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Abstract

Large Language Models (LLMs) have demonstrated remarkable perfor-
mance in open-domain question answering (QA), but their reliance on
knowledge learned during pretraining limits their ability to provide accu-
rate and up-to-date information. Knowledge Graph Retrieval-Augmented
Generation (KG-RAG) enhances LLMs by incorporating structured knowl-
edge from knowledge graphs (KGs). A common approach in KG-RAG
is to retrieve relevant knowledge paths starting from entities in the input
question and expanding along KG edges by LLM reasoning. However,
existing KG-RAG methods suffer from the challenge that retrieval is per-
formed step by step greedily using only local graph context, which can
lead to retrieval errors that prematurely discard essential paths. To address
the issue and perform more accurate retrieval, we propose GGR (GNN-
Guided Retrieval for LLM Reasoning), a novel GNN-enhanced KG-RAG
framework that integrates graph-based relevance scoring into the retrieval
process. Our approach computes global importance scores across a con-
textualized subgraph, ensuring that key reasoning knowledge paths are
preserved, even if their local relevance appears weak. Additionally, we in-
troduce local semantic alignment by incorporating query-relation semantic
similarity, refining the relation selection of LLM. Extensive experiments
on Question-Answering tasks demonstrate that our method significantly
improves retrieval accuracy and answer quality, demonstrating the effec-
tiveness of combining graph-based reasoning and LLM-driven retrieval for
structured knowledge integration.1

1 Introduction

Large Language Models (LLMs) (Brown et al., 2020; Touvron et al., 2023) have achieved
remarkable success in natural language processing (NLP) tasks, including text compre-
hension (Lewis et al., 2020a), language generation (Cheng et al., 2023), and open-domain
question answering (QA) (Wei et al., 2022; Cohen et al., 2024; Chen et al., 2024). However,
their reliance on knowledge learned during pretraining limits their ability to handle tasks
requiring factual accuracy, dynamic knowledge updates, and multi-hop reasoning (Zheng
et al., 2023; Wang et al., 2023). In these tasks, LLMs struggle with outdated information,
incomplete knowledge, and unverifiable claims. A typical approach to overcome these
challenges is to enable LLMs to access and reason over external sources of knowledge to
improve their reliability (Jiang et al., 2024; Sun et al., 2024).

To address the limitations of LLMs in knowledge-intensive tasks where external knowledge
is needed, Retrieval-Augmented Generation (RAG) (Gao et al., 2023) enhances LLMs by
retrieving external knowledge sources such as Knowledge Graphs (KGs). Knowledge
Graph RAG (KG-RAG) (Sanmartin, 2024) has gained attention for its structured and rich
knowledge representation, improving interpretability and factual consistency of the model’s
responses. Most KG-RAG methods for LLM generation follow a two-step process: (1)

1Our code is here: https://github.com/HaochenLiu2000/GGR.
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Knowledge Retrieval, where relevant entities and relations in the KG are extracted based
on the input query, and (2) Prompt Integration, where retrieved knowledge from the KG is
incorporated into the LLM’s input to refine its response. Typically, KG-RAG systems start
from query entities and expand along relational paths, retrieving multiple query-relevant
triplets as prompt evidence for LLM reasoning. To select helpful knowledge for the query,
LLMs are often used to evaluate and select triplets via similarity scoring or prompt-based
reasoning (Sun et al., 2024; Ma et al., 2024).
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Since the question asks if air pollution influences 
cognitive decline, “affect” is more appropriate 
while “increase” may also be relevant.

Which of the relations are relevant to the question: 
1. contain; 2. promote …

“Promote” implies a supportive or enhancing 
effect on the body, which aligns well with the idea 
of helping or improving.

Early Retrieval Error
Textual Reasoning Error

Figure 1: The figure illustrates the limitation
of lacking global views in existing KG-RAG
LLM retrieval. Green entity is in the question,
and purple entity is the correct answer. After
retrieving milk, the LLM compares the ques-
tion with promote and contain. The LLM tends
to select promote, which is seemingly more rel-
evant to the question, leading to a wrong path
for its lack of global KG information, causing
the correct reasoning path to be pruned early.
Notably, typical methods first select relations
and then identify corresponding entities to re-
duce computational overhead.

Despite the integration of knowledge
graphs, during the retrieval process, ex-
isting KG-RAG methods often fail to cap-
ture and utilize the global information in
the knowledge graph, i.e., KG information
beyond a node’s immediate neighborhood
that possibly participates in long-range rea-
soning chains leading to the answer, as
shown in Figure 1. In particular, current ap-
proaches typically perform stepwise greedy
retrieval, relying solely on local knowledge
at each step (Sun et al., 2024). Without a
global view of the graph structure, these
methods are prone to retrieval errors, where
seemingly weak but structurally important
paths are prematurely discarded, disrupt-
ing multi-hop reasoning.

