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Abstract

In the field of speech synthesis, there is a001
growing emphasis on employing multimodal002
speech to enhance robustness. A key chal-003
lenge in this area is the scarcity of datasets004
that pair audio with corresponding video. We005
employ a methodology that incorporates modal-006
ity alignment during the pre-training phase007
on multimodal datasets, uniquely facilitating008
Zero-Shot generalization through the process009
of freezing the video modality feature extrac-010
tion component and the encoder module within011
the pretrained weights, thereby enabling ef-012
fective cross-modal and cross-lingual transfer.013
We have named this method ‘Uni-Dubbing’.014
Our method finely tunes with both multimodal015
and single-modality audio data. In multimodal016
scenarios, it achieves a reduced word error017
rate (WER) of 31.73%, surpassing the previ-018
ous best of 33.9%. It also excels in metrics019
like tone quality and synchronization. With020
single-modality audio, it achieves a WER of021
36.08%, demonstrating adaptability to lim-022
ited data. Its domain generalization capa-023
bilities are proven across various language024
tasks in video translation and audio genera-025
tion. Trained on 433 hours of audio data, it026
surpasses techniques using 200 hours of audio-027
visual data. The code and demo are available028
at https://diracer.github.io/unidubbing.029

1 Introduction030

With the widespread use of short videos and on-031

line meetings in daily life and the workplace(Gupta032

et al., 2023), the barrier of cross-linguistic com-033

munication has become an urgent problem, and034

thus multimodal technologies have attracted much035

attention(Yemini et al., 2023). Recently, many re-036

searchers have conducted corresponding studies037

in this area, such as lip reading task(Assael et al.,038

2016; Koumparoulis et al., 2017; Chung and Zis-039

serman, 2016; Son Chung et al., 2017) that trans-040

fers video domain to text domain, Lip task(Prajwal041

et al., 2020; Kim et al., 2021; Michelsanti et al., 042

2021; Mira et al., 2022b) that transfers video do- 043

main to audio domain, and lip translation(Huang 044

et al., 2023) that converts to the target language 045

directly based on lips. In the case of the field of 046

visual tasks, the biggest challenge for researchers 047

is the extreme scarcity of training data. In addi- 048

tion, the relationship between lips and speech is 049

not always a simple one-to-one mapping; for ex- 050

ample, the same word may have very different lip 051

shapes for people with different accents(Choi et al., 052

2023a). Therefore, maintaining accurate intonation 053

poses a significant challenge, and this has led to the 054

emergence of many important research findings. 055

For these reasons, we adopt the strategy of using 056

discrete units as intermediate targets, i.e., trans- 057

forming audio and video data into discrete units for 058

alignment, which can effectively circumvent the 059

disadvantage of insufficient paired audio and video 060

data. On top of this, we employ the RVQ(Défossez 061

et al., 2022) module thus enabling the method to 062

achieve better timbre preservation, i.e. high fi- 063

delity, after Full-Shot training. Furthermore, in 064

order to cope with the lack of data for contem- 065

porary visual tasks, we also use mHubert(Polyak 066

et al., 2021) and K-means of re-combining with 067

discrete units, which enables our model to achieve 068

better semantic consistency and reach Zero-Shot 069

capability. As mentioned earlier, the barriers to 070

cross-language communication are equally signifi- 071

cant challenges and a lot of good work has emerged, 072

but unfortunately none of the current methods have 073

been able to achieve Zero-Shot cross-language 074

video translation yet. We further explored learn- 075

ing cross-language and cross-modal Lip2Wav map- 076

pings from the audio domain, i.e., Zero-Shot trans- 077

speech, based on the Zero-Shot Lip2Wav model, 078

have verified that the method is capable of cross- 079

language migration. 080

In summary, our goals in the current cross- 081

language video-to-speech translation are twofold: 082
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1) High quality and low error: the requirement to083

