the regression), denoted as SelZ,
while fixing ¢(«) and ¢(y) using the median heuristic. Similarly, we consider selecting only ¢(y),
denoted as SelY. SelZ does not improve the Type II error compared to Median, whereas SelY reduces
the Type II error relative to Median but still underperforms Power. This suggests that one-sided
selection is somewhat effective, but joint selection, as in Power, provides the best performance.



Type I error

1 (a) Selectable Kernels (Type I) 06 b) Selectable Kernels (Type Il 1(c) Variants of statistics (Type I) (d) Variants of statistics (Type Il) N (e) Kernel types (Type 1) (f) Kernel types (Type I}

05 —— Power 05 —— Power 06 S 05 -+ Gaussian-Median
—+— Median —+— Gaussian-Power
- Org Laplace-Median
—— orgp Laplace-Power
e stat 4+ Multi-Median

—e— Multi-Power
-
00| B AR e 0.05) St it
Y [ e N 7TV
0.02 o 0.02 o 0.02
1234567289 7123456789 12 3 56 7 8 9 1234567289 123456789 123456789
Dimension of Z: dz Dimension of Z: dz Dimension of Z: dz Dimension of Z: dz Dimension of Z: dz Dimension of Z: dz

°

IS
o
=

0.1

Type Il error
°
Type I error
°
2
Type Il error
°
9
Type | error
°
2
Type Il error

Figure 2: Ablation study on the dimension of Z with n = 500 and v = 1. (a) and (b) - Different
choices on the selectable kernels. (c) and (d) - Different variants of the statistic and selection criterion.
(e) and (f) - Different kernel types.

On the decomposition. Additionally, in Figure 2(c) and (d), we compare against the original form of
KCI without decomposing ¢(x, z) (i.e., Eq. 2), denoted as Org. The kernel parameters in Org are
determined using the median heuristic without selection. We also consider a variant, denoted as OrgP,
which applies the proposed kernel selection strategy to both ¢, and ¢, in Org. In terms of Type I
error, Org and OrgP exceed the significance level, indicating poor error control. While Org achieves
slightly lower Type II error than Median, this suggests it tends to over-detect conditional dependence
due to insufficient removal of Z’s influence. The weaker CME performance likely results from slower
convergence, consistent with Appendix F.5. This highlights that using the original KCI without
decomposition introduces notable estimation bias, affecting both test outcomes and the accuracy of
the proposed criterion.

On the criterion. Fukumizu et al. [2009] proposed directly maximizing the statistic for kernel
selection. We follow their approach and perform kernel selection directly based on the statistic itself,
denoted as Stat. The results in Figure 2(c) and (d) show that Stat performs even worse than Median,
with a larger Type II error, highlighting the importance of selecting kernel parameters that need to
simultaneously consider minimizing the asymptotic variance.

On the kernel types. In Figure 2 (e) and (f), we compare the performance of using different kernel
types individually as well as jointly. Our method can also be applied with other suitable kernels or
used to select among different kernel classes. According to the definition of the cross-covariance
operator, kx and ky in KCIT need to be characteristic kernels [Fukumizu et al., 2007]. Therefore,
we conduct experiments using Gaussian and Laplace kernels. We use the same median heuristic to
initialize the bandwidth in the Laplace kernel, along with the same power-based selection strategy.
Our Power are also able to perform selection over multiple kernel types (with median-heuristic
initialization and fixed, denoted as Multi-Median) as well as over the parameters selectable version,
referred to as Multi-Power. We observe that for both Laplace and Gaussian kernels, the power-based
kernel selection effectively reduces the Type II error. The performance of Multi-Power is slightly
worse than that of Gaussian-Power, suggesting that the Gaussian kernel is generally a strong choice
and performs better than the Laplace kernel in most cases. The observed performance drop may be
attributed to estimation errors in the power computation. Overall, our method demonstrates the ability
to effectively select parameters across multiple kernel types.

Table 1: Average testing time (s) + standard deviation on different sample sizes.

Sample Size 200 400 600 800 1000
Power 0.595+0.02 1.758+0.14 3.869+0.60 9.641+2.37 10.12+6.54
Median 0.302+0.06  0.914+0.14 1.742+0.32 4.422+1.99 4.358+2.45

5.1.3 Testing Time

Power involves more regression learning with different parameters; however, due to the grid-based
search and the independence of different regressions, it enables efficient parallel training. Table
1 presents the overall runtime of Power compared to Median for different sample sizes. It shows
that the testing time of Power is approximately twice that of Median. Notably, this additional
computational cost does not increase linearly with the number of searches but considers over 100
parameter combinations, making it manageable and ensuring that our method remains practical for
real-world applications. For more details, please refer to Appendix E.3.



5.2 Comparison on causal discovery

Our method can also be directly extended to causal discovery tasks [Glymour et al., 2019, Zhang
et al., 2018]. Formally, given a set of observations of random variables, causal discovery methods
seek to depict the causal relationships among these variables through a directed acyclic graph (DAG).
CI testing is central to constraint-based pipelines [Pear]l and Mackenzie, 2018]: early CI outcomes
drive adjacency pruning and orientation rules, so inaccuracies can propagate and reshape the inferred
graph. The overall fidelity of these methods therefore hinges on CI procedures that are reliable and
stable across varying conditioning sets and sample sizes.

We compared the performance of Power with Median using the PC algorithm[Spirtes et al., 2000] as
the search method. We generated the synthetic causal graphs with varying graph densities ranging
from 0.2 to 0.8. Each generated graph involves 10 variables with sample sizes of n = 500. For
each variable X; in the graph, the data was generated according to X; = f;(W,PA;) + E;, where
PA; are parent nodes of X; in the graph, W; ~ N (0,1, ,) and F; is the noise term and f; was
randomly selected. Additionally, we conducted experiments on the real-world causal discovery
benchmarks SACHs [Sachs et al., 2005] and CHILD [Spiegelhalter et al., 1993]. We evaluate our
Power and Median using F1 score and a higher F1 score indicates greater accuracy From Table 2,
Power outperforms Median in most graph density settings, particularly on denser graphs. Power also
outperforms the median heuristic on both SACHs and CHILD. This indicates that our proposed kernel
selection method, Power, can benefit causal discovery tasks in general. For more implementation
details and results on SACHs and CHILD, please refer to Appendix E.1 and Appendix F.1.2.

Table 2: F1 score on synthetic graph and on the real world benchmarks. Bold represents the better.

Graph Density 0.2 0.3 0.4 0.5 0.6 0.7 0.8 SACHs CHILD

Power 0.656 0.637 0.603 0.581 0.567 0.515 0.461 | 0.674 0.762
+0.057 +0.062 +0.047 +0.052 +0.044 +0.032 +0.045 | +£0.032  +0.052

Median 0.657 0.623 0.586 0.548 0.523  0.490 0.443 | 0.576 0.790
+0.067 +0.077 +0.032 +0.045 +0.042 +0.043 +0.037 | +£0.022  +0.044

6 Conclusion and Future Work

In this paper, we propose a practical kernel selection method for KCI, replacing the coarse median
heuristic. To address the model estimation bias inherent in CI testing, we decompose the KCI statistic
and perform parameter selection via grid search based on the estimated test power. We provide
a convergence analysis of the proposed criterion that explicitly accounts for estimation error, and
experimental results validate the effectiveness of our approach.

