
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MUSE: MODEL-AGNOSTIC TABULAR WATERMARK-
ING VIA MULTI-SAMPLE SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce MUSE, a novel watermarking paradigm for tabular generative mod-
els. Existing approaches often exploit DDIM invertibility to watermark tabular
diffusion models, but tabular diffusion models suffer from poor invertibility, leading
to degraded performance. To overcome this limitation, we leverage the computa-
tional efficiency of tabular generative models and propose a multi-sample selection
paradigm, where watermarks are embedded by generating multiple candidate
samples and selecting one according to a specialized scoring function. The key
advantages of MUSE include (1) Model-agnostic: compatible with any tabular
generative model that supports repeated sampling; (2) Flexible: offers flexible
designs to navigate the trade-off between generation quality, detectability, and
robustness; (3) Calibratable: theoretical analysis provides principled calibra-
tion of watermarking strength, ensuring minimal distortion to the original data
distribution. Extensive experiments on four datasets demonstrate that MUSE
substantially outperforms existing methods. Notably, it reduces the distortion
rates by 84− 88% for fidelity metrics compared with the best performing base-
lines, while achieving 1.0 TPR@0.1%FPR detection rate. The code is available at
https://anonymous.4open.science/r/MUSE-ICLR-0856.

1 INTRODUCTION

The rapid development of tabular generative models (Kotelnikov et al., 2023; Gulati and Roysdon,
2024; Castellon et al., 2023; Zhang et al., 2024c; Shi et al., 2024; Zhang et al., 2024a) has significantly
advanced synthetic data generation capabilities for structured information. These breakthroughs
have enabled the creation of high-quality synthetic tables for applications in privacy preservation,
data augmentation, and missing value imputation (Zhang et al., 2024b; Hernandez et al., 2022;
Fonseca and Bacao, 2023; Assefa et al., 2020). However, this advancement concurrently raises
serious concerns about potential misuse, including data poisoning (Padhi et al., 2021) and financial
fraud (Cartella et al., 2021). To address these risks, watermarking has emerged as a pivotal technique.
By embedding imperceptible yet robust signatures into synthetic data, watermarking facilitates
traceability, ownership verification, and misuse detection (Liu et al., 2024).

Earlier works on tabular data watermarking utilize edit-based watermarking (Zheng et al., 2024; He
et al., 2024), embedding signals by modifying table values. However, this approach has a fundamental
limitation with tabular data: direct value alterations, especially in columns with discrete or categorical
data, can easily corrupt information or render entries invalid. For instance, such edits might introduce
non-existent categories (Gu et al., 2024; Lin et al., 2021) or push values across critical decision
boundaries (Ngo et al., 2024), significantly compromising data integrity. Recently, generative
watermarking has emerged as an alternative approach for tabular data, drawing from successful
techniques in diffusion models for images and videos (Wu et al., 2025; Yang et al., 2024; Wen et al.,
2023; Hu et al., 2025). This approach leverages the reversibility of DDIM samplers (Song et al.,
2020a) by initializing generation with patterned Gaussian noise and, during watermark detection,
assessing its correlation with the noise reconstructed through the inverse process. TabWak (Zhu
et al., 2025) applies this concept to tabular diffusion models (Zhang et al., 2024c; Kotelnikov et al.,
2023; Lee et al., 2023; Kim et al., 2022). Unlike edit-based watermarking, generative watermarking
maintains better generation quality since the watermark is embedded within noise patterns that closely
resemble Gaussian distributions, minimizing impact on the generated content.

1

https://anonymous.4open.science/r/MUSE-ICLR-0856

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Tabular Video Image
0

20

40

60

80

100

In
ve

rs
io

n
A

cc
. (

%
)

Tabular Video Image

100

101

102

103

104

G
en

er
at

io
n

G
FL

O
Ps

Figure 1: Left: Tabular diffusion models exhibit
the lowest inversion accuracy (bit accuracy) when
compared to video and image diffusion models.
Right: Tabular diffusion models require much
fewer generation GFLOPs than video and image
diffusion models. Models used: TabSyn (Zhang
et al., 2024c) (tabular), Stable Diffusion (Rombach
et al., 2022; Blattmann et al., 2023) (image/video).

However, watermarking tabular diffusion mod-
els is significantly more challenging than for im-
age and video diffusion models. This stems from
the substantially lower accuracy of DDIM in-
verse processes in tabular diffusion models, as
shown in Figure 1 (left). When using the same
Gaussian shading algorithm (Yang et al., 2024),
tabular modality exhibits the lowest reversibility
accuracy. This challenge arises because tabu-
lar diffusion models incorporate multiple addi-
tional algorithmic components that are difficult
to reverse, such as quantile normalization (Ama-
ratunga and Cabrera, 2001) and Variational Au-
toencoders (VAEs) (Kingma and Welling, 2013)
used in TabSyn (Zhang et al., 2024c). During
watermark detection, the entire data processing
pipeline must be inverted to recover the water-
mark signal, but this process accumulates errors
as precisely reversing each step is often difficult or impossible. Key challenges in the inversion
process include: (1) inverting quantile normalization is inherently problematic as this transformation
is non-injective; (2) VAE decoder inversion relies on optimization methods without guarantees of per-
fect implementation. Due to limitations in tabular DDIM inversion accuracy, watermark detectability
becomes highly dependent on model implementation, severely restricting its application scope and
practical utility (see Section D for more details).

This paper introduces MUSE, a model-agnostic watermarking paradigm for tabular data that operates
without relying on the invertibility of diffusion models. A key insight enabling our approach is that
tabular data generation demands significantly less computation than image or video generation, as
shown in Figure 1 (right). This computational efficiency makes a multi-sample selection process
practical: MUSE leverages this by generating multiple candidate samples for each data row and
embedding the watermark by selecting one candidate based on a keyed watermark scoring function,
which is calculated using values from specific columns. We present MUSE as a general paradigm
and introduce two specific implementations that navigate the crucial trade-off between data fidelity
and watermark detectability/robustness: (1) Joint-Vector (JV) hashing, tailored for minimal distortion
(distribution-preserving), and (2) Per-Column (PC) hashing, designed for maximal robustness and
detectability. We ground this paradigm in rigorous theoretical analysis, providing a precise method to
calibrate detectability and establishing conditions for distortion-free watermarking. Validated across
diverse datasets, MUSE demonstrates high watermark detectability and strong robustness against
attacks while maintaining the underlying model’s generation quality.

Our Contributions. We summarize the main contributions of this paper as follows:

• We propose tabular watermarking via multi-sample selection (MUSE), a novel generative water-
marking paradigm for tabular data that completely avoids the inversion of generative and data
processing pipelines, ensuring broad compatibility with any tabular generative model.

• We demonstrate the flexibility of the MUSE paradigm, showing how different score function
designs enable a controllable trade-off between generation quality, detectability, and robustness.

• We provide theoretical analysis of MUSE, establishing its detectability for precise strength calibra-
tion and identifying the conditions for achieving distribution-preserving watermarking.

• Extensive experiments across multiple tabular datasets validate MUSE’s superior performance in
generation quality, watermark detectability, and robustness against various tabular-specific attacks.

2 PRELIMINARIES

Tabular Generative Models. A tabular dataset with N rows and M columns consists of i.i.d.
samples (xi)

N
i=1 drawn from an unknown joint distribution pdata(x), where each xi ∈ RM (or mixed-

type space) represents a data row with M features. A tabular generative model aims to learn a
parameterized distribution pθ(x) ≈ pdata(x) to generate new realistic samples.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Selected ValueUnwatermarked
Samples

1

2

3

4

9 870 1st 60

11 79 5th 80

2 128 3th 90

8 400 9th 50

1st

79

2

50

011001

110110

101111

001011

1

0

0

0

Seed

Bernulli argmaxHash Function

Watermark Key

609 870 1st

Watermarked Sample

Score

Col. Selection

§ 3.2.2

Eq. (2,3)

Figure 2: An overview of the MUSE watermark generation process. MUSE operates by generating
multiple samples and selecting the highest-scoring sample (ties are broken randomly). The selected
row is appended to the watermarked table, while others are discarded.

Watermark for Tabular Generative Models. Tabular watermark involves two main functions. (1)
Generate: Given a secret watermark key k, this function produces a watermarked table. Similar
to standard generation, each row of this table is sampled i.i.d., but from a distribution p(x, k). (2)
Detect: Provided with a table and a specific key k, this function examines the table to determine if it
carries the watermark associated with that particular key.

Threat Model. We consider the following watermarking protocol between three parties: the tabular
data provider, the user, and the detector. (1) The tabular data provider shares a watermark key k and
certain metadata related to the data distribution (e.g., the maximum and minimum values of each
column) with the detector. (2) The user asks the tabular data provider to generate a table T . (3)
The user publishes a table T ′, which can either be an (edited version of the) original table T or an
independent table. (4) The detector determines whether the table T ′ is watermarked or not.)

3 METHOD

In this section, we introduce MUSE, a general paradigm for watermarking tabular data generators. We
begin by outlining the paradigm’s high-level architecture for generation and detection (Section 3.1).
We then detail its core components: the scoring function (Section 3.2), which can be instantiated with
different designs to balance trade-offs between detectability and distortion.

