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ABSTRACT

Lagrangian, or particle-based, fluid mechanics methods are the dominant numer-
ical tool for simulating complex boundaries, solid-fluid interactions, and multi-
phase flows. While their counterpart, the Eulerian framework, has seen signif-
icant progress in learning turbulence closures – such as large eddy simulation
(LES) modeling – turbulence modeling in the Lagrangian framework has been
far less successful. In this paper, we first explain why preserving the correct en-
ergy spectrum, crucial for analyzing turbulence, is fundamentally impossible in a
fully Lagrangian description. This limitation necessitates using quasi-Lagrangian
schemes – methods that adjust the evolution of fluid particle positions beyond their
physical velocity to improve accuracy. However, manually designing such correc-
tions is challenging, motivating data-driven approaches. To this end, we are the
first to investigate machine-learned quasi-Lagrangian fluid dynamics surrogates.
Our experiments are on a new quasi-Lagrangian 2D turbulent Kolmogorov dataset,
where velocities from a high-fidelity direct numerical simulation (DNS) solver are
spectrally interpolated onto fluid particles, interleaved with particle relaxations to
achieve weakly compressible fluid dynamics. We compare six machine-learning
parametrizations for evolving the positions and velocities of particles. Our results
show that learning simple unconstrained correction terms yields coarse-grained
simulations that align well with the reference high-fidelity simulation.

1 INTRODUCTION

Differential equations are essential in engineering and physics, governing the spatial and temporal
behavior of dynamical systems. Although their theoretical foundations are well established, prac-
tical applications often face a major challenge: complexity. In most cases, closed-form analytical
solutions are unattainable, making numerical approximations indispensable. Techniques such as fi-
nite element and finite volume methods have become standard tools for addressing this challenge.
Numerical approaches for solving partial differential equations (PDEs) can broadly be divided into
two main categories. Eulerian methods (typically grid- or mesh-based) discretize continuous space
using fixed spatial points, while Lagrangian methods – particularly particle-based – rely on discrete
material points, which move according to the velocity field. Each of these frameworks possesses
distinct properties suited to different types of PDEs or applications. However, purely Lagrangian
approaches have some intrinsic limitations, which have led to the development of quasi-Lagrangian
methods – through techniques such as particle shifting – where particles move with a slightly differ-
ent velocity than the physical velocity (Oger et al., 2016).

Turbulent flow simulations present a particularly difficult challenge for Lagrangian methods. A com-
mon strategy for modeling turbulence is large eddy simulation (LES), which resolves the large-scale
features of turbulent flows while modeling the smaller and unresolved subgrid-scale eddies (Garnier
et al., 2009). By resolving only the most energetic structures, LES strikes a balance between accu-
racy and computational efficiency, making it a powerful tool for studying complex fluid dynamics in
engineering and atmospheric sciences. The effectiveness of LES is often evaluated through spectral
analysis which examines the distribution of turbulent kinetic energy across different length scales,
ensuring proper resolution of large eddies.
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Smoothed Particle Hydrodynamics (SPH), introduced independently by Lucy (1977) and Gingold
& Monaghan (1977), is among the most popular Lagrangian discretization schemes. SPH is a mesh-
free method that uses radial kernel functions to interpolate physical quantities over neighboring
particles, similar in concept to stencils in grid-based methods. While SPH incurs a higher compu-
tational cost compared to Eulerian methods due to frequent updates of the connectivity graph, its
mesh-free nature makes it especially suitable for simulating systems with large deformations. For
incompressible fluids, SPH often relies on a weak compressibility assumption, permitting density
deviations of up to ∼ 1% (Monaghan, 2005). Originally developed for astrophysics, SPH has since
been applied to various applications, including free surface flows (Marrone et al., 2011; Violeau &
Rogers, 2016), complex boundaries interactions (Adami et al., 2012b), multi-phase flows (Hu &
Adams, 2007), and fluid-structure interactions (Antoci et al., 2007).

