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Abstract

We present a scalable, bottom-up and intrinsically diverse data collection scheme1

that can be used for high-level reasoning with long and medium horizons and that2

has 2.2x higher throughput compared to traditional narrow top-down step-by-step3

collection. We collect realistic data by performing any user requests within the en-4

tirety of 3 office buildings and using multiple embodiments (robot, human, human5

with grasping tool). With this data, we show that models trained on all embodi-6

ments perform better than ones trained on the robot data only, even when evaluated7

solely on robot episodes. We explore the economics of collection costs and find8

that for a fixed budget it is beneficial to take advantage of the cheaper human col-9

lection along with robot collection. We release a large and highly diverse (29,52010

unique instructions) dataset dubbed RoboVQA containing 829,502 (video, text)11

pairs for robotics-focused visual question answering. We also demonstrate how12

evaluating real robot experiments with an intervention mechanism enables per-13

forming tasks to completion, making it deployable with human oversight even14

if imperfect while also providing a single performance metric. We demonstrate15

a single video-conditioned model named RoboVQA-VideoCoCa trained on our16

dataset that is capable of performing a variety of grounded high-level reasoning17

tasks in broad realistic settings with a cognitive intervention rate 46% lower than18

the zero-shot state of the art visual language model (VLM) baseline and is able19

to guide real robots through long-horizon tasks. The performance gap with zero-20

shot state-of-the-art models indicates that a lot of grounded data remains to be21

collected for real-world deployment, emphasizing the critical need for scalable22

data collection approaches. Finally, we show that video VLMs significantly out-23

perform single-image VLMs with an average error rate reduction of 19% across24

all VQA tasks. Thanks to video conditioning and dataset diversity, the model can25

be used as general video value functions (e.g. success and affordance) in situa-26

tions where actions needs to be recognized rather than states, expanding capabil-27

ities and environment understanding for robots. Data and videos are available at28

anonymous-robovqa.github.io29

1 Introduction30

The field of textual high-level reasoning has seen major breakthroughs recently with large language31

models (LLMs) [28, 4], while progress has also been made in visual language models (VLMs) [8],32

high-level reasoning that is grounded in the real world remains a challenging task and critical for33

robotics. Can the state-of-the-art VLMs trained on available multimodal datasets perform grounded34

tasks with high accuracy in the real-world? We aim to answer the question by showing that new35

large scale data collection are still needed to achieve lower error rates outside of lab environments. A36

Submitted to NeurIPS 2023 6th Robot Learning Workshop: Pretraining, Fine-Tuning, and Generalization with
Large Scale Models. Do not distribute.
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<random task>
Q: possible right now? A: no
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Q: satisfied? A: yes

Q: what action is possible right now?
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(free)

<task n>
Q: satisfied? A: no

success
(negative)

Figure 1: Data collection procedure: Given long-horizon user requests, a human operator teleoperates a
robot to fulfill the task. Medium-horizon tasks are then labeled in hindsight via crowd-sourcing, with tem-
poral segmentation and task instruction for each segment. Finally, from a sequence of labeled segments, we
automatically generate 10 types of question/answer pairs.

major difficulty for VLMs stems from the high-dimensionality of the real world which, accordingly37

requiring large amounts of multimodal data (video, language, actions) for training. Hence a major38

contribution of our work is to validate more efficient data collection approaches than the traditional39

top-down step-by-step collection [2], by reducing overheads such as resets and scene preparations40

and leveraging the low costs of human embodiment collection. With a crowd-sourced bottom-up41

approach where long-horizon tasks are decided by real users the resulting medium-horizon steps are42

naturally highly diverse, relevant and on-distribution for users. Not only it is a more efficient way to43

collect medium-horizon steps, we also get long-horizon coherent sequences which can train models44

to perform planning tasks. With a 2.2x throughput increase compared to the traditional method, it45

is preferable to collect data this way even if long-horizon tasks are not needed. While we do collect46

robot actions in this dataset, the focus of this paper is on high-level reasoning tasks, we can hence47

train on embodiments which do not come with motor commands and observe transfer of knowledge48

between embodiments. We find in Sec. 9.3 that for a fixed collection budget, it is beneficial for49

high-level reasoning to jointly with cheaper human embodiment even when evaluating on the robot50

embodiment only.51

Our contributions can be summarized as follows:52

1. We demonstrate a scalable, bottom-up and intrinsically diverse data collection scheme that53

can be used for high-level reasoning with long and medium horizons and that has 2.2x54

higher throughput compared to traditional narrow top-down step-by-step collection and55

