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ABSTRACT

We present GIFT: a Gradient-aware Immunization technique to defend diffusion
models against malicious Fine-Tuning while preserving their ability to generate
safe content. Existing safety methods, such as safety checkers, are easily by-
passed, and concept erasure methods fail under adversarial fine-tuning. GIFT
addresses this by framing immunization as a bi-level optimization problem: the
upper-level objective degrades the model’s ability to represent malicious concepts
using representation noising and maximization, while the lower-level objective
preserves performance on safe data. GIFT achieves robust resistance to mali-
cious fine-tuning while maintaining safe utility. Experimental results show that
GIFT significantly impairs the model’s ability to re-learn malicious concepts while
maintaining performance on safe content, offering a promising direction for creat-
ing inherently safer generative models resistant to adversarial fine-tuning attacks.
Warning: This paper contains NSFW content. Reader discretion is advised.

1 INTRODUCTION

Text-to-image (T2I) models have emerged as powerful generative tools capable of producing high-
quality images faithful to input prompts (Rombach et al., 2022; Podell et al., 2023; Imagen-Team-
Google et al., 2024; Ramesh et al., 2021). However, their accessibility and adaptability make them
vulnerable to malicious fine-tuning, where adversaries adapt pre-trained models to generate harmful
or copyrighted content. Methods like DreamBooth (Ruiz et al., 2023), LoRA (Hu et al., 2022) , and
Textual Inversion (Gal et al., 2023) enable this adaptation with minimal resources and without need-
ing to train from scratch. This vulnerability persists even when existing safety mechanisms, such as
safety checkers (Rando et al., 2022) or concept erasure methods (Gandikota et al., 2023; 2024; Gong
et al., 2024), are in place, as they can be bypassed (Yang et al., 2024; Zhang et al., 2024b; Gao et al.,
2024), disabled, or undone through lightweight adaptation techniques. This creates a significant
risk: once a model is open-sourced, it becomes difficult to guarantee its continued alignment with
safety goals. Current defenses either degrade the model’s generative capabilities or fail to withstand
adversarial fine-tuning.

While safety checkers and licensing agreements offer a first line of defense (CompVis, 2022), they
are not an inherent property of T2I models and are easily circumvented (Rando et al., 2022). To
enhance the inherent safety of T2I models, concept erasure techniques have been proposed to remove
undesirable concepts by modifying the model’s internal representations. Although such techniques
can suppress the generation of undesired concepts, they are vulnerable to circumvention (Pham
et al., 2024; Zhang et al., 2024b). Moreover, as we show in our experiments, simple fine-tuning
can reintroduce the erased concepts, undermining the long-term effectiveness of concept erasure
methods as a safety mechanism.

To address the limitations of concept erasure and defend against its circumvention, model immu-
nization has been proposed as a proactive defense against malicious fine-tuning of T2I models.
IMMA (Zheng & Yeh, 2024), for example, introduces a bi-level optimization approach inspired
by MAML (Finn et al., 2017), aiming to learn poor model initializations that hinder adaptation to
undesirable concepts. By simulating the fine-tuning process, IMMA makes it more difficult for
adversaries to reintroduce malicious content through fine-tuning. However, IMMA’s framework sig-
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nificantly compromises the model’s performance on safe concepts, degrading both its generative
quality and its ability to be fine-tuned for safe applications as we will show in our experiments.

To this end, we propose GIFT—a Gradient-aware Immunization framework to defend T2I diffu-
sion models against malicious Fine-Tuning while preserving their ability to generate safe content.
Inspired by IMMA (Zheng & Yeh, 2024) and MAML (Finn et al., 2017), we formulate GIFT as a bi-
level optimization problem: the lower-level task minimizes a prior preservation objective to retain
performance on safe concepts, while the upper-level task minimizes an immunization objective that
prevents adaptation to malicious concepts. The immunization objective is composed of two parts:
(1) a loss maximization term and (2) a representation noising term Rosati et al. (2024).

We demonstrate that immunizing a model with GIFT significantly impairs its ability to re-learn
malicious content while maintaining generative ability across a wide range of safe concepts. Our
evaluation covers several concept categories which are treated in turn as malicious—including ob-
jects, art styles, and NSFW content—and considers multiple fine-tuning strategies, e.g., LoRA and
DreamBooth. Our main contributions are:

• We propose GIFT, a novel framework that immunizes text-to-image diffusion models
against malicious fine-tuning while preserving their generative utility on safe concepts.

• We formulate immunization as a bi-level optimization problem where the lower-level task
uses a prior preservation loss to maintain generation quality on safe concepts, and the upper-
level task employs an immunization loss to resist adaptation to malicious ones.

• We conduct extensive experiments across diverse concept types (objects, art styles, and
NSFW content), demonstrating that GIFT outperforms existing baselines (ESD, IMMA) in
resisting malicious fine-tuning while preserving safe model utility.

2 RELATED WORK

The advancements of text-to-image (T2I) generative models, such as Stable Diffusion (Rombach
et al., 2022), have democratized content creation but have also introduced significant risks associated
with their misuse. A key concern is the vulnerability of these models to malicious fine-tuning, where
bad actors can adapt pre-trained models to generate harmful, copyrighted, or otherwise undesirable
content, prompting growing interest in developing safeguards for T2I models.

Existing methods to mitigate these risks can be broadly categorized. One line of work focuses
on concept erasure, aiming to remove specific concepts from a pre-trained model. Erased Stable
Diffusion (ESD) (Gandikota et al., 2023) fine-tunes model weights using textual descriptions of the
undesired concept to prevent the model from generating it. Other methods explore unlearning by
modifying specific model components like the text encoder or attention layers (Kumari et al., 2023a;
Zhang et al., 2024a), sometimes using few-shot unlearning techniques (Wu et al., 2025), by adding
lightweight eraser modules (Gong et al., 2024), or through data unlearning (Alberti et al., 2025).