To address the limitation of lacking global
information during retrieval, we propose
GGR (GNN-Guided Retrieval for LLM Rea-
soning), a novel KG-RAG framework that
incorporates a graph neural network (GNN)
into the retrieval process to reason on global
graph information. The GNN serves as an
auxiliary scorer to assess question-aware relevance over the graph for the LLMs. However,
there exist two difficulties to overcome. First, to present the global information of the
relevance of knowledge in a compact form for LLM reasoning, we introduce a GNN scoring
mechanism that evaluates the relevance of entities and relations within a contextualized
subgraph. By propagating information through the graph, the GNN captures structural
dependencies beyond local neighborhoods, allowing globally important reasoning paths
to be preserved. Second, to avoid excessive influence from purely global relevance signals,
we further incorporate query-relation semantic similarity that assesses how well a relation
semantically matches the intent of the question. Although GNN scores provide global
guidance, relation similarity offers local semantic precision. By integrating these two signals,
GGR enables more reliable and context-aware knowledge retrieval, effectively overcoming
the limitation of existing KG-RAG methods. Our main contributions are as follows:

• We analyze the limitations of existing KG-RAG methods, highlighting the issues of
stepwise greedy retrieval errors and difficulties for incorporating global KG information
in the retrieval process.

• We propose a novel retrieval framework that combines GNN-based global relevance
scoring with query-relation semantic similarity. This mechanism enables structurally
aware and semantically precise knowledge selection, mitigating incorrect knowledge
path pruning and reasoning errors.

• Through extensive experiments on knowledge-intensive QA tasks, we show that our
method significantly surpasses current state-of-the-art methods, demonstrating the ben-
efits of combining graph reasoning and LLM-driven retrieval in the tasks of KG-RAG.
Experiments also show that even simple GNN architectures suffice for strong performance
in KG-RAG.
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2 Problem Formulation

In this section, we formally define the task of Knowledge Graph Retrieval-Augmented
Generation (KG-RAG) for LLMs. In KG-RAG, structured knowledge from a knowledge
graph is retrieved and integrated into the generation process. A knowledge graph is
represented as G = (E ,R, T ), where E is the set of entities, R is the set of relations, and
T = {(h, r, t) | h, t ∈ E , r ∈ R} is the set of knowledge triplets. Each triplet consists of a
head entity h, a relation r, and a tail entity t. Given an LLM, denoted as LM, and a question
q, the goal of KG-RAG is to retrieve relevant knowledge from G and use it as additional
information for the LLM to improve its response generation for q.

3 GNN-Guided Retrieval for LLM Reasoning

In this section, we introduce GGR, a GNN-enhanced KG-RAG framework that improves
knowledge retrieval for LLMs by integrating KG information and graph reasoning into
the retrieval process. As shown in Figure 2, our approach consists of three key phases: (i)
Subgraph Extraction, where we construct a task-relevant contextualized subgraph from the
knowledge graph based on entities in the question; (ii) Question-Relevance Scoring, where
we use GNNs and the query-relation semantic similarity to assign scores to entities and
relations to show their relevance to the query. This hybrid scoring mechanism captures both
global graph structure and local semantic alignment to guide the retrieval. and (iii) LLM
Stepwise Retrieval, where knowledge is retrieved in a stepwise manner, selecting triplets
by LLMs with the assistance of both GNN scores and query-relation semantic similarity
scores to address reasoning bias. The retrieved knowledge is then formatted into prompts of
LLMs to generate a response. In the following subsections, we describe each step in detail.

3.1 Subgraph Extraction

To effectively retrieve relevant knowledge from the KG for a given question, we extract
a contextualized subgraph that captures helpful structured information while reducing
the search space. Specifically, for a given question q, we first identify the set of entities
in G that explicitly appear in q, denoted as Eq. Using a predefined hop limit N, we then
extract the N-hop neighbors of these entities along with their connecting edges to form the
contextualized subgraph for q, denoted as Gq (Yasunaga et al., 2022a). We define Tq as the
set of triplets in subgraph Gq. This subgraph encapsulates potentially useful knowledge for
the LLM in generation and serves as the input for the subsequent GNN scoring phase.

3.2 Question-Relevance Scoring

With the contextualized subgraph Gq, the next step is to assess the relevance of each entity
and relation to the question q before retrieval as auxiliary information for the LLMs. Tradi-
tional KG-RAG methods rely solely on LLM reasoning to evaluate local relevance during
stepwise expansion, which can lead to pruning of important multi-hop reasoning paths due
to the lack of global KG information. To address this, we adopt a hybrid scoring strategy that
combines two complementary signals: (1) GNN Scores: Global structural relevance scores
provided by a graph neural network (GNN), which propagates knowledge information
across the subgraph, and (2) Semantic Similarity Scores: Local semantic similarity measured
by computing the embedding similarity between the question and relations. These scores
guide the subsequent retrieval process, allowing the model to retain structurally important
and semantically aligned knowledge.

GNN Scores. Each entity e ∈ Eq and relation r ∈ Rq in the subgraph are initialized
with embeddings. The entity embeddings can either be obtained from a pretrained KG
embedding model or generated dynamically using an LLM. The relation embeddings
are similarly initialized from a KG embedding model or LLM encoder. Additionally, the
question embedding q ∈ Rd is obtained from a separate BERT encoder model (Devlin
et al., 2019) that processes the input question. Our GNN updates the node and edge
representations iteratively using a multi-layer message-passing scheme. At each layer l,
we first update the edge embeddings by aggregating information from their neighboring
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Figure 2: Overview of our proposed framework GGR. The framework consists of: (1)
Subgraph Extraction, where contextualized subgraphs are extracted from the KG based
on entities mentioned in the question; (2) Question-Relevance Scoring, where we calculate
question-relevance scores based on a trainable graph neural network and a fixed LM
encoder; (3) LLM Stepwise Retrieval, where relation and entity candidates are filtered from
the GNN scores and the LLM retrieves relevant knowledge paths guided by GNN scores
and semantic similarity scores; the selected knowledge triplets are then used to construct
prompts. Rcand, Ecand are the retrieval candidates of relations and entities. Finally, the
constructed prompts are fed into the LLM alongside the question to generate the answer.