show additional cheap human embodiment data improves performance.56

2. We release a large and diverse cross-embodiment dataset of 829,502 (video, text) pairs for57

robotics-focused visual question answering.58

3. We demonstrate a single video-conditioned model trained on the dataset that is capable of59

performing a variety of tasks with higher accuracy than baselines and is able to guide real60

robots through long-horizon tasks.61

4. We establish a robotics VQA benchmark and long-horizon planning benchmark with an62

intervention mechanism on real robots providing a single performance metric and enabling63

performing tasks to completion, making it deployable with human oversight even when64

imperfect.65
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2 Data66

Collection & Dataset: In Fig. 1 we describe the collection process, from user request to VQA67

tasks generation. We collect episodes from any long-horizon tasks within the entirety of 3 office68

buildings and with 3 embodiments (Fig. 3), resulting in 238 hours of video (10 days), 5,246 long-69

horizon episodes and 92,948 medium-horizon episodes. The average long-horizon episode lasts70

102 seconds, the medium-horizon average is 14s. Because evaluation of freeform text answers are71

performed by humans in our experiments, we keep the validation and test sets small on purpose with72

approximately 1,000 VQA entries for each (coming from 50 episodes each). While there can be73

overlap in scenes between training and val/test, there is no overlap in episodes. For more statistics,74

see Sec. 9.2.75

Task diversity: To ensure that our dataset and benchmark do not overfit to a specific environment,76

domain or task, we collect examples over a wide range of tasks compared to more traditional col-77

lections [1] where a fixed and small list of tasks is decided in advance by researchers and engineers78

in a top-down fashion. We opt for a bottom-up approach where a large number of tasks are crowd-79

sourced by users and tele-operators. This favors breadth and a better alignment with a distribution of80

requests coming from real users. This results in high tasks diversity (26,798 unique medium-horizon81

instructions, 2,722 unique long-horizon instructions).82

collection speedup:     x 2.2                x 6.9              x 13.8

Figure 2: Throughput gains compared to the traditional top-down step-by-step collection approach. The
throughput of our long-horizon collection is 2.2x higher for robot collection and 13.8x higher with human
bodies (compared to the robot used in our experiments).

Throughput and costs: Much of the throughput gains reported in Fig. 2 come from collecting83

medium-horizon episodes in a continuous fashion without needing to reset the scene or the robot.84

Note that the hindsight labeling process can be parallelized via crowd-sourcing and does not impact85

the throughput if performed in parallel, however it remains a cost in the collection budget. The VQA86

tasks however are generated for free by taking advantage of the known sequence of past and future87

tasks and positioning the questions in time with respect to different known semantic points (e.g.88

before or after a medium-horizon task was performed).89

Figure 3: Examples of 3 embodiments in the dataset: robot, human (single) arm, human using a grasping tool.

Chain-of-Thought: Decomposing high-level goals into the defined tasks allows for robots to mani-90

fest its thinking process when carrying out long-horizon plans. Moreover, these tasks are provided as91
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Figure 4: VQA Error rates: we evaluate all models on the test set using human raters. We observe that
state-of-the-art methods do not perform well in realistic settings in zero-shot, thus motivating the need for
further scalable data collections. We also observe substantial gains when using video (16 frames) vs image
conditioning.

natural language questions and answers, and can be viewed as a series of Visual Question Answering92

(VQA) steps. This formulation is similar to chain-of-thought for language model prompting [39].93

We also note concurrent work [12] which demonstrates that mimicking step-by-step human thought94

improves planning accuracy.95

3 Models96

3.1 RoboVQA-VideoCoCa97

We train a new model called RoboVQA-VideoCoCa derived from the VideoCoCa model [41],98

which is a video language model extending CoCa [43]. It uses an encoder-decoder architecture com-99

bining contrastive pretraining (like CLIP [31]) as well as generative pretraining (like SimVLM [38])100

between video and text modalities. Unless otherwise stated, we use a VideoCoCa base model of101

383M parameters with the initial checkpoint trained on image-captioning tasks as the original paper102

did, and fine-tune the model on the RoboVQA video-text datasets. We choose a video-conditioned103

model to explore the importance of video in answering the visual questions in our dataset and find104

substantial benefits to video conditioning (see Fig. 17 and 16).105

3.2 Baselines106

To compare with our finetuned model, we consider the following state-of-the-art baselines which107

have similar capabilities in visual question answering and planning for robotics.108

PaLM-E [8] is a visual language model built from pretrained ViT [3] and PaLM [4] LLM models,109

which projects images into the token embedding space of the pretrained LLM. In our experiments110

we test PaLM-E-562B zero-shot, without training on RoboVQA dataset. While not finetuning is not111

a head to head comparison of models, the point of this comparison is establish how well state-of-112

the-art models trained on prior datasets can perform in the real world, and motivate further scalable113

data collection efforts to address the remaining performance gap.114

Planning Methods. We experiment with four baseline planning methods: two of which use115