3.1 WATERMARK GENERATION AND DETECTION PARADIGM

We define the overall generation and detection process of our MUSE method in this section. The
generation of each watermarked row can be decomposed into the following two steps:

Generation. The generation of each watermarked row is achieved through a two-phase process:

1. Sample Candidates. Generate a set of m candidate rows by i.i.d. sampling from the model’s
distribution p(x).

2. Select the Highest-Scoring Candidate. Apply a watermark scoring function sk(·) to each
candidate xi using watermark key k and select the highest-scoring candidate (ties are broken
randomly) as the watermarked row. We will detail the watermark scoring function in Section 3.2.

To produce a watermarked table with N rows, we repeat the above process N times. In practice, the
selection procedure can be fully parallelized across the N groups since each group contains i.i.d.
samples. The watermark generation process is illustrated in Figure 2 and Algorithm 1.

Detection. The generation process naturally creates a statistical artifact. By consistently selecting
the highest-scoring sample, we ensure that a watermarked table will exhibit a significantly higher
average score than an unwatermarked one. To detect the watermark, we formalize this intuition as
follows: given a (watermarked or unwatermarked) table T consists of N rows: T := (x1, . . . ,xN),
we compute the detection statistic:

S(T) =
1

N

N∑
i=1

sk(xi). (1)

A table is flagged as watermarked if its mean score S(T) surpasses a predefined threshold derived from
the expected score of non-watermarked data. The formal statistical test is detailed in Appendix F.4.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 WATERMARK SCORING FUNCTION

Our watermark scoring function, sk(·), has two components: a score generation design, described in
Section 3.2.1, and a column selection implementation, detailed in Section 3.2.2.

3.2.1 SCORE GENERATION DESIGNS

Let π(x) be a selection function that selects a subset of columns from a sample x (we will detail the
design of the selection function in Section 3.2.2), with J being the set of selected column indices.
We present two designs for generating a score from this selection and the watermark key k.

• Joint-Vector (JV) Hashing: Hashes the entire vector of selected values as a concatenated vector.

h = H
(
π(x), , k

)
, sJVk (x) = f(h). (2)

• Per-Column (PC) Hashing: Hashes each selected column value independently then aggregates.

hi = H(xi, k) (i ∈ J), sPC
k (x) =

1

|J |
∑
i∈J

f(hi). (3)

In both designs, f is a pseudorandom function (PRF) whose output bit follows a Bernoulli(0.5)
distribution. Intuitively, by placing equal probability mass on the two extreme values (0 and 1), this
distribution provides maximal separation between binary signals (watermarked vs. non-watermarked).
This intuition is rigorously established in Theorem 4.1.

Robustness and Distortion Trade-off. The choice between JV and PC hashing represents a fun-
damental trade-off between robustness against attacks and the preservation of the original data
distribution (low distortion). The JV design excels at minimizing distortion. By hashing a concate-
nated vector of column values, it operates in a vast input space, making hash collisions rare and thus
preserving the data’s statistical properties. However, this “all-or-nothing” approach is fragile; a single
modification to any of the selected columns can alter the entire hash, compromising the watermark
signal for that sample. In contrast, the PC design prioritizes robustness. It embeds the watermark
signal independently across multiple columns, ensuring that the overall signal can survive partial
data deletion or modification. This resilience comes at the cost of a higher potential for distortion, as
the smaller input space of individual columns can lead to more frequent hash collisions and a more
concentrated statistical bias. We empirically validate this trade-off in our experiments (Section 5).

3.2.2 COLUMN SELECTION IMPLEMENTATION

Adaptive Selection for JV Hashing. The selection strategy for Joint-Vector (JV) hashing must
address two critical vulnerabilities. First, the design’s “all-or-nothing” nature makes it fragile: any
modification to a selected value invalidates the entire watermark, which necessitates the use of a
sparse selection (a small number of columns) to minimize the attack surface. However, simply
choosing a fixed sparse set of columns creates a predictable target for adversaries, who could nullify
the watermark by altering just those few features. To overcome both challenges, we propose a strategy
that fulfils both requirements. This is achieved by selecting columns based on their quantile rank,
which measures a value’s position relative to the empirical distribution of the training data. For each
row x and each column index j, we compute its rank rj ∈ [0, 1]:

rj =
vj − vmin,j

vmax,j − vmin,j
, (4)

where for a numerical column, vj equals the j-th column value of x: vj := xj and vmin,j , vmax,j are
pre-computed min and max values from the training data. For a categorical column, vj is its ordinal
index. Finally, for each sample x, we take its per-column ranks rj , sort them within the row, and
select the columns whose positions match a fixed quantile set Q.

Full Selection for PC Hashing. In contrast to the JV design, the Per-Column (PC) approach is
inherently robust, as it aggregates watermark signals embedded independently across each column.
This design ensures that modifications to a subset of columns do not corrupt the entire watermark.
The overall signal’s strength and resilience scale directly with the number of columns used. Therefore,
to maximize robustness, the ideal strategy is to select all available columns. For this design, we
configure π(x) := x to simply use all features, setting the index set to J = {1, . . . ,M}.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Remark 3.1 (Modification of All Columns). For datasets consisting of purely numerical columns, an
adversary may inject small perturbations across all entries simultaneously. To mitigate the sensitivity
of hashing to such noise, a preprocessing step f (e.g., quantization) can be applied prior to hashing,
ensuring that f(x) ≈ f(x+ ϵ) for a small noise term ϵ. See Appendix E.2 for a complete discussion.
Remark 3.2 (Watermark Security). JV hashing selects a sparse subset of columns based on a fixed
quantile set, which introduces a potential vulnerability: if the quantile set is leaked, an adversary
can identify the watermark-carrying columns and scrub the watermark. In contrast, PV hashing is
inherently more resilient since the watermark signal is spread across all columns. A simple way to
improve the security of JV hashing is by applying a keyed pseudorandom permutation (PRP) πk to
the column indices before quantile selection (x 7→ πk(x)). Under this design, the watermark-carrying
columns are indexed by the secret key k, and identifying them becomes computationally equivalent
to breaking the underlying PRP. We further provide empirical evidence showing that recovering the
quantile set is non-trivial in practice; We refer the reader to Appendix E.3 for a complete discussion.

4 ANALYSIS

In this section, we provide theoretical analysis of the detectability and distribution-preserving proper-
ties of the MUSE paradigm.

4.1 CALIBRATING THE NUMBER OF REPEATED SAMPLES

Given the detection statistic Equation (1), we will show how the detectability of MUSE depends on
(1) the number of watermarked samples N and (2) the number of repeated samples m.
Theorem 4.1 (Watermark Calibration Guarantees). Denote a watermarked table as Twm and an
unwatermarked table as Tno-wm, each consisting of N rows. Let x ∼ p(x) be a random vari-
able drawn from the data distribution, and let x1, . . . ,xm be i.i.d. samples from p(x). De-
fine µno-wm = Ex∼p(x)[sk(x)] as the expected score of an unwatermarked sample, and define
µm
wm = Exi∼p(x)

[
maxi∈[m] sk(xi)

]
as the expected score of a watermarked sample obtained via m

repeated samples. Suppose the scoring function satisfies sk(·) ∈ [0, 1], we have:

1. The False Positive Rate (FPR) of the watermark detection is upper bounded:

Pr (S(Tno-wm) > S(Twm)) ≤ exp

(
−N · (µm

wm − µno-wm)
2

2

)
. (5)

2. The RHS of the bound is minimized when sk(x) follows a Bernoulli(0.5) distribution.

3. Under this optimal distribution, let N > 8 log(1/α), then to ensure the FPR does not exceed a
target threshold α, it suffices to set the number of repeated samples m as:

m = max

(
2,

⌈
log0.5

(
0.5−

√
2 log(1/α)

N

)⌉)
. (6)

100 200 300 400 500
N

2.0

2.5

3.0

3.5

m

α= 0.01

α= 0.001

α= 0.0001

Figure 3: m vs. N under dif-
ferent α values (smoothed).

Theorem 4.1 enables MUSE to calibrate the number of repeated
samples m to achieve a target false positive rate with theoretical
guarantees. This allows the method to embed just enough water-
marking signal to ensure the desired detectability. Intuitively, since
no redundant watermarking signal is embedded, the impact of water-
marking on the generation quality is minimal. In Figure 3, we plot
m as a function of table size N for various target FPRs, based on
Equation (6) (omitting the ceiling operation for clarity). We observe
that m quickly saturates as N increases. For instance, to achieve a
0.01% FPR, m = 2 suffices when N ≥ 300, and even for N = 100,
m = 4 is enough. In the rest of the paper, MUSE’s m is set by
Equation (6) unless otherwise specified.

4.2 DISTRIBUTION-PRESERVATION

An effective watermarking algorithm must not compromise the quality of the generated data, a re-
quirement formalized in domains like image (Gunn et al., 2024) and text generation (Kuditipudi et al.,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 MUSE Watermark Generation

1: Input: watermark key k, a generative model p(x), False Positive Rate α, number of target
watermarked samples N

2: Output: watermarked table Twm

3: Compute the number of repeated samples m based on N and α via Equation (6) ▷ Calibration.
4: Get m ·N i.i.d. samples from p(x) and divide them into N groups: (Gi)Ni=1.
5: Initialize a list Twm to store the watermarked table
6: for i← 1 to N do ▷ Fully parallelizable.
7: x1, . . . ,xm ← Gi
8: for t ∈ {1, . . . ,m} do
9: Select columns for xt with strategy in Section 3.2.2 ▷ Column selection.