Currently, the search procedure relies on a fixed grid, which does not guarantee optimal parameter
selection. Moreover, the current theoretical framework does not yet provide formal Type I error
control for KCI under general conditions, unlike results established in more restrictive settings such
as additive models [Shah and Peters, 2020, Niu et al., 2024]. This limitation stems from the fact
that KCI addresses general CI relationships, leading to a more tractable null distribution with kernel
components. And the null distribution of KCI remains complex and sensitive to estimation bias.
A promising future direction is to establish uniform convergence results over kernel parameters
and derive the conditions and convergence rates for valid Type I error control. Such developments
would pave the way for a more flexible and theoretically grounded adaptive kernel selection strategy:
bringing KCI closer to achieving optimal kernel choice for CI testing.
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Appendices

In the appendix, we provide additional discussions on related work, the assumptions required for
the theoretical guarantees, complete proofs of the main results, as well as further experiments and
analysis. The structure is as follows:

» Appendix A provides an overview of related work relevant to our proposed method, including
recent developments in kernel-based conditional independence testing.

» Appendix B describes the training and testing procedures used:
— Appendix B.1: The kernel selection and test procedure overview.
— Appendix B.2: Details of the testing pipeline.

* Appendix C presents the theoretical assumptions required to ensure the validity of our
convergence results and the consistency of the proposed criterion.

* Appendix D contains the complete proof of the convergence rate (Theorem 3), including:

— Appendix D.1: The convergence rate of 7.
— Appendix D.2: The convergence of 6.
— Appendix D.3: Supporting results on conditional mean embedding (CME) convergence.

* Appendix E provides implementation and experimental setup details, including:

— Appendix E.1: Model hyperparameter settings.

— Appendix E.2: Synthetic data generation procedures.

— Appendix E.3: Runtime benchmarking configurations.

— Appendix E.4: Description of conditional independence testing baselines.

» Appendix F includes additional experimental results and discussions beyond the main paper:

— Appendix F.1: Real-data evaluation,
# Appendix F.1.1: Results on the car insurance dataset.
* Appendix F.1.2: Causal discovery benchmarks.
— Appendix F.2: More results on synthetic datasets.
— Appendix F.3: Analysis under high-dimensional conditioning.
— Appendix F.4: Comparison with continuous kernel parameter optimization.
— Appendix F.5: Toy example illustrations.

A Related work

Conditional independence testing. Conditional independence (CI) testing serves as a fundamental
building block in many machine learning and statistical inference tasks, especially causal discovery
[Zhang et al., 2011, Cai et al., 2022, Liu et al., 2024, Lin et al., 2024]. There is a growing body
of literature on conditional independence test, which can be roughly divided into three groups: (1)
regression-based methods [Shah and Peters, 2020, Polo et al., 2023, Scheidegger et al., 2022, He
et al., 2021]; (2) simulation-based methods [Doran et al., 2014, Candes et al., 2018, Berrett et al.,
2020, Li et al., 2023, Sen et al., 2017, Zhang et al., 2024] and (3) kernel-based methods [Zhang et al.,
2011, Fukumizu et al., 2007, Kour and Saabne, 2014, Scetbon et al., 2022].

Regression-based methods require assumptions about the relationship and noise structure, as well
as the assumptions of removal of any information from the conditioning set Z by regression. When
these assumptions hold, regression-based methods have been shown to effectively control Type I
error; otherwise, they do not. Another important category is simulation-based methods (also known as
randomization-based methods), which primarily implicitly or explicitly approximate the conditional
distributions Px|z or Py|7 to simulate the null distribution. A clear drawback is that such approaches
often come with significant approximation errors, leading to an inflation of the type-I error and
rendering the test invalid.
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Kernel-based CI methods, on the other hand, do not require additional assumptions and can detect
general dependence. By mapping variables into a RKHS, kernel functions enable the assessment of
similarities between high-dimensional implicit functions, thereby capturing higher-order statistical
moments. Utilizing characteristic kernels allows us to infer distribution properties such as homo-
geneity [Gretton et al., 2012a], independence [Gretton et al., 2005b], and conditional independence
[Fukumizu et al., 2007, Sun et al., 2007, Zhang et al., 2011, Huang et al., 2022]. These properties
make kernel-based methods capable of discerning conditional independence in CI tasks without the
need to simulate intricate conditional distributions.

The hardness of CI testing. Due to the unique nature of CI testing, Shah and Peters [2020]
demonstrated that a valid CI test does not have power against any alternatives. This implies that
no method can simultaneously control the Type I error rate at the given significance level while
maintaining adequate power. This is due to the inherent nature of the CI testing task, which requires
considering conditional distributions that are difficult to directly obtain and estimate from observed
samples. As a result, CI testing inherently requires accounting for estimation errors, whereas other
hypothesis testing tasks do not. Consequently, reducing estimation error is crucial for CI testing.

Based on this challenge, several assumptions have been proposed. The Model-X assumption [Candes
et al., 2018] assumes that one side of the conditional distribution (or its likelihood) is known exactly.
Another class of approaches, known as doubly robust methods [Shah and Peters, 2020], imposes
stricter requirements on the convergence rate of estimation errors to ensure reliable testing. The
kernel-based KCI can currently only achieve pointwise Type I error control, and its underlying
assumptions require further investigation. In this paper, we decompose the original KCI formulation,
which has been shown to reduce the estimation error of residuals, thereby improving the validity and
reliability of the test.

Kernel selection. Although kernel-based methods are capable of detecting general dependencies
between variables, a critical aspect that significantly influences their effectiveness is the choice of
kernel functions. This selection process primarily focuses on tuning kernel parameters, such as
the bandwidth in radial basis function (RBF) kernel, which can often be more influential than the
choice of the kernel family [Scholkopf et al., 2002, Section 4.4.5]. Most existing kernel-involved
methods rely on heuristic parameter selection, typically choosing the bandwidth of Gaussian kernels
based on the median of pairwise distances in the data, a strategy commonly referred to as the median
heuristic [Scholkopf et al., 2002]. [Kim et al., 2006] The selection of appropriate kernels remains an
unresolved question in numerous studies [Chu and Marron, 1991, Herrmann et al., 1992, Chapelle
and Vapnik, 1999, Kim et al., 2006]. Fukumizu et al. [2009] propose selecting kernel parameters
by directly maximizing the MMD statistic itself, which is shown to be equivalent to minimizing the
classification error under a linear loss. However, Gretton et al. [2012b] argue that this approach is
suboptimal, as it neglects the variance component of the test statistic. They instead propose using a
statistic-to-variance ratio criterion as a surrogate for the estimated test power under the current kernel
parameters.

Variants of this criterion have been further developed and applied to tasks such as two-sample
testing [Liu et al., 2021, Biggs et al., 2023], unconditional independence testing [Albert et al., 2022,
Ren et al., 2024a,b], and goodness-of-fit testing [Schrab et al., 2022]. These methods support
continuous optimization of kernel parameters and are capable of selecting near-optimal or even oracle
kernel parameters. Furthermore, deep kernels parameterized by neural networks have also been
proposed and integrated into these testing tasks, as in [Liu et al., 2020, Xu et al., 2024]. While these
advances have shown promise, they are not directly applicable to CI testing task. Both two-sample
testing and unconditional independence testing directly measure distributional differences between
variables, where the main source of error typically arises from finite-sample variability. In contrast, CI
testing is substantially more difficult, as it requires accounting for the conditional distributions, which
may act as latent sources of dependence. This often necessitates residualization procedures to remove
the conditional effect, as implemented in methods such as KCI or GCM [Shah and Peters, 2020].
Therefore, for CI task, it possesses distinct characteristics, primarily involving the consideration of
regression residuals, which inherently contain biases. And the choice of kernel is intuitively crucial
for kernel-based CI methods, but it has remained an open issue.

Both two-sample testing and unconditional independence testing directly assess distributional dif-
ferences between variables, where the primary source of error typically arises from finite-sample
variability. In contrast, CI testing is substantially more challenging, as it involves reasoning about
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conditional distributions, which can act as latent sources of dependence. To address this, residu-
alization procedures are often employed to remove the conditional effect, after which conditional
independence is assessed based on the resulting residuals, as in methods such as KCI or GCM [Shah
and Peters, 2020]. As a result, CI testing presents distinct challenges—most notably, the reliance
on regression residuals, which inherently introduce estimation bias. While the choice of kernel is
intuitively critical for the performance of kernel-based CI methods, identifying principled strategies
for kernel selection remains an open and unresolved problem.