RoboVQA-VideoCoCa and PaLM-E (zero-shot), as end-to-end planning models. As two other base-116

lines, we adapt the methods of SayCan [1] and Grounded Decoding [14], which use a text-only117

LLM (PaLM [4]) in either phrase-level or token-level decoding guided by a visual affordance func-118

tion (using RoboVQA-VideoCoCa as a video value function for affordance).119

4 Benchmarks120

4.1 VQA Benchmark121

We first evaluate the model performance on individual tasks, where each task consists of a video122

segment and a question. The inference result is compared using exact match against prior human123
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Cognitive Model Physical Model Multi-turn Long-Horizon Planning Intervention Rate

Evaluation #1: pre-recorded

44.0%

Evaluation #2: live real-world

47.67%

Evaluation #3: fully autonomous

Training Inference (policy) Total (per episode average)
Model procedure Size time # frames # tasks # steps domain bodies cognitive physical average

100 long-horizon multi-turn planning tasks on  videos (robot and human embodiments)
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only &
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Affordance
Model

540B

150h+
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1
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video 100 854 Broad

Robot
&
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(50/50%)

98.8%
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Decoding /
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~10s
(8

affordances)
1 95.5%

PaLM-E

(Zero-Shot)
Finetuned on

SayCan/
Fractal

12B 1s 1 81.4%

RoboVQA-
VideoCoCa
(ours)

Finetuned on
RoboVQA 383M 1s 16

 10 long-horizon multi-turn planning tasks in a  setting, with human teleoperation as policy

PaLM-E

(Zero-Shot)
Finetuned on

SayCan/
Fractal

12B 1s 1
Live

human teleop. 10 ~60 Broad Robot

78.2%
± 7.6%

RoboVQA-
VideoCoCa
(ours)

Finetuned on
RoboVQA 383M 1s 16 ± 9.1%

1 long-horizon multi-turn planning tasks in a live real-world setting with a policy X for control ( )
RoboVQA-
VideoCoCa
(ours)

Finetuned on
RoboVQA 383M 1s 16 policy X 1 5 Narrow

/ Easy Robot 40.0% 0%
(easy tasks) 20.0%

100%
(teleop.)

99.4%

97.8%

90.7%

72.0%

100%
(teleop.)

92.8%

73.8%

Figure 5: Planning benchmarks with Intervention: evaluation #1 evaluates 854 planning steps on long-
horizon episodes from RoboVQA dataset, evaluation #2 is performed live on a robot teleoperated by a human,
while evaluation #3 is controlled end-to-end by our model and a policy. Note that thanks to human intervention
in the loop, all tasks are performed to completion even when the model makes mistakes.

evaluation results stored in a central database as correct/incorrect for the video-question pair. The124

inference results for which no match is found are then collected for human raters to evaluate. During125

evaluation, a human rater is presented with the exact video segment and question as presented to the126

model. The rater is asked to either mark the model-generated answer as correct or incorrect, in127

which case the rater can propose a correct answer. All answers are added to the database, with the128

correctness of each answer marked accordingly.129

We report the error rate for all models in Fig. 4 and find that there remains a substantial gap in130

performance for zero-shot state-of-the-art models compared to the finetuned model. While this is131

not too surprising, it is a valid question to ask when seeing good qualitative results by recent VLMs.132

Here we quantitatively prove that further scalable data collection efforts are required when deploying133

in the real world. In this graph we also make the case for video conditioning over image conditioning134

by presenting substantial gains with the former.135

4.2 Planning Benchmark with Intervention136

Intervention: In Fig. 5, we propose 3 different evaluations of long-horizon planning. Each evalua-137

tion is measured by intervention rate, which we further decompose into cognitive for the high-level138

text domain and physical for the low-level motor command domain. However all progress can be139

measured with the single intervention rate which averages the cognitive and physical rates. This140

distinction is useful when physical actions are teleoperated (100% physical intervention) to decou-141

ple high-level evaluations from low-level ones. Because the RoboVQA dataset is very broad and142

diverse, we need an evaluation procedure that can test that entire breadth. Current low-level policies143

however tend to only perform in very narrow domains, this decoupling thus allows us to test the full144

breadth of tasks in evaluations #1 and #2. See Fig. 6 for an example of cognitive intervention in the145

chat window between the user, the model and the intervention operator.146

Offline Video Results: In evaluation #1, we run models on 100 long-horizon episodes (robot and147

human embodiments) from the RoboVQA dataset which amounts to 854 planning steps in total.148