be able to recognise the gender in a video so as084

to generate the corresponding tones with minimal085

error is very challenging. 2) Zero-Shot: the abil-086

ity of the reasoning process to achieve Zero-Shot087

is crucial for practicality when considering video088

translation.089

Based on these two goals, in this paper, the inno-090

vation of this study lies in proposing a framework091

that requires only cross-linguistic audio speech092

training, without the need for visual speech training093

inputs, to achieve direct synthesis of visual speech094

to cross-linguistic audio speech. This framework095

can predict the corresponding audio speech output096

by analyzing an individual’s lip movements, and097

this prediction is not limited to the language sys-098

tem of the input visual speech. Our method utilizes099

an advanced Zero-Shot learning strategy (Cheng100

et al., 2023) that aligns audio and visual phonemes101

with audio data alone during the training process,102

thus enabling the prediction of audio outputs in a103

target language that has not been seen before in104

seemingly impossible cross-modal scenarios. The105

main contributions of this paper are:106

• Our cross-modal Zero-Shot transfer approach107

for the Lip2Wav task, trained exclusively with108

target audio, matches top Full-Shot models in109

WER, sound quality, and synchronization.110

• Our method in the Lip2Wav task on the LRS3111

dataset attains state-of-the-art results in WER,112

ESTOI, LSE-C, and LSE-D, achieving par-113

tial timbre preservation to distinguish voice114

characteristics of unseen speakers.115

• Our cross-lingual audio generation technol-116

ogy creates target language audio from single-117

language videos, eliminating the need for dual-118

language video training. This streamlines119

training and lessens the need for extensive120

datasets in cross-lingual dubbing, while also121

reducing noise.122

2 Related Work123

In our paper, for the cross-language Lip2Wav syn-124

thesis task we mainly divide it into two steps: first125

implementing high-fidelity video-to-speech synthe-126

sis, followed by Zero-Shot cross-language video-127

to-speech translation. A great deal of excellent128

research work has preceded our study.129

2.1 Video to Speech Synthesis130

Video speech synthesis techniques(Cooke et al.,131

2006; Afouras et al., 2018b; Shi et al., 2022) that132

dub silent videos have received a great deal of at- 133

tention from researchers in the recent past. Prajwal 134

et al. (2020) presented the Lip2Wav, which utilizes 135

a sequence-to-sequence architecture, enabling it 136

to accurately capture contextual information and 137

generate precise audio. Hong et al. (2021) trained 138

a multimodal memory network, VV-Memory, to 139

store and recall audio features corresponding to 140

visual inputs so that audio information can be ac- 141

cessed exclusively through visual inputs during 142

inference. Vougioukas et al. (2019) introduced an 143

end-to-end temporal model based on GAN, capa- 144

ble of generating speech that synchronizes seam- 145

lessly with silent videos, presenting a convincing 146

and difficult-to-distinguish quality. Additionally, 147

there have been several recent papers based on 148

GANs(Kim et al., 2021; Hong et al., 2022; Mira 149

et al., 2022b). Most recently, a new method based 150

on diffusion, called DiffV2S, has been proposed 151

by Choi et al. (2023a) who introduced a novel 152

speaker embedding extractor guided by visual infor- 153

mation and simultaneously developed a diffusion- 154

based video-to-speech synthesis model. Choi et al. 155

(2023b) built upon the Lip2Wav model by incorpo- 156

rating quantized supervised speech representations, 157

namely speech units, for synthesizing intelligible 158

speech from silent videos. 159

However, despite the fact that all the aforemen- 160

tioned related methods have their own merits, the 161

problem of lack of training data for the visual 162

task mentioned in the previous section remains un- 163

solved. With this in mind, we train our model by 164

using discrete units as intermediate comparison tar- 165

gets in the audio and video domains, thus no longer 166

relying on paired audio and video data. 167

2.2 Cross-language Translation 168

The task of cross-language translation is also a 169

very challenging and important endeavour that 170

also receives a lot of attention.(Lavie et al., 1997; 171

Wahlster, 2000; Nakamura et al., 2006; ITU, 2016). 172

Tjandra et al. (2019) introduced a discrete repre- 173

sentation of the source language to target speech 174

into the cascaded S2ST system, where this discrete 175

representation is predicted by a separately trained 176

VQVAE and subsequently utilized by the VQVAE 177

decoder to generate the target speech spectrogram. 178

Zhang et al. Zhang et al. (2021) proposed the XL- 179

VAE model to enhance the discretization and re- 180

construction capabilities of VQVAE through cross- 181

linguistic speech recognition. Lee et al. (2021) uti- 182

lizes a separately trained vocoder, which includes 183

2



a) Full-Shot Training Target 

Units

R
esN

et
F

F
N

A
V

-F
u
sio

n

T
ran

sfo
rm

er
E

n
co

d
er

C
N

N
D

eco
d

er

Loss

En

Discrete 

Units

ResNetFFN

AV-Fusion

Transformer Encoder

CNN Decoder

Unit-based

Vocoder

En Fr/Es

Semantic consistent 

En

Semantic and 

Acoustic consistent

D

None

None

E

VQ

0

1

...

N

𝑍𝑍𝑄

Codebook

b) Zero-Shot Training Target 

Units

R
esN

et
F

F
N

A
V

-F
u
sio

n

T
ran

sfo
rm

er
E

n
co

d
er

C
N

N
D

eco
d

er

None

mHuBERTK-Means

SSL Model

Loss

En

En Fr/Es

Discrete 

Units

c) Inference

Figure 1: Uni-Dubbing Overview: In the high-fidelity Lip2Wav task, we employed a Full-Shot training approach
and improved the generation of discrete units. The discrete units generated by this method capture more fine-grained
acoustic information. For the cross-modal and cross-language Zero-Shot tasks, we adopted an approach similar
to uHubert (Hsu and Shi, 2022), where no visual data is used during training and fine-tuning. Another distinction
from the Full-Shot method is that, in Zero-Shot tasks, we froze the feature extraction and Encoder modules to
prevent excessive loss of original visual knowledge during knowledge transfer. During inference, we input only
visual data and use the corresponding Vocoder to generate audio through discrete units. The speech generated in
the Zero-Shot manner contains only semantic information, while the Full-Shot generated speech not only includes
semantic information but also retains some acoustic information.

a duration predictor, to directly predict waveforms184

from discrete representations. Jia et al. (2019)185

first introduced a model based on a sequence-to-186

sequence architecture capable of end-to-end train-187

ing and inference. To improve translation qual-188

ity and overgeneration, Jia et al. (2022) presented189

Translatotron2, which consists of a speech encoder,190

a language decoder, an acoustic synthesizer, and191

a single attention module that connects them to-192

gether. There is also some work that attempts to193

introduce visual speech to enhance robustness in194

the translation process(Huang et al., 2023).195

To the best of our knowledge, paired cross-196

lingual audio-video datasets are currently very197

sparse. This scarcity results in only one ex-198

isting model capable of achieving cross-lingual199

Lip2Wav translation. Instead, in direct contrast200

with the methods mentioned above, our innovative201

discrete-unit-based approach can successfully cross202

these dataset barriers, thus learning cross-language203

visual-phoneme mappings with Zero-Shot cross-204

language lip-synthesis translation capability.205

3 Method 206

3.1 Overview 207

The overview of this paper is depicted in Figure 208

1. Figure 1a) describes the training process for 209

high-fidelity speech synthesis, while Figure 1b) 210

illustrates the training flow for two tasks: cross- 211

modal and cross-language. The main differences 212

between these tasks lie in the modality used during 213

training, the method for generating discrete units, 214

and the treatment of predicted discrete units for 215

synthesizing speech. Additionally, for Zero-Shot 216

training, it is necessary to freeze the encoder to 217

retain the visual knowledge acquired during the 218

pretraining phase. 219

3.2 High-Fidelity Lip2Wav 220

While the state-of-the-art ReVISE model (Hsu 221

et al., 2023) achieves leading performance in 222

Lip2Wav synthesis on the LRS3 dataset, it does not 223

preserve the speaker’s timbre during speech syn- 224

thesis. To address this issue, we propose a novel 225

approach that utilizes acoustic tokens derived from 226
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the Encodec model (Défossez et al., 2022).227