10: Compute the score for xt with strategy in Section 3.2.1 to get st ▷ Score generation.
11: end for
12: i← argmaxt∈{1,...,m} st ▷ Selection of the highest-scoring sample.
13: Append xi to Twm

14: end for
15: return Twm

2023). For tabular data generation, we adapt this requirement by demanding that the watermarking
process preserves the original data distribution, which we formalize as follows:
Definition 4.2 (Multi-Sample Distribution-Preservation). Denote the space of watermark keys as K
and the original data distribution as pdata(x). Let (x̃1, . . . , x̃N) be a sequence of N samples generated
consecutively by a watermarking algorithm Γ using the same key k ∼ Unif(K). The algorithm Γ is
multi-sample distribution-preserving if for any N > 0, it satisfies:

Pk∼Unif(K)(x̃1, . . . , x̃N) =

N∏
i=1

pdata(x̃i). (7)

Our algorithm attains the multi-sample distribution-preserving property through a mechanism we
call Repeated Column Masking. The key idea is to cache the history of column values that have
previously been selected for watermark embedding. When processing a new sample, if its candidate
column value has already been used for watermarking, the algorithm skips embedding on that sample.
This safeguard prevents systematic bias from repeated column reuse across samples. The design is
inspired by the repeated key masking technique in LLM watermarking, which ensures sequence-level
distribution-preserving guarantees (Hu et al., 2023; Dathathri et al., 2024). Formally, we have:
Theorem 4.3. Let m = 2. The watermarking process in Algorithm 1, augmented with repeated
column masking, satisfies multi-sample distribution-preserving as defined in Definition 4.2.
Remark 4.4. While the repeated column masking mechanism ensures distribution-preserving, it
introduces a practical trade-off. By design, this mechanism chooses to skip the watermarking process
when repeated column values are detected, which in turn weakens the watermark’s detectability. We
empirically validate this trade-off in our ablation studies (Section 5.4).

5 EXPERIMENTS

In this section, we provide a comprehensive empirical evaluation of MUSE. We aim to answer the
following research questions. Q1: Detectability v.s. Distribution Preservation (Section 5.2): Can
MUSE achieve strong detectability while preserving the distribution of the generated data? Q2:
Robustness (Section 5.3): How resilient is the watermark to a range of post-processing attacks, such
as row/column deletion or value perturbation? Q3: Component-wise Analysis (Section 5.4): How
does MUSE perform under different design choices of its components?

5.1 SETUP

Datasets. We consider four real-world tabular datasets containing both numerical and categorical
attributes: Adult, Default, Shoppers, and Beijing and two datasets with only numerical
attributes: California and Letter. Detailed dataset statistics are provided in Appendix F.2.

Evaluation Protocols. (1) Detectability: To evaluate the detectability of the watermark, we report
the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, and the True

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Watermark generation quality and detectability, indicates best performance,
indicates second-best performance. ↑ indicates higher is better, ↓ indicates lower is better. The
performance gain is computed with respect to the best performing baseline.

Watermark Generation Quality Watermark Detectability

Dataset Method Num. Training Rows 100 500

Marg. (↑) Corr. (↑) C2ST (↑) MLE Gap (↓) AUC T@0.1%F AUC T@0.1%F

Adult

w/o WM 0.994 0.984 0.996 0.017 - - - -
TR 0.919 0.870 0.676 0.046 0.590 0.004 0.774 0.171
GS 0.751 0.619 0.058 0.084 1.000 1.000 1.000 1.000
TabWak 0.935 0.885 0.769 0.048 0.844 0.089 0.990 0.592
TabWak* 0.933 0.879 0.713 0.085 0.999 0.942 1.000 1.000
MUSE-JV 0.979 (+74.6%) 0.963 (+78.8%) 0.883 (+50.2%) 0.017 (+63.0%) 1.000 1.000 1.000 1.000
MUSE-PC 0.953 (+30.5%) 0.925 (+40.4%) 0.790 (+9.3%) 0.018 (+60.9%) 1.000 1.000 1.000 1.000

Default

w/o WM 0.990 0.934 0.979 0.000 - - - -
TR 0.895 0.888 0.564 0.161 0.579 0.001 0.848 0.034
GS 0.701 0.678 0.059 0.182 1.000 1.000 1.000 1.000
TabWak 0.911 0.902 0.568 0.156 0.896 0.071 0.997 0.611
TabWak* 0.906 0.894 0.550 0.176 0.965 0.218 1.000 0.995
MUSE-JV 0.983 (+91.1%) 0.925 (+71.9%) 0.963 (+96.1%) 0.002 (+98.7%) 1.000 1.000 1.000 1.000
MUSE-PC 0.960 (+62.0%) 0.920 (+56.3%) 0.866 (+72.5%) 0.003 (+98.1%) 1.000 1.000 1.000 1.000

Shoppers

w/o WM 0.985 0.974 0.974 0.017 - - - -
TR 0.888 0.880 0.501 0.077 0.575 0.001 0.830 0.058
GS 0.729 0.688 0.061 0.154 1.000 1.000 1.000 1.000
TabWak 0.903 0.886 0.548 0.132 0.860 0.106 0.990 0.353
TabWak* 0.897 0.879 0.525 0.384 0.742 0.002 0.981 0.185
MUSE-JV 0.982 (+96.3%) 0.974 (+100.0%) 0.950 (+94.4%) 0.015 (+80.5%) 1.000 1.000 1.000 1.000
MUSE-PC 0.962 (+72.0%) 0.947 (+69.3%) 0.871 (+75.8%) 0.025 (+67.5%) 1.000 1.000 1.000 1.000

Beijing

w/o WM 0.977 0.958 0.934 0.199 - - - -
TR 0.914 0.873 0.734 0.396 0.577 0.000 0.548 0.007
GS 0.656 0.529 0.097 0.715 1.000 1.000 1.000 1.000
TabWak 0.923 0.871 0.792 0.375 0.925 0.096 0.999 0.978
TabWak* 0.917 0.860 0.761 0.403 0.996 0.734 1.000 1.000
MUSE-JV 0.972 (+90.7%) 0.955 (+96.5%) 0.926 (+94.4%) 0.209 (+44.3%) 1.000 1.000 1.000 1.000
MUSE-PC 0.963 (+74.1%) 0.943 (+82.4%) 0.898 (+74.6%) 0.213 (+43.2%) 1.000 1.000 1.000 1.000

0.75 0.80 0.85 0.90
Data Fidelity ()

2

4

6

8

10

12

z-
st

at
ist

ic
(

)

Adult

0.60 0.65 0.70 0.75
Data Fidelity ()

4

6

8

10

12

14

16

z-
st

at
ist

ic
(

)

Default

0.800 0.825 0.850 0.875 0.900 0.925
Data Fidelity ()

4

6

8

10

12

z-
st

at
ist

ic
(

)

Shoppers

0.75 0.80 0.85 0.90 0.95
Data Fidelity ()

4

6

8

10

12

14

16

z-
st

at
ist

ic
(

)

Beijing

m= 2

m= 4

m= 6

m= 8

m= 10

m= 12

m= 14

m= 16

MUSE-PC MUSE-JV

Figure 4: The tradeoff between average z-statistic and data fidelity (computed as average of Marg.,
Corr., C2ST and MLE) under different number of repeated sample m.

Positive Rate when the False Positive Rate is at 0.1%, denoted as TPR@0.1%FPR. (2) Distribution
Preservation: To evaluate the distribution-preserving ability of the watermarked data, we follow
standard fidelity and utility metrics used in tabular data generation (Zhang et al., 2024c; Kotelnikov
et al., 2023): we report Marginal distribution (Marg.), Pair-wise column correlation (Corr.), Classifier-
Two-Sample-Test (C2ST), and Machine Learning Efficiency (MLE). For MLE, we report the gap
between the downstream task performance of the generated data and the real test set (MLE Gap).
We refer the readers to Section F.3 for a more detailed definition of each evaluation metric. (3)
Robustness: We evaluate the robustness of the watermarked data against five representative post-
processing attacks. In addition, we also consider an adaptive adversary who tries to reverse-engineer
the watermark scheme. Detailed description will be presented in Section 5.3.

Baselines and Implementation Details. We compare our method with TabWak (Zhu et al., 2025)
and its improved variant TabWak*, the only existing generative watermarking approach for tabular
data, using their official implementations. We also include two image watermarking methods,
TreeRing (Wen et al., 2023) and Gaussian Shading (Yang et al., 2024), as auxiliary baselines (see
Appendix F.5 for detailed implementation). For completeness, we also include two edit-based
methods: TabularMark (Zheng et al., 2024) and WGTD (He et al., 2024), with detailed results in
Section C.2. All experiments use TabSyn (Zhang et al., 2024c) as the tabular generative model
trained with the official codebase. Notably, the official TabWak implementation bypasses quantile

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00

TP
R@

1%
FP

R
(

)

Shuffle

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Alteration

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Gaussian

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Cell Deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Row Deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Column Deletion

MUSE-JV MUSE-PC TabWak TabWak*

Figure 5: Detection performance of watermarking methods against different types of tabular data
attacks across varying attack intensities. The results are averaged over all datasets.

normalization inversion, assuming access to ground-truth data unavailable at detection time, which
may favor its performance (see Section D.2 for more discussion). Generation quality is evaluated
across ten repetitions, and we report the averaged results.