B Procedure Details

B.1 Overall procedure

Algorithm 1: Overall Procedure of Power

Input: Observations of (XY, Z) for training Sy, = {(x;, s, 2;) } and for testing S;.; kernel
types for ¢, ¢y, ¢.; candidate parameter weights.

Output: Test decisionof X 1 Y | Z.

// Step 1: 1Initialize kernel parameters

1 Use median heuristic to compute initial kernel widths w,;, w,, w.;

10

11

12
13
14

Generate candidate lists for w, and w, by applying predefined weight multipliers;
Fix w, as the median heuristic value (no selection);

// Step 2-4 can be computed independently and thus parallelized
foreach parameter combination w; = (w,,w,) in parallel do

// Step 2: Compute conditional embeddings

Compute kernel matrices Kx, Ky, Kz;

Estimate px|z = KF (K7 +el) " ¢, (X);

Estimate fiy7 = KJ(KJ +el) ¢, (Y);

// Step 3: Compute residual matrices

Compute projection operator Rz = (K2 +eI)™;

Compute RX|Z =Rz;KxRz, RY\Z =RzKyRz;

// Step 4: Evaluate criterion

| Compute J(S,w;) as in Eq. 9;

// Step 5: Select optimal kernel parameters

Choose wy, = argmax,,, J(S,w;);

// Step 6: Final testing

Perform the test using the selected parameters w,, on test samples Si.;
Refer to Appendix B.2 for test procedure details;

return Test result (reject/do not reject Hy: X 1LY | Z);

B.2 Testing procedure details

After selecting the kernel parameters with the maximum estimated test power on the training set,
we follow the original KCI testing procedure to perform the testing process on the test set. With m
testing points, the KCI statistic Cf(CI has a biased HSIC-like estimator [Gretton et al., 2005b]:

Cker, = ﬁTr[(KtZe © RY|,)RY 7] (14)
We first compute the residual covariance matrices Rg?l 5 and Rgf‘ ,, and the kernel matrix K with
the selected w,,,. Then, we denote K = Rf’)g“ 4 O K Yand L=K ;fl , and let the EVD decomposition
of Kand Lbe K = Vg A Vi and L = VL AL Vy. Ak (resp. Ap) is the diagonal matrix containing
non-negative eigenvalues g ; (resp. Ap;). Let ¥ = [V 1(x), - YL n(x)] = VKA%2 and
¢ =[001(y,2),,0Ln(y,2)] = VLA2/2. And its null distribution can be approximated in two
ways: as (1) weighted (infinite) sum of x? variables, or through (2) Gamma approximation.
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Weighted sum of y”? approximation. Under Hy, X 1 Y | Z, C%{CIb has the same asymptotic
distribution as

Tb n(n 1) Z)\k le (15)

where 2z, ~ N (0,1) and where Ay, are eigenvalues of ww' and w = [wq,---, w,, ], with the vector

w; obtained by stacking My = [V 1(21), Y n (@) - [@01(Ye,2), - ¢Ln(Yt, 2¢)]. This
conclusion primarily relies on the continuous mapping theorem, for details refer to [Zhang et al.,

2011, Theorem 3].
Gamma approximation. Following [Gretton et al., 2007], the null distribution for the KCI estimator

%’H(K L) can also be approximated by a Gamma distribution, which is p(t) = t*~1 Pl nt t( 7y With the
parameters

1 1
k=L 0=7 with p=-Tr(ww') and o®=2—Tr[(ww')?]. (16)
n n

Therefore, one can use Monte Carlo simulation to approximate the null distribution according to the
two approaches mentioned above. The complete testing procedure is as follows: we first estimate the
conditional means (1 x|z and j1y|z and learn the parameters in ¢, on the training data and calculate
the Kx|z, Ky|z and Kz on the testing data and the eigenvalues and eigenvectors of K and L
defined above. Then we evaluate the statistic C%(CIb according to Equation 14. And then we simulate
the null distribution either by (1) weighted sum of x? approximation (according to Eq. 15) or (2)
Gamma approximation (with the parameters given by Eq. 16). We then obtain a set of statistics
T = (Ty,---,T},,) through sampling. Then the p-value is calculated as the proportion of the statistic
Tj in T that is greater than Cf(CIb. Finally, if the p-value is not greater than the given significance
level o, we reject Hyp and hold H;; otherwise, we hold Hy.

C Assumptions

To analyze the convergence rate of the statistic, we require some assumption as follows under certain
fixed kernel parameters w = (W, Wy, w> ):

* The kernel k,,_, the residuals Xizo YI , and their corresponding estimates 7 Xiz® YI , are
uniformly bounded:
sup ) <v s ) <y suphe(2,2) <vs,
(z,2)e(X,2) (y,2)e(¥,2) zeZ
" , w , (Boundedness)
sup [P (@) <, osup R ()| S v
(z,2)e(X,2) (y,2)e(V,2)

To simplify the notation, we denote C,, = v,%. Consequently, h; ; and iLij are bounded in
the range [-C,,,C, ].

We require some additional assumptions regarding the CMEs involved for the analysis of the con-
vergence of the CMEs involved (u x|z and py|z). We directly adopt the framework and the regular
assumptions from [Pogodin et al., 2024], which were originally introduced in [Fischer and Steinwart,
2020, Li et al., 2022]. We use the same names for the following assumptions to align with those in
[Fischer and Steinwart, 2020].

* (1;)ier is the eigenvalues of the operator Czz = E[¢.(Z) ® ¢.(Z)]. For some ¢, > 0 and
pe(0,1] and forall i € T,

i < i P (EVD)
* There exists 1 < 8 < 2 such that
px|z € [HS::1%, vz € [HS,:]7, (SRC)

where [HS]? represents the interpolation space of the original space HS (also written as
[HS]'), and the eigenvalues decay of the functions in [HS]” is lower bounded by 3.
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In [Fischer and Steinwart, 2020, Li et al., 2022], there is another assumption embedding property
(EMB), was introduced, which implies a polynomial eigenvalue decay of order 1/« for C'z 7. Since
the EMB condition is always satisfied for o = 1 and a bounded kernel &z, it follows that, under As-
sumption Boundedness, the EMB condition is consistently satisfied within our framework. Therefore,
we do not repeat further here.

D Proof of Convergence Rate

Theorem 4. Assuming that w, and w, can parameterize uniformly bounded residuals r°% X‘ 5 and

2 >cwitha

Let ). be the set of kernel parameters of w for which the asymptotic variance 01w 2

TYl P
positive constant c. Under Assumptions (Boundedness), (EVD) and (SRC), and given that the kernel

selection procedure exhibits density over ()., then with probability at least 1 - 6,

A2 2
CKCIu,w _ CKCI,w

~O(Cln*% +Cyn7H), (17)

01w 01,w

4 64 o [0 2 1
where Cy = (- + Vs )uzu\/ 1n, and Cy = ( t3a ) 21n5 -n7z.
& &

Proof. We denote CKCI  With the kernel parameters w = (wx, Wy, W) as 1, its unbiased estimator

C%{Clu,w as 1), for clarity, Similarly, the asymptotic variance o, is shorten as o, with its corre-
sponding regularized estimator 61 (, as &,,. For reasonable large sample size 1o which holds eq. (46),
we have 6,, > § with high probability. Then with Assumption (Boundedness) that |h;;| < C,,, we
obtain |1, | = [E[h;;]| < C, and [1},| < C,,. We begin by decomposing

1 A A A ~2 2
1 1 1|0;- 1
?l_nlgg_niﬂ-nl_@ u+7|ﬁu.z_"7u.z|
Ow () 0w 0w 0w Ow Uw o Uw + 0, oy (]8)
< v R v, 12 .9 o
- c (C+ |U -0 |+7|77w 77w|— |77w_77w|+ 303 O'w—O'w|.