The Encoder model consists of an audio encoder,228

a Residual Vector Quantizer (RVQ), and an audio229

decoder: Consider an audio signal x with a length230

of d and sampled at a rate of sr, resulting in a total231

duration of T = d/sr.232

1) Initially, the audio encoder E, comprising233

multiple convolutional blocks, processes the in-234

put audio. This encoder extracts features and out-235

puts a latent representation z. 2) Subsequently,236

the Residual Vector Quantizer Q employs vector237

quantization layers to convert z into a discrete rep-238

resentation zQ. In this process, the speech utter-239

ance x is encoded as a sequence of acoustic tokens240

[a1, a2, ..., aT ], where each token ai is an element241

of the set {0, 1, ...,K2−1}, with 1 ≤ i ≤ T . These242

acoustic tokens are the discrete units that we focus243

on in our training. 3) The audio decoder G recon-244

structs the signal x̂ from the highly compressed245

latent representation zQ. This algorithm efficiently246

quantizes the encoder output by iteratively refining247

the residual, which helps in preserving important248

information while reducing redundancy. Further,249

to address the challenges of temporal synchronic-250

ity in Lip2Wav tasks, we have innovated upon the251

existing AV-Hubert model. We have replaced the252

AV-Hubert decoder with a new structure.253

Our adaptation involves a unique decoder struc-254

ture, which includes three transposed convolutional255

layers. Each layer has a kernel size (K) of 4,256

a stride (S) of 2, padding (P ) of 1, and output257

padding (Op) of 1. This configuration is meticu-258

lously designed to more accurately align lip move-259

ments with the generated speech, thereby enhanc-260

ing the synchronicity that is crucial for effective261

Lip2Wav synthesis. The output size (O) of each262

transposed convolutional layer is calculated using263

the formula:264

O = ((I − 1)× S +K − 2× P ) +Op (1)265

where I denotes the input size.266

3.3 Zero-Shot Lip2Wav Model Adaptation267

To overcome the challenge of scarce paired audio-268

visual datasets, we loaded the pre-trained weights269

of AV-Hubert and focused on fine-tuning with pure270

audio data. To validate the effectiveness of our271

approach, we adopted the same Zero-Shot con-272

figuration on the LRS3 dataset as uHubert. The273

AV-Hubert model, pre-trained on paired audio-274

visual data, achieves multimodal alignment by map-275

ping visual speech and audio speech to the same276

phoneme space. During the fine-tuning phase with 277

pure audio data, we froze the decoder and only 278

trained the final transposed convolution layer to 279

preserve the multimodal alignment knowledge ac- 280

quired during pre-training. In the inference process, 281

the model processes silent lip videos, predicting the 282

corresponding speech discrete units solely based on 283

lip movements. This Zero-Shot learning strategy 284

enables the model to effectively synthesize speech 285

from unseen lip movements, enhancing its robust- 286

ness in diverse scenarios. 287

To further validate the effectiveness of our 288

method, we fine-tuned the model using discrete 289

units generated in other languages (e.g., Spanish, 290

French), which were languages not encountered 291

during pretraining. This approach not only enables 292

the model to generate speech from lip movements 293

but also to translate it into different languages. 294

For example, during inference, an English spoken 295

video could be decoded into the audio of another 296

language, simplifying the process of speech syn- 297

thesis and translation without the need for separate 298

models for each task. 299

In these two tasks, our model does not con- 300

tain any speaker embeddings and is unable to im- 301

plicitly acquire visual feature embeddings of the 302

speaker during the fine-tuning phase, eliminating 303

the need to replicate the speaker’s acoustic informa- 304

tion. Therefore, we used semantic tokens generated 305

by the mHubert and kmeans methods as target units. 306

Compared to acoustic information, semantic infor- 307

mation has broader applicability, making the use 308

of semantic tokens more conducive to generaliza- 309

tion in cross-modal and cross-language Zero-Shot 310

tasks. 311

3.4 Trainning Object 312

In this study, the focus is on predicting discrete
units, for which the cross-entropy loss function

L =
∑
t

C∑
j=1

zjt log f
j
t (x̃a, xv)

is consistently employed. This formula calculates 313

the loss by summing over all frames (t) and across 314

the C units in the vocabulary. The term zjt denotes 315

the one-hot encoded label of the j-th unit in the 316

t-th frame, and f j
t (x̃a, xv) represents the predicted 317

probability distribution over the discrete units for 318

the same frame and unit, as outputted by the en- 319

hancer. 320
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Method ESTOI ↑ LSE-C ↑ LSE-D ↓ WER ↓ MOS↑

VCA-GAN (Kim et al., 2021) 0.207 4.54 9.63 96.63 1.5±0.19
SVTS (Mira et al., 2022a) 0.244 7.08 7.04 79.83 1.96±0.24
Multi-task (Kim et al., 2023) 0.240 4.85 9.15 66.78 1.77±0.24
DiffV2s (Choi et al., 2023a) 0.284 7.28 7.27 39.2 4.06±0.21
ReVISE (Hsu et al., 2023) 0.285 7.12 7.25 33.9 4.11±0.04
Uni-Dubbing (Full-Shot) 0.294 7.58 6.90 31.73 4.16±0.06
Uni-Dubbing (Zero-Shot) 0.235 6.70 7.59 36.08 4.08±0.05

Table 1: The results of various methods on the test set of the LRS3 dataset are shown. The symbol ↑ indicates that
higher values are better, while ↑ signifies that lower values are preferable.