Models are given the long-horizon instruction and need to output medium-horizon plans, which149

are graded by humans. Note that the SayCan and Grounded Decoding baselines have slow inference150

time which makes them impractical to run in a live settings (hence not showing in other evaluations).151

Similarly, the inference time of the PaLM-E 562B model is too slow for real time ( 30s), so we use152

a smaller version here. Note that despite being is 30x smaller, our model outperforms the state-of-153

the-art model by 46%.154

5



Live Real-world Results: In evaluation #2, the high-level models are given a long-horizon in-155

struction and provide medium-horizon plans in real time to a real robot teleoperated by a human.156

In evaluation #3, a policy is deployed instead of a human teleoperator, but the domain is a lot157

narrower given the limited abilities of the policy. See videos of these evaluations at anonymous-158

robovqa.github.io. While with evaluation #3 we can obtain a much lower intervention rate thanks159

to the policy deployment, the domain is a lot narrower and emphasizes the need for a decoupled160

evaluation for high-level reasoning in broad domains.161

Figure 6: Example of grounded chat with cognitive intervention. Our model ”Brain” is tasked with the
following task at the beginning of the chat: ”take the bag and cap on the desk and hang them on the coat
rack” in this case. The bottom of the chat shows the most recent messages. The model is ran on an existing
long-horizon video from the RoboVQA dataset and produces medium-horizon plans to fulfill the long-horizon
request. An operator is in the chatroom and validates each plan or provides a correction if incorrect. The user is
also able to ask questions at any point in time. Here we see that the operator intervened and the system reported
a cognitive intervention rate of 12.5% at this point of the episode.

5 Analysis162

5.1 Task Augmentation Matters163

In Fig. 7 we trained models on different following set of tasks: planning only, context-planning only,164

planning + success + affordance, context-planning + success + affordance, or all tasks. Note that165

when comparing planning vs. all tasks, the model trained on planning only sees 38M examples of166

planning task, while the one trained on all tasks sees roughly 1/8 the number of samples for the167

planning task. We find that the model trained on all tasks is often better of comparable than the168

models dedicated to a subset of tasks, with the exception of the success task. For example training169

on all tasks leads to better planning (70.9% error) compared to training on planning only (77.2%170

error). From a collection cost perspective, it is interesting to note that despite coming from the exact171

same set of instructions, the free tasks augmentation yields better results at no extra cost, hence task172

augmentation matters for performance and collection scalability.173

5.2 Tasks Transfer via Cross-Embodiment Data174

In Fig. 14, we compare error rates on the test split using RoboVQA-VideoCoCa trained on robot175

embodiment only, human embodiment only, and their combination. The test set contains only robot176

embodiment data. Despite cross-embodiment, we find that errors are below 100% for all tasks when177

training on human data only, indicating human data by itself is useful to acquire a grounded under-178

standing of videos with robot embodiment. Furthermore, training on both embodiments performs179

better than training on robot data only, indicating that extra data with human embodiment does not180

hurt performance when evaluating on the robot embodiment. We use [1] as a baseline, which uses181

a small, fixed list of 60 tasks and can only be evaluated on the planning task. We also provide the182

affordance answers from RoboVQA as affordance function to SayCan for planning. Similarly, we183

evaluate on the joint human and robot test split in Fig. 15. While it is not surprising that training on184

both embodiments performs best on the robot+human test set, we also shows it is the most general185

model as it performs better in all situations. More analysis is available in Sec. 9.3.186
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Figure 7: Error rates for models trained with different sets of tasks. Each model is trained and evaluated
on the (robot + human) dataset, but using different subsets of tasks. We find that training on all tasks leads to
better planning (70.9% error) compared to training on planning only (77.2% error).

5.3 Importance of Video modeling187

We investigate performance gains from video by training our model with (1, 2, 4, 8, 16) frames in188

16 and find substantial error reductions in Fig. 17 between 1 and 16 frames. As expected, modeling189

with more frames yields better results, as it captures longer temporal dynamics for more accurate190

visual grounding.191

5.4 Video Value-Functions192

We evaluate our model as a general grounded value-function from video and observe that it can193

provide stable binary detections as shown in Fig. 8. Moreover, when filtering by the confidence of the194

yes/no tokens, we can further improve the accuracy of the success detection. These value functions195

can be used for closed-loop planning to know when a step is performed. Additionally, thanks to the196

dataset breadth and to video conditioning, the value functions can give richer understanding than197

traditional image-based success or affordance detectors.198

6 Related Work199

Vision-Language Models. Recently many methods [31, 16, 18, 43, 38, 11, 3] have been proposed200

that aim to train vision-language models (VLMs) on large-scale image-text pair datasets. We find201

the features learned by these methods generalize to robotic datasets. In this work, we also fine-tune202

a pre-trained vision language model called VideoCoCa [41] on conversation data grounded in long-203

horizon videos. The advantage of this VLM is that it is the encoder can consume full videos which204

helps in fine-grained temporal reasoning required to solve the tasks introduced in the RoboVQA205

benchmark.206
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Figure 8: RoboVQA-VideoCoCa used for video success detection. In blue are the raw answers to the
question ”put purple marker on the table Q: satisfied? A:”, the confidence is shown in red and the answer filted
by confidence is shown in green.