The convergence rate of #),, and 62 are proved in lemma 5 and lemma 6, respectively. Thus, with
probability at least 1 — d, the error is at most

2.4 /
(é 64” v ) ZV\/_h'l* n- ey +( + )z/v 2ln§ nz + 1202047t (19)

D.1 The convergence rate of ),

Lemma 5. Under Assumptions (Boundedness), (EVD) and (SRC), under the kernel parameters w,
we have that with probability at least 1 — 0,

4 -1 2
[N = Nwl| < 20,0 (2111(5)\/ Z/KTL_Q(%*P) +vy\/2In 5 -n_é) . (20)

Proof. The statistic 7, includes both estimation error and random error. We use 7j,, to denote the
estimate of 7, where the estimation error of the CMEs x|z and py|z is removed on the finite
samples S = {s; }I,, which is
N = 1 > hij= _ Yo kz(zi,25)rx12(8i,85)ryiz(si,55), 2D
n(n-1) n(n-1)

i,5 )€l i,j)€ip

where 7x|7 (s, 85) = (¢a (i) = 1ix)2(21), 92 () = 11x12(2;)). Then we can decompose |, — .|
by

|ﬁw_nw|5|f]w_f]w|+|ﬁw_77w|> (22)
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where |f),, — 7.,| represents the estimation error (bias), while |7, — 7,,| is the random error (variance).
It should be noted that the two factors contribute to the statistical estimation in a complex and mixed
manner. We will separate them for a more intuitive analysis.

Estimation bias. The estimated bias is given by

|l — ] = i = hig, (23)

1,J#1
with |hlj - h7]| = kz(zi, Zj) |72X\Z('ria xj)TAY|Z(yi7yj) - TX|Z(xi7xj)TY|Z(yia y])| To 51mp11fy the
notation, we use A;; to replace r x|z (s;, s;) with A;; = fix|z (i, 2;), and use B;; and Bj; to replace

the corresponding vz (v, ;) and Bij = fix|z(si,5;), respectively. Then given kz € (0,1, ], we
can derive that

\hij = hijl = kz (20 25) [ Aiy Bij = AijBis| = k2 (20 2) |(Aij = Aig) Bij + Aij (Bij = Big)|. (24)
where
i = (0w (i) = pix12(21), b (25) - NX\Z(zj))_(¢m(xi)_ﬂX\Z(zi)a¢z($j)_ﬂX|Z(Zj)>
= (02 (@), fix12(25) = 1x12(27)) + (2 (2), fix 2 (20) = px)z(20)) +
(nx12(21)mx12(2))) = (fix)2 (20), fix 2 (25))
= (02 (@), fix12(25) = 1x12(2)) + (2 (2), fix 2 (20) = px)z(20)) +
( |Z(Zl) MX|Z(ZJ) MX\Z(ZJ))+(MX|Z(Zj)»MX|Z(Zi)—ﬂx\z(zi)>
= (B2 () = frxiz(20), fix)2(25) = 1x12(25)) + (D2 (25) = pix)2(2)): fix |z (20) - MX(|2ZS()Zi)) :

According to the Cauchy-Schwarz inequality and the bound of CME in theorem 7, we can derive that
with probability at least 1 —4e™" for 7 > 1,

|Aij = Aij| <|da(:) = fix)z2 (20| |ix)2(25) = pxiz (25)] + 62 (25) = x2 (25)| - Jiix 2 (20) = w2 (23)|

B-1 __B-1_
<V -V12Knfw =21y Kn 250

(26)

The same notations B;; and Bij are also applied to Y with the same bound. Given the bound
kz € (0,v;], |Aij| < v, and |A;;| < v, we can derive that

\hij = hijl = kz(2i, %) |(Aij = Aij) Bij + Aij(Bij - Bij)|
<kz(zi,25) [|(Aij - Aij)Byj| +|Ai;(Bij - Bij)l] 27
<2u,-v-21VvKn 253["111’) = 47'1/21/%\/ Kn™ 2(%111)) .

Therefore, we can give the estimate bias bound

_B-1
|77 77w = Z |h7,J z_]| < 4TZ/ZV2 vV Kn 26+, (28)
1) i _]¢’L

Random error. For the random error, we can use McDiarmid’s inequality to obtain the bound. We
first consider replacing s, with s}, = (2}, v}, 2;,) and keep the remaining samples in S the same.
Given h and h are bounded in [-C,,, C, ], the difference between 7}, and the new substitution 7}/,
with s}, is given by

|70 = 77.,] < (Z|hzk'—hz‘k|+ Z|hk'j—hkj|)

ik J*k
4C,

(29)

higr — g =
n(n 1)Z| k k|

itk
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Now using McDiarmid’s inequality, for come certain and fixed w, with probality at least 1 — J, the
random error function A, (w) = 7, — 1.,

(30)

STIN V]

A 2
|77w_77w| SQVzVQ —1In
n

Finally, by combining Eq. 28 and Eq. 30 with 7 = In(4/4), we can finish the proof:

4, __po1 2 2

Aw_ w §41I1 - Z/ZV% Kn 2(%447) +2VZV2 “ln=

7 7 5 vV F
n

(3D
=2u,v (2111(;1)\/1/[(712‘(/3511” +1y/ 2111% ~n_5).

Since B € (1,2] and p € (0,1], 2( 5 +p) <z always holds. Therefore, even in the well-specified cases,
the error is primarily dominated by the estlmatlon bias with its slower convergence rate. As for the

misspecified scenario with slower learning rate O((lo%)ﬁ ~1) and 3 € (0,1), the estimation error
will become increasingly dominant.

D.2 The convergence of 5.

Lemma 6. Under Assumptions (Boundedness), (EVD) and (SRC), under the kernel parameters
w = (wg,wy ), we have that with probability at least 1 - 0,

4 - i 2
|&f) - 0'3)| < w,12 (8111 gl/zu\/ vKn~ 25“117) +1/8In 5 nTE 4 9VZZ/27'LI) . (32)

Proof. We analyze the convergence of ¢ in the same way by decomposing it into estimation error and
random error, which is

2

50 —oo| <|62 - 62| +|62 - ol (33)
i hij i hi
Estimation bias. By denoting A; = Zﬁilj - N and B; = Zﬁ:ilj — 7. The estimated bias of
o2 is given by
1| Shuih L (b ?
~2 2| _ 1 gty _ J#i g
Tw Jw‘ nZZ:( n-1 77W) ( n-1 Uu)
1 9 91 1
n- n
SR IR VT I ISR T
n 4 n-1 -1 n-1 n-1
i (hij + hig) Tjei |hig = hij oY
1 gei Nbig + g . - j=i [Mvig = i . -
< — —_— - w T Nw)| - : T 1Mw = Nw
_n; — (s + ) p— [ = 7l
1| S jei (haj + hij) _ 2
<= P SELTE  ( +i)| - 2lha; - by
_nZi: 1 (N + 1) | - 2l hij 1

» Sjei (i +hig)  Siaer (i + )
7 n-1 n(n-1)

)

1
n
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where ¢; = |Bij — h;j| is derived in eq. (27). Since Yk lek (ﬁkl +hit) = Shwi Diek (iLkl +hi) +
Y 12i (hir + hiy). We can derive that

|62 - 52| < 2¢ - 1 D 1 8 jei (hij + hij) i (ha + har)  Lkei Dizk (hit + i)
co n(n-1) n(n-1) (1)
9. L 3 (1= 1) 8 (hij + hiz) ki sk (R + Py
" ng n(n-1) n(n—1)
L | i (g # 1) | S Sak (i + ) 35)
9¢, . L g | &gzi g * ig) i Y0