nodes. Given an edge (h, r, t) connecting entities h and t through relation r, the updated
edge representation is computed as:

h(l)
r = f (l)edge

(
h(l−1)

h ||h(l−1)
t ||h(l−1)

r ||q
)

, (1)

where h(l−1)
h , h(l−1)

t are the representations of the head and tail entities from the previous

layer, h(l−1)
r is the relation embedding, and q is the question embedding. The function f (l)edge

is an MLP that processes these inputs to update the edge representation. Next, we update
the entity representations by aggregating information from neighboring edges. For each
entity e ∈ Eq, its updated representation is computed as:

Ae = ∑
(e,r,e′)∈Tq

h(l)
r + ∑

(e′ ,r,e)∈Tq

h(l)
r , h(l)

e = f (l)node

(
h(l−1)

e ||Ae

)
, (2)

where Ae represents the sum of messages from all edges to e, and f (l)node is an MLP layer that
combines the entity embeddings at previous layers with the aggregated edge embeddings.
After L layers of message passing, we compute Question-Relevance scores for each entity
and relation using separate scoring networks:

se = σ(Fnode(h
(L)
e )), sr = σ(Fedge(h

(L)
r )), (3)

where se and sr represent the final scores for entities and relations, σ(·) is the sigmoid
function ensuring outputs are in (0, 1), and Fnode and Fedge are MLPs for nodes and edges.

These scores play a crucial role in the retrieval phase by providing a global view of the
importance of entity and relation. Unlike traditional stepwise LLM-based selection, which
considers only local KG knowledge, our GNN scoring ensures that important multi-hop
reasoning connections are preserved via incorporating global information.

We emphasize that the GNN in our framework is designed to be lightweight and modular.
Its purpose is not to perform deep or complex reasoning, but to provide soft, interpretable
relevance signals that assist the LLM during step-wise retrieval. Since the final reasoning
and answer generation are handled by the LLM, a highly expressive or deep GNN is not
necessary, and our framework remains effective even with simple architectures.
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Path-Supervised GNN Optimization. Next, we will describe how the GNN mentioned
above is optimized. To enable effective knowledge selection, the GNN is optimized to assign
meaningful relevance scores to entities and relations within the retrieved contextualized
subgraph in a Path Supervision Training step. Given a question q and its corresponding
answer a, we first identify the set of entities Eq appearing in the question and the set of
entities Ea appearing in the ground truth answer. To construct training supervision, we
search for paths in the knowledge graph that connect any entity in Eq to any entity in Ea
within a predefined hop limit. Let Pq denote the set of such paths. Entities and relations
that appear on any path in Pq are treated as positive samples, denoted as as E+q and asR+

q ,
while all other entities and relations in the contextualized subgraph are treated as negative
samples, denoted as as E−q and asR−q .

The GNN is trained to assign high scores to positive samples and low scores to negative
samples using the loss L containing the loss for entities and relations:

Lentity = − 1
|E+q |

∑
e∈E+q

log(se)−
1
|E−q |

∑
e∈E−q

log(1− se), (4)

Lrelation = − 1
|R+

q |
∑

r∈R+
q

log(sr)−
1
|R−q |

∑
e∈R−q

log(1− sr), (5)

L = Lentity + Lrelation, (6)

where se and sr are the predicted scores for entities and relations.

During training, the GNN learns to refine entity and relation relevance scores through
iterative message passing, guided by path-based supervision. The optimization objective
ensures that entities and relations contributing to valid reasoning paths receive higher
scores, while irrelevant ones are suppressed. By minimizing L, the model progressively
enhances its ability to capture multi-hop dependencies and structural importance within
the KG, providing a stronger retrieval signal for downstream reasoning.

Semantic Similarity Scores. We compute a query-relation semantic similarity score for
each relation r: ssim

r = cos(q, er), where q and er are respectively the embeddings of the
question and the relation text obtained from an LM encoder, typically a BERT encoder
model (Devlin et al., 2019). We calculate the cosine similarity between these embeddings
as the semantic similarity score. These similarity scores are used to refine the question-
relevance information of relations.

3.3 LLM Stepwise Retrieval

After obtaining the question-relevance scores for entities and relations, we perform knowl-
edge retrieval by LLMs to extract relevant knowledge for LLM reasoning with the assistance
of the scores. Our method follows a stepwise retrieval strategy starting from the entities
appearing in the question. At each hop, we first select relations and then select entities
based on the chosen relations.

In this phase, the predicted GNN scores are treated as auxiliary information for the LLM
to reason so we can include the global KG information while retaining the ability of LLM
reasoning in the retrieval. However, though the GNN provides relevance scores based
on global KG information, its training supervision is derived solely from path connectiv-
ity, which may include intermediate nodes and relations that are structurally valid but
semantically irrelevant to the query. As a result, relying exclusively on these scores for
retrieval may lead to the inclusion of irrelevant or noisy knowledge. To address this, we
propose to incorporate the local semantic similarity scores into the retrieval process. This
refinement step complements the GNN’s global perspective with semantic signals, enabling
more accurate and context-aware knowledge selection.