While effective at removal, some erasure techniques can be circumvented by further fine-
tuning (Pham et al., 2024), as the underlying knowledge might not be entirely eliminated or can
be easily relearned (Zhou et al., 2024; Zhang et al., 2024b). Additionally, a significant challenge is
preserving the model’s utility on unrelated concepts, as aggressive erasure can lead to “catastrophic
forgetting” of desired knowledge (Tian et al., 2024; Xu et al., 2023). Some recent works attempt
to address this by focusing on concept-localized regularization or mitigating conflicting gradients
during unlearning (Patel & Qiu, 2025; Wu et al., 2025).

Another paradigm is model immunization, which seeks to make the model inherently resistant
to adaptation towards malicious concepts before it is released. IMMA (Immunizing text-to-image
Models against Malicious Adaptation) (Zheng & Yeh, 2024) proposes learning model parameters
that are difficult for adaptation methods to fine-tune on malicious content, framed as a bi-level
optimization problem. While IMMA demonstrates effectiveness against various adaptation methods
like LoRA (Hu et al., 2022), Textual Inversion (Gal et al., 2023), and DreamBooth (Ruiz et al.,
2023), it can be overly aggressive, potentially degrading the model’s performance on safe, unrelated
concepts. Other defense strategies include methods akin to data poisoning (e.g., Glaze (Shan et al.,
2023), which protects artistic styles from mimicry).
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Other defense approaches focus on safe decoding or generation, often by modifying the diffusion
process (Schramowski et al., 2023) or employing external classifiers and adaptive guards to filter
outputs (Yoon et al., 2025; Wang et al., 2024). However, these can sometimes be bypassed by users
with white-box access to the model or through carefully crafted adversarial prompts and jailbreaking
methods (Rando et al., 2022; Yang et al., 2024; Gao et al., 2024; Liu et al., 2024b).

Techniques from the Large Language Model (LLM) domain are also being explored and adapted.
Representation Noising (RepNoise) (Rosati et al., 2024), for instance, has been proposed as a de-
fense mechanism against malicious fine-tuning in LLMs by removing information about represen-
tations of malicious concepts across model layers, making them difficult to recover. GIFT draws
inspiration from this by adapting representation noising to T2I models.

Unlike some erasure methods that can be easily circumvented (Pham et al., 2024; Zhang et al.,
2024b), and in contrast to immunization methods like IMMA (Zheng & Yeh, 2024) that may severely
degrade general utility, GIFT aims for a better trade-off. GIFT’s bi-level formulation helps to prevent
the immunization objective from detrimentally affecting the prior preservation objective.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Our goal is to prevent adaptation methods from reintroducing malicious concepts into a pre-trained
T2I diffusion model. We formulate this as a bi-level optimization problem with two objectives:
(1) immunization against malicious concepts and (2) preservation of model performance on safe
ones. We define “malicious” and “safe” concepts in a highly context-dependent way. A “malicious”
concept is simply any concept that we wish to prevent the model from generating, while a “safe”
concept refers to any other concept in that scenario. As an example, while images of some particular
stuffed animal are ordinarily safe, the company producing that product may not want people to
generate images of their product for reasons of copyright or repute.

Let θ represent the U-Net parameters of a pre-trained T2I model (e.g., Stable Diffusion (Rombach
et al., 2022)), and ψ ⊂ θ denote the subset of parameters corresponding to cross-attention layers. Let
(xm, cm) ∈ DM and (xs, cs) ∈ DS denote image–text pairs from the malicious and safe datasets,
respectively. We aim to derive an immunized model θI that resists adaptation to malicious concepts
under any subsequent fine-tuning while maintaining its ability to learn/generate safe concepts.

3.2 BI-LEVEL OPTIMIZATION FRAMEWORK

The authors of IMMA (Zheng & Yeh, 2024) employ a meta-learning algorithm inspired by MAML
(Finn et al., 2017) to immunize T2I models. They simulate malicious adaptation steps by minimizing
the adaptation loss in the lower-level task, while maximizing the same loss in the upper-level task
to achieve immunization. We employ a bi-level optimization framework to immunize a T2I model
against malicious concepts while retaining performance on safe data. We define the upper-level task
as the immunization objective over DM and the lower-level task as the prior preservation objective
over DS . We show our algorithm at 1.

To perform optimization, we compute parameters θ∗ via a gradient step using the lower-level task
on DS , followed by an optimization step of said parameters using the upper-level task on DM . We
formulate this as the following bi-level optimization problem:

ψI = argmin
ψ⊂θ∗

Limmunize(xm, cm; θ∗)︸ ︷︷ ︸
upper-level task

where θ∗ = argmin
θ
Lprior(xs, cs; θ)︸ ︷︷ ︸

lower-level task

. (1)

In the upper-level task, we minimize the immunization loss Limmunize with respect to ψ (i.e., cross-
attention layers). This encourages the model to resist adapting to malicious concepts from the ma-
licious dataset DM . In the lower-level task, we minimize the prior preservation loss Lprior with
respect to the U-Net parameters θ, which includes ψ. This selection reflects the intuition that cross-
attention layers play a central role in encoding and manipulating concepts (Liu et al., 2024a), while
optimizing the U-Net in the inner loop ensures that the model adapts safely while incorporating the
immunization updates.
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To further explore how this bi-level setup benefits the immunization approach more than naive addi-
tion of all losses, we examine intermediate gradient updates. We implement the bi-level scheme in
Eq. equation 1 by iterating the gradient updates:

θ′ = θ − αP∇LP (θ) and ψ′′ = ψ′ − αI∇LI(ψ′), (2)

where ψ′ ⊂ θ′, and we abbreviate Lprior(xs, cs; θ) = LP (θ) and Limmunize(xm, cm; θ) = LI(ψ).
We then use the Taylor Series expansion for ∇LI(ψ′) as seen in Eq equation 3, which gives us the
total update for ψ′′ in Eq equation 4. A full derivation can be found in Appendix A.