< 677 n Zl: n Zl: n(n 1)
geﬁ.l.nww%iw

" n n  n(n-1)

=4Cy ey = 16717 23V vKn 2(ﬂ+p>

Random Error. We again use McDiarmid’s inequality to obtain the bound for the random error of
the asymptotic variance which is A, (w) = |52 — 02|, where

0 = EiE;[hi;] - nu]. (36)
and the estimate without the estiamate bias on finite sample set S, which is
Sjeihis
~2 V) _ ~w ) (37)
v EZ: [ n-1

We again consider replacing sy, with s}, and keep the remaining samples the same with the counterpart
L o . o, 4C
notations ., and 7j,,. Given that |h;;| < C,, [ij| < Cy, |hix — hl}| < 2C, and |A,, - 7,| < — proved
n
in eq. (29), we can derive that

L (Zeiti - Y % ’
~2_~,2 . J#1 ') s _ J#i zg o
[ (B o) L[
Ly|Zello by ) -(Zm' o +Im—m|)
n n-1 n-1
Ly |Bethathy) oy -('h”“ h@’“'+|ﬁw—ﬁw|)+
n i n-1 n-1
1 Zj#k(hkj+h;gj)_(ﬁw+ﬁw) .(Zj¢k|hkj_h;cj|+|ﬁw_ﬁw|) (38)
n n-1 n-1
<Ln- 1)((” 1)-26, 2OV).(2C” +4C")
n n-1 n-1 n
+1((n 1)'20”+2CV)~(("_1)'20”+40”)
n n-1 n-1 n
e, (20 vac," L o0y 40"):80".
n n n n

Simply applying McDiamid’s to &2, we obtain that with probability at least 1 - 6,

2. 2
|62 ~E[62]|<4C,\/ =In~. (39)
n 0
Now we consider the bound [E[52 ] o2|. By the deﬁnltlon we can rewrite o2 and E[52 ] with
]E[&w 3 ZE zlhﬂc 4 Z E hz]hkl] and
ilk zylk
(40)
ol = 3 ZE [hi2hi3] - Z E[h12h34],
ilk zglk
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where the number subscripts in o2 corresponding to i, j, k, and ! are mutually distinct and
E[h12h34] < CE, E[hwhkl] < CE

For the first term, we obtain

1
3ZE hithi] - 3 ZE[hmhm]

ilk ilk

(1—(”)3) |C2 + C2|_(f——) 202, (41)

The second term can be handled similarly:

nt-n(n-1)(n-2)(n-3) s ,6 11 6 9
n4 %]E h”hkl 4 ZZ;CE h12h34] n4 '2CV:(;_E+E)'2CV‘
1] )
(42)
Therefore, since 13/n? > 613 for n > 1, we have
1 2
IE[52] - 02| <2C2(———3+£) < 180”. (43)
n n?2 n3 n

Combining eq. (39) and eq. (43), we can give the random error bound under the residuals can be well
estimated, which is

2. 2 18C?
6% 02| <162 ~E[62]| + [E[63] - 02| = 40, [ IS+ 2.
n

2l = (44)
n

And finally, we combine eq. (44) and eq. (35) to get the bound of estimate asymptotic variance which
is
g 12, 18C2

" n

4 -1 / 2
= 2u,1° (81n szV\/ vKn~ o) +1/8In 5 Tt 9C',,n_1) .

Recall that c is a small positive constant, since o2 > ¢® on ., according to eq. (45), when the sample

size ng holds:
2 4 - 2(%12) 2 1 C
2v,v°| 81n SI/ZV\/ vEKn, ™ + 8lng 1y +9Cl,n0 < 2’ (46)

we have G, > § with at least probalibity 1 - /2.

|O’ - U2| < 16TV2I/3\/ Kn~ 5y +4C,
45)

D.3 CME convergence.

The analysis of the learning rate in vector-valued regression depends on standard assumptions
such as (EVD) and (SRC), which impose constraints on the input space, interpolation operators,
and the smoothness of the target regression. These assumptions help to ensure that the model’s
convergence behavior is well-defined and that the learning rate reflects the complexity of the regression
task, influenced by factors such as the smoothness of the target function and the properties of the
interpolation operators.

In SRC, the eigenvalues associated with functions in [HS]? decay at a rate that is influenced by the
parameter 3. Specifically, when 3 > 1, [HS]? is embedded within HS, and the eigenvalues decay
faster than those in HS, reflecting increased smoothness of the functions in [HS]B . Conversely, when
0 < 8 <1, [HS]? includes HS as a subset, and the eigenvalues decay more slowly, indicating a larger
function space compared to HS. Here, we follow Pogodin et al. [2024] and focus on well-specified
cases with 8 € (1,2]. For the misspecified case where § € (0, 1), the corresponding convergence
rates from [Li et al., 2022, Theorem 2] can be directly applied and will not be discussed in the paper.
Theorem 7. Li et al. [2022] Under the Assumption EVD, SRC and Boundedness, for the well-
specified cases where v = 1, a = 1, 8 € (1,2], there is a constant K > 0 independent of n > 1 and
T > 1, then
B-1

lixiz - nxz|® < T Kn” 5, 47)

is satisfied for sufficiently large n with P™-probability not less than 1 — 4e™"
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E Implementation and Baseline Details

We present the implementation details of both our proposed method and the synthetic dataset for
conditional independence test and the causal discovery tasks.

E.1 Model hyperparameter settings

Our method’s parameters mainly exist in the kernel ridge regression, the process of learning the
parameters in ¢, and the final testing procedure. (1) For the kernel ridge regression, there are
three trainable parameters, the amplitude A, the bandwidth involved in K I denoted as o, and the
regularization parameter €. To ensure stability during the training process, we have constrained their
value ranges, and the amplitude A is limited to the range of [107%, 10]. The bandwidth o7 is a vector
whose dimensions are the same as those of the conditioning variable Z, with values constrained to
[1072,10?]. The regularization parameter ¢ is constrained to [107'%, 1]. We use marginal likelihood
as the loss function and the L-BFGS-B algorithm [Liu and Nocedal, 1989] to optimize and update
these parameters. (2) In the final test stage, we use the weighted sum of x? approximation to simulate
the null distribution. Following the default setting in [Zhang et al., 2011], we drop all A; which are
smaller than 10~° for computational efficiency. We sampled a total of 5000 T}, values according to

Eq. 15, and obtained the p-value which is the rate that T}, > Cf(CIb.

E.2 Synthetic Data Generation Settings

Implementation details of Synthetic CI dataset. In the CI testing task, we assume X and Y are
the dependent variable of Z. To examine Type I errors, X and Y were generated according to the
following nonlinear additive function model:

X=f(W'Z)+E, (48)

where W ~ A(0,1,,) and dz represents the dimension of Z, f was randomly chosen from the
linear, sin, cos, 2, 2* and exp(z) with the same probability of being selected. When f is neither sin
nor cos, we multiply W7 Z by an additional 1/v/d to balance the scale of the function and noise.
For linear case, the data generation process follows X /Y = Z/\/dz + E. The noise term E was
randomly generated from either a normal distribution A/(0, 1) or a uniform distribution U (-1,1)
with equal probability. To test Type II error, we add the same latent variable 7" to both X and Y with
T ~ N (0,1). Then the dependent variable, e.g. X, is generated as follows:

X=f(W'2)+E+aT, (49)

Y follows the same generating process with the same variable 7.