We denote the set of question-relevant entities selected in retrieval step t as E (t)q . Let the

initial entity set be E (0)q = Eq, and initialize the retrieved triplet set as T ′q = ∅. At each step
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t, the retrieval proceeds in two stages: relation selection and entity selection. To enable
flexible control over retrieval decisions, we group all the candidates into three categories
based on their GNN scores sx (x can be an entity or a relation) using thresholds τh and τl ,
which enables GNN Score Filtering in the retrieval step:

Xhigh = {x | sx ≥ τh}, Xlow = {x | sx ≤ τl}, Xmid = {x | τl < sx < τh}. (7)

High-scoring candidates (Xhigh) are directly selected, while low-scoring ones (Xlow) are dis-
carded. Mid-scoring candidates (Xmid) are regarded as relation or entity candidates for LLM
selection. We adopt a selection strategy by including candidates and their scores together in
a prompt and use the LLM to reason over their relevance, as shown in Appendix E. This
approach avoids the pruning of relevant knowledge using global graph information.

Specifically, at each retrieval step t, we expand from the entity set E (t−1)
q by examining their

neighboring relations and entities. For an entity e′ ∈ E (t−1)
q , we first identify all triplets

T = (e′, r, e) or (e, r, e′) that haven’t been explored in the subgraph Gq. We directly select
r ∈ Xhigh and discard r ∈ Xlow. For r ∈ Xmid, we use the query-relation semantic similarity
ssim

r and pass both r and ssim
r into the LLM prompt. The LLM then determines which

relations to retain based on their relevance to the question. By incorporating ssim
r , we ensure

that relations that may have a lower GNN score but are semantically aligned with the query
are not overlooked. This step complements the GNN’s structural scoring.

For each retained relation r, all the neighboring entity e is evaluated using its GNN score se.
Similar to relation selection, entities with high scores are directly selected, low scores are
discarded, and mid-scoring entities are passed into the LLM along with their GNN scores
for question-relevance judgment because entity relevance often depends more on contextual
reasoning over the graph structure. If the LLM selects the entity, we add the corresponding
triplet T to the retrieved triplet set T ′q and expand the entity set E (t)q initializing as ∅. These
sets are updated as follows:

T ′q ← T ′q ∪ {T}, E (t)q ← E
(t)
q ∪ {e}. (8)

This process repeats for a fixed number of steps or until no new entities are added. The final
set T ′q is converted into natural language and used to construct the input prompt for the LLM.
By combining global relevance scores from the GNN with query-relation semantic similarity
and deferring fine-grained reasoning to the LLM, this retrieval strategy achieves flexible
and precise knowledge selection. It mitigates retrieval errors by maintaining plausible
candidates and using semantic alignment.

3.4 Prompt Construction and LLM Reasoning

With the selected set of triplets T ′q obtained from the retrieval step, we construct the prompt
for the LLM. Specifically, we convert all triplets (h, r, t) ∈ T ′q into a textual input for the LLM.
The final LLM input consists of the original question q and the extracted knowledge triplets
T ′q . The generated answer aq given by the LLM is represented as aq = LM(q, T ′q ). Given the
prompt, the LLM generates an answer by leveraging both its pertrained knowledge and the
external KG evidence. The integration of structured knowledge ensures that the response
is grounded in factual information while allowing for more informed reasoning based on
the retrieved evidence. By incorporating both global importance from the GNN and local
semantic alignment through retrieval, this approach enhances the accuracy and reliability
of the generated answers compared to conventional KG-RAG methods.

4 Experiments

In this section, we evaluate the effectiveness of our proposed approach through multiple
experiments. We compare our method against multiple baselines to assess its ability to
retrieve and utilize knowledge during KG-RAG by LLMs to improve the performance of
LLM-based question answering.
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4.1 Datasets

We evaluate our method on WebQuestionsSP (WebQSP) (Yih et al., 2016) and ComplexWe-
bQuestions (CWQ) (Talmor & Berant, 2018), two benchmark datasets designed for question
answering over knowledge graphs. For both datasets, we use Freebase (Bollacker et al.,
2008), a large-scale knowledge graph in diverse domains, as the external knowledge base.
WebQSP consists of 4,737 natural language questions, each paired with SPARQL queries
and answer entities, making it suitable for assessing structured reasoning over a KG. CWQ
introduces more complex, multi-hop questions that require reasoning over multiple triplets.
It contains 34,689 questions, requiring compositional and logical reasoning over Freebase.
These datasets provide a comprehensive evaluation ground for measuring the effectiveness
of retrieval and reasoning in knowledge-enhanced LLM-based question answering.