5.2 DETECTABILITY AND DISTRIBUTION PRESERVATION

We address the first question: whether the watermarking method achieves high watermark detectability
while introducing minimal distortion to the generated data. Based on experiments results in Table 1,
our obervations are summarized as follows:

(1) Regarding generation quality, both MUSE variants consistently outperform the baselines across
all datasets. The MUSE-JV variant is particularly effective, reducing distortion rates on fidelity
metrics (Marg., Corr., C2ST) by 84− 88% compared to the best performing baselines. In contrast,
all inversion-based methods suffer from significant data distortion. We attribute this to the error
accumulation inherent in their recovery process: to ensure a watermark can be detected after a noisy
inversion, the initial signal must be excessively strong, which inherently leads to large distortion. (2)
In terms of detectability, both variants of MUSE achieve perfect detection performance across all
datasets, as measured by both AUC and T@0.1%F. While GS also achieves strong detection scores,
this comes at the cost of significantly higher distortion across all fidelity metrics. (3) The JV variant
achieves better fidelity metrics than the PC variant. We will show in the next section that the PC
variant is more robust to post-processing attacks. In Figure 4, we visualize the tradeoff between
detectability (z-stat) and data fidelity (computed as the average of Marg., Corr., C2ST, and MLE).
Consistent with the theoretical analysis in Theorem 4.1, increasing m in both MUSE variants leads to
stronger detectability but degrades data fidelity. The results also demonstrate that, for a fixed m, PC
hashing generally yields higher detectability than JV-hashing (with the exception of the Shoppers
dataset at m ∈ {2, 4}), albeit at the cost of lower data fidelity. This empirically validates the design
principles behind these two hashing strategies.

5.3 ROBUSTNESS AGAINST ATTACKS

Post-processing Attacks. We evaluate robustness against six common transformations in tabular
data: row shuffling, row deletion, column deletion, cell deletion, value alteration, and Gaussian
perturbation. Attacks are applied at perturbation levels from 0.0 to 1.0 in 0.2 increments. Deletion-
based attacks replace a fraction of rows, columns, or cells with unwatermarked samples from the
same generative model. Value alteration perturbs numerical entries by multiplying them with scalars
from (0.8, 1.2), while row shuffling permutes a subset of rows. For the Gaussian perturbation attack,
each numeric value is perturbed by zero-mean noise whose standard deviation is the perturbation level
times the magnitude of that value. We benchmark the detectability of MUSE-JV and MUSE-PC
against TabWak and TabWak* on all mixed-type datasets (N=500, m=2), and additionally assess
the robustness of MUSE-PC under Gaussian perturbation on the two numerical-only datasets. As
shown in Figure 5 and Appendix E.2, MUSE-JV matches or surpasses TabWak and TabWak* in five
of six post-processing attacks, while the PC variant achieves the strongest robustness across all
settings. The superior resilience of the PC design, contrasted with the higher fidelity of the JV design,
illustrates the fundamental trade-off between robustness and distortion. The capability to select the
desired point on the tradeoff spectrum underscores the inherent flexibility of our framework.

Adaptive Attacks. We assess the robustness of MUSE against adaptive adversaries attempting to
reverse-engineer the watermark. Specifically, we focus on spoofing attacks (Sadasivan et al., 2023),

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Component-wise ablation study of MUSE. All experiments are conducted on the Adult
dataset (with 15 columns). For detectability, we report the z-statistic (defined in Section F.4). Each
color block indicates a different component of the method. ↑ indicates higher is better.

Hashing Model PRF. Mask Num. Col. z-stat.↑ Marg.↑ Corr.↑ C2ST↑
JV TabSyn Bernoulli No 3 7.348 0.979 0.963 0.883
JV TabDAR Bernoulli No 3 7.270 0.977 0.958 0.880
JV DP-TBART Bernoulli No 3 7.544 0.951 0.931 0.759

JV TabSyn Bernoulli No 3 7.348 0.979 0.963 0.883
JV TabSyn Uniform No 3 5.012 0.964 0.940 0.808

PC TabSyn Bernoulli No 15 20.001 0.953 0.925 0.790
PC TabSyn Uniform No 15 -11.164 0.937 0.912 0.788

JV TabSyn Bernoulli No 3 7.348 0.979 0.963 0.883
JV TabSyn Bernoulli Yes 3 4.819 0.985 0.973 0.940

PC TabSyn Bernoulli No 3 16.505 0.958 0.937 0.826
PC TabSyn Bernoulli Yes 7 19.998 0.950 0.929 0.797
PC TabSyn Bernoulli No 15 20.001 0.953 0.925 0.790

0.925

0.950

0.975

Marg.

MUSE-PC
MUSE-JV

0.90

0.95

Corr.

MUSE-PC
MUSE-JV

0.8

0.9

C2ST
MUSE-PC
MUSE-JV

sha256
sha3_

256 blake2
s

shake_
256 md5

0.905

0.910

0.915 MLE
MUSE-PC
MUSE-JV

sha256
sha3_

256 blake2
s

shake_
256 md5

0.99

1.00

1.01 AUC
MUSE-PC
MUSE-JV

sha256
sha3_

256 blake2
s

shake_
256 md5

0.99

1.00

1.01 TPR@0.1%FPR
MUSE-PC
MUSE-JV

Figure 6: Sensitivity results for different hash families. Error
bars denote standard deviation over the key space. MUSE
remains insensitive to both hash functions and key space.

0

10

20

30

z-
st

at
ist

ic

Adult
MUSE-PC
MUSE-JV

Default
MUSE-PC
MUSE-JV

0 1000 2000 3000
N

0

10

20

30
z-

st
at

ist
ic

Shoppers
MUSE-PC
MUSE-JV

0 1000 2000 3000
N

Beijing
MUSE-PC
MUSE-JV

Figure 7: Impact of the number of
watermarked rows N on detectabil-
ity, which increases monotonically as
more rows are watermarked.

Table 2: Adaptive attack results.

100 Rows 500 Rows

Dataset AUC T@0.1%F AUC T@0.1%F

Adult 0.465 0.01 0.566 0.02
Default 0.599 0.01 0.708 0.02
Shoppers 0.683 0.03 0.866 0.41
Beijing 0.470 0.00 0.581 0.05

where the attacker’s goal is to produce sam-
ples that can be falsely claimed as water-
marked, without knowing the secret keys
of the watermark. Instead of develop-
ing bespoke, scheme-specific spoofing at-
tacks (Jovanović et al., 2024), we adopt
a general distillation-based spoofing frame-
work (Sander et al., 2024; Gu et al., 2023):
an adversary trains a strong generative model
(e.g., TabSyn) directly on the watermarked data, attempting to absorb and reproduce its statistical
structure. The spoofing attack is successful if the generated samples from the trained model are
detected as watermarked. The results in Table 2 demonstrate that the adversarial model largely fails
to replicate the watermark. On three of the four datasets (Adult, Default, and Beijing), its
generated output is statistically indistinguishable from clean data (AUC≈ 0.5 and T@0.1%F≈ 0.00).
While a faint signal is detected on the Shoppers dataset, the watermark is severely degraded. This
failure of a powerful generative model to passively learn the watermark’s patterns provides strong
evidence for MUSE’s resilience against reverse-engineering attacks.

5.4 ABLATION STUDY AND FURTHER ANALYSIS

We perform a component-wise ablation to evaluate the contribution of each design choice in our
watermarking framework. All experiments are conducted on the Adult dataset, and we generate
watermarked tables with N = 100 rows unless otherwise noted. For detectability, we report the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

z-statistic, which quantifies how many standard deviations the observed detection score deviates from
its null expectation (no watermark). The exact formulas for JV and PC are given in Section F.4.

Impact of Score Function. We compare two scoring distributions: (1) a Bernoulli distribution
with mean 0.5, and (2) a uniform distribution over [0, 1]. For both the JV and PC hashing designs,
the Bernoulli score consistently achieves superior detectability, as shown in Table 3. This result is
consistent with our theoretical analysis in Lemma G.2, which identifies Bernoulli(0.5) as the optimal
scoring distribution for our detection formulation.

Impact of the Number of Selected Columns. For the PC design, the number of selected columns
presents a trade-off between detectability and data quality. As shown in Table 3, using more columns
boosts detectability by strengthening the aggregated watermark signal. However, this also raises the
potential for distortion, as more frequent hash collisions on small column value spaces can introduce
a concentrated statistical bias.

Impact of Repeated Column Masking. The repeated column masking mechanism is designed to
enforce the formal distribution-preserving property of our watermark, thereby maintaining high data
quality. To quantify its impact, we ablate this component for both our JV and PC designs. As shown
in Table 3, enabling masking improves data fidelity at the cost of a reduction in detectability.