∇LI(ψ′) ≈ ∇LI(ψ)− αP∇2LI(ψ)∇ψLP (θ) (3)

ψ′′ ≈ ψ − αP∇ψLP (θ)− αI∇LI(ψ) + αPαI∇2LI(ψ)∇ψLP (θ) (4)
The final equation shows that our current immunization gradient update is equivalent to doing an
update in the prior preservation direction plus an update in the immunization direction plus an
additional term. That term is the directional curvature of LI along ∇ψLP (θ), which is crucial
for our approach. This term adds a second order correction which helps coordinate the gradient
descent so that minimizing LI does not make minimizing LP harder. This improves our model’s
retention of safe concepts significantly by making the immunization update “aware” of previous
prior preservation updates.

3.3 IMMUNIZATION LOSS

The immunization loss that we employ in the upper-level task consists of two components: (1) loss
maximization and (2) representation noising.

Loss Maximization. We maximize the loss with respect to the malicious concept as follows:

Lmax = −Et,ϵ∼N (0,I)

[
∥ϵθ(xm, cm, t)− ϵ∥22

]
. (5)

This maximization aims to push the model parameters θ to perform poorly on the target malicious
data (xm, cm). However, loss maximization on malicious content is not sufficient on its own.

Representation Noising. While maximizing the loss on malicious concepts reduces the model’s
ability to generate them, it does not necessarily prevent the model from re-adapting to these con-
cepts with further fine-tuning. This is because when maximizing Lmax, the mutual information
MI(xm|cm; ym) between conditioned malicious inputs xm|cm and malicious model outputs ym is
targeted, but the mutual information MI(xm|cm; zm) between inputs xm|cm and intermediate rep-
resentations zm can remain, which may allow the malicious concept to return (Rosati et al., 2024).
The data processing inequality states:

MI(xm|cm; zm) ≥ MI(xm|cm; ym). (6)

That is, information shared between inputs xm|cm and intermediate representations zm is an upper
bound on information shared between those inputs and the outputs ym. As such, it is useful to
directly reduce MI(xm|cm; zm) which implies a reduction in MI(xm|cm; ym). To this end, we adapt
the LLM immunization technique of Rosati et al. (2024), representation noising, to T2I models. Let
L(j) denote the j-th layer of the U-Net, where j ∈ {1, . . . , n}.
For an input to the U-Net conditioned on the malicious concept xm|cm, we define the first in-
termediate representation as z(1)m = L(1)(xm|cm) and further intermediate representations as
z
(j)
m = L(j)(z

(j−1)
m ) for j ∈ {2, . . . , n}. We then minimize the loss between these activations

and random noise:

Lnoise =
∑n
j=1MSE

(
z
(j)
m , ϵ

(j)
m

)
, where ϵ(j)m ∼ N

(
µ
z
(j)
m
, σ2

z
(j)
m

)
, (7)

where
(
µ
z
(j)
m
, σ2

z
(j)
m

)
are the computed mean and variance of the sample z(j)m . The idea is that we

sample a noise from the distribution of the given activation so that when this hidden state is optimized
towards the noise, it is not going to dramatically affect the model, but perturb the parameters just
slightly in a random way with the goal of destroying a small amount of information stored in them.

Total Immunization Loss. The final immunization objective combines the loss maximization term
with the representation noising loss, weighted by a hyperparameter β:

Limmunize = Lmax + β · Lnoise. (8)
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Algorithm 1 Our method (GIFT)

Require: Malicious dataset DM , safe dataset DS

Require: Model parameters θ with cross-attention subset ψ ⊂ θ
Require: Learning rates αinner, αouter, Noising weight β

1: for each training iteration do
2: if inner loop step then
3: Sample batch (xs, cs) from DS ▷ Lower-level task: Prior Preservation
4: θ ← θ − αinner∇θLprior(xs, cs; θ)
5: else
6: Sample batch (xm, cm) from DM ▷ Upper-level task: Immunization
7: Lmax ← −Et,ϵ∼N (0,I)

[
∥ϵθ(xm, cm, t)− ϵ∥22

]
8: Extract intermediate activations z(j)m for layers j = 1, . . . , n

9: Sample noise ϵ(j)m ∼ N
(
µ
z
(j)
m
, σ2

z
(j)
m

)
▷ Mean and Var. from z

(j)
m

10: Lnoise ←
∑n
j=1 MSE

(
z
(j)
m , ϵ

(j)
m

)
11: Limmunize ← Lmax + β · Lnoise
12: ψ ← ψ − αouter∇ψLimmunize
13: end if
14: end for
15: return Immunized model parameters θ as θI

This loss is applied specifically to the cross-attention layers in the upper-level optimization to target
the parts of the model most responsible for concept encoding. We present an ablation study for β in
Table 1 in Appendix B.

3.4 PRIOR PRESERVATION LOSS

The immunization loss can degrade the model’s performance on safe tasks. To mitigate this effect,
we employ the original T2I model training objective for safe data preservation:

Lprior = Et,ϵ∼N (0,I)

[
∥ϵθ(xs, cs, t)− ϵ∥22

]
, (9)

which helps to maintain performance on safe concepts while immunizing against malicious ones.

The effect of each component in our pipeline is examined in the ablation study in Appendix B.

4 EXPERIMENTS

In this section, we show GIFT’s ability to immunize the T2I model Stable Diffusion v1.5 (SD)
(Rombach et al., 2022) on objects, art styles, and NSFW content. We evaluate our method against
IMMA and ESD.