Despite its versatility, turbulence modeling within SPH remains challenging. Adami et al. (2012a)
identified two primary difficulties: (1) in inviscid flows, SPH’s energy-conserving nature prevents
energy dissipation, leading to unphysical thermal fluctuations at high wave numbers (Monaghan,
2002); and (2) in viscous flows, the pressure-term discretization in the conservative form violates
gauge invariance, introducing numerical dissipation which overly dampens the flow. Interestingly,
SPH interpolation shares conceptual similarities with LES filtering – for instance, SPH introduces
an implicit viscosity – that could be advantageous for an SPH turbulence model (Ellero et al., 2010;
Shi et al., 2012).

Although several classical turbulence modeling approaches have been proposed for SPH, including
Reynolds-averages Navier Stokes (RANS) (Violeau & Issa, 2007; Wang et al., 2025) as well as
LES-like approximations (Gotoh et al., 2004; Dalrymple & Rogers, 2006; Adami et al., 2012a;
Di Mascio et al., 2017; Antuono et al., 2021), they generally lag behind the performance of state-
of-the-art grid-based methods. Recently, neural networks have been employed to learn Lagrangian
LES models (Tian et al., 2023; Woodward et al., 2023), but these approaches rely on passive tracer
particles, which are fundamentally different from SPH particles, as we outline in the next section.

In this work, we introduce a new quasi-Lagrangian framework for learning weakly compressible
SPH-LES turbulence. Our key contributions are:

• Rationale for using a quasi-Lagrangian over a Lagrangian approach to SPH-LES modeling;
• Approach to constructing high-quality quasi-Lagrangian datasets, which is used to generate

a 2D turbulent Kolmogorov flow dataset by interpolating velocities from a spectral direct
numerical simulation (DNS) solver to SPH particles;

• Comparison of six machine-learning parametrizations for evolving the physical and shifting
velocities, including purely data-driven as well as hybrid approaches.

2 QUASI-LAGRANGIAN METHODS

Shifting schemes in SPH. Standard SPH (Monaghan, 2005) suffers from tensile instabilities
caused by negative pressure, leading to particle clustering or clumping (Price, 2012; Sun et al.,
2018; Lyu et al., 2022). We refer to quasi-Lagrangian extensions of SPH that explicitly target im-
proving the particle distribution as shifting schemes, to which we count Adami et al. (2013); Zhang
et al. (2017a); Sun et al. (2019); Toshev et al. (2024b), while other schemes implicitly also improve
the particle distribution even if that is not how they were originally motivated (Marrone et al., 2011;
Zhang et al., 2017b). A more generic framework than the quasi-Lagrangian description is given by
the arbitrary Lagrangian-Eulerian (ALE) methods (Hirt et al., 1974; Oger et al., 2016; Jacob et al.,
2021; Rastelli et al., 2023), which treat the evolution of the physical velocity field u and the par-
ticle shifting velocity v separately. This body of literature hints at the inherent limitations of fully
Lagrangian methods and that we can deliberately design more general transport schemes. One can
compare the two velocities u and v with the Reynolds and Favre averaging in compressible tur-
bulence (Gatski & Bonnet, 2013), where u and Reynolds averaging relate to the filtered Eulerian
velocity field, while v and Favre averaging both depend on the local density.

Passive tracers versus SPH particles. While ALE methods blend the transition between La-
grangian and Eulerian viewpoints, it is worth noting that the solutions derived from each frame-
work are qualitatively different. To illustrate this, we use the two-dimensional Taylor-Green vortex
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(TGV) (Taylor & Green, 1937), initialized with the following velocity field:

u(x, y) =

[
− cos (2πx) sin (2πy)
sin (2πx) cos (2πy)

]
. (1)

In the absence of viscosity and perturbations, this flow remains steady in the Eulerian frame. How-
ever, a purely Lagrangian simulation initialized on a Cartesian grid leads to undesired coherent
structures and significantly overestimated dissipation (Adami et al., 2013). This discrepancy high-
lights a key challenge: although TGV is a benchmark case for SPH model validation, standard SPH
struggles with it, while quasi-Lagrangian methods such as Adami et al. (2013) show significant
improvement.