Implementation details of graph dataset for causal discovery. In the synthetic graph data for
causal discovery task, we generate cases with varying graph densities. The graph density is measured
by the ratio of the number of edges to the maximum possible number of edges in the graph; a smaller
graph density indicates fewer edges in the graph, while a larger density indicates a denser graph.
For each graph density, we generate 10 cases where the variables and relationships are randomly
generated. For each cases involves 10 variables with sample sizes of n = 500, which are evenly
divided into training data and testing data. For each variable X; in the graph, the data was generated
according to

Xi = fi(W]PA;) + E;, (50)

where P A; represents the parent nodes of X; in the graph and the weight matrix W; ~ N'(0,1). f; is
equally likely to be sampled from linear; sin, cos, exp and 2%. Each function class in f; all has the
same probability of being selected, and within the equal probability of each parameters setting. If
one of the variables has no parent nodes in the graph, it follows a standard normal distribution. F;
represents the noise variable, randomly following either a Gaussian distribution A'(0, 1) or a uniform
distribution U (-1, 1) with equal probability. For each graph density, we generated 20 realizations.
We set the significance level of o = 0.05. All the data is similarly divided into training and testing sets
with the same number of samples. We also use the weighted sum of x? approximation to simulate
the null distribution for testing on the testing data.
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E.3 Configuration details for runtime benchmarking.

In Section 5.1.3, we use the default settings as described in 5: each kernel has 10 candidate parameter
values, resulting in a total of 10 x 10 parameter combinations. Consequently, Power involves 20 CME
computations, whereas Median only requires 2. We leverage the joblib package, specifically Parallel
and delayed, to parallelize the learning process for the 20 CMEs in Power and the 2 CMEs in Median.
For each sample size, we randomly generate 50 cases. All experiments were conducted on an Intel
14700K CPU platform with 32GB of RAM, without GPU acceleration.

E.4 Conditional independence testing baselines

In this section, we provide a brief overview of the baseline methods used in the main text, along with
their parameter settings.

CIRCE (Conditional Independence Regression CovariancE, [Pogodin et al., 2022]) is a simplified
version of KCI, which only considers the correlation between ¢, (Y") and the regression residuals of
Z 10 ¢2(X,Z),1e. ¢5.(X,2) = 0:(X, Z) - E[¢z(X, Z) | Z] with X = (X, Z). As explained
in Theorem 2, any function g(X, Z) € L? can capture the general relationship between X and Z.
Utilizing the reproducing property, the residual feature map ¢;. (X, Z) effectively eliminates the
influence of Z on X. Intuitively, this residual ¢ (X, Z) thus represents the component of X that
cannot be explained by Z. Thus, if ¢z, (X, Z) is independent of Y, then we can conclude that X
and Y are conditionally independent given Z. Formally, CIRCE has the following form:

Torek = E[¢:(Z) ® ¢, (Y) ® (¢2(X) - x12(2))]. (51
Correspondingly, CIRCE also has an MMD-like biased estimator:
. 1
TCIRCE = 7TI"(HK2H(KY © RX|Z)) (52)
n(n-1)

and can similarly use weighted (infinite) sum of x? variables or Gamma approximation to estimate
the null distribution for conducting CI testing.

In CIRCE, we follow the original settings of CIRCE: we use the median heuristic to initialize the
parameters of ¢, ¢, and ¢,. We also use a Gaussian process to estimate the conditional mean
embedding p x|z, with parameters set identical to those used in our Power method.

GCM (Generalised Covariance Measure, [Shah and Peters, 2020]) considers the relation in L? space.
For one sample pair (x;,y;, 2; ), it considers the product between residuals from the regression:

Ri =[x = f(z:)] - [yi - 9(zi)],
where f is the estimates of the conditional mean f(Z) = Ez[X | Z], and § is defined as the same.
Then it defines the statistic with n observations:

T = VYo Ri .

n n 2
VE SRy - (fxr, r)°)
And it p-value is computed as p = 2(1 — ®(|T'])) for the standard normal CDF ®. We use the default
regression model and parameter settings from GCM *: The conditional mean is estimated using

cross-validated linear Lasso with 5 folds. the significance level is set as 0.05 which is consistent with
other approaches.

RBPT?2 (The Rao-Blackwellized Predictor Test, [Polo et al., 2023]) involve a regression chain: it
first needs to estimate g(Y, Z) = [X | Y, Z]. Then with the trained ¢(Y, Z), it estimates h(Z) =
[9(Y,Z) | Z]. The statistic is defined to compare the difference between their predicted results and
the residuals of the real value of X, which is

T =1(W(zi),7:) = U(9(yi, zi), i), S=

VIS, T
\/(% S (1) - (LT 1))

where [ is MSE loss [ = (g — x)? and its p-value The p-value is then computed as p = 1 — ®(.5). We
follow its default model and parameter setting*.

b

*https://github.com/LaplaceSansouci/GeneralizedCovarianceMeasure
*https://github.com/felipemaiapolo/cit
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F More Experimental results and discussion

F.1 Real data.

F.1.1 Car insurance data.

Following the setup of [Polo et al., 2023], we test our methods on the car insurance dataset for
conditional independence testing. The car insurance data’ encompasses four US states (California,
[llinois, Missouri and Texas) and includes information from numerous insurance providers compiled at
the ZIP code granularity. The data offers a risk metric and the insurance price levied on a hypothetical
customer with consistent attributes from every ZIP code. ZIP codes are categorized as either minority
or non-minority, contingent on the percentage of non-white residents. The variables in consideration
are Z, denoting the driving risk; X, an indicator for minority ZIP codes; and the insurance price Y.
A pertinent question revolves around the validity of the null hypothesis Hy : X 1L Y| Z, essentially
questioning if demographic biases influence pricing.

Since this is a real dataset, the full distribution and the true CI relationship between X and Y given
Z are unknown. Therefore, following [Polo et al., 2023], we discretize the conditioning variable
Z into 20 bins and shuffle the Y values corresponding to each discrete Z value. If a test maintains
Type-I error control, we expect it to reject Hy for at most oo = 0.05 of the companies in each state. In
the second part, we use the unshuffled data for CI testing and focus on assessing the power of our
methods. Following the default setting in Polo et al. [2023], the dataset is split 70/30% for training
and testing. We conducted a total of 5 experiments, each time randomly selecting 10 seeds, and
reported the average Type-I error rate and the average p-value. This experiment is to assess whether
CI methods can effectively control Type I error on the shuffled dataset, while determining on the
unshuffled dataset whether the state exists where demographic biases influence pricing.

Figure 3a illustrates that both the Median and Power methods are generally effective in controlling
Type I error, with Power performing slightly better than Median. Specifically, the Type I error for
the Median method in Missouri exceeds o = 0.05, whereas Power maintains a strict control at 0.05.
Figure 3b presents the test results on the original unshuffled data. All methods show relatively low
p-values, leading to the conclusion that all states likely exhibit varying degrees of discrimination
against minorities in ZIP codes. The severity, in descending order, is Illinois, Texas, Missouri, and
California. This result is consistent with the findings from [Angwin et al., 2022], indicating that our
method is capable of correctly identifying CI relationships in the real world.

California Illinois Missouri Texas

]

(a) Performance on shuffled data. (b) Performance on unshuffled data.

I Power
B Median

o
i
o

Type | error

Figure 3: Performance comparison on car insurance dataset.

F.1.2 Causal Discovery Benchmarks.

In Section 5.2, we apply our method to two widely-used real-world causal discovery benchmarks,
SACHs [Sachs et al., 2005] and CHILD [Spiegelhalter et al., 1993] datasets. SACHs dataset contains
single-cell measurements of protein and phospholipid components in human immune system signaling
pathways, originally collected to study causal protein interactions under different experimental
conditions. Its network comprises 11 variables and 17 edges. CHILD network consists of 20 variables
with 25 edges, and its graph is a medium-sized causal graph that models congenital heart disease in
newborns. The ground-truth graph consists of 20 nodes and 25 edges. Some example variables in the
graph include Birth Asphyxia, Lung Flow, and Chest X-ray.