Model-Agnostic Applicability. While our main experiments use a diffusion model (Zhang et al.,
2024c), MUSE is a model-agnostic framework. To validate this, we apply it to two other diverse
generative paradigms: an autoregressive model (DP-TBART (Castellon et al., 2023)) and a masked
generative model (TabDAR (Zhang et al., 2024a)). As shown in Table 3, MUSE consistently achieves
high detectability and data fidelity across all three model families, confirming its broad applicability.

0 20 40 60 80 100
Time (s)

GS

TR

TabWak

TabWak*

MUSE

Generation
Detection

Figure 8: Watermark generation and detection
time of MUSE and inversion-based baselines.

Computation Time. We compare the effective
watermarking time (generation + detection) of
MUSE with baselines that rely on DDIM inver-
sion. We generate 10K watermarked rows of the
Adult dataset. As shown in Figure 8, MUSE
achieves significantly lower detection time by
avoiding the costly inversion process. Notably,
its generation time is also lower than that of the
baselines, despite using multi-sample generation
(m = 2). This efficiency arises from MUSE’s
compatibility with fast score-based diffusion mod-
els (Zhang et al., 2024c; Karras et al., 2022), which require only 50 sampling steps. Conversely,
the inversion-based baselines must use a much slower 1,000-step process for both generation and
detection (Zhu et al., 2025).

Sensitivity analysis on hash function and key. To ensure our method is not reliant on specific
implementation choices, we conducted a systematic sensitivity analysis on the Adult dataset
(N = 500,m = 2). We evaluated MUSE across five distinct hash families available in the Python
hashlib library: SHA-256, SHA3-256, BLAKE2s, SHAKE-256, and MD5. Additionally, to assess
the impact of key space, we repeated the experiments 13 times for each hash family using randomly
sampled keys with bit-lengths ranging from 32 to 128 bits. We measured both detectability (AUC,
TPR@0.1%FPR) and data fidelity (Marg., Corr., C2ST, MLE). Figure 6 shows that MUSE is highly
robust: detectability remains perfect (AUC=1.0) across all configurations, and fidelity scores exhibit
negligible variance (standard deviation ≈ 0.01) across the different keys. This confirms that the
watermark’s efficacy is agnostic to the underlying hash function and secret key space.

6 CONCLUSION

We propose MUSE, a model-agnostic watermarking method that embeds signals via multi-sample
selection, eliminating the need for inversion. MUSE achieves strong detectability with minimal
distribution shift and scales across diverse generative models. Extensive experiments demonstrate
its superiority over existing methods in both generation quality and watermark detectability. As
synthetic tabular data becomes increasingly adopted in high-stakes domains, MUSE offers a practical
and generalizable safeguard for data provenance, ownership verification, and misuse detection. We
hope this work inspires further research into trustworthy and traceable synthetic data generation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Scott Aaronson and Hendrik Kirchner. Watermarking gpt outputs. https://www.
scottaaronson.com/talks/watermark.ppt, 2022. Presentation.

Dhammika Amaratunga and Javier Cabrera. Analysis of data from viral dna microchips. Jour-
nal of the American Statistical Association, 96:1161 – 1170, 2001. URL https://api.
semanticscholar.org/CorpusID:18154109.

Samuel A Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E Tillman, Prashant Reddy, and
Manuela Veloso. Generating synthetic data in finance: opportunities, challenges and pitfalls. In
Proceedings of the First ACM International Conference on AI in Finance, pages 1–8, 2020.

Dara Bahri and John Wieting. A watermark for black-box language models. arXiv preprint
arXiv:2410.02099, 2024.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Francesco Cartella, Orlando Anunciacao, Yuki Funabiki, Daisuke Yamaguchi, Toru Akishita, and
Olivier Elshocht. Adversarial attacks for tabular data: Application to fraud detection and imbal-
anced data. arXiv preprint arXiv:2101.08030, 2021.

Rodrigo Castellon, Achintya Gopal, Brian Bloniarz, and David Rosenberg. Dp-tbart: A transformer-
based autoregressive model for differentially private tabular data generation. arXiv preprint
arXiv:2307.10430, 2023.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, pages 1125–1139. PMLR, 2024.

Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl,
Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, Jamie Hayes, Nidhi
Vyas, Majd Al Merey, Jonah Brown-Cohen, Rudy Bunel, Borja Balle, Taylan Cemgil, Zahra
Ahmed, Kitty Stacpoole, Ilia Shumailov, Ciprian Baetu, Sven Gowal, Demis Hassabis, and
Pushmeet Kohli. Scalable watermarking for identifying large language model outputs. Nature,
634(8035):818–823, Oct 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-08025-4. URL
https://doi.org/10.1038/s41586-024-08025-4.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Joao Fonseca and Fernando Bacao. Tabular and latent space synthetic data generation: a literature
review. Journal of Big Data, 10(1):115, 2023.

Eva Giboulot and Teddy Furon. Watermax: breaking the llm watermark detectability-robustness-
quality trade-off. arXiv preprint arXiv:2403.04808, 2024.

Bochao Gu, Hengzhi He, and Guang Cheng. Watermarking generative categorical data. arXiv
preprint arXiv:2411.10898, 2024.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of water-
marks for language models. arXiv preprint arXiv:2312.04469, 2023.

Manbir Gulati and Paul Roysdon. Tabmt: Generating tabular data with masked transformers.
Advances in Neural Information Processing Systems, 36, 2024.

Sam Gunn, Xuandong Zhao, and Dawn Song. An undetectable watermark for generative image
models. arXiv preprint arXiv:2410.07369, 2024.

Hengzhi He, Peiyu Yu, Junpeng Ren, Ying Nian Wu, and Guang Cheng. Watermarking generative
tabular data. arXiv preprint arXiv:2405.14018, 2024.

Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic data
generation for tabular health records: A systematic review. Neurocomputing, 493:28–45, 2022.

11

https://www.scottaaronson.com/talks/watermark.ppt
https://www.scottaaronson.com/talks/watermark.ppt
https://api.semanticscholar.org/CorpusID:18154109
https://api.semanticscholar.org/CorpusID:18154109
https://doi.org/10.1038/s41586-024-08025-4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Seongmin Hong, Kyeonghyun Lee, Suh Yoon Jeon, Hyewon Bae, and Se Young Chun. On exact
inversion of dpm-solvers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7069–7078, 2024.

Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, and Tianwei Zhang. Videoshield:
Regulating diffusion-based video generation models via watermarking. arXiv preprint
arXiv:2501.14195, 2025.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbiased
watermark for large language models. arXiv preprint arXiv:2310.10669, 2023.

Huayang Huang, Yu Wu, and Qian Wang. Robin: Robust and invisible watermarks for diffusion
models with adversarial optimization. Advances in Neural Information Processing Systems, 37:
3937–3963, 2024.

Nikola Jovanović, Robin Staab, and Martin Vechev. Watermark stealing in large language models.
arXiv preprint arXiv:2402.19361, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Jayoung Kim, Chaejeong Lee, and Noseong Park. Stasy: Score-based tabular data synthesis. arXiv
preprint arXiv:2210.04018, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pages
17061–17084. PMLR, 2023a.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pages
17061–17084. PMLR, 2023b.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International Conference on Machine Learning, pages
17564–17579. PMLR, 2023.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

Chaejeong Lee, Jayoung Kim, and Noseong Park. Codi: Co-evolving contrastive diffusion models
for mixed-type tabular synthesis. In International Conference on Machine Learning, pages 18940–
18956. PMLR, 2023.

Chia-Chen Lin, Thai Son Nguyen, and Chinchen Chang. Lrw-crdb: Lossless robust watermarking
scheme for categorical relational databases. Symmetry, 13:2191, 2021. URL https://api.
semanticscholar.org/CorpusID:244412746.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust watermark
for large language models. ArXiv, abs/2310.06356, 2023.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen, Irwin King, Hui
Xiong, and Philip Yu. A survey of text watermarking in the era of large language models. ACM
Computing Surveys, 57(2):1–36, 2024.

Dung Daniel Ngo, Daniel Scott, Saheed Obitayo, Vamsi K Potluru, and Manuela Veloso. Adaptive
and robust watermark for generative tabular data. arXiv preprint arXiv:2409.14700, 2024.

Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh, Pierre Dognin, Jerret Ross,
Ravi Nair, and Erik Altman. Tabular transformers for modeling multivariate time series. In ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3565–3569. IEEE, 2021.

12

https://api.semanticscholar.org/CorpusID:244412746
https://api.semanticscholar.org/CorpusID:244412746

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuandong Zhao, Yijian Lu, Binglin Zhou, Shuliang
Liu, Xuming Hu, Lijie Wen, et al. Markllm: An open-source toolkit for llm watermarking. arXiv
preprint arXiv:2405.10051, 2024.

Zhihong Pan, Riccardo Gherardi, Xiufeng Xie, and Stephen Huang. Effective real image editing with
accelerated iterative diffusion inversion. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 15912–15921, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 10684–10695, 2022.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023.

Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, and Teddy Furon. Watermarking
makes language models radioactive. Advances in Neural Information Processing Systems, 37:
21079–21113, 2024.

Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabdiff:
a unified diffusion model for multi-modal tabular data generation. In NeurIPS 2024 Third Table
Representation Learning Workshop, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020b.

Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-ring watermarks: Fin-
gerprints for diffusion images that are invisible and robust. arXiv preprint arXiv:2305.20030,
2023.

Wikipedia contributors. Quantile normalization – Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/Quantile_normalization, 2025. Accessed: 2025-05-
11.

Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan, Lidia Sam Chao, and Derek Fai Wong. A
survey on llm-generated text detection: Necessity, methods, and future directions. Computational
Linguistics, pages 1–66, 2025.

Zijin Yang, Kai Zeng, Kejiang Chen, Han Fang, Weiming Zhang, and Nenghai Yu. Gaussian shading:
Provable performance-lossless image watermarking for diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12162–12171, 2024.

Hengrui Zhang, Liancheng Fang, Qitian Wu, and Philip S Yu. Diffusion-nested auto-regressive
synthesis of heterogeneous tabular data. arXiv preprint arXiv:2410.21523, 2024a.

Hengrui Zhang, Liancheng Fang, and Philip S Yu. Unleashing the potential of diffusion models for
incomplete data imputation. arXiv preprint arXiv:2405.20690, 2024b.

Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Chris-
tos Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with
score-based diffusion in latent space. In The twelfth International Conference on Learning Repre-
sentations, 2024c.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for
ai-generated text. arXiv preprint arXiv:2306.17439, 2023a.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for
ai-generated text. arXiv preprint arXiv:2306.17439, 2023b.

13

https://en.wikipedia.org/wiki/Quantile_normalization
https://en.wikipedia.org/wiki/Quantile_normalization

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yihao Zheng, Haocheng Xia, Junyuan Pang, Jinfei Liu, Kui Ren, Lingyang Chu, Yang Cao, and
Li Xiong. Tabularmark: Watermarking tabular datasets for machine learning. In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications Security, pages 3570–3584,
2024.

Chaoyi Zhu, Jiayi Tang, Jeroen M. Galjaard, Pin-Yu Chen, Robert Birke, Cornelis Bos, and Lydia Y.
Chen. Tabwak: A watermark for tabular diffusion models. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=71pur4y8gs.

14

https://openreview.net/forum?id=71pur4y8gs
https://openreview.net/forum?id=71pur4y8gs

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A The Use of Large Language Models (LLMs) 16

B Related Work 16

C Additional Experiments Results 17

C.1 Omitted Results on Robustness . 17

C.2 Omitted Results on Edit-based Watermarking . 17

C.3 Visualization of statistical signal . 19

D Further Analysis of the Inversion-Based Watermarking 19

D.1 Pipeline of Inversion-based Watermarking . 20

D.2 Inversion of (Inverse) Quantile Transformation 20

D.3 Inversion of VAE decoder . 20

D.4 DDIM Inversion . 20

D.5 Error Accumulation . 21

E Further Analysis on Robustness 22

E.1 Column permutation attack . 22

E.2 Global perturbation . 22

E.3 Watermark stealing . 23

F Experimental Details 25

F.1 Hardware Specification . 25

F.2 Dataset Statistics . 25

F.3 Fidelity Metrics . 25

F.3.1 Marginal Distribution . 26

F.3.2 Correlation . 26

F.3.3 Classifier Two-Sample Test (C2ST) . 27

F.3.4 Machine Learning Efficiency (MLE) . 27

F.4 Watermark Detection Metrics . 27

F.5 Implementation Details of Image Watermark Baselines 28

G Ommited Proofs in Section 3 29

H Technical Lemmas 32

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we utilized Large Language Model (LLM) as a general-purpose
assistive tool. The primary applications of the LLM were for polishing the writing, including
improving grammar, clarity, and conciseness of the text. Additionally, the LLM was used to generate
boilerplate code for setting up and running experiments, which helped accelerate the implementation
process.

The LLM did not contribute to the core research ideation, the development of the proposed method-
ology, the analysis of the results, or the scientific conclusions presented in this paper. All content,
including the final text and experimental code, was reviewed, edited, and validated by the authors,
who take full responsibility for the accuracy and integrity of this work.

B RELATED WORK

Generative Watermarking. Generative watermarking embeds watermark signals during the gener-
ation process, typically by manipulating the generation randomness through pseudorandom seeds.
This approach has proven effective and efficient for watermarking in image, video, and large language
model (LLM) generation. In image and video generation, where diffusion-based models are the
de facto standard, watermarking methods inject structured signals into the noise vector in latent
space (Wen et al., 2023; Yang et al., 2024; Huang et al., 2024). Detection involves inverting the
diffusion sampling process (Dhariwal and Nichol, 2021; Hong et al., 2024; Pan et al., 2023) to recover
the original noise vector and verify the presence of the embedded watermark. For LLMs, generative
watermarking methods fall into two categories: (1) Watermarking during logits generation, which
embeds signals by manipulating the model’s output logits distribution (Kirchenbauer et al., 2023a;
Zhao et al., 2023a; Hu et al., 2023; Dathathri et al., 2024; Giboulot and Furon, 2024; Liu et al.,
2023); and (2) Watermarking during token sampling, which preserves the logits distribution but
replaces the stochastic token sampling process (e.g., multinomial sampling) with a pseudorandom
procedure seeded for watermarking (Aaronson and Kirchner, 2022; Kuditipudi et al., 2023; Christ
et al., 2024). In this sense, sampling-based watermarking is conceptually similar to inversion-based
watermarking used in diffusion models. We refer the reader to (Liu et al., 2024; Pan et al., 2024) for
a comprehensive survey of watermarking for LLMs. Bahri and Wieting (2024), SynthID (Dathathri
et al., 2024), and WaterMax (Giboulot and Furon, 2024) similarly explore watermarking via repeated
candidate sampling. However, the distinct nature of tabular data necessitates a fundamentally differ-
ent technical approach compared to text. First, the generative structures differ: text watermarking
operates on a conditional 1D distribution (next-token-prediction), relying on a prefix window of
context for hashing (Kirchenbauer et al., 2023b). In contrast, tabular models generate full rows
i.i.d. from a multi-dimensional unconditional distribution (Kotelnikov et al., 2023; Zhang et al.,
2024c;a), lacking the sequential history required for prefix-based hashing. While context-independent
methods like Unigram (Zhao et al., 2023b) eliminate prefix reliance, applying their fixed Green-Red
vocabulary split to tables introduces severe distributional distortion by permanently banning a subset
of values across all columns. Second, the threat models diverge significantly: while text methods
target token-level edits (insertion, substitution), tabular watermarking must withstand attacks unique
to its data structure, such as row/column shuffling, row/column/cell deletion, and numerical value
perturbation.

Watermarking for Tabular Data Traditional tabular watermarking techniques are edit-based, in-
jecting signals by modifying existing data values. WGTD (He et al., 2024) embeds watermarks by
altering the fractional parts of continuous values using a green list of intervals, but it is inapplicable
to categorical-only data. TabularMark (Zheng et al., 2024) perturbs values in a selected numerical
column using pseudorandom domain partitioning, but relies on access to the original table for detec-
tion, limiting its robustness in adversarial settings. Another significant drawback of such methods is
the potential to distort the original data distribution or violate inherent constraints. To overcome this,
TabWak (Zhu et al., 2025) introduced the first generative watermarking approach for tabular data.
Analogous to inversion-based watermarks in diffusion models, TabWak embeds detectable patterns
into the noise vector within the latent space. It also employs a self-clone and shuffling technique to
minimize distortion to the data distribution. While TabWak avoids post-hoc editing, its reliance on
inverting both the sampling process (e.g., DDIM (Song et al., 2020b)) and preprocessing steps (e.g.,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Watermark generation quality and detectability, indicates best performance,
indicates second-best performance. For clarity, only our method is highlighted in detection.

Watermark Generation Quality Watermark Detectability

Dataset Method Num. Training Rows 100 500

Marg.z↑ Corr.↑ C2ST↑ MLE Gap↓ AUC T@0.1%F AUC T@0.1%F

Adult

w/o WM 0.994 0.984 0.996 0.017 - - - -
TabularMark 0.983 0.949 0.987 0.021 1.000 1.000 1.000 1.000
WGTD 0.987 0.972 0.978 0.019 1.000 1.000 1.000 1.000
MUSE-JV 0.979 0.963 0.883 0.017 1.000 1.000 1.000 1.000

Beijing

w/o WM 0.977 0.958 0.934 0.199 - - - -
TabularMark 0.935 0.789 0.941 0.528 1.000 1.000 1.000 1.000
WGTD 0.964 0.948 0.929 0.527 1.000 1.000 1.000 1.000
MUSE-JV 0.972 0.955 0.926 0.209 1.000 1.000 1.000 1.000

Default

w/o WM 0.990 0.934 0.979 0.000 - - - -
TabularMark 0.987 0.939 0.961 0.004 1.000 1.000 1.000 1.000
WGTD 0.989 0.913 0.919 0.000 1.000 1.000 1.000 1.000
MUSE-JV 0.983 0.925 0.963 0.002 1.000 1.000 1.000 1.000

Shoppers

w/o WM 0.985 0.974 0.974 0.017 - - - -
TabularMark 0.974 0.930 0.975 0.013 1.000 1.000 1.000 1.000
WGTD 0.964 0.944 0.887 0.008 1.000 1.000 1.000 1.000
MUSE-JV 0.982 0.974 0.950 0.015 1.000 1.000 1.000 1.000

quantile normalization (Wikipedia contributors, 2025)) can introduce reconstruction errors. These
errors will in turn impair the watermark’s detectability.