4.2 Baselines

To evaluate the effectiveness of our proposed method, we compare it against several base-
line approaches that represent different retrieval and reasoning strategies for knowledge-
enhanced question answering. (1) IO-prompt (Brown et al., 2020): This baseline uses the
LLMs to answer the questions without any additional enhancements. (2) CoT-prompt (Wei
et al., 2022): Chain-of-Thought (CoT) prompting instructs the LLM to generate intermediate
reasoning steps before producing a final answer. By explicitly modeling the reasoning
process, this method improves the model’s ability to answer multi-step questions. (3)
Self-Consistency (Wang et al., 2022): This approach extends CoT prompting by sampling
multiple reasoning paths and selecting the most consistent answer among them. By aggre-
gating diverse reasoning trajectories, it reduces response variability. (4) Sim-Retrieve (Baek
et al., 2023a): In this retrieval-based baseline, we utilize an LLM encoder to compute the
semantic similarity between the input question and candidate knowledge triplets. The top-
ranked triplets based on similarity scores are retrieved and incorporated into the prompt for
answer generation. (5) GNN-Scoring: This baseline uses the GNN-trained relevance scores
to directly retrieve knowledge triplets from the KG. Instead of relying on an LLM-based
measure, it selects the highest-scoring triplets by GNNs as evidence for question answer-
ing. (6)Think-on-Graph (ToG) (Sun et al., 2024): Think-on-Graph integrates structured
knowledge from a knowledge graph into the LLM’s reasoning process, representing the
methods using LLM generation to perform knowledge retrieval. It utilizes KG-based re-
trieval to enrich the model’s input, allowing it to leverage explicit entity-relation structures
for improved factual accuracy. At each step, it uses the LLM to decide whether to continue
retrieving or terminate the process.

4.3 Experimental Settings

To assess the effectiveness of our method, we conduct experiments using GPT-3.5 (OpenAI,
2022), GPT-4o-mini (Anand et al., 2023), and Claude-3-haiku (Anthropic, 2024) as the LLMs.
The selection process is controlled by two threshold values: a high-confidence threshold
τh = 0.9 and a low-confidence threshold τl = 0.1, which regulate the filtering of retrieved
entities and relations. All experiments are conducted five times, and we report the average
results to reduce variance. More implementation details are shown in Appendix B.

4.4 Results and Analysis

From the experimental results presented in Table 1, we can observe that our method consis-
tently outperforms all baselines, demonstrating the effectiveness of integrating GNN-based
scoring and query-relation semantic alignment for knowledge retrieval and QA perfor-
mance. Among the baselines, ToG achieves the best results, highlighting the advantages
of leveraging LLMs for retrieval on structured knowledge graphs. However, its reliance
on LLM-only knowledge extraction leads to errors, particularly when important reasoning
paths are discarded due to the lack of KG knowledge in a broader view. Our GNN scoring
propagates question-relevance information across the graph, preserving globally important
knowledge paths that LLM retrieval methods often miss. Our method also incorporates
query-relation semantic similarity, ensuring that semantically relevant relations are correctly
retained. Sim-Retrieve and GNN-Scoring exhibit inconsistent performance, performing
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Table 1: Experimental results (accuracy in %) of GGR and all baselines on two QA datasets.
The best and second-best results are shown in bold and underlined, respectively.

Method
GPT-3.5 GPT-4o-mini Claude-3-haiku

WebQSP CWQ WebQSP CWQ WebQSP CWQ

IO-prompt 62.32 ± 0.08 36.83 ± 0.10 63.77 ± 0.07 38.99 ± 0.07 74.01 ± 0.09 33.30 ± 0.09

CoT-prompt 62.74 ± 0.21 38.45 ± 0.27 64.56 ± 0.24 39.43 ± 0.22 76.78 ± 0.26 36.83 ± 0.25

Self-Consistency 61.11 ± 0.06 46.97 ± 0.09 61.90 ± 0.08 47.76 ± 0.08 70.19 ± 0.10 43.52 ± 0.07

Sim-Retrieve 46.98 ± 0.63 32.75 ± 0.66 48.94 ± 0.57 32.17 ± 0.60 29.75 ± 0.70 20.81 ± 0.68

GNN-Scoring 63.86 ± 0.19 38.33 ± 0.24 65.90 ± 0.23 38.19 ± 0.20 67.48 ± 0.21 35.22 ± 0.22

Think-on-Graph 74.24 ± 0.55 55.92 ± 0.60 80.32 ± 0.61 66.41 ± 0.58 83.24 ± 0.52 60.16 ± 0.56

GGR 83.27 ± 0.60 63.48 ± 0.59 90.50 ± 0.67 70.33 ± 0.65 91.89 ± 0.62 65.35 ± 0.61

even worse than knowledge-free methods like IO-prompt in some experimental settings.
This is due to the retrieval noise introduced by selecting suboptimal triplets. Sim-Retrieve
overemphasizes embedding similarity without considering structural relevance, while
GNN-Scoring lacks LLM reasoning. In contrast, our method balances global subgraph
structure and local semantic similarity, preventing irrelevant knowledge from misleading
the LLM. Furthermore, since our GNN is small, the overall inference time remains compa-
rable to standard LLM-based KG-RAG methods. In summary, by integrating GNN graph
reasoning with semantic embedding information in LLM reasoning process, our approach
enables more accurate and context-aware retrieval, leading to more reliable LLM responses
and significantly improved KG-RAG performance.

To further examine the role of the GNN com-
ponent, we replaced our default lightweight
GNN with a more complex architecture used
in GNN-RAG (Mavromatis & Karypis, 2024),
which includes attention-based message pass-
ing. As shown in Table 2, this study yields
moderate improvements across all LLMs and
datasets. These results indicate that while a
stronger GNN can enhance retrieval quality
slightly, the overall performance gains are lim-
ited. A simple GNN is sufficient for guiding
retrieval with relevance signals.