4 Experiment321

4.1 Datasets322

LRS3 Dataset LRS3 (Afouras et al., 2018c) is an323

extensive and open-source benchmark collection324

for visual speech recognition research, commonly325

known as lip-reading. This dataset is the succes-326

sor to the LRW (Chung and Zisserman, 2016) and327

LRS2 (Afouras et al., 2018a) datasets and features328

a vast array of labeled video content with corre-329

sponding textual transcriptions, primarily sourced330

from TED Talks.331

LRS3-T Dataset LRS3-T (Huang et al., 2023) is332

a new audio-visual translation dataset that has been333

generated from the LRS3 dataset through a cascad-334

ing process, combining Neural Machine Transla-335

tion (NMT) and Text-to-Speech (TTS) technolo-336

gies. This intricate processing sequence culminated337

in a parallel audio-visual translation dataset com-338

prising 200 hours, encompassing both the original339

source videos and the translated speech in the target340

language.341

MUSAN Dataset MUSAN (Snyder et al., 2015)342

is a collection of music, speech, and noise record-343

ings suitable for audio processing tasks such as344

speech activity detection and machine learning ap-345

plications. It features 60 hours of speech from346

various sources, over 42 hours of diverse music347

tracks, and 6 hours of environmental and techni-348

cal noises. We used it to generate various types349

of noise which were added to the original audio,350

in order to test the translation task’s resistance to351

noise interference.352

4.2 Evaluation353

In our study, we evaluate Lip2Wav and audio-video354

translation using key metrics. For semantic accu-355

racy, we use WER , and for sound quality, we em-356

ploy the Extended Short-Time Objective Intelligi- 357

bility (ESTOI). Synchronization is measured using 358

LSE-D (predicted audio-video temporal distance) 359

and LSE-C (prediction confidence), as per SyncNet 360

(Chung and Zisserman, 2017). Our method approx- 361

imates the speaker’s voice, thus we use the Mean 362

Opinion Score (MOS) for evaluating timbre. To 363

ensure consistency with other studies, we adopted 364

a scoring system ranging from 1 to 5, with incre- 365

ments of 0.5 points. For each model, we randomly 366

selected 50 samples for evaluation. We recommend 367

listening to our website’s audio samples for a prac- 368

tical understanding. 369

For language translation, we apply the BLEU 370

(Papineni et al., 2002) score to evaluate the accu- 371

racy and fluency of speech generation in different 372

languages, comparing machine-generated text to 373

reference texts. 374

4.3 Results 375

4.3.1 High-Fidelity Video-to-speech synthesis 376

Unlike other datasets that may concentrate on short 377

phrases or isolated words, LRS3 offers longer se- 378

quences of speech, enabling more complex and 379

contextually rich lip-reading tasks. Since most 380

speakers only give a TED talk once, the LRS3 381

dataset is multi-speaker, with no overlap between 382

the speakers in the test set and those in the training 383

set. Consequently, most methods using fixed ID 384

speaker embeddings are ineffective for the LRS3 385

dataset without altering its test set. This reflects 386

real-world application needs more accurately, as 387

the models we train should be effective for unseen 388

speakers. This paper focuses on speaker generaliza- 389

tion on the original LRS3 dataset, aiming to gener- 390

ate audio that is perceptually credible for speakers 391

it has never encountered before. 392

As shown in Table 1, DiffV2s and ReVISE sig- 393

nificantly outperform various previous methods, 394
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with both achieving a WER below 40% and su-395

perior sound quality as evidenced by the ESTOI396

metric. Our results clearly surpass all prior work397

in these two measures, achieving a WER of 0.296398

and an ESTOI of 31.96%. This is because acous-399

tic units preserve finer details, making the gener-400

ated audio easier for automatic speech recognition401

(ASR) systems to understand. In terms of syn-402

chronization, our model also achieved the highest403

rankings on the LSE-C and LSE-D metrics, sur-404

passing all previous methods. This achievement405

is primarily attributed to our modifications to the406

original AV-Hubert decoder. We transformed it407

from a sequence-to-sequence model to one utiliz-408

ing transposed convolutions. This change effec-409

tively ensures that the ratio between the input and410

output lengths of the model remains constant, thus411

maintaining a consistent proportional relationship412

between the generated audio length and the input413

video length. If the original AV-Hubert decoder414

were used, the LSE-C and LSE-D scores would be415

4.65 and 9.21, respectively. Although our WER has416

only increased by 1.17% relative to the ReVISE,417

the additional fine-grained acoustic information418

plays a crucial role in improving synchronization.419

This allows our method to outperform ReVISE in420

terms of synchronization even when using the same421

transposed convolution decoder.422

While quantitative metrics are important, they423

are not the key focus of our task. The primary con-424

tribution of our work lies in generating audio that425

retains partial speaker information without using426

the identity of the speaker. In contrast, ReVISE pro-427

duces audio in a single female voice for all outputs,428

regardless of whether the video features a male429

speaker. Due to the absence of explicit speaker430

identity information, our method is unable to fully431

replicate the unique acoustic characteristics of indi-432

vidual speakers. However, due to its use of implicit433

visual embeddings and acoustic discrete units, the434

system is capable of generating distinct male or435

female voices, depending on whether the videos436

feature male or female speakers as protagonists.437

While the synthesized voices may not precisely438

match those of the original speakers, they do pre-439

serve certain overarching characteristics, such as440

gender distinctions and, to some extent, age dif-441

ferences. We believe this aspect is significant. In442

cases where humans have not seen the speaker, they443

cannot deduce the exact timbre from the video but444

can infer such general voice characteristics. The445

voices generated by our model align with human446

perception, thus meeting human expectations and 447

requirements.Benefiting from this approach, our 448

MOS evaluation achieved an optimal score of 4.16. 449

4.3.2 Zero-Shot from Audio to Video 450

Table 1 reveals that our method achieves impressive 451

results even when trained solely with audio, with- 452

out using any video data. The sound quality, mea- 453

sured by the ESTOI, is 0.235. This performance 454

is comparable to the previous three works, rank- 455

ing just behind DiffV2S and ReVISE. Surprisingly, 456

despite the absence of video data during training, 457

the synchronization of our generated audio is quite 458

good, significantly surpassing the Full-Shot VCA- 459

GAN and Multi-task methods, and comparable to 460

other approaches. Most importantly, our method 461

achieves a WER of 36.08%, which is only slightly 462

inferior to ReVISE’s 33.9% and better than all pre- 463

vious Full-Shot methods. These results indicate 464

that our approach effectively utilizes the knowl- 465

edge embedded in the pre-trained model to achieve 466

outstanding performance, while significantly reduc- 467

ing data collection costs, requiring only pure audio 468

data without corresponding lip-synced video. 469

Figure 2: The curve graph illustrating the relationship
between the kernel size of the last layer of transposed
convolution and the corresponding WER. When the
kernel size is odd, the stride is set to 1; for even kernel
sizes, the stride is 2. Therefore, we have plotted two
separate curves for odd and even kernel sizes to analyze
the impact of stride.