Experimental Setup. For object immunization, we select 26 objects from the Custom Concept 101
dataset (Kumari et al., 2023b), each with more than 8 images split into 2 disjoint sets: DM and
DA. The defense (malicious) split DM is used during immunization, and the attack split DA is used
to simulate malicious fine-tuning with DreamBooth. For prior preservation, we generate 500 safe
images per object using category-level prompts to form a safe set, DS . For each object, we com-
pare GIFT to IMMA and an undefended baseline. Similarly, for artistic styles, we test on 10 styles
(e.g., Van Gogh, Picasso) by generating 40 images per artist with prompts like <a painting in
[artist] style>, splitting them equally into disjoint DM and DA sets. We compare GIFT to
ESD and IMMA and we use <a painting of a cat in [artist] style> as a valida-
tion prompt. Finally, for NSFW content, we use the porn subset of the NSFW-T2I dataset (zxbsmk,
2024), sampling 40 images and dividing them intoDM andDA sets. We used a single NVIDIA L40
GPU with 40GB of memory in an internal cluster for each experiment. More information about
Implementation Details can be found in Appendix C.

Evaluation Metrics. We evaluate GIFT using four metrics: CLIP similarity for prompt-image
alignment (Hessel et al., 2021), LPIPS for perceptual fidelity (Zhang et al., 2018), DINO similarity

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

for feature-level consistency (Ruiz et al., 2023), and NudeNet (Bedapudi, 2019) to quantify explicit
content after immunization. Together, these capture semantic alignment, visual quality, safe concept
retention, and NSFW suppression.

4.1 OBJECTS

Attack Results. We find that GIFT performs similarly to IMMA in terms of immunizing SD against
particular concepts, and generally achieves CLIP and LPIPS scores ranging between those of the un-
defended model and those of a model defended with IMMA. In cases such as Fig. 1, GIFT outper-
forms IMMA by producing images with lower CLIP scores when prompted for the concept against
which the model is immunized. Averaged per-epoch metrics across all 26 objects can be seen in
Fig. 3 and Fig. 11. We do not view this overall quantitative difference in our results as compared
with IMMA’s as a weakness; rather, it indicates a less aggressive, but still functional immunization
technique that preserves the model’s generative capabilities to a great extent. A breakdown of the
results across all selected objects can be found in Fig. 12 and Fig. 13 in Appendix I. An additional
analysis about immunizing against multiple objects concurrently is explored in Appendix F.
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Figure 1: GIFT Immunizes Similarly to IMMA. Here, we treat the tortoise plushie as a mali-
cious concept using the prompt <a *s tortoise plushie on the beach> where *s is
DreamBooth’s special token. Top row: Reference images used to fine-tune via DreamBooth. Sec-
ond row: Results of fine-tuning the undefended SD. Third row: Results of fine-tuning after 1K
steps of immunization with GIFT. Bottom row: Results of fine-tuning after 1K steps of immuniza-
tion with IMMA. GIFT’s robustness to different prompt is explored in Appendix G.

Preservation Results. Models immunized with GIFT generally outperform those immunized with
IMMA when tasked with generating images of a safe concept as can be seen qualitatively in Fig. 2.
Models immunized with GIFT achieve CLIP and LPIPS scores similar to the undefended SD check-
point. Averaged per-epoch metrics across all 26 objects can be seen in Fig. 3 and Fig. 11. Models
immunized with IMMA generally achieve much lower similarity scores.

4.2 ART STYLES

Attack Results. As shown in Fig. 4, ESD rapidly reacquires Van Gogh’s style (by step 100), in-
cluding its application to unseen concepts, e.g., cats. Then, the model enters a corruption phase,
where overfitting becomes apparent. This is evidenced by a decline in CLIP score alongside in-
creasing similarity to the training data. Near step 1300, we observe a transient improvement phase,
followed by further degradation behavior consistent with previously observed fine-tuning dynamics
in diffusion models (Wu et al., 2024). Thus, from an attacker’s perspective, fine-tuning an ESD-
erased model to reintroduce the erased concept is equivalent to fine-tuning a standard SD model.

In contrast, immunization methods (e.g., IMMA) cause fine-tuning to continually produce pure
noise, preventing the re-emergence of the concept. However, as discussed in Section 4.1 and further
in Section 4.3, IMMA significantly degrades model performance on unrelated, safe concepts.
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Figure 2: GIFT Retains Safe Concepts Better than IMMA. Here, we treat the bass guitar as a safe
concept unrelated to the malicious concept from Figure 1 using the prompt <a *s bass guitar
on the beach>. Top row: Reference images used to fine-tune via DreamBooth. Second row:
Results of fine-tuning the undefended SD. Third row: Results of fine-tuning after 1K steps of
immunization against the plushie from Figure 1 with GIFT. Bottom row: Results of fine-tuning
after 1K steps of immunization against the plushie from Figure 1 with IMMA.
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Figure 3: GIFT Finds a Middle Ground. Averaged per-epoch CLIP Score and LPIPS Similar-
ity across 26 immunized models during fine-tuning. GIFT achieves significantly higher CLIP and
LPIPS similarities between images of the safe concept and its corresponding prompt than models
immunized with IMMA, indicating preservation of generative capabilities. It additionally achieves
similar CLIP scores to IMMA on malicious concepts, and significantly lower LPIPS scores than the
undefended model, indicating successful immunization. Qualitatively, as seen in Figure 1, GIFT’s
scores still indicate sufficient immunization.

GIFT prevents Van Gogh-style generation entirely up to approximately step 600. Beyond this
point, GIFT produces results that lie in a sweet spot between those of erasure-based (ESD) and
immunization-based (IMMA) methods. Notably, GIFT allows limited re-learning from the data,
which is beneficial when fine-tuning on safe inputs. The model appears to map prompts to training
images, but it does not recover the generalizable ability to generate in the artist’s style. This is evi-
dent from the outputs in Fig. 4, where generated images closely resemble training examples but fail
to match the prompt, resulting in lower CLIP scores. The slight increase in CLIP reflects that a Van
Gogh-like image is produced, but it does not align with the intended subject (e.g., a cat).