C ADDITIONAL EXPERIMENTS RESULTS

C.1 OMITTED RESULTS ON ROBUSTNESS

We present the omitted robustness results in Figure 9, where MUSE is compared against TabWak
and TabWak* on the Adult, Beijing, Default, and Shoppers datasets. Overall, MUSE
demonstrates stronger robustness under cell deletion and row deletion attacks, while achieving com-
parable performance on alteration and column deletion attacks. Both MUSE and TabWak/TabWak*
remain resilient to shuffle attacks, due to embedding watermarks at the individual row level. Notably,
we observe that TabWak and TabWak* exhibit instability on certain datasets, such as Shoppers
and Beijing, where detection performance fluctuates—first decreasing and then increasing—as
attack intensity increases. We hypothesize that this behavior stems from the inherent instability of the
VAE inversion process.

C.2 OMITTED RESULTS ON EDIT-BASED WATERMARKING

We compare our method against two representative edit-based watermarking baselines, which embed
watermarks by directly altering table entries. Since the official implementations of these methods are
not publicly available, we reimplement them based on the descriptions in their original papers. We
first outline their core methodologies and our reimplementation details, then present the comparative
results in Table 4. Our reproduced codes are provided in the supplementary material. Below are
the detailed implementations of the baselines.

WGTD (He et al., 2024). WGTD embeds watermarks by modifying the fractional part of continuous
data points, replacing them with values from a predefined green list. Consequently, it is limited to
continuous data and cannot be applied to tables containing only categorical features.

The watermarking process in WGTD involves three main steps: (i) dividing the interval [0, 1] into
2m equal sub-intervals to form m pairs of consecutive intervals; (ii) randomly selecting one interval
from each pair to construct a set of m “green list” intervals; and (iii) replacing the fractional part
of each data point with a value sampled from the nearest green list interval, if the original does not
already fall within one. Detection is performed via a hypothesis-testing framework that exploits the
statistical properties of the modified distribution to reliably identify the presence of a watermark. For
reproducibility, we adopt the original hyperparameter setting with m = 5 green list intervals.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00

TP
R@

1%
FP

R
(

)

Shuffle

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Alteration

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Gaussian

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Cell deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Row deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Column deletion

MUSE-JV MUSE-PC TabWak TabWak*

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00

TP
R@

1%
FP

R
(

)

Shuffle

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Alteration

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Gaussian

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Cell deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Row deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Column deletion

MUSE-JV MUSE-PC TabWak TabWak*

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00

TP
R@

1%
FP

R
(

)

Shuffle

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Alteration

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Gaussian

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Cell deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Row deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Column deletion

MUSE-JV MUSE-PC TabWak TabWak*

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00

TP
R@

1%
FP

R
(

)

Shuffle

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Alteration

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Gaussian

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Cell deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Row deletion

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Column deletion

MUSE-JV MUSE-PC TabWak TabWak*

Figure 9: Detection performance of MUSE vs. TabWak/TabWak* against different types of tabular
data attacks across varying attack intensities. From top to bottom: Adult, Beijing, Default
and Shoppers.

TabularMark (Zheng et al., 2024). TabularMark embeds watermarks by perturbing specific cells
in the data. It first pick a selected attribute/column to embed the watermark, then it generate
pesudorandom partition of a fixed range into multiple unit domains, and label them with red and
green domains, and finally perturb the selected column with a random number from the green domain.
In our implementation, we choose the first numerical column as the selected attribute, and set the
number of unit domains k = 500, the perturbation range controlled by p = 25, and configure nw as
10% of the total number of rows.

During detection, TabularMark leverages the original unwatermarked table to reverse the perturbations
and verify whether the restored differences fall within the green domain. However, this approach
assumes access to the original unwatermarked table, which is often impractical, especially in
scenarios where the watermarked table can be modified by adversaries.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Discussions. As demonstrated in Table 4, both WGTD and TabularMark exhibit strong detection
performance across all datasets. Furthermore, their generation quality is generally comparable to that
of MUSE. However, a notable observation is the significant performance degradation measured by
the MLE metric for both WGTD and TabularMark on the Beijing dataset (highlighted in bold).
We hypothesize that this performance drop stems from the post-editing process, which may introduce
substantial artifacts into the data. These artifacts, in turn, could negatively impact the performance of
downstream machine learning tasks.

C.3 VISUALIZATION OF STATISTICAL SIGNAL

Intuitively, our method embeds watermarks by biasing the score distribution towards high score
values. In this section, we provide visualizations that directly illustrate the statistical signal introduced
by our watermark in both the JV and PC hashing variants.

JV-hashing. For JV hashing, each row-level score is a PRF following Bernulli(0.5). We plot the
empirical probability mass function (PMF) of these scores for both watermarked and unwatermarked
tables in Figure 10. As expected, the unwatermarked data yields an approximately symmetric
distribution over {0, 1}, while watermarked tables exhibit a clear shift of probability mass toward
larger score values due to multi-sample selection.

PC-hashing. For PC hashing, the row-level score is the sum of per-column Bernoulli bits, taking
values in {0, ..., n} where n is the number of columns. We visualize the empirical PMF over the
normalized score (defined in Equation (3)) in Figure 11. Again, unwatermarked tables show the
expected symmetric distribution, while watermarked tables exhibit a rightward shift in mass, reflecting
the watermark signal.

score = 0 score = 1
0.0

0.25

0.5

0.75

1.0

Pr
ob

ab
ilit

y

no watermark
with watermark

Figure 10: Probability mass function of JV
detection score for both watermarked and un-
watermarked table. Watermarked table biases
the score distribution toward values with larger
scores.

0.0 0.5 1.0
normalized row score

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

no watermark
with watermark

Figure 11: Probability mass function of PC detec-
tion score for both watermarked and unwatermarked
table. Watermarked table biases the score distribu-
tion toward values with larger scores.

D FURTHER ANALYSIS OF THE INVERSION-BASED WATERMARKING

We first introduce the overall pipeline of inversion-based watermarking in Figure 12. The difficulty
lies in the inversion of three components, in sequential order: (1) inverse Quantile Transformation
(IQT) §D.2, (2) the VAE decoder §D.3, and (3) the DDIM sampling process §D.4. Finally, we analyze
the error accumulation and detection performance across the inversion stages in §D.5.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.1 PIPELINE OF INVERSION-BASED WATERMARKING

Diffusion
Sampling

VAE
Decoder

Noise vector
(Watermarked) IQT Tabular

Data

DDIM
Inversion

Inverse VAE
Decoder

Noise vector
(Recoverd) Inverse IQT Tabular

Data

AttackCompare

Watermark Generation

Watermark Detection

Figure 12: Pipeline of Inversion-based Watermarking. Top: The watermark signal is embedded in
the noise vector in the latent space, a watermarked table is subsequently generated. Bottom: To
detect the watermark signal, we need to reverse the entire pipeline. IQT stands for the inverse map of
Quantile Transformation.

D.2 INVERSION OF (INVERSE) QUANTILE TRANSFORMATION

The Quantile Transformation (Wikipedia contributors, 2025) is a widely used (Zhang et al., 2024c;a;
Shi et al., 2024; Kotelnikov et al., 2023) data preprocessing step in tabular data synthesis. It
regularizes the data distribution to a standard normal distribution. The Quantile Transformation can
be implemented as follows:

1) Estimate the empirical cumulative distribution function (CDF) of the features.
2) Map to uniform distribution with the estimated CDF.
3) Map to standard normal distribution with inverse transform sampling: z = Φ−1(u), where

Φ is the CDF of the standard normal distribution.

Note that in the second step, only the ordering of the data is preserved, and the exact values are
not preserved, making the map non-injective, therefore, the inverse of the Quantile Transformation
is inherently error-prone. Based on the official codebase, TabWak (Zhu et al., 2025) bypasses the
inversion of quantile normalization by caching the original data during watermarking, this is infeasible
in practical scenarios where the ground truth is unavailable. To study the impact of the inversion error
of the Quantile Transformation, we apply the original Quantile Transformation to the sampled tabular
data to invert the inverse quantile transformation.

D.3 INVERSION OF VAE DECODER

Denote the VAE decoder as fθ, and the VAE decoder output as x = fθ(z). To get z from x, (Zhu
et al., 2025) employs a gradient-based optimization to approximate the inverse of the VAE decoder.
Specifically, we can parametrize the unknown z with trainable parameters, and optimize the following
objective with standard gradient descent:

z = argmin
z
∥x− fθ(z)∥22 .

where z is inilitaized as g(fθ(x)), and g(·) is a VAE encoder. However, there is no guarantee that
the above optimization will converge to the true z, and we observed that the optimization process is
unstable (sometimes produces NaN) for tabular data and introduces significant error in the inversion
process.