Due to the mHubert audio encoder operating 470

at 50 frames per second and the AV-Hubert video 471

encoder at 25 frames per second, we employed a 472

convolutional layer to align the two. It was impera- 473

tive to set the stride of this transposed convolution 474

to 2, a fixed requirement. However, the size of 475

the convolutional kernel significantly impacted the 476

final results. To determine the optimal kernel size, 477
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we conducted multiple experiments. For compar-478

ison, we also tried the alignment method used in479

AV-Hubert pre-training, which involves downscal-480

ing the audio labels’ discrete units to 25 frames481

per second by extracting them at intervals. In this482

scenario, we set the stride of the transposed convo-483

lution to 1 and chose a convolutional kernel of an484

odd size.485

As shown in Figure 2, all models using odd-486

numbered kernel sizes performed worse in terms of487

WER compared to those using even-numbered ker-488

nels. Specifically, smaller even-numbered kernels,489

such as 2 and 4, significantly reduced accuracy.490

However, the performance improvement became491

marginal when the kernel size increased to 8 or492

larger. Based on this finding, we selected a kernel493

size of 8, balancing optimally between temporal494

resolution and computational efficiency, crucial for495

effective synchronization between audio and video496

modalities. Additionally, we experimented with the497

original fully connected (FC) layer. The results in-498

dicated that using an FC layer instead of transposed499

convolutions yielded the worst outcomes, highlight-500

ing the effectiveness of transposed convolutions in501

extracting local information for our task.502

A noteworthy observation is that methods com-503

parable to Zero-Shot in terms of ESTOI generally504

have a WER exceeding 60%. This implies that505

Zero-Shot is capable of acquiring a substantial de-506

gree of semantic knowledge from pre-training, but507

it slightly lags in generating audio quality, failing508

to reach a level commensurate with its semantic509

proficiency.510

4.3.3 Translate from Video511

Building on the concepts discussed earlier, collect-512

ing audio and its corresponding lip-synchronized513

video data presents significant challenges. These514

challenges further escalate when the task is ex-515

tended to multiple languages. Our objective is to516

utilize datasets composed of video-audio pairs in a517

single language, combined with multilingual audio518

datasets, to make this approach applicable to mul-519

tilingual audio generation. This strategy aims to520

efficiently utilize existing resources while address-521

ing the challenges of multimodal and multilingual522

datasets.523

In our study, we compared the performance of524

existing Full-Shot methods with our Zero-Shot525

method in English to Spanish (En-Es) and English526

to French (En-Fr) translation tasks, with detailed527

results presented in Table 2. We also tested the528

Figure 3: The comparison between Uni-Dubbing and
Av-Transpeech under various sizes of visual speech data
is highlighted. Remarkably, Uni-Dubbing, utilizing a
Zero-Shot approach, outperforms Av-Transpeech even
when the latter is fine-tuned with 200 hours of visual
data.

robustness of our model under different modalities 529

and specific noise conditions. Firstly, we found 530

that under given noise conditions, the BLEU scores 531

using both visual and audio modal inputs were 532

consistently higher than those using only audio in- 533

put. This demonstrates the auxiliary role of visual 534

information in enhancing audio in noisy environ- 535

ments, highlighting the importance of visual data. 536

Especially under babble noise conditions, with a 537

signal-to-noise ratio (SNR) of -5, the BLEU score 538

for pure audio input was even lower than that for 539

pure visual input, further emphasizing the signifi- 540

cance of lip-reading translation. We also provided 541

experimental data under various noise types and in- 542

tensities in the appendix. In pure visual translation, 543

Full-Shot methods typically outperform Zero-Shot 544

methods. However, the Zero-Shot method still per- 545

forms commendably in terms of BLEU scores and 546

MOS, achieving BLEU scores of 16.99 and 19.90, 547

and MOS of 3.73 and 3.70, respectively. 548

We replicated Av-Transpeech and fine-tuned it 549

using multimodal data of varying durations, with 550

detailed results shown in Figure 3. The figure 551

demonstrates that the BLEU score obtained by fine- 552

tuning with 433 hours of pure audio data is roughly 553

equivalent to that achieved with just 220 hours of 554

audiovisual data. During the pre-training phase, we 555

mapped the audiovisual data to the same phoneme 556

space. This result indicates that the knowledge in 557

this phoneme space is equally applicable to cross- 558

lingual audio, enabling us to align the source lan- 559

guage video with the target language audio through 560

7



Type Method Training Eval En-Es En-Fr
A V A V BLEU ↑ MOS ↑ BLEU ↑ MOS ↑

Full-Shot

Av-Transpeech
(Huang et al., 2023)

✓ ✓ ✓ 25.00 3.94± 0.11 19.90 3.95± 0.10
✓ ✓ ✓ ✓ 33.10 - 28.00 -
✓ ✓ ✓ 5.50 - 4.60 -

Z
ero-Shot

Uni-Dubbing
(Frozen)

✓ ✓ 16.99 3.73± 0.12 15.58 3.70± 0.08
✓ ✓ ✓ 30.00 - 25.30 -
✓ ✓ 7.58 - 6.31 -

Uni-Dubbing
(No Frozen)

✓ ✓ 0 - 0 -
✓ ✓ ✓ 0.94 - 1.39 -
✓ ✓ 0.92 - 1.07 -

Table 2: Comparison of translation results between the Full-Shot method and our method across various modalities
and noise environments. It’s worth noting that babble noise with an SNR of -5 is added to all instances using the
audio modality (including AV and A) during inference. Please refer to the appendix for additional experimental
results on different types of noise and their intensities.