Video Captioning. Our task is closely related to the task of video captioning [37, 9, 30, 22, 19]207

which is a well studied problem in computer vision. In fact, we fine-tune a pre-trained video-208

captioning model VideoCoCa on these long-horizon videos. Different from the video captioning209

problem, all the videos in our fine-tuning dataset are egocentric. Also, we collect segment labels for210

a long-horizon task executed by either a robot or human. Furthermore, we augment these segments211

with a variety of question-answer pairs that add more supervision to the model so that an agent can212

execute long-horizon tasks.213

Video Datasets with Text Annotations. Recently many large-scale video datasets have been intro-214

duced [7, 33, 17, 44, 26, 42, 40, 10] that include videos of humans performing tasks with text nar-215

rations or question-answer annotations. Ego4D is the most similar dataset to the RoboVQA dataset216

because Ego4D also has egocentric view of daily human activities annotated with dense narrations.217

However, our dataset differs in two key aspects. First, we collect human and robot interactions in218

the same environment. Second, our focus is on tasks that a robot is capable of doing. We hope219

that by lowering the domain gap between the human and robot videos we can achieve more transfer220

from human videos (which are faster to collect) to robot videos. [25] also explores scalable ways to221

collect language data with unstructured play [23], however they rely on an LLM requiring a prompt222

with a scene description that matches the environment’s state and is limited to 25 medium-horizon223

instructions. Like RoboVQA, TEACh[29] is another dataset that also contains interactive dialogues224

required to solve household tasks. However, TEACh consists of data in simulated environments225

while our dataset is collected in real kitchen and office environments with both humans and robots.226

Language Models for Planning. [13] used a large language model (LLM) to produce plans for227

robotic tasks. This has been followed up by many works that also use LLMs to produce feasible228

next steps for a robot [1, 8, 35, 34, 21]. One advantage of using LLMs to plan is that the output of229

these models can be used as input to language-conditioned policies [15, 2, 24] that may have been230

trained independently.231

Intervention Rate. Intervention Rate is a commonly used evaluation metric [36, 27, 32] in robotics232

and self-driving car literature for measuring the performance of policies. In this work, we use it233

as a metric and as a mean to perform all tasks to completion, a necessary condition for real-world234

deployment.235

Chain of Thought Prompting. [20, 5, 39] use the idea of prompting a language model with the236

process or steps to perform a reasoning task. The authors observe that prompting allows the model237

to improve performance on symbolic reasoning tasks like algebraic problems. Inspired by those238
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results, we also provide rationale or thought supervision to the model by providing the sub-tasks as239

hindsight labels for successfully achieving the long-horizon task.240

7 Limitations241

Some long-horizon episodes may be too repetitive and easy, thus we have filtered out episodes242

with more than 5 identical medium-horizon steps. Subsequently we observed gains in general-243

ization. Additionally we have not compared the effectiveness of the proposed human-and-robot244

dataset/benchmark with human-only dataset/benchmarks like Ego4D [10], EpicKitchens [6] etc.,245

which merit careful study in our future work.246

8 Conclusion247

We have shown a long-horizon collection approach with higher throughput and high diversity and248

breadth and released the resulting dataset for the benefit of the robotics community. We have demon-249

strated on real robots a number of capabilities learned with this dataset and established planning250

benchmarks with intervention as a metric and as a means for deployment.251
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and Leslie Pack Kaelbling. PDDL planning with pretrained large language models. In376

NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022. URL https:377

//openreview.net/forum?id=1QMMUB4zfl.378

[35] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.379

Llm-planner: Few-shot grounded planning for embodied agents with large language models.380

arXiv preprint arXiv:2212.04088, 2022.381

[36] Aaron Steinfeld, Terrence Fong, David Kaber, Michael Lewis, Jean Scholtz, Alan Schultz, and382

Michael Goodrich. Common metrics for human-robot interaction. In Proceedings of the 1st383

ACM SIGCHI/SIGART conference on Human-robot interaction, pages 33–40, 2006.384

[37] Xin Wang, Wenhu Chen, Jiawei Wu, Yuan-Fang Wang, and William Yang Wang. Video cap-385

tioning via hierarchical reinforcement learning. In Proceedings of the IEEE conference on386

computer vision and pattern recognition, pages 4213–4222, 2018.387

[38] Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvlm:388

Simple visual language model pretraining with weak supervision, 2022.389

[39] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,390

Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language391

models, 2023.392

[40] Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-393

answering to explaining temporal actions. In Proceedings of the IEEE/CVF Conference on394