3Data description link
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Following the default setting, the variables were extracted and preprocessed. In both benchmarks,
the variables are discrete and take values ranging from 1 to 6. We evaluated the performance under
different sample sizes. For each sample size, data were randomly sampled and the experiments were
repeated 10 times. F1 score is a weighted average of precision and recall, calculated as

2 - recall - precision

—. (53)
recall + precision

. Table 2 reports the F1 score results for sample size [V = 500. Additional results for various sample
sizes are presented in Table 3 and 4. Across all sample sizes, Power with selected kernels consistently
outperforms Median, demonstrating the effectiveness and applicability of our method in real-world
relational networks.

Table 3: F1 score on SACHs with varying sample sizes N.
F1 Score N =200 400 600 800 1000

Median  0.416 + 0.063 0.550 + 0.047 0.593 £ 0.053 0.648 +0.032 0.710 £ 0.035
Power 0.445+0.062 0.590+0.058 0.652+0.060 0.732+0.037 0.794+0.027

Table 4: F1 score on CHILD across V.
F1 Score N =200 400 600 800 1000

Median  0.638 + 0.056 0.723 £ 0.063 0.806 + 0.045 0.832 +0.021 0.861 +0.022
Power 0.673+0.069 0.779+0.038 0.835+0.030 0.848+0.022 0.870+0.018

F.2 More experiment result on synthetic data

In this section, we present experiments with additional baseline methods and on data with non-additive
relationships to better assess the effectiveness of the KCI method under general data relationships
and to evaluate the improvements brought by our approach over the median heuristic-based KCI (i.e.
Median).

Baselines. We additionally include three conditional independence testing methods as baselines,
namely KNN [Li et al., 2023], CCIT [Sen et al., 2017] and AKE [Scetbon et al., 2022].

* KNN [Li et al., 2023] proposes a permutation-based conditional independence test that
leverages local K-nearest-neighbor sampling to approximate the conditional distribution
and construct the null distribution for statistical inference. We used their default parameter
settings, adopt XGBoost as the classifier, and set the number of repetitions B = 200 and the
neighbor order k = 7.

* CCIT [Sen et al., 2017] proposes a model-powered, permutation-based conditional in-
dependence test, which uses neural networks to learn a representation of the conditional
distribution and trains a classifier to distinguish between samples from the joint and null
(permuted) distributions. We followed the default hyperparameter settings: we use 30
bootstrap iterations, and tuned the XGBoost classifier over the suggested grid of tree depths
{6,10, 13}, number of boosting rounds {100,200, 300}, and column subsampling ratio
fixed at 0.8.

* AKE [Scetbon et al., 2022] AKE is an asymptotic conditional independence test that
estimates kernel-based covariance operators and derives the null distribution in closed
form using operator-theoretic tools and analytic kernels. While it shares similarities with
KCIT in relying on kernel embeddings and asymptotic theory, it differs by explicitly
exploiting the structure of analytic kernels to achieve improved computational efficiency and
theoretical interpretability. We followed the default settings recommended in the original
AKE implementation, using Gaussian processes as regressors. All kernel functions involved
are Gaussian kernels, with bandwidth parameters selected via the median heuristic.

27



Nonlinear additive data. We first conduct experiments on the original synthetic data with nonlinear
additive relationships (Eq. 48), generated in the same way as described in Appendix E.2. All methods
are repeated 500 times for each setting.

The experimental results are presented in Table 5. The last row of the table reports the testing time
required by each method for a single case: we evaluate on samples with dz = 5, and compute the
average testing time over 100 repetitions for each method and error type. As shown, both KNN and
AKE effectively control the Type I error at the given significance level, whereas CCIT fails to do so
under this setting. In terms of Type II error, AKE outperforms KNN. Overall, KCI (i.e., Median) and
its kernel-selected version, Power, achieve the best performance.

Table 5: Type I and Type II Errors across different dz settings.
Method dz =1 3 5 7 9  Testing time (s)

AKE 0.06 0.04 0.04 006 0.04 3.463 +0.030
KNN 0.06 0.04 0.04 0.04 0.05 6.261 +0.071
Type I Error CCIT 041 031 031 029 0.21 5.106 +0.133
Median 0.04 0.03 005 0.04 0.03 1.270+0.061
Power 005 0.04 0.05 0.03 0.02 2.202 +0.286

AKE 0.15 031 044 057 0.68 3.164 +0.042
KNN 090 0.82 0.83 0.88 0.89 5.923 +£0.101
Type Il Error CCIT 032 025 048 0.73 0.67 5.436 +0.221
Median 0.19 032 041 046 0.57 1.361 +0.062
Power 0.13 025 031 034 046 2.437+0.399

Non-additive data. We further conduct experiments on a synthetic dataset generated under a
non-additive functional relationship, defined as follows:

X=f(W'Z+E), (54)

where the weight matrix W, function f, and noise term E follow the same type and distribution as
those in Eq. 48. All parameter settings remain the same as before, and each setting is evaluated over
500 repeated trials.

The results are shown in Table 6. The methods GCM, RBPT?2, and CIRCE have been introduced
in Appendix E.4, and their parameter settings remain unchanged. From the results, CCIT fails to
effectively control the Type I error under this setting, while RBPT?2 slightly exceeds the significance
level. The other methods maintain Type I error rates close to the nominal level o = 0.05. In terms of
test power, the best performance is again achieved by the KCI-based methods, Median and Power,
with Power further reducing the Type II error compared to Median.

F.3 High-dimensional data

We evaluate the performance of our method and the baseline methods when the conditioning set Z
has high dimensionality to assess their statistical limits and identify potential performance bottlenecks
under challenging settings. It should be noted that the high-dimensional setting presents a challenging
scenario for CI tasks, as it introduces estimation bias that is difficult to mitigate, making it hard
for models to learn accurate predictors or regressors [Shah and Peters, 2020]. We include all the
baselines introduced earlier for comparison, including GCM, RBPT2, and CIRCE (introduced in
Appendix E.4), as well as the additional methods KNN, CCIT, and AKE, described in Appendix F.2.

Setting. We conduct experiments on the nonlinear additive synthetic data, according to Eq. 48, with
parameter distributions remaining the same as in the default setting. The key difference is that we
now the performance is evaluated under higher-dimensional conditioning variables, with dz = 10, 30,
and 50.

Result. In Table 7, we provide experimental results on nonlinear additive synthetic data under
high-dimensional conditioning setting. When the dimensionality increases, all comparison methods
either fail to effectively control the Type I error (e.g., RBPT2, CIRCE, CCIT) or exhibit little to no
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Table 6: Type I and Type II Errors across different d settings with more baseline methods.
Method dz =1 3 5 7 9  Testing time (s)

AKE 0.06 0.05 0.03 0.03 0.07 3.050+0.586
KNN 0.01 0.04 0.03 0.07 0.00 6.612 +0.026
CCIT 039 034 038 025 0.17 5.314+0.010
GCM 0.06 0.05 0.05 0.07 0.06 1.213+3.126

TypeLError — cpprs 002 009 010 015 010 0405 0.031
CIRCE 005 002 003 000 002 1.141+0.301
Median 004 005 005 006 006 14360359
Power 003 004 004 004 005 2443 = 0496
AKE 019 060 077 070 071 2.900 +0.55]
KNN 082 076 084 081 082 6.603+0.037
CCIT 015 036 037 046 057 5252 +0.006
GCM 005 021 048 045 031 1371 +3.032

Type II Error

RBPT2 056 0.64 072 0.80 0.81 0.265 +0.045
CIRCE 021 052 074 0.66 0.68 1.005=+0.320
Median 0.13 038 0.62 059 0.54 1.206+0.231
Power 0.07 032 053 050 0.37 2461 +0.394

power against any alternative (e.g., GCM, AKE, KNN, KCI), which is consistent with the known
hardness of CI testing [Shah and Peters, 2020, Polo et al., 2023]. Our proposed Power demonstrates
effectiveness, showing slightly higher test power compared to Median when dz = 10 and 30, though
both methods nearly fail when dz increases to 50. The above results highlight the intrinsic challenges
and distinctive nature of CI testing. Unlike unconditional independence testing and other classical
hypothesis testing tasks—for which permutation tests can provide correct calibration under the
null—ClI testing is fundamentally more difficult. Due to the estimation errors involved in conditioning
on potentially high-dimensional variables, no existing CI test can be guaranteed to perform valid
hypothesis testing across arbitrary finite-sample scenarios while simultaneously maintaining correct
control of the significance level and achieving valid test power.