pure audio fine-tuning, resulting in the current561

BLEU scores. This finding not only validates the562

effectiveness of our method but also emphasizes563

the feasibility of using a large amount of pure au-564

dio data as an alternative in scenarios where it is565

challenging to collect extensive multimodal data.566

In our study, as illustrated in Table 2, we addi-567

tionally conducted an experiment to investigate the568

translation results obtained using our Zero-Shot569

method without freezing the encoder. This part of570

the experiment primarily aimed to assess the role571

of freezing the encoder in preserving pre-trained572

knowledge. Under this setup, we observed a sig-573

nificant phenomenon: the BLEU scores for model574

inference on pure video were zero in both En-Es575

and En-Fr translation tasks. This result implies576

that the majority of the visual knowledge acquired577

during the model’s pre-training phase has been sub-578

stantially forgotten in subsequent processes.579

Furthermore, compared to models that kept the580

encoder frozen during the inference phase, the mod-581

els with unfrozen encoders also showed lower resis-582

tance to noise. This difference not only reveals the583

importance of freezing the encoder for maintaining584

model stability but also reflects the criticality of585

preserving knowledge acquired during pre-training586

when dealing with complex and variable visual in-587

puts. Freezing the encoder effectively retains the588

visual information learned during the pre-training589

phase, which is crucial for enhancing the model’s590

accuracy and robustness in parsing and understand-591

ing visual data. Therefore, our study not only em-592

phasizes the importance of managing the state of593

the encoder in implementing Zero-Shot learning 594

methods but also provides valuable insights for fu- 595

ture model design in the intersection of vision and 596

language domains. 597

5 Conclusion 598

This paper introduces Uni-Dubbing, an innova- 599

tive approach trained on multimodal audio-video 600

datasets, which achieved the best WER, ESTOI, 601

and synchronization metrics on the LRS3 dataset. 602

Additionally, by utilizing implicit visual embed- 603

dings and acoustic tokens, we successfully pre- 604

served partial speaker information on the cross- 605

speaker LRS3 dataset. We then implemented a 606

Zero-Shot strategy, transitioning from audio to 607

video modalities in cross-modal Lip2Wav tasks, 608

and cross-lingual Lip2Wav translation tasks. This 609

method significantly reduces the dependency on 610

multimodal datasets and demonstrates potential for 611

application in a wider range of tasks. 612

To further validate the practicality of this method, 613

our research utilized only the audio portion of ex- 614

isting multimodal datasets. In future work, we plan 615

to explore the use of larger single-modality audio 616

datasets, aiming to further expand the applicabil- 617

ity and enhance the effectiveness of this method. 618

Through such research, we hope to deepen our 619

understanding and utilization of single-modality 620

audio data in multimodal tasks, thereby paving new 621

paths for development in this field. 622
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6 Ethics Statement623

In the context of our research, we acknowledge that624

lip-reading technology holds considerable potential625

in a multitude of applications, such as facilitating626

silent commands in noisy environments or enhanc-627

ing communication for individuals with hearing628

impairments. The OpenSR system is designed to629

democratize the development of lip-reading mod-630

els, particularly for domains where resources are631

scarce, thereby promoting equality in technology632

application across different fields and languages.633

However, we recognize the ethical implications634

surrounding the use of speech recognition technol-635

ogy, including the potential for unintended informa-636

tion exposure. It is important to note that effective637

lip-reading by our model demands specific video638

criteria, such as front-facing, high-resolution im-639

agery with sufficient frame rates to ensure clear640

visibility of lip movements. Typically, such con-641

ditions are met in environments with close-range642

cameras or during virtual meetings, not in scenar-643

ios where video footage is obtained from a distance644

or without clear visibility of the mouth region, like645

most surveillance contexts.646

Therefore, while our model advances the field647

of speech recognition, it is engineered with inher-648

ent limitations that naturally restrict its use in sit-649

uations that could compromise individual privacy.650

We maintain a commitment to ethical research prac-651

tices, prioritizing the beneficial impacts of our work652

while actively mitigating potential risks of mis-653

use that could infringe on personal privacy or be654

deemed invasive. Our ongoing research includes a655

strong focus on developing safeguards and proto-656

cols to ensure that the technology is used responsi-657

bly and ethically.658

7 Limitations659

The present study is limited to the use of just two660

modalities: video and audio, thus neglecting the661

potential benefits of incorporating further modali-662

ties. Furthermore, the approach of applying single-663

modality Zero-Shot learning, although it minimizes664

reliance on extensive datasets, inherently results in665

the inadvertent omission of some portions of the666

previously acquired knowledge. Consequently, this667

methodology is not entirely effective in preserving668

the full spectrum of multimodal alignment knowl-669

edge that was initially obtained during the training670

phase.671
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A Additional quantitative Results884

Zero-Shot Kernel Size. The results of cross-modal Zero-Shot experiments conducted on the LRS3885

dataset are closely related to the kernel size of the last layer of transposed convolution. Table 3 details886

these results, including ESTOI, WER, and synchronization rate metrics.

K ESTOI ↑ LSE-C ↑ LSE-D ↓ WER ↓

2 0.228 6.54 7.77 36.87
4 0.235 6.67 7.64 36.31
8 0.235 6.70 7.59 36.08
16 0.234 6.75 7.61 36.12
32 0.235 6.72 7.60 36.10

1 0.211 6.22 8.05 39.79
3 0.214 6.32 7.95 37.66
5 0.214 6.37 7.91 37.76
9 0.216 6.39 7.91 37.53
17 0.214 6.40 7.90 37.99
33 0.214 6.39 7.90 37.98
FC 0.209 6.20 8.05 41.08

Table 3: The impact of varying kernel sizes on different metrics in audio generation. K represents the size of the
kernel in the final layer of transposed convolution. FC (Fully Connected) represents a configuration where, instead
of using a transposed convolution layer, a fully connected layer is employed as the final layer.

