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ABSTRACT

Advancements in Genome-wide association studies (GWAS) have led to the discovery of numer-
ous genetic variants potentially linked to various traits, necessitating effective methods to interpret
and summarise these vast data sets. We introduce funkea, a Python package designed to fill this
need by providing functional enrichment analysis methods. This tool encompasses popular en-
richment approaches under a unified interface and leverages Spark for virtually limitless scale.
This allows researchers to conduct pathway, cell-type, and tissue enrichment analysis across di-
verse annotation datasets. Ultimately, the funkea Python package delivers a highly flexible and
scalable solution for functional enrichment analysis in the context of modern genetics workflows.
https://github.com/BenevolentAI/funkea

Keywords Genetics · Functional Annotations · Python · Apache Spark

1 Introduction

Genome-wide association studies (GWAS) have proven themselves as an effective way of linking human genetic
variation to disease. GWA studies are now being produced at increasingly large scales, surfacing thousands of
potentially causal genetic variants for various traits. With this scale comes a need to introspect and summarise GWAS
results and to link them back to the underlying biology. One family of methods is functional enrichment analysis, which
attempts to surface sets of genomic functional annotations which are likely to be disproportionately affected in some
way by the trait-associated variants (enrichment). Many methods have been proposed for this purpose; however, these
methods are generally developed as command-line tools and lack the scalability needed to handle modern genetics
workflows.

For this purpose we developed funkea, a Python package containing popular functional enrichment methods, leveraging
Spark for effectively infinite scale. All methods have been unified into a single interface, giving users the ability to
easily plug-and-play different enrichment approaches.

2 Methods

funkea unifies five popular enrichment methods. It does so by identifying that each method consists of

1. A data pipeline — a series of steps transforming user input into information usable by the enrichment method.
Inputs are always at least a space of genomic annotations G (and its subsets Si ∈ G) and the summary statistics
of at least one GWAS.

2. An enrichment method — a method consuming the outputs of the data pipeline and returning enrichment
results and the significance thereof, for each Si.

These two steps are wrapped by a workflow, which manages the execution. For demonstration, we analysed the
enrichment results of the different methods for the OpenGWAS Parkinson’s study (ID: ieu-b-7; figure 1) and a
cholesterol study using UK Biobank data.
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Table 1: The available enrichment methods and the partition types for which they work.

Name Paritition types Source

DEPICT Soft / Hard Pers et al. [2015]
Fisher Hard Fisher [1922]
GARFIELD Hard Iotchkova et al. [2019]
S-LDSC Hard Finucane et al. [2015]
SNPsea Soft / Hard Hu et al. [2011]

2.1 Data Pipeline

Each method has its own data pipeline, taking at least an annotation component and the summary statistics of a GWA
study. The annotation component defines the space of genomic annotations G, which is a set sequence spans with
coordinates defined genome-wide; that is, we know their start and end base-pairs, and chromosome. A classic example
of genomic annotation is the gene, but in general, any sequence span is valid. These annotations are expected to
be partitioned into K subsets Si ∈ G,∀ i ∈ {1, . . . ,K}, for which we will get the final enrichments. This could
be any biologically relevant partition of the annotations (e.g. pathways, cell-types, tissues etc.), and need not be
non-overlapping. Also, for some methods partitions can be ‘soft’, i.e. a given annotation can have a distribution over
the partitions. For example, gene expression values for different tissues can be viewed as unnormalised probabilities.

2.2 Enrichment Method

Once the data have been wrangled into the appropriate input format, the enrichment methods compute the enrichment
and the corresponding significance for each partition i of the annotations. Enrichment is uniquely defined for each
method (overview in appendix). Equally, significance is established differently, as the null hypothesis varies from
method to method. However, to allow for plug-and-play, each method returns a single dataframe, containing the
enrichment value and corresponding p-value for each partition i.

2.3 Additional Features

To be able to run all of these methods at scale, some additional tooling needed to be implemented. Users may find these
useful:

1. LD pruning — A Spark UDAF written in Scala to run LD pruning seamlessly at any scale. Required in:
DEPICT, GARFIELD

2. Hypergeometric test — A Spark implementation of the hypergeomtric test. Required in: Fisher

3. (stratified) LD score regression — A Python 3 implementation of stratified LD score regression, compatible
with Spark. Required in: S-LDSC

3 Discussion

In conclusion, the funkea Python package gives users an easy way to run functional enrichment analysis at any scale.
Each enrichment method can be applied flexibly to any annotation dataset, allowing users to run pathway, cell-type and
tissue enrichment analysis with the same set of tools.
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Figure 1: Log-transformed p-values of the tissue enrichments from GWA studies on cholesterol and Parkinson’s disease.
The annotation data used here was a subset of GTEx [Lonsdale et al., 2013].
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A Appendix