This overall trend holds across all evaluated artists, as illustrated in Fig. 5. GIFT consistently yields
generations with lower LPIPS and DINO similarity compared to ESD, indicating reduced mem-
orization and less precise replication of the training data. GIFT exhibits slightly higher similarity
than IMMA, due to its capacity to overfit on individual samples without fully re-acquiring the erased
concept. Despite this, GIFT fails to produce prompt-aligned generations throughout the training pro-
cess, as evidenced by the much lower CLIP scores. This confirms that while GIFT permits limited
data memorization, it successfully impedes the model from regaining the protected artistic style. We
leave the complete qualitative and quantitative analysis for the remaining 9 artists in Appendix I
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Figure 4: GIFT Prevents Artistic Style Adaption. We fine-tune each model on a dataset of 20 Van
Gogh generations and validate using the prompt <a painting of a cat in [artist]
style>. On the left is the CLIP score for each method over the duration of training. On the
right are qualitative results for each method at the 100, 500, 900, and 1300 step mark. ESD isn’t
able to prevent adaption to the protected art style. IMMA consistently produces noise for the pro-
tected model at the expense of degraded model performance. GIFT prevents the adaption to the
protected art style by producing noise for the first part of the attack then overfitting at the end.
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Figure 5: Quantitative Results for All Artists. Comparison of CLIP Score, LPIPS Similarity, and
DINO Similarity over fine-tuning steps for all evaluated artists. GIFT maintains lower LPIPS and
DINO similarity than ESD, indicating reduced memorization of training data. The CLIP score re-
mains substantially lower for GIFT, demonstrating its effectiveness in preventing prompt-consistent
generation of the protected artistic styles.

4.3 NSFW CONTENT

Attack Results. During the malicious fine-tuning attack, we observe that ESD quickly allows the
model to recover explicit content. IMMA prevents re-learning but does so by significantly degrading
the model’s learning ability across all concepts, not just NSFW. In contrast, GIFT consistently sup-
presses such malicious adaptation, yielding noisy or failed generations when prompted with NSFW
content. It does so while preserving the ability to learn safe concepts as shown in Fig. 6 and without
severely degrading the generative capability of the model directly after immunization as shown in
Appendix D. Further NSFW experiments on the I2P benchmark can be found in Appendix E. To fur-
ther enhance performance on safe concepts, we apply a post-immunization (PI) fine-tuning step to
the GIFT-immunized model. This involves training on a generic, safe prompt (e.g., <A photo of
a barn and mountains>) for 1000 steps. Interestingly, this additional step not only improves
the model’s ability to retain safe generation quality but also strengthens its resistance to malicious
NSFW re-adaptation. We leave a deeper investigation of this effect to future work. These results
demonstrate GIFT’s ability to impose robust and persistent resistance to malicious concept injection
without compromising general generation quality.
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Figure 6: GIFT Hinders Malicious Fine-Tuning While Preserving Safe Adaptation. We fine-
tune each NSFW-immune model on a safe concept (A) and a malicious one (B). ESD alone permits
fine-tuning on safe concepts but fails to prevent the generation of malicious content by fine-tuning.
IMMA (with or without ESD as a starting point) is more successful at preventing malicious fine-
tuning, but both methods fail to allow any safe fine-tuning. GIFT strikes a balance between the
two, preventing malicious fine-tuning fairly well (note that the malicious fine-tuning attempts only
produce abstract, cartoonish nudity) while still leaving the model fully usable for safe fine-tuning
(in contrast to IMMA, which renders the model unusable for safe fine-tuning).

5 LIMITATIONS AND NEGATIVE IMPACTS

While GIFT effectively immunizes text-to-image diffusion models against malicious fine-tuning,
several limitations remain. First, our approach assumes access to clearly defined and representative
malicious concept datasets. In real world, such representative datasets may be hard to curate. Sec-
ond, our immunization loss may still impact generation quality for safe concepts, especially when
visual features overlap between safe and malicious categories.

From an ethical standpoint, our method is designed to reduce the risk of generating malicious (harm-
ful, unsafe, copyrighted, etc.) content. However, it does not guarantee full immunity and could
potentially be circumvented by future, more sophisticated adaptation techniques. As with any con-
tent moderation tool, misuse or overreach (e.g., censoring legitimate creative expression) remains a
concern. We encourage the community to treat GIFT as a step toward safer generative models, not
a definitive solution, and to accompany its use with broader societal oversight.

6 CONCLUSION

This paper introduces GIFT, a gradient-aware immunization framework for diffusion models, which
addresses the critical vulnerability of diffusion models to malicious fine-tuning. While previously
developed safety mechanisms either degrade overall model performance (e.g., IMMA) or can be
easily circumvented (e.g., ESD), GIFT strikes a balance between immunization effectiveness and
preservation of generative capabilities on safe concepts. We formulate immunization as a bi-level
optimization problem: the lower-level task focuses on preserving performance on safe concepts,
while the upper-level task prevents adaptation to malicious content through a combination of loss
maximization and representation noising. Extensive experiments across diverse concepts show that
GIFT resists re-learning of malicious content, maintains generation quality, and remains fine-tunable
on safe data. This makes GIFT a practical tool for safer model deployment. Future work will
explore multi-concept immunization, efficient scaling, and broader application to other generative
architectures. While GIFT is a key step toward model safety, it should be complemented by policy
and ethical oversight for responsible AI deployment.
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7 REPRODUCIBILITY STATEMENT