Table 7: Performance on high-dimensional data.
Method dz GCM RBPT2 CIRCE AKE KNN CCIT Median Power

10 0.08 0.25 0.82 0.02 003 0.16 0.06 0.05
TypeI Error 30 0.03 0.28 1.00 0.06 005 0.15 0.03 0.02
50 0.01 0.25 0.99 0.03 005 0.09 0.01 0.01

10 0.50 0.68 0.02 062 090 0.58 0.56 0.47
Type Il Error 30 0.72 0.75 0.00 0.86 091 0.68 0.82 0.79
50 0.83 0.73 0.00 098 09 0.74 0.92 0.91

F.4 Comparison with contginuous optimization-based selection

In this section, we further discuss why, unlike in unconditional independence testing, we do not adopt
continuous optimization or deep kernels for kernel selection for CI testing. Existing methods for
other testing tasks are able to perform kernel parameter selection via continuous optimization, such
as in the two-sample test [Gretton et al., 2012b, Kiibler et al., 2022] or in unconditional independence
testing [Albert et al., 2022, Ren et al., 2024a], and some works have further explored the use of neural
networks to parameterize deep kernels [Liu et al., 2020, Xu et al., 2024]. However, the CI testing
task differs substantially from these settings, as it not only involves sampling variability but also
suffers from model estimation errors. The latter leads to inaccurate gradients of the power-based
criterion with respect to the kernel parameters, which undermines the effectiveness of gradient-based
optimization. This makes continuous optimization unstable or unable to reliably select effective
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kernel parameters, thereby failing to learn optimal kernels or oracle choices for CI testing tasks.
To demonstrate this point, we conduct the following experiment using a two-stage optimization
framework that performs gradient-based continuous kernel parameter tuning for KCI.

Setting. We refer to this two-stage gradient-based method as Grad. In the first stage, the Gaussian
Process model shares the same configuration as in the previous methods. In the second stage, based
on the regression models learned in the first stage, we compute the gradients of the power-based
criterion with respect to the parameters of kx and ky, and perform parameter updates accordingly.
For each iteration of the first-stage regression, one gradient update is performed in the second stage.
The ratio-based criterion (i.e., Eq. 9) is inherently more challenging to optimize due to its nonlinearity
and potential instability. Following the recommendation of [Wang et al., 2023], we reformulate it as a
regularized surrogate objective, which is given by:

J = Clctuw — M1, (55)

where ) is the regularization hyper-parameter and A = 1.

We conduct experiments on synthetic datasets, where the data is generated following Eq. 48. We set
the sample size to N = 500, with the data equally split into training and testing sets. In the second
stage, we update the kernel parameters of kx and ky using the Adam optimizer with a learning rate of
0.01. We choose total iteration counts of epochs = 10 and epochs = 100 to reflect the behavior of the
optimization process at the early stage and after prolonged training, respectively. These two settings
are referred to as Grad-10 and Grad-100, and are compared against Median and Power selection
strategies. The results are summarized in Table 8, where the last row reports the average test time
when dz = 5.

Result. As shown in the results, even with only a small number of updates (Grad-10), the performance
in terms of Type II error already degrades compared to the Median baseline. As the optimization
proceeds further, Grad-100 still fails to select kernel parameters that lead to improved test power.
This suggests that gradient-based methods cannot be directly applied to KCIT for CI testing in the
same way as they are used in other settings. We hypothesize that the estimation error inherent to
CI testing leads to inaccurate gradients, and the resulting optimization difficulties further cause the
procedure to get trapped in poor local minima, preventing it from identifying more effective kernel
parameters than those selected by simple heuristics strategy. Moreover, the substantial time cost
further renders continuous optimization methods impractical for real-world CI testing applications.

Table 8: Comparison of grid search vs. gradient-based approach for different d.
Method dz =1 3 5 7 9  Time (s)

Power 0.04 0.03 0.03 003 0.06 2.267+0.276
Median 0.03 0.04 0.04 0.04 0.05 1.301 +0.186

TypelError - 410 004 006 005 004 006 11.86+ 4136
Grad-100 005 0.04 004 004 004 119.5«828.6
Power 014 0.6 024 032 048 2.286+0.177
Median 022 025 032 052 058 12440174
Type II Error

Grad-10 022 028 034 049 0.68 13.44 +13.83
Grad-100  0.27 031 046 0.61 0.73 126.5+ 1019

F.5 Toy experiments.

In this section, we use a top example to demonstrate how the concatenated ¢(x, z) affects the
regression learning rate. In vector-valued regression, the learning rate is influenced by the smoothness
of the objective function, which is reflected through the parameter 3 (the convergence rate is formally
similar to Theorem 7, but with different assumptions). A larger 8 indicates a smoother objective
function and is also associated with a faster decay rate of the eigenvalues of the objective function.

Setting. We conducted an experiment assuming that the variable Z ~ A/(0, I5), where X = Z15
represents a 5-dimensional vector of ones. We randomly sampled 1000 sets of samples, obtaining the
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corresponding kernel matrices K, and K x . We performed eigenvalue decomposition on K, and
K x 7, and the corresponding eigenvalues \; were computed.

Result. The decay rates of the eigenvalues are shown in Figure 4. The decay rate of the eigenvalues

corresponding to ¢(x, z) is significantly slower than that of ¢(x), which corresponds to a slower
learning rate and a larger estimation bias under the same sample size.
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Figure 4: The eigenvalue decay rates for decomposed vs. non-decomposed regression.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please refer to the last paragraph of Introduction (1).
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the Conclusion and Future Work section, we have outlined the limitations
of our work and proposed directions for future research.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: In the Theory section and Appendix C.3, we present the assumptions necessary
for deriving the convergence rate of our method, along with a complete and rigorous proof.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed parameter settings for the experiments in the Appendix E
and include the code in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Justification: We provide the implementation code in the supplementary material.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details such as dataset splits and parameter settings in the Imple-
mentation Details subsection of the Experiments section, as well as in Appendix E.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Our experimental results include the corresponding error bars.
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the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computational time comparison and the hardware specifications
used in table 1 and further detail them in Appendix E.4.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We affirm that the submission and supplementary materials maintain
anonymity.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This paper aims to advance the fields of conditional independence testing and
causal discovery. While our work may have various societal implications, we do not find
any that require specific emphasis.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: This work does not involve sensitive data, pretrained models, or other compo-
nents that pose a high risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets used in this paper are publicly available, have been properly cited,
and are covered under appropriate licenses (e.g., CC-BY 4.0).

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

36



13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: This submission does not introduce any new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: This study does not involve any human participants, and therefore no potential
participant risks were incurred, no disclosures were necessary, and IRB (or equivalent)
approval was not required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core content of this paper does not rely on the use of LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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