Table 2: Experimental results (accu-
racy in %) of simple and complex
GNN in GGR on two QA datasets.

LLM GNN WebQSP CWQ

GPT-3.5
Simple 83.27 63.48
Complex 85.72 66.25

GPT-4o-mini
Simple 90.50 70.33
Complex 91.72 73.39

Claude-3-haiku
Simple 91.89 65.35
Complex 93.53 67.66

4.5 Parameter Study
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Figure 3: Parameter sensitivity results on
dataset WebQSP using GPT-3.5. We vary the
values of τh and τl to examine the effect of
retrieval thresholds in terms of QA accuracy.

Our method utilizes two thresholds, τh and
τl , to control how relation and entity candi-
dates are categorized during the retrieval
process. This subsection investigates how
variations in these two parameters affect
final QA performance.

We conduct experiments on the WebQSP
dataset to evaluate the effect of the two
thresholds τh and τl . Using GPT-3.5 as
the LLM, we evaluate all combinations of
τh ∈ {0.70, 0.80, 0.90, 1.00} and τl ∈
{0.00, 0.05, 0.10, 0.15}. The results are
shown in Figure 3.

From the results, we can observe that set-
ting low τh results in many low-confidence
candidates being directly included, increas-
ing noise in the prompt and leading to de-
graded performance. On the other hand,
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Table 3: Experimental results of different variants of our method on two datasets (accuracy
in %). The best results are shown in bold.

Method
GPT-3.5 GPT-4o-mini Claude-3-haiku

WebQSP CWQ WebQSP CWQ WebQSP CWQ

GGR 83.27 63.48 90.50 70.33 91.89 65.35

GGR w/o GScore 78.62 59.48 84.29 67.94 85.05 62.05

GGR w/o SSim 80.47 59.96 85.72 68.41 86.20 62.39

GGR w/o GScore, SSim 74.04 56.32 83.03 65.35 83.14 60.50

GGR w/o QEnc 80.17 60.79 84.31 66.63 84.26 61.28

overly high τh values make the retrieval process overly conservative, potentially excluding
useful knowledge paths. Similarly, setting a high τl causes more mid-scoring candidates
to be discarded prematurely, harming retrieval coverage. Conversely, low τl increases the
burden on the LLM by passing more uncertain candidates as prompts, which may also
slightly hurt performance. These results highlight the importance of balancing different
types of reasoning of retrieval.

4.6 Ablation Study

To evaluate the impact of each component, we conduct an ablation study by removing
key modules in our framework. w/o GScore eliminates GNN scoring, preventing global
question-relevance information propagation and leading to the premature loss of important
reasoning paths, making multi-hop retrieval less reliable. w/o SSim removes query-relation
semantic similarity scoring, which causes frequent errors in relation selection as the model
struggles to retain semantically relevant relations that are predicted to have lower GNN
scores. Without this refinement, retrieval relies solely on LLM textual matching and graph
structure matching, increasing the chance of missing key knowledge. w/o GScore, SSim
leads to the most severe performance degradation, as removing both structural reasoning
and semantic alignment reduces retrieval to a purely stepwise expansion, making it highly
prone to filtering errors and irrelevant triplet selection. w/o QEnc removes the question
embedding from the GNN, preventing the model from conditioning relevance scores on
the query, which results in noisier retrieval and lower precision. From the results in Table 3,
we can observe that both scores play crucial roles in balancing global structural reasoning
and local semantic refinement, while incorporating question information further enhances
retrieval quality by ensuring that selected entities and relations align with the specific query.

5 Related Work

Retrieval-Augmented Generation. Retrieval-Augmented Generation (RAG) has emerged
as a powerful approach to enhance the factual accuracy and reasoning capabilities of LLMs
by incorporating external knowledge. Earlier works on RAG primarily focused on retrieving
unstructured textual information from large corpora such as Wikipedia or domain-specific
databases (Karpukhin et al., 2020; Lewis et al., 2020b). Prevalant retrieval methods include
sparse retrieval techniques like BM25 (Robertson & Zaragoza, 2009) and dense retrieval
models such as DPR (Karpukhin et al., 2020). These methods often rely on free-text evidence,
which lacks explicit relational structure, making them less effective for tasks requiring
structured reasoning.

Knowledge Graphs for Question Answering and KG-RAG. To address the limitations of
unstructured retrieval, KGs have been widely used in question answering (QA) due to their
ability to provide structured and semantically rich representations of knowledge (Liu et al.,
2019; Xu et al., 2024; Jia et al., 2019; Baek et al., 2023b). Traditional KG-based QA approaches
rely on symbolic reasoning methods, such as SPARQL-based queries (Berant et al., 2013),
or graph traversal techniques to extract relevant facts (Sun et al., 2018). More recently,
KG-RAG methods have been proposed to integrate knowledge graphs into LLM-based
retrieval (Yasunaga et al., 2022b). These approaches typically follow a two-step process: (1)
retrieving relevant entities and relations based on the query; (2) integrating the retrieved
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KG subgraph into the LLM’s prompt to guide answer generation. Most existing KG-RAG
methods rely on LLMs to evaluate triplet relevance. However, such stepwise expansion
merely considers local KG knowledge and leads to errors where important multi-hop
reasoning paths are discarded prematurely.