Computer Vision and Pattern Recognition (CVPR), pages 9777–9786, June 2021.395

[41] Shen Yan, Tao Zhu, Zirui Wang, Yuan Cao, Mi Zhang, Soham Ghosh, Yonghui Wu, and Jiahui396

Yu. Videococa: Video-text modeling with zero-shot transfer from contrastive captioners, 2023.397

[42] Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and Cordelia Schmid. Just ask: Learn-398

ing to answer questions from millions of narrated videos. In Proceedings of the IEEE/CVF399

International Conference on Computer Vision, pages 1686–1697, 2021.400

[43] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui401

Wu. Coca: Contrastive captioners are image-text foundation models, 2022.402

[44] Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yueting Zhuang, and Dacheng Tao.403

Activitynet-qa: A dataset for understanding complex web videos via question answering. In404

AAAI, pages 9127–9134, 2019.405

12

https://openreview.net/forum?id=1QMMUB4zfl
https://openreview.net/forum?id=1QMMUB4zfl
https://openreview.net/forum?id=1QMMUB4zfl


9 Appendix406

9.1 Random frames from training set407

Figure 9: Random frames from training set.
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9.2 Dataset Statistics408

As reported in Fig. 10, the entire dataset is a collection of 5246 long-horizon episodes (5046 for409

training and 100 for validation). Each episode has 1 long-horizon instruction and a varying number410

of medium horizon instructions that are temporally segmented. There are 2638 unique long-horizon411

instructions in the training set. Each unique long-horizon instruction has an average of 2.01 episodes412

collected, median is 1 and maximum is 90. See Fig. 11 for the number of training episodes per413

long-horizon instruction. In Fig. 12 we show the number of training episodes that have the same414

long-horizon instruction as a test episode. We find that 46% of the test episodes do not have a415

long-horizon match in the training set. We show random frames from the training set in Fig. 9 and416

random long and short horizon instructions from the training set in 9.4. We also provide extensive417

analysis of the language found in the training set in 9.5 by automatically breaking down short-418

horizon instructions by categories (objects, actions, locations and attributes) using an LLM. This419

analysis found 2862 objects (e.g. ”tissue box”, ”purple color plate”), 680 skills or verbs (e.g. ”add420

something into something” or ”go out of a room”), 3322 locations or spatial relations (e.g. ”in the421

green plate”, ”left trash can”) and 901 attributes (e.g. shapes, color). Note that these numbers are422

only indicative as some objects can be redundantly described for example, see 9.5 for more details.423

9.3 Comparing Embodiment Mixtures424

Robot collection throughput will often be a factor of the cost including time, money, tele-operator425

training and availability, hardware maintenance etc., while humans are already expert of their own426

embodiment, collecting data with much less cost and cycle than robots. When factoring in all of427

these parameters into a collection budget, we can see that robot-to-human collection cost ratios and428

throughputs can vary wildly depending on all of these parameters. It is hence a critical question429

while scaling up data collection to know which data mixture for a given budget leads to the lowest430

error rates.431

We explore this question in Fig. 13 by looking at the data yields for a fixed collection budget of432

500,000 VQA conversations, and report the performance for different configurations in Figure 13-b433

to analyze the trade-offs between different mixtures. We find that even if the robot-human ratio is434

1.0 and only evaluating on the robot test set, the error rate is comparable when training on the equal435

robot250k-human250k mixture (62.4%) compared to the full 500k robot dataset (62.7%), while also436

being significantly lower on the human test set (53.9% vs 67.0%). Not only there is no downside437

for the robot performance to mix human data, it also makes the model more general and usable for438

other applications that require human embodiment understanding.439

Similarly we find that when the robot-human cost ratio is 4.0, the performance of the mixed dataset440

(robot-62k + human-250k) on the robot test set is similar to the robot-only 125k dataset (65.3% vs441

63.5%) while also being significantly lower on the human test set (51.1% vs 68.7%). We also observe442

that the performance gains seem rather small when training on 500k robot samples vs 125k, and that443

performance on human data degrades slightly when increasing robot data from 62k to 250k. We444

conclude that this analysis validates the common intuition that human data collection is an efficient445

way to scale up data collection for robots, despite the embodiment differences.446