If we simply advect particles using the analytically defined, incompressible Eulerian velocity field,
we obtain very different behavior than what we would expect from a weakly-compressible field,
see Figure 5. Particles advected by the instantaneous point-wise velocity field are called tracer
particles. They are fundamentally different from SPH particles as tracer particles do not interact
with each other and lack a mass or volume. In Figure 5, we see that if we treat tracer particles as SPH
particles for the purpose of computing their density, i.e., summation of mass over neighborhoods,
we violate the 1% weak-compressibility density condition by more than one order of magnitude.
Notably, while recent works (Tian et al., 2023; Woodward et al., 2023) have proposed learning
Lagrangian LES models using tracer particles, our work is the first to address data-driven weakly-
compressible SPH turbulence modeling.

Our shifting scheme. We propose a novel shifting strategy for generating high-quality weakly-
compressible SPH reference trajectories, ingraining the 1% compressibility threshold (Monaghan,
2005). Our procedure consists of first initializing (a) a high-fidelity DNS solver and (b) an initial
relaxed particle distribution, and then alternating between the following two steps (see Figure 1):

1. Spectral evolution and interpolation: We evolve the DNS solution for one time step by
solving the Navier Stokes equations in the Eulerian description (upper half of Figure 1).
High-frequency components of the velocity field are then removed via spectral filtering
(zeroing large wavenumbers). We then interpolate u at the particle positions by inverse
transforming the velocities from spectral space using the discrete Fourier Transform (DFT)
(“Interpolate” in Figure 1). Note that we cannot use the FFT, which requires regular grids
in both the real and complex domains. Particles are then advected as passive tracers using
the interpolated velocity: x′

t+1 = xt +∆t · ut in Figure 1.
2. Relaxation step: To satisfy the weak-compressibility constraint, we relax the particle po-

sitions through two SPH simulation steps. Particles are initialized with zero velocity and
no viscosity, thus, the relaxation is driven by pressure gradients. We also incorporate a
transport velocity formulation (TVF) (Adami et al., 2013) to improve particle distribution.
For an analysis of SPH relaxations, we refer to Litvinov et al. (2015); Toshev et al. (2024b);
Fan et al. (2024).

To generate high-fidelity reference data, we use a spectral DNS solver based on Mortensen & Lang-
tangen (2016) (see Canuto et al. (1988)). We simulate DNS dynamics on a 2562 grid and spectrally
filter to 642. In this way, we reduce the number of spatial discretization points by 16× and could
also use 4× larger time steps to maintain the same CFL number (Courant et al., 1928).

Evaluating the energy spectrum. To evaluate the energy spectrum, we must compute the Fourier
transform of the velocity field. While this is straightforward on regular grids, additional care is
needed when working with irregular discretization. Building on results by Shi et al. (2013), who ex-
tensively compared algorithms for evaluating the energy spectrum in weakly-compressible SPH, we
employ a mean least squares (MLS) quadratic interpolation to project particle velocities onto a uni-
form Cartesian grid. For comparison, Figure 4 illustrates the difference between DFT interpolation
and our MLS-based method.

3 LEARNING QUASI-LAGRANGIAN UPDATES

Our datasets consist of particle evolution trajectories with N steps {(xi,ui)i=1:N}, for which we
define the shifting velocity as the difference in positions vi = xi − xi−1. In this setup, the physical
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Figure 1: Dataset generation procedure.

velocity u is used to evaluate the energy spectrum, and the shifting velocity v evolves the positions
of particles. We propose to use a graph neural network (GNN) to jointly learn the physical velocity u
and shifting velocity v, which is further simplified to learning accelerations au and av , respectively.
However, there are various ways of defining these accelerations, from which we focus on six specific
parametrizations described below and illustrated in Figure 2:

au0 ,a
v
0 = GNN(u0,v0) (2)

1. Simple-Base: This formulation is the simplest one conceptually, as it evolves the physical
and shifting velocities completely independently, i.e., u1 = u0 + au0 , v1 = v0 + av0 .

2. TVF-Base: Following the transport velocity formulation (TVF) (Adami et al., 2013), we
define the shifting velocity v1 = u1 + av0 as a modified version of the physical velocity
u1 = u0 + au0 . This introduces a direct coupling between the two velocity fields, which is
not present in the Simple-Base variant.

3. Simple-u: This formulation is conceptually similar to TVF-Base as it also defines a cou-
pling, but here, the two learning targets depend on each other only during rollout, i.e.,
v1 = u0 + av0, u1 = u0 + au0 .