887
Zero-Shot Translate Data Size. For the Zero-Shot translation task, we present in Table 4 the performance888

of AV-Transpeech after fine-tuning with varying amounts of data. We compare the results of inference889

using both audiovisual data and video-only data. We found that for both AVST (Audio-Visual Synchronous890

Translation) and VST (Video Synchronous Translation) tasks, the effectiveness of our method is similar to891

that achieved by fine-tuning with a 200-hour multimodal audiovisual dataset.

Method Utts(hrs) En-Es En-Fr
AV V AV V

AV-Transpeech

433 45.2 25 33.6 19.9
200 35.98 15.25 29.83 14.45
100 31.59 12.36 27.64 11.21
50 28.2 11.22 24.21 10.41
30 24.92 9.92 15.96 8.57

Our(Zero-Shot) 433 36.53 16.99 28.94 15.58

Table 4: Translation Results of AV-Transpeech in Different Modalities After Fine-Tuning with Various Data
Volumes.

892
Zero-Shot Translate Noise Robust. In the main text, we only present the performance of the model893

under partial noise conditions. Table 5 and Table 6 respectively showcase the results of the Zero-Shot894

model under frozen and no frozen states across various noise conditions.895
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Modality Noise Language SNR Average-20 -10 -5 0 5 10 20

AV

Babble
En-Es 13.45 23.61 30.00 34.15 35.40 35.55 36.07 29.75
En-Fr 12.06 19.24 25.30 27.59 28.46 28.61 28.83 24.30

Music
En-Es 23.93 31.73 34.54 35.09 35.81 35.56 36.18 33.26
En-Fr 19.25 26.27 27.8 28.48 28.60 28.81 28.75 26.85

Speech
En-Es 24.63 32.38 34.25 35.41 35.57 36.16 36.41 33.54
En-Fr 19.83 26.21 27.69 28.72 28.92 28.55 29.30 27.03

Average
En-Es 20.67 29.24 32.93 34.88 35.59 35.76 36.22 32.18
En-Fr 17.05 23.91 26.93 28.26 28.66 28.66 28.96 26.06

A

Babble
En-Es 0.01 0.12 7.58 26.64 33.82 35.23 35.71 19.87
En-Fr 0.05 0.17 6.31 21.54 27.18 28.55 29.41 16.17

Music
En-Es 3.03 16.76 28.25 33.42 34.97 35.78 36.60 26.97
En-Fr 3.47 15.01 22.47 27.11 28.18 28.97 29.11 22.05

Speech
En-Es 4.11 17.97 27.88 33.89 34.79 35.53 36.09 27.18
En-Fr 3.84 15.71 21.92 27.12 28.61 29.14 29.16 22.21

Average
En-Es 2.38 11.62 21.24 31.32 24.53 35.51 36.13 24.68
En-Fr 2.45 10.30 16.90 25.26 27.99 28.89 29.23 20.14

V
- En-Es 16.99 16.99 16.99 16.99 16.99 16.99 16.99 16.99
- En-Fr 15.58 15.58 15.58 15.58 15.58 15.58 15.58 15.58

Table 5: Comparison of translation accuracy (BLEU score ↑) of our zero shot model between different noise
configurations and input modalities. The BLEU scores for pure audio inference are lower than those for inference
using only video in multiple scenarios when the noise intensity is high.

Modality Noise Language SNR Average-20 -10 -5 0 5 10 20

AV

Babble
En-Es 0.01 0.04 0.94 11.47 29.20 36.74 40.08 16.93
En-Fr 0.11 0.14 1.39 10.26 24.33 30.93 33.94 14.44

Music
En-Es 0.53 5.33 15.21 26.91 35.13 38.73 40.33 23.17
En-Fr 0.40 5.31 12.91 22.63 30.19 32.67 33.70 19.69

Speech
En-Es 0.65 7.63 16.73 28.21 34.87 38.52 40.02 23.80
En-Fr 0.55 7.21 13.91 24.01 29.61 32.48 33.68 20.21

Average
En-Es 0.40 4.33 10.96 22.20 33.07 38.00 40.14 21.30
En-Fr 0.35 4.22 9.40 18.97 28.04 32.03 33.77 18.11

A

Babble
En-Es 0.01 0.01 0.92 10.60 28.76 36.96 40.01 16.75
En-Fr 0.09 0.08 1.07 9.60 24.75 30.62 34.04 14.32

Music
En-Es 0.48 6.92 15.61 26.06 34.37 38.40 40.04 23.13
En-Fr 0.46 4.71 12.35 23.18 29.38 32.54 34.20 19.55

Speech
En-Es 1.06 7.33 16.93 27.47 35.45 38.25 40.14 23.80
En-Fr 0.66 6.53 14.50 23.46 29.82 32.30 33.83 20.16

Average
En-Es 0.52 4.75 11.15 21.38 32.86 37.87 40.06 21.23
En-Fr 0.40 3.77 9.31 18.75 27.98 31.82 34.02 18.01

Table 6: Comparison of translation accuracy (BLEU score ↑) of our no-frozon Zero-Shot model between different
noise configurations and input modalities.
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B Additional qualitative Results896

LRS3 Dataset in Lip2Wav Implementation. In Figure 4, we display visualizations of four samples each897

from the ground truth, our Full-Shot and Zero-Shot methods, and ReVISE, to compare their respective898

mel-spectrogram outputs. These methods generate mel-spectrograms whose backbone structures maintain899

a certain degree of similarity, resulting in low WER and minimal differences in retained semantic900

information for the synthesized speech. However, in comparison, our Full-Shot method produces mel-901

spectrograms that more closely resemble real data (Ground Truth) in detail, displaying finer frequency902

variations and a more continuous temporal sequence structure. This indicates that the Full-Shot approach903

achieves higher accuracy in audio reconstruction, capturing more of the acoustic features of real speech904

signals beyond just semantic information. Additionally, our Zero-Shot method shows greater similarity to905

ReVISE, demonstrating that even when fine-tuned using only audio data, it can retain a considerable level906

of semantic information. This validates the effectiveness of our method in modal transfer.907

Figure 4: Sample mel-spectrogram visualizations from various methods on the LRS3 dataset.
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In Table 7, we present the results of several audio samples processed through Lip2Wav and subsequently 908

analyzed using ASR. The errors generated by these methods are largely similar, likely stemming from the 909

inherent confusability of the Lip2Wav approach itself. This is because the majority of errors originate 910

from phonetically similar words or phrases, which are exceedingly difficult to overcome in subsequent 911

processing. 912

Table 7: This qualitative comparison addresses visually confusing words. ‘Red words’ highlighted in red indicate
misidentified terms, strikethroughs in parentheses denote visually similar words, and (red words) within parentheses
emphasize words that are absent.