Experimental setup and implementation details that enable reproducing our results are listed in Sec-
tion 4 and Appendix C. Additionally, the code for GIFT is provided in the supplementary material.
Code will be made publicly available upon acceptance.
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Appendix
This appendix provides additional details and results to support the main findings presented in the
paper. In Section A, we present the mathematical derivations underlying our bi-level optimiza-
tion framework. Section B provides an ablation study highlighting the contribution of each GIFT
component. Section C outlines our implementation details, including hardware setup and hyperpa-
rameter configurations. We further assess the model’s ability to retain safe generative capacity post-
immunization in Section D. Section E evaluates the effectiveness of our method against malicious
content using the I2P benchmark. Section F shows GIFT’s ability to immunize against multiple
objects at the same time. Section G evaluates GIFT’s robustness to different prompt re-phrasing.
In section H, we show results of attacking a GIFT-immunized model using LoRA. Section I offers
extended qualitative and quantitative results on various objects and art styles.

A MATHEMATICAL DERIVATIONS

We recall from Section 3 (particularly Section 3.2), that we propose a bilevel scheme

ψI = argmin
ψ⊂θ∗

LI(θ∗)︸ ︷︷ ︸
upper-level task

where θ∗ = argmin
θ
LP (θ)︸ ︷︷ ︸

lower-level task

, (10)

where the immunization loss LI (short for Limmunize) is trained on malicious image-text pairs and
the prior preservation loss LP (short for Lprior) is trained on safe image-text pairs. The parameters
ψ ⊂ θ correspond to the cross-attention layers. We use the vector notation θ = (ψ, ϕ) so that
∇f(θ) = (∇ψf(θ),∇ϕf(θ)), where ϕ is the rest of the U-net parameters that are not in ψ.

The gradient updates we perform when implementing equation 10 are
θ′ = θ − αP∇LP (θ) and ψ′′ = ψ′ − αI∇ψLI(θ′). (11)

We also write the update θ′ = (ψ′, ϕ′) of the upper-level task in coordinates as
ψ′ = ψ − αP∇ψLP (θ) and ϕ′ = ϕ− αP∇ϕLP (θ). (12)

Therefore
ψ′′ = ψ − αP∇ψLP (θ)− αI∇ψLI(θ − αP∇LP (θ)). (13)

Since the learning rates are very small, we can use a linear approximation of the third term as per
Taylor’s theorem

∇ψLI(θ − αP∇LP (θ)) ≈ ∇ψLI(θ)− αP∇2
ψLI(θ)∇ψLP (θ) (14)

which gives us the total update for ψ
ψ′′ ≈ ψ − αP∇ψLP (θ)− αI∇ψ(θ) + αPαI∇2

ψLI(θ)∇ψLP (θ). (15)
The total update for ϕ is simpler, as those parameters are not updated in the upper-level task

ϕ′′ = ϕ−∇ϕLP (θ), (16)
giving the total update

θ′′ ≈ θ − αP∇LP (θ)− αI
(
∇ψLI(θ)

0

)
+ αPαI

(
∇2
ψLI(θ)∇ψLP (θ)

0

)
. (17)

Without the last term, the update would be that of a loss function proportional with
L(θ) = αPLP (θ) + αILI(θ), (18)

which performs much worse than our method, as can be seen from our ablation studies in Ap-
pendix B, see also Fig. 7. The prior preservation and the immunization terms would be allowed to
compete in the minimization process, leading to conflicting gradient updates. Including the second
order (hence finer scale) correction term is thus crucial for our results.

The correction term has the geometric meaning of the covariant derivative of∇ψLI in the direction
of∇ψLP . It gives the direction of steepest descent of LI , relative to the direction of steepest descent
of LP . This results in the total minimization favoring LP while not losing information about the
minimization ofLI , and translates as substantial improvements to retention, while maintaining state-
of-the-art results in immunization.

We preferred the bi-level formulation equation 10 to the direct gradient update equation 17 to avoid
the costly computation of hessians (second order derivatives).
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B ABLATION STUDY

We conduct an ablation study to assess the impact of each GIFT component on both safe and mali-
cious concept fine-tuning, as shown in Fig. 7. Starting with loss maximization (Eq. 5) on the mali-
cious dataset, we observe strong distortion across both concepts. Adding prior preservation (Eq. 9)
improves fidelity on safe concepts but weakens immunization. Incorporating representation nois-
ing (Eq. 7) strengthens resistance to malicious concept adaptation, though it slightly degrades safe
concept quality. Finally, the full GIFT framework—combining all components within the bi-level
optimization setup discussed in Section 3—achieves strong immunization while preserving genera-
tive quality on safe prompts. To clearly demonstrate the specificity of GIFT, we selected two closely
related plush toys as representatives for safe and malicious concepts. The prompt used was <A
photo of [toy name] riding a bicycle in front of Eiffel tower>. Im-
munization involved 1500 steps against the malicious concept, followed by fine-tuning on both
concepts for 1000 steps.

Safe

GIFT

Malicious

+ Rep. noise+ PriorMaximizationReference

Panda Plushie

Penguin Plushie

Figure 7: Ablation of the different components. This figure shows the qualitative results on the
incremental addition of components in GIFT on both safe and malicious concepts.

To further isolate the impact of our proposed representation noising component, we conducted an-
other ablation study by varying the value of the hyperparameter β, which controls the strength of
representation noising in the upper-level objective. We immunized the model against a malicious
object concept using different values of β, then fine-tuned it on both safe and malicious concepts.
We report CLIP, 1-LPIPS, and DINO metrics to assess the model’s behavior under both safe and
attack prompts.

Table 1: Ablation of the proposed representation noising component strength factor β.