9.4 Instructions Samples447

We print 50 random instructions from the training set for both long-horizon and short-horizon below448

to get a sense of what the data looks like.449

50 long-horizon instructions:450

• please place all of the highlighters into the pen holder451

• please clean up the spill and put cup back on mouse pad452

• Please flip the bowls and pickup the yellow, pink and green candies from the floor and place453

them in bowls. Then restock the chips into the bin.454

• please grab a small bin from the cart, place it on the table, put the red pens on the table in455

it, then put it back on the supply cart456

• empty the chips onto the counter457
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Entire dataset Training set Validation set

% of data

VQA tasks (8 types)
# (video, text) pairs 829,502 - 798,429 18,248

Long-horizon instructions
# instructions 5,246 - 5,046 100
# unique instructions 2,722 - 2,638 94
average length 163.4s (2m 7s) - 163.6s 161.0s

Medium-horizon instructions
# instructions 92,948 - 89,227 1,850
# unique instructions 26,798 - 25,880 885
average length 14.2s - 14.2s 13.5s

Episodes
# episodes 5,246 100.0% 5,046 100
# robot episodes 2,350 44.8% 2,274 41
# human episodes 2,896 55.2% 2,772 59

total duration 238.0 hours
(~10 days) - 229.3 hours

(~10 days) 4.5 hours

average # medium-horizon steps per
episode with low overlap (<.5) 9.5 - 9.5 10.0

Locations (# long-horizon episodes)
Building 1 3,190 60.8% 3,078 58
Building 2 1,507 28.7% 1,442 32
Building 3 485 9.2% 464 10
Unkown building 64 1.2% 62 0

Language analysis (approximate)
# unique objects 2862 - 2773 254
# unique verbs 680 - 671 115
# unique locations 3322 - 3199 220
# unique attributes 901 - 861 108

Robot data
# long-horizon instructions 2350 - 2274 41
# medium-horizon instructions 61153 - 58916 1140
# unique long-horizon instructions 1214 - 1181 37
# unique medium-horizon instructions 19448 - 18772 597
total duration 185.3 hours

Human data
# long-horizon instructions 2896 - 2772 59
# medium-horizon instructions 31795 - 30311 710
# unique long-horizon instructions 1551 - 1499 57
# unique medium-horizon instructions 8786 - 8499 300
total duration 52.7 hours

Figure 10: Dataset statistics.

• Please flip the bowls and pickup the yellow, pink and green candies from the floor and place458

them in bowls. Then place the tongs into the bins.459
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Figure 11: Number of training episodes per unique instruction: the maximum number of episodes for a unique
long-horizon instruction is 90, the average 2.01 and the median is 1. There are 3894 training episodes which
yield 1939 unique long-horizon instructions.

• Please flip the bowls and pickup the yellow, pink and green candies from the floor and place460

them in bowls. Then pick up the tongs from floor and place in bins.461

• please clean up the pistachios spill on desk462

• I am feeling a little sick, can you please get me a covid test in the cabinet at the end of the463

building, as well as return it back onto my desk.464

• put fruit on the bookshelf465

• fill the bowl with apples466

• prepare a cup of coffee with the espresso machine.467

• place candies into middle bowl and blue chip bag in left bowl468

• place items from counter to bin469

• I don’t want the water anymore. Can you pour the water into the sink and then throw the470

cup away471

• move items from table to cart472

• can you take the wireless mouse box out of the filing cabinet and put it on top of the table473

for me474

• I am done using the room can you turn off all the lamps.475

• Tidy up the mk table by straightening out the fruit labels, lining up the utensil holders and476

straightening the honey bottle platform477

• there is rubbish on the table, please throw them away into the correct places in the disposal478

bins on the floor by the door479

• i’m done writing in my notebook, please close it up and return the pen to the pen holder480

• please bring my green shopping bag from the coat rack to the table481

• separate the toys and microfiber cloths into different baskets.482
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Figure 12: Number of training episodes that have the same long-horizon instruction as a test episode. Test
episodes were sampled randomly and hence follow a similar distribution as observed in Fig. 11. Among the 43
episodes in the test set, we find that 23 of them have at least one episode with the same long-horizon instruction
in the training set. For 20 of them (46% of the test set), the long-horizon instruction is not present in the training
set.