Ground Truth: we were making what was invisible visible
Our(Full-Shot): we were making what was invisible invisible (visible)
ReVISE: we were many (making) what was invisible invisible (visible)
Our(Zero-Shot): we were many (making) what was invisible visible

Ground Truth: would you like to create a second one together
Our(Full-Shot): would you like to create a successful (second) one together
ReVISE: would you like to create (a) success when you guess (second one together)
Our(Zero-Shot): would you like to be in a cecil when (create a second one) together

Ground Truth: african americans supported it at a higher level than had ever been recorded
Our(Full-Shot): african americans supported it at a higher level than had ever been recorded
ReVISE: african americans supported it at a higher level than it (had) ever been recorded
Our(Zero-Shot): african americans supported it at a higher level than it (had) ever be (been) recorded

Ground Truth: dan replies so often you won’t even notice it
Our(Full-Shot): ten (dan) replies so often you won’t even notice it
ReVISE: the data (dan) replies so often you won’t even notice it
Our(Zero-Shot): ten (dan) replies so often you won’t even notice it
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LRS3-T Dataset in Cross-Lingual Lip2Wav Translation. In Figure 5, we display the actual spec-913

trograms for En-Es and En-Fr samples, along with the corresponding spectrograms generated by Av-914

Transpeech and our Zero-Shot method. The mel-spectrograms generated by Av-Transpeech show a high915

degree of similarity to those produced by our method, but both exhibit certain differences from the GT.916

This is primarily because both methods use discretized units generated in the same way as training targets,917

hence the information they carry is quite similar, primarily focusing on semantic information. On the918

LRS3-T dataset, the similarity of the mel-spectrograms generated by these two methods further confirms919

the Zero-Shot capabilities of our approach.

Figure 5: Sample mel-spectrogram visualizations from various methods on the LRS3 dataset.

920
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Table 8 shows GT, Av-Transpeech, and our En-Es and En-Fr translation results. Our translations contain 921

more erroneous words compared to Av-Transpeech, as reflected in the lower BLEU scores reported in the 922

text. However, the locations of errors are similar for both methods, suggesting that pure audio fine-tuning 923

might achieve semantics similar to Full-Shot for the main body of sentences, but there could be confusion 924

in some details. Further research and exploration in this area are needed.

Table 8: This qualitative comparison addresses visually confusing words. ‘Red words’ highlighted in red indicate
misidentified terms, strikethroughs in parentheses denote visually similar words, and (red words) within parentheses
emphasize words that are absent. The top two samples are En-Es translations, and the bottom two are En-Fr
translations.

Ground Truth: te gustaría crear un segundo juntos
Av-Transpeech: te gustaría crear una sensación (un segundo) juntos
Uni-Dubbing te gustaría crear un sentido conjunto (juntos)

Ground Truth: podemos crear un parlamento mundial de alcaldes
Av-Transpeech: podemos crear un parlamento global (mudial) de pares
Uni-Dubbing necesitamos (podemos) crear un parlamento global (mudial) de c (alcaldes)

Ground Truth: Je te pardonne et je ne te hais pas
Av-Transpeech: je te pardonne et je ne te déteste (pas)
Uni-Dubbing je te donne (pardonne et) je (ne) te déteste (déteste pas)

Ground Truth: donc la réponse à la deuxième question peut-on changer
Av-Transpeech: donc la réponse à la deuxième question pouvants-nous change (peut-on changer)
Uni-Dubbing donc la réponse à la deuxième question pouvonts-nous (peut-on) changer

925
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C Zero-Shot configuration926

On the LRS3 dataset, our applied Zero-Shot configuration is consistent with that of uHubert (Hsu and Shi,927

2022). One concern arises: the model might memorize audio-visual pairs from the pre-training period and928

associate them with unimodal data for Zero-Shot learning, as the dataset used for fine-tuning is a subset of929

the pre-training data. To address this issue, uHubert conducted experiments on non-LRS3 audio datasets,930

demonstrating the effectiveness of this configuration. Therefore, we did not seek another out-of-domain931

audio dataset for experimentation in this task. We directly conducted Zero-Shot experiments on LRS3-T,932

whose audio data is not only excluded from the pre-training but also differs in language type. Furthermore,933

ablation experiments regarding whether to freeze the encoder layers also validated the Zero-Shot capability934

of our method.935

D More implementation details.936

Experiment hyperparameters. Table 9 displays the training hyperparameter configurations for each task937

in our study, noting that audio masking was not employed in any of the tasks.

Full-Shot Zero-Shot Modal Zero-Shot Translate

num. of updates 45000 20000 60000
num. of frozen 5000 20000 60000
tri-stage LR schedule (10%,20%,70%) (10%,20%,70%) (33%,0%,67%)
peak learning rate 6e-05 6e-05 5e-04
batchsize /GPU 1000 1000 1000
num. of GPU 8 8 8
Adam (β1,β2) (0.9,0.98) (0.9,0.98) (0.9,0.98)

Table 9: Experiment hyperparameters.

938
ASR toolkit for Evaluation. In this paper, the English ASR used is cited from (Ma et al., 2023). For939

Spanish and French, we utilize open-sourced ASR models within the fairseq framework (Ott et al., 2019)940

to transcribe the audios, which is consistent with the ASR used by Av-Transpeech.941
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