β CLIP Safe CLIP Atk LPIPS Safe LPIPS Atk DINO Safe DINO Atk
0.0 0.4356 0.2250 0.3616 0.4898 0.5099 0.6219

1e-3 0.3229 0.2061 0.3031 0.4048 0.4459 0.4186
1e-4 0.2691 0.2224 0.4043 0.4588 0.6535 0.5673
2e-3 0.2509 0.2098 0.2999 0.2770 0.4496 0.2787

These results demonstrate that representation noising plays a crucial role in mitigating malicious
fine-tuning. Compared to the baseline (β = 0), increasing β generally leads to stronger attack
suppression—e.g., lower CLIP and DINO scores and higher LPIPS for attack prompts. Notably,
β = 2e-3 shows the most effective immunization, but at the cost of degraded performance on safe
prompts, evident from lower CLIP and DINO scores and higher LPIPS as well but for safe prompts.
In contrast, β = 1e-3 provides a strong trade-off, achieving significant attack mitigation while
maintaining acceptable generation quality on safe concepts.
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C IMPLEMENTATION DETAILS

In all our experiments, we used a compute cluster equipped with four NVIDIA L40 GPUs, each with
40 GB of VRAM. All experiments were run on a single GPU. We evaluated our method on both
Stable Diffusion v1.4 and v1.5, and report results using the latter. For immunization, we trained
for 1000–2000 steps, followed by 1500–2500 steps of malicious fine-tuning (attack) or 1000-1500
steps of safe fine-tuning. In the lower-level task (prior preservation), we used a learning rate of
αinner = 5× 10−6, while the upper-level task (immunization) used αouter = 8× 10−6. Additionally,
we use a representation noising loss weight β = 2 × 10−3. We use the Adam optimizer for both
immunization and fine-tuning.

D POST-IMMUNIZATION GENERATIVE CAPABILITY

IMMA

SD v1.5

GIFT

(Ours)

<an air balloon>
<a mansion in 
the mountains>

<a mansion by 
the beach> <a forest>

Figure 8: Maintaining Safe Generation. A SD model immunized by GIFT retains the ability
to generate high fidelity images after immunization. IMMA degraded the model’s capability so
significantly that it lost its ability to generate images of safe concepts. We use an original SD v1.5
as a reference.

To assess whether our method maintains the model’s ability to generate safe content, we evaluate
the NSFW-immunized models on generic prompts immediately after immunization. As shown in
Fig. 8, the GIFT-immunized model continues to produce high-quality images that are faithful to the
input prompts. In contrast, IMMA results in noisy and degraded generations, suggesting that its
immunization procedure compromises overall model utility. We include an original SD generation
for reference. Furthermore, we fine-tune each immunized model on a safe concept (e.g., <action
figure>) to test its adaptability. As shown in Fig. 8, the GIFT-immunized model quickly learns
to represent the concept accurately, while IMMA requires more training steps and produces only
distorted, cartoonish outputs.

E NSFW I2P EXPERIMENT

To further demonstrate the effectiveness of our immunization method GIFT after the model has
been attacked, we randomly choose 250 malicious prompts categorized as <sexual content>
from the I2P benchmark (Schramowski et al., 2023) to generate 250 images using the three attacked
models (GIFT, IMMA, and ESD). We then use NudeNet (Bedapudi, 2019) to get the nudity count
in the generated images of each method with a threshold of 0.4. The results, summarized in Table 2,
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show that GIFT and IMMA exhibit very close reduction percentages in NSFW content relative to
ESD. IMMA can have higher percentages in some categories because it degrades the overall model
performance on all concepts, not just NSFW. However, GIFT shows a significantly better ability
to preserve performance on safe concepts as shown in Fig. 8. We believe that these results could
be further enhanced by immunizing against a dataset that more accurately represents the relevant
categories.

Table 2: NSFW results after attack. This table presents the reduction % of NSFW content, as
measured by NudeNet (Bedapudi, 2019), for IMMA and GIFT, relative to an attacked ESD model.
Numbers in parentheses after category names indicate the count from the attacked ESD model.
While immunization by both GIFT and IMMA are comparable, GIFT enables maintaing generative
functionality on safe concepts, while IMMA leaves the model with severely degraded generation
capability on safe concepts. Therefore, GIFT offers a significantly more practical immunization-
retention tradeoff.

Category IMMA ↑ GIFT ↑
Female Breast (128) 59.4% 42.2%
Female Genitalia (18) 72.2% 72.2%
Male Breast (14) 100.0% 100.0%
Male Genitalia (2) 100.0% 100.0%
Buttocks (8) 37.5% 37.5%

F BEYOND SINGLE-CONCEPT IMMUNIZATION

Although GIFT was originally designed for single-concept immunization, we tested its ability to
handle multiple objects at once. To do this, we grouped 10 different plushie classes from the Cus-
tom Concept 101 dataset under a broader category, “plushies”. These included: pokemon, bunny,
cow, dice, happy-sad, lobster, panda, penguin, pink flower, and teddy bear. We treated this
new plushies group as the malicious concept to immunize against, while holding out a separate
plushie class (tortoise plushie) to simulate an attack. For the safe concept, we used a wooden pot to
check whether the model retained its ability to learn non-malicious classes. Our results show that
the immunized model failed to learn the tortoise plushie (the held-out malicious concept), while it
successfully learned the wooden pot (safe concept), as illustrated in Fig. 9. This demonstrates that
GIFT can effectively immunize against a diverse set of classes—not just a single object—making
it broadly applicable to more realistic use cases, such as preventing a whole class of classes (e.g.,
Disney characters, corporate logos, age inappropriate content, or weapon designs).

G GIFT’S ROBUSTNESS TO DIFFERENT PROMPT RE-PHRASINGS

To evaluate whether GIFT generalizes across different phrasings of the same concept, we tested
four reworded prompts (P0–P3) describing the same object (”a penguin plushie riding a bicycle in
front of the Eiffel Tower”). These prompts vary lexically but are semantically aligned. We also
used a different set of images from those used during immunization, simulating a scenario where an
adversary has access to a distinct data distribution of the object.