Graph Neural Networks for Knowledge Graph Reasoning. Graph Neural Networks
(GNNs) have been widely used in knowledge graph tasks such as node classification, link
prediction, and entity ranking (Kipf & Welling, 2016; Veličković et al., 2017; Wu et al.,
2020). By propagating information across graph structures, GNNs can capture global
context and identify important relationships between entities (Hamilton et al., 2017; You
et al., 2018; Gao & Ji, 2019; Liu et al., 2022). However, most existing KG-RAG methods
do not incorporate graph-based reasoning into the retrieval process, instead relying on
LLM-based triplet selection. In contrast, our approach enhances retrieval quality through
GNN-guided prompting by integrating GNN-based scoring to provide global structural
awareness, ensuring that key reasoning paths are preserved even when their immediate
relevance appears weak.

6 Conclusion

In this paper, we propose GGR, a GNN-guided KG-RAG framework that enhances knowl-
edge retrieval for large language models (LLMs) by addressing the limitations of existing
methods: the reliance on local, stepwise LLM retrieval decisions. To mitigate the issue,
GGR leverages a GNN to score entities and relations within a contextualized subgraph,
capturing global KG information and preserving reasoning paths that might otherwise
be pruned. Additionally, we incorporate query-relation semantic similarity as a signal to
refine relation selection, ensuring that semantically relevant knowledge is retained even
when predicted to have a lower GNN score. Our framework leverages GNNs purely for
scoring and preserves the reasoning capabilities of the LLM, rather than dominating the
reasoning process using only GNNs. This design promotes modularity and allows future
work to explore combining GGR with stronger GNNs or symbolic engines. Experimental
results on knowledge-intensive QA benchmarks demonstrate that GGR consistently im-
proves retrieval quality and generation performance, showcasing the value of integrating
graph-based reasoning with LLM reasoning. Future work includes extending GGR to more
complex multi-hop reasoning tasks and further exploring adaptive mechanisms between
graph retrieval and LLM reasoning.
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A Limitations

While our proposed GGR framework demonstrates strong performance in KG-RAG tasks
by integrating global structural scoring and local semantic alignment, it still has several
limitations. First, the effectiveness of the GNN-based scoring relies on the quality of the
retrieved subgraph. If key entities or paths are missing in the original graph, the GNN
may be unable to assign meaningful scores, limiting its contribution to retrieval. Second,
although the semantic similarity scoring helps address phrasing mismatches between
queries and relations, it is limited by the expressiveness of the underlying embedding model
(e.g., DistilBERT), which may not capture deeper contextual nuances. Third, the stepwise
retrieval process requires multiple calls to the LLM, which could impact efficiency and
latency in real-time applications. We leave these challenges as directions for future work.

B Experimental Settings

We conduct experiments on two widely-used knowledge-based question answering bench-
marks: WebQuestionsSP (WebQSP) (Yih et al., 2016) and ComplexWebQuestions (CWQ) (Tal-
mor & Berant, 2018), both grounded in the Freebase knowledge graph (Bollacker et al., 2008).
These datasets are selected to evaluate multi-hop reasoning capabilities of methods over
structured knowledge.

To evaluate the generality of our method across different LLMs, we apply our approach
to three models with varying capacities: GPT-3.5, GPT-4o-mini, and Claude-3-haiku. All
evaluations are conducted in a zero-shot setting using a unified prompt template to ensure
fair comparison across models.

Our retrieval module is based on a three-layer graph neural network (GNN) with a hidden
dimension of 2,048. The input to the GNN includes both node and relation embeddings,
which are initialized using a pretrained DistilBERT encoder. Specifically, relation and entity
names are passed through the encoder, and the resulting 768-dimensional embeddings are
further projected to 128 dimensions before being input into the GNN. Question embeddings
used during scoring are also obtained from the same DistilBERT encoder, also projected to
128 dimensions before being input into the GNN. When calculating the semantic similarity
scores, the embeddings remain in 768 dimensions.

During GNN training, path-based supervision is used with a maximum path length of
3 hops between question and answer entities. For filtering candidates during retrieval,
we adopt a flexiable selection strategy governed by two thresholds: a high-confidence
threshold τh = 0.9 and a low-confidence threshold τl = 0.1. These thresholds are used to
categorize candidate entities and relations into high-, mid-, and low-confidence groups,
which inform the retrieval decision process and the construction of prompts. The retrieval
steps for WebQSP and CWQ are 2 and 3, respectively. The maximum number of candidates
being selected are set to 3.

All experiments are run five times with different random seeds, and we report the mean
accuracy and standard deviation to account for variability. Our implementation is based on
PyTorch and Python 3.11.7, and all experiments are conducted on NVIDIA A100 GPUs with
80GB memory.

We release our code at https://github.com/HaochenLiu2000/GGR.

C Datasets

Our experiments are conducted on three popular knowledge graph question answering
(KGQA) datasets: WebQuestionsSP (WebQSP) (Yih et al., 2016), ComplexWebQuestions
(CWQ) (Talmor & Berant, 2018). Table 4 summarizes the statistics for each dataset.