4. Simple-u-Closure: Adding terms to the right-hand side of the Navier-Stokes equations to
compensate for unresolved scales is commonly known as closure modeling. We adopt such
an approach by learning the part of the physical acceleration au not captured by the regular
SPH acceleration approximation aSPH,u, i.e., u1 = u0 + aSPH,u

0 + au0 . For the shifting ve-
locity, we stick to the Simple-Base design v1 = v0 + av0 . This approach closely resembles
hybrid machine learning methods (Toshev et al., 2023) like Solver-in-the-Loop (Um et al.,
2020; Toshev et al., 2024c) and JAX-CFD (Kochkov et al., 2021).

5. TVF-Rlx: During dataset generation, we use SPH to relax the particle distribution. Here,
we explore what would happen if we leverage this exact same relaxation aRelax to have to
learn only the evolution of the physical velocity field u1 = u0 + au0 . If au0 is perfectly
learned, the relaxation acceleration aRelax

0 is guaranteed to be exact.

6. TVF-Rlx-Closure: This setting extends the previous one by learning a part of the
shifting acceleration, combined with a regular particle relaxation term aRelax, i.e.,
v1 = u1 + aRelax

0 + av0 . Note that av0 = 0 if we use the exact same step size as for dataset
generation, but av0 ̸= 0 if we do temporal coarsening, i.e., learning to simulate with larger
time steps.
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Figure 2: Learning problem variants.

4 EXPERIMENTS

Our experiments are based on the GNS architecture (Sanchez-Gonzalez et al., 2020) and the La-
grangeBench benchmarking setup (Toshev et al., 2024a). The architecture is a model with 10
message-passing steps, a latent size of 128, 5 historic velocities v, and one hidden MLP layer
resulting in 1.2M parameters. Optimization is conducted for 500k steps with a batch size of one
using Adam (Kingma, 2014) with weight decay and exponentially decaying learning rate from 1e-3
to 1e-5, similar to Sanchez-Gonzalez et al. (2020).

Datasets. We use the 2D decaying turbulent Kolmogorov flow with Reynolds number 1000 de-
scribed in Kochkov et al. (2021). Using the codebase from this previous work, we generate 20
initial conditions (10/5/5 for training/validation/testing) and simulate each for tfinal = 10 with 20k
integration steps as described in Section 2. The resolution of the spectral method is 2562, and the
number of particles is 642. This full dataset is denoted as Kolm2D-1, where “1” refers to every one
time step. We also have a dataset consisting of every 10th step denoted Kolm2D-10.

Metrics. We use the average joint velocity MSE over 20 rollout steps denoted MSEu,v
20 , i.e. av-

eraged over both u and v, and kinetic energy MSEEkin
20 as defined in Toshev et al. (2024a). In

addition, we evaluate the energy spectrum, as described in Section 2.

Comparing parametrizations. Our experiments are summarized in Table 1, while various visual-
izations can be found in Appendix C. Overall, we find that the Simple-Base variant outperforms the
others on both short and long rollouts, i.e., 20 steps loss (see Table 1) and 1000-step rollouts (see Ap-
pendix C), respectively. From the fully learned top half of Figure 2, we surprisingly find that, while
classical quasi-Lagrangian modeling couples the physical velocity u and shifting velocity v simi-
larly to our TVF-Base and Simple-u approaches, our best results are achieved when we learn the
two separately, i.e., Simple-Base. Even more surprisingly, while hybrid approaches like our Simple-
u-Closure (lower half of Figure 2) have shown good results in the Eulerian description (Um et al.,
2020; Kochkov et al., 2021), the 20-step velocity loss of our closure models, i.e., Simple-u-Closure
and TVF-Rlx-Closure, was more than two orders of magnitude worse than the fully-learned alterna-
tives and we omit reporting it in the table. Lastly, the variant TVF-Rlx performed competitively or
slightly worse than the fully learned ones.

Comparison with SPH. As discussed in the introduction, standard SPH is not well-suited for sim-
ulating turbulent flows. As a baseline for comparison, we use the transport velocity formulation of
SPH (Adami et al., 2013), denoted as “SPH” in Figure 3, which has shown significant improvements
for simulating turbulent dynamics (Adami et al., 2012a). However, SPH is still too dissipative (see
drop of kinetic energy of left side of Figure 3) and also cannot reproduce the reference spectrum by
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Table 1: Performance comparison.