We immunized using the original prompt (P-ORIG) and attacked using both P-ORIG and P0–P3. As
shown in Table 3, the CLIP similarity scores are consistent across all prompts, ranging from 0.222
to 0.238. For reference, CLIP scores for safe concepts typically range from 0.322 to 0.435. This
indicates that GIFT’s immunization effect is robust to natural prompt rephrasing.

H ATTACKING WITH DIFFERENT ADAPTATION METHOD.

Prior methods like IMMA perform a separate immunization process for each attack technique: im-
munize with DreamBooth to protect against DreamBooth (resp. LoRA) fine-tuning. GIFT, on the
other hand, does not depend on the attack algorithm during immunization. We show in Fig. 10 how

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Reference 
Images

200 400 600 1000
Training Steps

Safe

Malicious

Wooden pot

Tortoise Plushie

Figure 9: Beyond Single-Object Immunization. After immunizing against the broader plushies
category (10 classes), the model fails to learn the held-out tortoise plushie (malicious) while still
learning the wooden pot (safe).

Table 3: CLIP similarity scores for different prompt phrasings. Immunization was done with P-
ORIG and evaluated on P-ORIG and P0–P3.

Prompt ID Prompt Definition CLIP Similarity
P0 stuffed penguin toy 0.236
P1 fluffy penguin doll 0.237
P2 soft arctic bird toy 0.222
P3 cute aquatic bird stuffed animal 0.238
P-ORIG penguin plushie 0.235

our model performs with the same immunization technique used in prior sections against a different
attack method, namely LoRA. We fine-tune a LoRA adapter once using an erased Stable Diffusion
v1.5 (ESD) and once using our own immunized model. Fig. 10 shows that an adapter trained using
an un-immunized model can easily re-acquire erased knowledge, while using GIFT it cannot.

Stable Diffusion Erased (ESD) w/o GIFT w/ GIFT

Reference Re-Learning

<a mansion in the mountains 
in Van Gogh style>

<Winnie the Pooh riding a 
bicycle>

Figure 10: GIFT Immunization with LoRA. GIFT can prevent model adaption using LoRA.
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I ADDITIONAL RESULTS

I.1 OBJECTS
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Fine-tuning with Safe Concept Attacking with Malicious Concept

Figure 11: GIFT Finds a Middle Ground in DINO Similarity. Averaged per-epoch DINO Similar-
ity across 26 immunized models during fine-tuning. Similar to LPIPS, GIFT achieves significantly
higher DINO similarities between images of the safe concept and its corresponding prompt than
models immunized with IMMA, indicating preservation of generative capabilities, but still achieves
significantly lower scores than the undefended model when fine-tuning on malicious concepts.

In Fig. 11, we see similar DINO Similarity results across objects as we see with LPIPS Similarity
in Fig. 3. On the safe concept, GIFT maintains a similar DINO similarity to the undefended model,
but achieves a significantly lower DINO similarity when fine-tuning on malicious concepts.

In Fig. 12, we see a breakdown across selected objects of the aggregate results presented in Figs. 3
and 11. In most cases, GIFT yields similar scores to IMMA, or scores that are strictly between
those of IMMA and those of the undefended model. Importantly, the points where scores begin to
increase for GIFT are generally indicative of overfitting rather than any evidence that the model is
increasingly respecting the prompt.

In Fig. 13, we see this quite clearly. In all cases where the object being treated as a malicious concept
starts to return, the prompt, which asks for a beach scene, is clearly not being respected. In general,
the model begins to overfit and more-or-less reproduce the images being used in the attack (shown
on the left-hand side of the figure).

I.2 ART STYLES

In Fig. 14, we show the rest of the quantitative results for the remaining 9 artists. Across the board
we show good immunization results by keeping a lower CLIP score. However, both LPIPS and
DINO similarity gradually increase, signaling overfitting rather than genuine learning—a trend also
visible in Fig. 15. In other words, while extended fine-tuning may cause the model to generate
outputs that visually resemble the original style, these results do not reflect true recovery of learning
capabilities. For example, the images in Fig. 15 were prompted to depict a cat in different styles,
but due to immunization with GIFT, the model instead overfit to the training data. This behavior
is by design, as discussed in Section 4.2. GIFT’s success is measured not by the model’s ability to
replicate training images, but by its failure to follow the malicious prompt (e.g., generating a cat).
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Figure 12: Quantitative Results for Selected Objects. Comparison of CLIP Score, LPIPS Similar-
ity, and DINO Similarity over fine-tuning steps for selected objects (treated as malicious concepts)
evaluated individually. In general, GIFT seems to immunize about as well as IMMA, especially in
earlier steps. In later steps, when GIFT starts to yield higher scores, it is generally due to overfitting
rather than increasing respect for the prompt.
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Figure 13: Qualitative Results for Selected Objects. Qualitative results for selected objects
(treated as malicious objects) at the 100, 500, 900, and 1300 step mark. The images are gener-
ated using the prompt <a *s [object] on the beach>. We can see that these images are
generally quite degraded and do not clearly show the object in most cases. However, those images
that show the object more clearly do not respect the prompt (indeed, none of the images seem to
show a beach scene, in contrast to those images generated of the safe concept as in Fig. 2). In many
cases, images generated in later steps appear to be overfit to the reference images, indicating a failed
attack.
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Figure 14: Quantitative Results for All Artists. Comparison of CLIP Score, LPIPS Similarity, and
DINO Similarity over fine-tuning steps for all evaluated artists individually.
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Figure 15: Qualitative Results for All Artists. Qualitative results for all artists at the 100, 500,
900, and 1300 step mark. The images are generated using the prompt <a painting of a cat
in [artist] style>.
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