A.1 Fisher’s exact test

The hypergeomtric test, or Fisher’s exact test [Fisher, 1922], is a naïve functional enrichment method, which computes
the significance in the overlap between ‘enriched’ subset Ŝ ∈ G and ‘true’ subsets Si ∈ G,∀ i ∈ {1, . . . ,K}. Hence,
the enrichment ei of a given study for partition i of G is defined as

ei = |Ŝ ∩ Si| (1)

where Ŝ is the set of sij overlapped by all the genome-wide significant variants in the study. The significance of ei is
assumed to be distributed hypergeomtrically, and hence

a = ei (2)
b = |Si| − ei (3)

c = |Ŝ| − ei (4)
d = |G| − (a+ b+ c) (5)

pi =

b∑
j=0

(a+ b)!(a+ c)!(c+ d)!(b+ d)!

j!(a+ b− j)!(b+ d− j)!(c− b+ j)!(a+ b+ c+ d)!
(6)

The Fisher’s method can be extended with linkage disequilibrium (LD) pruning (for variant selection) and / or FDR
correction (for enrichment selection). However, we have found these modifications generally did not improve enrichment
results.

A.2 SNPsea

Originally developed for tissue and cell-type enrichment [Hu et al., 2011, Slowikowski et al., 2014], SNPsea has also
been applied to pathway enrichment [Slowikowski et al., 2014]. It uses activity matrix X to allow for definitions of
‘soft’ partitions; that is, distributing each annotation over the K partitions. For example, in tissue enrichment X may be
a gene expression matrix such that Xij is the expression of gene j in tissue i. A nice property of this method, is that it
is defined both for X ∈ RK×|G| and X ∈ {0, 1}K×|G|, i.e. it works for soft and hard partitions. If X ∈ RK×|G|, then
it is normalised in the following way:

X̄ = (h ◦ g ◦ f)(X) (7)

where

f := quantile_norm (8)
g := euclid_norm (9)
h := percentile_assignment (10)

(9) is the easiest to explain mathematically, and simply normalises each column vector in X to unit length; that is, each
annotation j will have length 1 over all K partitions. In the example of gene expression, this amplifies specifically
expressed genes and surpresses ubiquitously expressed ones.

To better understand (8), consider the following code snippet:

def quantile_norm(X):
# subtract 1 to get 0-based indexes
rank = scipy.stats.rankdata(X, axis=1, method="min") - 1
return np.sort(X, axis=1).mean(axis=0)[rank]

i.e. we average the observed quantiles in each partition over the K partitions and then assign each annotation in each
partition to a quantile. See Amaratunga and Cabrera [2001], Bolstad et al. [2003] for a reference.
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Similarly, (10) assigns 1 minus the percentile of each annotation in a given partition to that annotation, such that the

final activity matrix X̄ ∈
[

1
|G| , 1

]K×|G|
. It is important to emphasise that this means that higher values in X will be

assigned to lower values in X̄.

Next, SNPsea defines a locus as the sequence span covered by the furthest LD proxies of a genome-wide significant
variant. These loci are then linked to annotations by overlapping the locus spans with the annotation spans. If a locus
does not overlap any annotations, it will be expanded by 10kb on either side and overlap will be attempted again. Loci
which overlap the same annotations are combined into a single locus.

These annotation-locus links can be represented in a bipartite adjacency matrix L ∈ {0, 1}|G|×M , where M specifies
the number of loci in the study. Using this and X̄, we can compute the partition-locus specificity score matrix K, where
Kil between partition i and locus l is defines as:

Kil = 1−
(
1− ⟨X̄i,Ll⟩

)cl (11)

where X̄i is the normalised activity profile for partition i, Ll is the adjacency vector for locus l and

cl =

|G|∑
j

Ljl (12)

is the total number of annotations in locus l. Finally, the inner product between Xi and Ll is defined as:

⟨X̄i,Ll⟩ := min
j

X̄
Ljl

ij (13)

Since Lkl ∈ {0, 1} and X̄ik ∈ [ 1D , 1], the above inner product will always return the highest specificity value in a locus.
Remember that a low value in X̄ (percentile), denotes high specificity. The enrichment ei for partition i is defined as:

ei = −
M∑
l

log(Kil) (14)

In the case when X ∈ {0, 1}|G|×M , the specificity score matrix K is computed in the following way:

Kil =

1− (|G|−ni
cl

)
(|G|

cl
)

if
∑|G|

j XijLjl > 0

1 otherwise
(15)

where ni =
∑|G|

j Xij .