Variant
Kolm2D-1 Kolm2D-10

MSEu,v
20 MSEEkin

20 MSEu,v
20 MSEEkin

20

Simple-Base 1.2e-4 1.3e-1 2.1e-3 0.95
TVF-Base 1.4e-4 3.4e-1 2.4e-3 2.6
Simple-u 1.3e-4 2.8e-1 2.5e-3 2.6
TVF-Rlx 1.6e-4 3.7e-1 4.1e-3 3.3
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Figure 3: Kinetic energy evolution (left) and energy spectra at step 1000 (right) on Kolm2D-1.
Plots are based on the first test trajectory. Some variants are missing in the right plot because
MLS interpolation fails on domains with void regions. “Dataset” denotes the ground truth data, and
“SPH” denotes the baseline classical numerical method. While SPH over-dissipates kinetic energy,
in particular, through unwanted high wave number dynamics, the learned methods increase kinetic
energy,i.e., become unstable, while better capturing the spectrum.

introducing high-frequency oscillations (contains too much energy at high wave numbers k on the
right side of Figure 3). According to Figure 3, the Simple-Base parametrization is the only one that
does not blow up and also matches the energy spectrum better than SPH.

NeuralSPH. In a final ablation, we add the NeuralSPH approach of Toshev et al. (2024b) to
our inference routine. The idea of this approach is to relax the particle configuration only during
inference, promising improved particle distribution and more physical rollouts. Our results with
10 NeuralSPH relaxation steps are visualized in Appendix C, where we do see a significant im-
provement for the Simple-Base and TVF-Base approaches. In the case of the Simple-Base variant,
this improvement in dynamics v interestingly also improves the velocity field u, showing that our
quasi-Lagrangian setting benefits from NeuralSPH, although NeuralSPH has been developed for
fully Lagrangian data.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced a learned quasi-Lagrangian framework for turbulence modeling in
particle-based fluid simulations, addressing the fundamental limitations of fully Lagrangian ap-
proaches. By constructing a high-fidelity quasi-Lagrangian dataset and evaluating multiple update
schemes, we demonstrated that learned shifting velocities can improve energy spectra while main-
taining weak compressibility constraints. Our experiments suggest that decoupling the evolution of
physical and shifting velocities yields the most promising results, surpassing traditional SPH-based
approaches. Future work includes testing this framework on three-dimensional turbulence, explor-
ing alternative data-driven closure models for further accuracy improvements, and further improving
the stability in long-term rollouts. Additionally, investigating how our approach generalizes to other
flow fields and different Reynolds numbers remains an important avenue for research.
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A EVALUATING THE SPECTRUM
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Figure 4: Comparison of quadratic mean least squares (MLS) interpolation (left) and discrete Fourier
transform (DFT) interpolation (right) on the example of a scalar signal sampled equidistantly cor-
rupted with additive noise (top) or equidistantly, but not covering the full domain (bottom). The
upper half is representative of Lagrangian particle dynamics and shows the sensitivity of DFT to the
nonregularity of the samples, while the lower half is an edge case for qualitative comparison when
a region is sparsely populated.

B TRACER PARTICLES

Figure 5: Taylor-Green case simulated for 1s in a [0, 1]2 domain with 502 passive tracer particles.
Particles are initially on a Cartesian grid and are then advected along the analytical solution. At the
end of the simulation, particles are distributed unequally over the domain, violating weak compress-
ibility if we treat them as SPH particle to estimate their density.
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C ADDITIONAL VISUALIZATIONS

C.1 KOLM2D-1

Figure 6: Velocity field of first test trajectory from Kolm2D-1.

11



Published as a workshop paper at ICLR 2025 MLMP

Figure 7: Velocity field of first test trajectory from Kolm2D-1 with NeuralSPH
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Figure 8: Kinetic energy and energy spectra on Kolm2D-1.
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C.2 KOLM2D-10

Figure 9: Velocity field of first test trajectory from Kolm2D-10.
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Figure 10: Velocity field of first test trajectory from Kolm2D-10 with NeuralSPH
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Figure 11: Kinetic energy and energy spectra on Kolm2D-10.
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