• please remove the chips from the bowl and place them in the top draw.483

• I am done drinking the coffee can you throw it in a trash can and get me some laffy taffy484

from MK kitchen to my desk.485

• please put the sugar packets in the tray486

• Can you refill my water cup and replace the cap and straw?487

• Restock the Numi tea boxes into the correct places488

• put the chips in the bin.489

• put all the snacks in the tray.490

• move the mouse box from the Whitney conference room to the dining booth491

• Please place the cookie squares into the tray.492

• please stock caddy for phone room493

• pick the apple out of the jar and take it to phone room 2a3494

• place only the green pears in the bowl495

• Restock the ice packs and bandage rolls496

• put all the screwdrivers in the cup497

• please get the colored plastic cups from the top drawer and put them on the countertop498

• empty bin onto the table499

• open locker 17. then bring bag of chips from desk 2p2a to locker. close locker 17.500

• throw away the cocunut water501

• Put the red pens in the cup and bring them to a table in the mk, then bring the large postit502

notes to the table also503
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robot cost = 1x human cost

(a)

(b)

Reference budget for 
other mixtures on the right

robot cost = 2x human cost robot cost = 4x human cost

125k 62k + 250k500k 250k + 250k

robot cost = 8x human cost

Figure 13: Possible embodiment mixtures for a fixed collection budget. This graph illustrates the possible
trade-offs in total amounts of VQA samples collected for a fixed collecting budget and depending on the col-
lection cost ratios between robot and human embodiments. In (a) we simulate different cost ratios by reducing
the dataset size of the robot-embodiment dataset while keeping an equal budget for each embodiment. We
calibrate this graph with a reference fixed budget that can produce approximately 500,000 VQA conversations
at human collection cost. In (b) we report the error rates of each mixture (average error rate over all tasks). We
find that mixing embodiments is overall beneficial even when the collection costs are the same and even when
evaluating on the robot embodiment data only.
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Figure 14: Error rates on robot-only test set, comparing models trained on robot only, human only or both
embodiments. We observed that while it is not trained on robot data, the model trained on human data still
performs with less than 100% error. We also find that the cross-embodiment training is beneficial even when
evaluated on robot data only.

• make a virtal line of the plants and sort them by hight504

• please pick up the trash on the table and throw it away into the compost505

• bring a usb c charger from the bookshelf to the desk in the whitney room506

• take out duck from plate on counter in a group507

• put duck into the basket508

• i’m finished with this hint water, please go recycle it in the micro kitchen for me and then509

bring me back a bag of lesser evil popcorn, cheese flavor510

• Please flips the bowls then seperate the green, yellow and pink candy. Then remove the511

tongs and the forks from bins and place them on table.512

• put the fruits in the basket513
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Figure 15: Error rates on robot+human test set. While it is expected that the model trained on both embodi-
ments performs best, this graph illustrates that this model has the most breadth in capabilities and embodiments.
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Figure 16: Error rates for video model trained with different number of frames. The model is trained on
875k samples (robot + human) and evaluated on the (robot + human) test set. We find that 16 frames yields the
best results.

50 medium-horizon instructions:514

• Touch the green bag515

• go away from the table516

• Grab the tissue517

• place the banana into the small bowl518

• drop the cups on the table519

• place strawberry hint water bottle in the tray520

• place green marker in the cup521

• Drop the green candy packet in the container522

• Place the black book on the table523

• Pick the bag on the table524

• Arrange the white packet in tray525

• open the cap of jar526

• place the yellow packet in glass527

• Put the tilted cup up right on the table528

• Release the orange marker into the left holder529
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• Turn to the right530

• drop yellow candy into the left bowl531

• place the cup backward532

• drop the blue pen on a table533

• open the white box534

• Put orange bowl in the box535

• place tissue in the tray536

• Put the banana on the white table537

• move away from the rack538

• place 2 pistachio in the vessel539

• move away from the hanger540

• Place the square symbol in the baby pink box541

• Move your arm towards the right chair542

• place the lead on the glass543

• Put the paper bag in the black container544

• put paper clip in the rectangular stand545

• move to the orange packet546

• throw the tissue paper in dustbin547

• Place the red pen on the table548

• move towards the apple549

• Move away from the hint bottle550

• Go to the right side chair551

• Place the left indoor plant on the table552

• draw R on board553

• put sugar packets in the container554

• Place the 2 red packets on the table555

• move to the orange cable on the table556

• Drop the white pebble in the transparent glass557
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• drop the black container in the box558

• Draw a diagonal line from left559

• place the black cart to the corner560

• Put blue cup on the table561

• drop the apple on the floor562

• Place the red can in fridge563

• pick the sanitizer564

21



9.5 Dataset Language Statistics Analysis by LLM565

We use an LLM to extract different attributes from each short-horizon instruction from the training566

set and find:567

• 1795 objects, e.g. ”tissue box”, ”purple color plate”.568

• 494 actions, e.g. ”add something into something”, ”go out of a room”.569

• 2064 locations, e.g. ”in the green plate”, ”left trash can”.570

• 462 attributes, e.g. shapes, color.571

Note that no clustering is performed and these lists contain redundant descriptions for each cate-572

gories, the counts above are not meant to represent unique instances. In subsequent sections we573

display the full lists for each category above along with their parent categories inferred by the LLM.574
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