The significance of ei is then computed via a permutation-based test. First, a set of ‘null’ loci are generated from a
list of LD pruned, non-associated variants. Then, a set of null loci are sampled, such that each true locus has a null
counterpart, which contains (roughly) the same number of annotations (i.e. cl ≈ cl̃). From these null loci, a null
enrichment ẽik is computed. These steps are repeated N times, giving us the p-value for enrichment ei, like so:

pi =
1

N

N∑
k

1 [ei ≤ ẽik] (16)

A.3 GARFIELD

GARFIELD is a general method for functional enrichment analysis [Iotchkova et al., 2019]. It regresses locus association
to a given trait on whether the lead variant — or one of its LD proxies — overlaps a given partition i, as well as a set of
controlling covariates. Formally:
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E
[
1
[
χ2 > θ

]
|C,K

]
= (1 + exp (−z− b))

⊙−1 (17)

z = C⊺α+K⊺β (18)

where χ2 ∈ RM are the association statistics for the LD pruned lead variants, θ is some threshold, C ∈ {0, 1}D×M are
the controlling covariates and K is:

K = t (Q) (19)
Q = XL (20)

t(Qil) = 1 [Qil > 0] (21)

an indicator matrix showing whether a given locus overlaps an annotation partition. The definitions of X and L are the
same here as for SNPsea; however, L is constructed in a slightly different way. As mentioned above, an annotation j
and a locus l are considered ‘linked’, if the lead variant or one of its LD proxies overlaps it. If the overlap is with an LD
proxy, the annotation as to also be withing 500kb of the lead variant.

Here, we define the controlling covariates C as being binary; however, any type of variant-level covariate is valid. In
the original formulation of GARFIELD, C is divided into two feature type subsets: (1) binned distance from transcription
start site (TSS), and (2) binned number of LD proxies. Formulated differently, C is an indicator matrix, telling us how
far from the nearest gene a given lead variant is, and how much LD it is experiencing. The enrichment ei for given
partition i is then defined as follows:

ei = exp(βi) (22)

The significance of the enrichment is then computed in the standard way for linear models:

pi = 2F

(
−
∣∣∣∣ log ei
SE(log ei)

∣∣∣∣) (23)

where F is the cumulative density function of a unit Gaussian.

A.4 S-LDSC

Stratified LD score regression has been used for functional and tissue enrichment analysis [Finucane et al., 2015, 2018].
It is defined as follows:

E
[
χ2|C,K

]
= Rz+ b (24)

where R is the square LD correlation matrix and z is defined in (18). Similarly to GARFIELD, the enrichment of partition
i is defined as:

ei =
1

P
βi (25)

where P is the sample size (i.e. number of patients) used in the GWAS. From LD score regression, we can see that this
is the total heritability of partition i [Finucane et al., 2015]. From this enrichment we get the p-value in the usual way:

pi = 1− F

(
eiP

SE(eiP )

)
(26)

The adjacency matrix L is again constructed in a slightly different way. Here, every variant is considered individually,
and considered ‘linked‘ to a particular annotation if it is within 100kb of that annotation. Moreover, C is usually another
K, derived from a different X and L — i.e. different annotations and corresponding partitions.
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A.5 DEPICT

DEPICT is a popular method for gene prioritisation, but also has proven itself useful for functional enrichment analysis
[Pers et al., 2015]. Similarly to SNPsea, it uses activity matrix X ∈ RK×|G| to assign the annotations sij to the (soft)
partitions i ∈ {1, . . . ,K}, by normalising the activities over the K partitions. However, in this case, X̄ is produced from
X via z-scoring, rather than normalising to unit length. Also, much like SNPsea, DEPICT defines bipartite adjacency
matrix L ∈ {0, 1}|G|×M , which defines whether an annotation and a locus overlap. It then computes the scores between
each partition i and locus as follows:

K = X̄L · diag(L⊺1)−1 (27)

The loci are defined as the LD pruned genome-wide significant variants and their LD proxies. Each locus is overlapped
with the genomic annotations and loci which do not overlap any annotations are associated with their nearest annotation.
Loci which share annotations are fused.

From K, we then get the biased estimate of the enrichment êi of partition i:

êi =
µi

σi
(28)

where µi and σi are the sample mean and standard deviation of the partition-locus scores Kij . The final bias corrected
enrichment ei is then defined as

ei =
êi − E[êi]
SE(êi)

(29)

where E[êi] and SE(êi) are the expectation and standard error of êi, which are approximated empirically via Monte
Carlo sampling. Since we assume a normal distribution of ei, we get pi = 1− F (ei), where F (ei) is the cumulative
distribution function of the unit Gaussian.

Finally, DEPICT estimates the false discovery rate (FDR) for each pi by running N repetitions of the above steps using
M randomly generated loci. Each generated locus will have the same number of annotations as their ‘real’ counterpart.
The FDR is computed as follows:

FDR(pi) =
1

RiN

N∑
k

1 [p̃ik ≤ pi] (30)

where Ri is the ordinal rank of pi and p̃ik is the p-value of the k-th null enrichment for partition i. For the sake of
consistency with the other methods, we did not include this step in our Python package.

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.24.609502doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.24.609502
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Data Pipeline
	Enrichment Method
	Additional Features

	Discussion
	Acknowledgments
	Appendix
	Fisher's exact test
	SNPsea
	GARFIELD
	S-LDSC
	DEPICT