WebQSP features 4,737 natural language questions, each answerable via a subset of the
Freebase knowledge graph (Bollacker et al., 2008), which contains 24.9 million entities and
approximately 164.6 million triples. Answering these questions often involves multi-hop
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Table 4: The statistics of the datasets used in our experiments. “Sub. Size” denotes the
average number of entities in the subgraph, and “Coverage” denotes the percentage of
subgraphs containing at least one answer.

Datasets Train Dev Test Sub. Size Coverage (%)
WebQSP 2,848 250 1,639 1,429.8 94.9
CWQ 27,639 3,519 3,531 1,305.8 79.3

reasoning: around 30% require reasoning across two facts, 7% demand constraint-based
inference, and the remaining can be answered using a single fact from the KG.

CWQ builds upon WebQSP by modifying the original questions to increase complexity,
such as extending the scope of entities or introducing additional constraints. The dataset
includes 34,689 questions, categorized into four types: composition (45%), conjunction
(45%), comparative (5%), and superlative (5%). These questions require reasoning over
paths of up to four hops, still within the Freebase KG.

D Large Language Models

• GPT-3.5 (OpenAI, 2022) is a widely used large language model developed by OpenAI.
It builds upon the success of GPT-3 by incorporating architectural improvements and
fine-tuning techniques to enhance reasoning, code generation, and few-shot learning
performance. GPT-3.5 is optimized for general-purpose tasks and serves as a strong
baseline for evaluating retrieval-augmented generation systems.

• GPT-4o-mini (Anand et al., 2023) is a smaller variant of OpenAI’s GPT-4o series, designed
to offer a balance between capability and computational efficiency. Despite its compact
size, GPT-4o-mini maintains competitive performance across a range of NLP tasks, in-
cluding question answering and reasoning. Its lightweight nature makes it particularly
suitable for exploring the scalability of knowledge-enhanced language models.

• Claude-3-haiku (Anthropic, 2024) is part of the Claude-3 model family introduced by
Anthropic. Haiku is the smallest and most efficient model in the Claude-3 lineup, opti-
mized for low-latency applications while maintaining robust performance in multi-turn
dialogue and knowledge-intensive tasks. Its design emphasizes safety and alignment,
making it an increasingly popular choice for controlled QA applications.

E Prompts

In this subsection, we list the prompts we use for Relation Selection, Entity Selection and
the final Question Answering. When using them, we replace the contents in {} with our
target data.

Question Answering Prompt

Based on the knowledge triplets, please answer the given question. Please keep the
answer as simple as possible and list all your answers.
Question: {Query}
Knowledge Triplets: {Evidence Text}
Answer: 1. ...
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Relation Selection Prompt

Please retrieve relations (separated by semicolon) that contribute to the question and
you can use the score that is a scale from 0 to 1 as a reference. You still need to identify
the relations yourself. You can select at most {candidate number} candidates.
Question: Name the president of the country whose main spoken language was
Brahui in 1980?
Topic Entity: Brahui Language
Relations:
language.human language.main country(0.8);
language.human language.language family(0.3);
language.human language.iso 639 3 code(0.3);
base.rosetta.languoid.parent(0.6);
language.human language.writing system(0.3);
base.rosetta.languoid.languoid class(0.2);
language.human language.countries spoken in(0.8);
kg.object profile.prominent type(0.3);
base.rosetta.languoid.document(0.1);
base.ontologies.ontology instance.equivalent instances(0.3);
base.rosetta.languoid.local name(0.3);
language.human language.region(0.3);
Answer:
1. {language.human language.main country}: This relation is highly relevant as
it directly relates to the country whose president is being asked for, and the main
country where Brahui language is spoken in 1980.
2. {language.human language.countries spoken in}: This relation is also relevant as
it provides information on the countries where Brahui language is spoken, which
could help narrow down the search for the president.
3. {base.rosetta.languoid.parent}: This relation is less relevant but still provides
some context on the language family to which Brahui belongs, which could be useful
in understanding the linguistic and cultural background of the country in question.

Question: {Query}
Topic Entity: {Entity}
Relations: {Relations}
Answer: 1. ...
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Entity Selection Prompt

Please retrieve the entities that contribute to the question and you can use the score
given by graph models that is a scale from 0 to 1 as a reference. You still need to
identify the entities yourself. You can select at most {candidate number} candidates.
Question: The movie featured Miley Cyrus and was produced by Tobin Armbrust?
Relation:
film.producer.film
Entites:
The Resident(0);
So Undercover(1);
Let Me In(0);
Begin Again(0);
The Quiet Ones(0);
A Walk Among the Tombstones(0);
Answer:
1. {So Undercover}: The movie that matches the given criteria is ”So Undercover”
with Miley Cyrus and produced by Tobin Armbrust.
2. {Let Me In}: The movie ”Let Me In” is produced by Tobin Armbrust.

Question: {Query}
Relation: {Relation}
Entities: {Entities}
Answer: 1. ...

F Ethics Statement

This work focuses on improving knowledge retrieval for question answering using publicly
available language models and knowledge graphs. All experiments are conducted on
benchmark datasets without involving any personally identifiable or sensitive information.
We do not perform any fine-tuning of proprietary LLMs. While our method enhances the
factual grounding of Question-Answering systems, care should be taken when applying it
to domains with high-stakes decisions, such as healthcare or law, to avoid over-reliance on
model-generated outputs.
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