D.4 DDIM INVERSION

The DDIM diffusion forward process is defined as:

q(xt | xt−1) = N (xt;
√
1− βtxt−1, βtI),

where x0 is the original data, xt is the data at time t, and βt is the variance of the noise at step t.
Based on the above definition, we can write xt as:

xt =
√
ᾱtxt−1 +

√
1− ᾱtϵ, (Forward process)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where ᾱt =
∏t

i=0(1− βi), ϵ ∼ N (0, I).

Starting from xT , we sample xT−1, . . . ,x0 recursively according to the following process:

xt
0 =

(
xt −

√
1− ᾱtϵθ(xt, t)

)
/
√
ᾱt

xt−1 =
√
ᾱt−1x

t
0 +

√
1− ᾱt−1ϵθ(xt, t),

(Reverse process)

where ϵθ(xt, t) is noise predicted by a neural network.

The DDIM inversion process is defined as the inverse of the DDIM reverse process. Specifically,
starting from x0, our goal is to recover the original noise vector xT in the latent space. We introduce
the basic DDIM inversion process proposed in (Dhariwal and Nichol, 2021), which is widely adopted
in inversion-based watermark methods (Wen et al., 2023; Yang et al., 2024; Zhu et al., 2025; Hu et al.,
2025).

We can obtain the inverse of the DDIM forward process by replacing the t− 1 subscript with t+ 1 in
Equation (Reverse process), but use xt to approximate the unknown xt+2:

xt+1 =
√
ᾱt+1x

t
0 +

√
1− ᾱt+1ϵθ(xt, t),

Due to the approximation xt ≈ xt+2, the inversion process generally demands a finer discretization
of the time steps. For instance, inversion-based watermarking methods (Wen et al., 2023; Zhu et al.,
2025) typically adopt T = 1000 steps, whereas diffusion models optimized for fast inference (Karras
et al., 2022; Zhang et al., 2024c) often operate with a coarser discretization of T = 50 steps.

Advanced Inversion Methods. To address the inexactness of the above inversion process, recent
works (Hong et al., 2024; Pan et al., 2023) have proposed more accurate inversion methods based on
iterative optimization. However, we empirically found that those methods still suffer from inversion
error due to already noisy input from the previous steps (VAE decoder and Quantile Transformation).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Cumulative Error

L1 Error

Detectability

IQ+VAE+DDIM VAE+DDIM DDIM

DDIM
VAE Decoder
Inverse Quantile

0.07 0.24 1.00
TPR@1%FPR

Figure 13: Error Accumulation and Detection Performance Across Inversion Stages of TabWak. The
ℓ1 error is computed between the estimated and ground truth noise vectors in latent space.

D.5 ERROR ACCUMULATION

In Figure 13, we analyze the error accumulated at each inversion stage and its impact on detection
performance using the Adult dataset. Specifically, we compute the TPR@1%FPR over 100
watermarked tables, each with 100 rows. The top bar chart shows detection performance when
progressively inverting different parts of the pipeline. From left to right:

• When we invert the entire pipeline (IQ→ VAE→ DDIM), the detection performance drops
to 0.07 TPR@1%FPR.

• When we provide the ground-truth IQ and only invert the VAE decoder and DDIM, the
performance improves to 0.24 TPR@1%FPR.

• When both the ground-truth IQ and VAE decoder outputs are provided (i.e., only DDIM is
inverted), detection reaches a perfect 1.0 TPR@1%FPR.

The bottom bar chart reports the ℓ1 error between the estimated and ground-truth noise vectors in the
latent space. From left to right, the bars correspond to:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Inverting only DDIM (given the ground-truth VAE output),
• Inverting both the VAE decoder and DDIM (given the ground-truth IQ), and
• Inverting the full pipeline (IQ→ VAE→ DDIM).

This comparison highlights how errors accumulate through the inversion stages and directly affect
watermark detectability.

E FURTHER ANALYSIS ON ROBUSTNESS

E.1 COLUMN PERMUTATION ATTACK

In our primary robustness evaluation (Section 5.3), we aligned with prior literature (Zhu et al.,
2025) by not explicitly modeling column permutation attacks. This decision relied on the practical
assumption that original column ordering is easily recoverable via column headers or statistical
properties. However, to evaluate the resilience of our methods under a stricter threat model where
column alignment is impossible or headers are stripped, we analyze the impact of column permutation
below. We demonstrate that MUSE-PC is naturally robust to this attack, while MUSE-JV can be
adapted to achieve permutation robustness with minimal performance trade-offs.

MUSE-PC. This variant exhibits inherent invariance to column permutation. Since the watermark
detection score for a row is calculated as a summation over all feature columns, the calculation is
commutative. Consequently, the spatial arrangement of the columns does not influence the final
aggregate score, rendering column permutation attacks ineffective.

MUSE-JV. The standard implementation of MUSE-JV relies on pre-computed per-column statistics
(see Equation (4)) to determine quantile ranks. A full column permutation disrupts the mapping
between columns and their stored statistics. To mitigate this, we can apply a simple modification:
estimating the min/max values directly from the target synthetic table rather than relying on pre-stored
metadata. This adaptation decouples the detector from specific column indices. While estimating
statistics from the sample introduces a potential approximation error compared to the injector’s
ground truth, our experiments indicate that this deviation is negligible for detection purposes. To
validate this, we conducted an experiment where both injection and detection utilized min/max
estimates derived from 10,000 independently generated samples. As shown in Table 5, the proposed
adaptation maintains high detectability across all datasets.

Dataset AUC T@R 0.1
Adult 1.000 1.000
Default 0.997 0.809
Shoppers 1.000 1.000
Beijing 1.000 1.000

Table 5: Detection performance under estimated max/min.

E.2 GLOBAL PERTURBATION

In this section, we extend our evaluation to datasets consisting exclusively of numerical columns. We
analyze the performance of MUSE-PC compared to baselines under a threat model where all entries
are subject to noise, distinct from the subset perturbation model discussed in the main text.

The original design of MUSE-PC targets a threat model where an adversary perturbs a subset of
values with arbitrary strength, while other values remain unchanged. In that regime, robustness
is achieved by spreading the watermark signal across all columns. However, in a scenario where
every entry is perturbed by small noise (e.g., Gaussian noise), directly computing the score on raw
continuous features can be sensitive to these ubiquitous minor shifts.

Normalization. To address this, we introduce a lightweight normalization step prior to computing
the score. We apply a transformation f such that f(x) ≈ f(x+ z) when z is a small perturbation.
This ensures the downstream score remains stable even if all entries receive noise.

Specifically, we instantiate f as quantization in the log domain. The process is as follows:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 6: Watermark generation quality and detectability on fully numerical datasets, indicates
best performance, indicates second-best performance. For clarity, only our method is highlighted
in detection.

Watermark Generation Quality Watermark Detectability

Dataset Method Marg.↑ Corr.↑ C2ST↑ MLE↑ AUC↑ T@1%F↑

California

no-wm 0.992 0.992 0.995 0.994 - -
TabWak 0.905 0.937 0.783 0.787 0.871 0.39
TabWak* 0.891 0.930 0.753 0.934 0.976 0.53
MUSE-PC 0.933 0.964 0.851 0.994 1.000 1.00

Letter

no-wm 0.975 0.980 0.980 0.992 - -
TabWak 0.928 0.938 0.685 0.926 0.999 0.90
TabWak* 0.922 0.930 0.607 0.919 1.000 1.00
MUSE-PC 0.928 0.964 0.740 0.990 1.000 1.00

1) Map each numerical value to its logarithmic scale.
2) Assign the value to one of a fixed number of bins (denoted as bin_num).

This logarithmic transformation makes the bin widths adaptive: larger magnitude values (|x|) are
assigned wider bins. This aligns with the intuition that larger values can tolerate larger absolute per-
turbations without altering their semantic meaning or watermark bin assignment. This preprocessing
does not alter the fundamental sampling or scoring procedure of MUSE-PC.

Robustness to Global Perturbation. We evaluate the robustness of MUSE-PC—augmented with a
quantisation step prior to score computation—under global perturbations, instantiated as Gaussian
noise applied to every entry in fully numerical datasets. We set the number of bins to 32, N = 500,
m = 2, and compare the detectability of MUSE-PC against TabWak and TabWak*. As shown in
Figure 14, MUSE-PC consistently outperforms both baselines across all attack strengths on both
datasets. It is worth noting that although TabWak/TabWak* demonstrates relatively strong robustness
on the Letter dataset, its performance deteriorates substantially on California. We hypothesize
that this variability stems from the inherent instability of reversing the entire sampling pipeline, which
TabWak relies on for detection.

Distortion and Detectability Performance. While the normalization step renders MUSE-PC robust
to global perturbations, evaluating its potential impact on distortion remains critical. With the number
of bins fixed at 32, results in Table 6 demonstrate that MUSE-PC consistently outperforms TabWak
and TabWak* in terms of both distortion and detectability.

Ablation Study on Number of Bins. In this section, we examine the impact of the bin count,
b ∈ {16, 32, 64, 128, 256}, on the data quality and robustness of MUSE-PC. As shown in Figure 15,
Figure 16, and Figure 17, the number of bins introduces a fundamental trade-off: coarser binning
enhances robustness at the cost of slightly increased distortion, while finer binning favors fidelity
but reduces robustness. Notably, choosing b = 32 is sufficient to surpass the robustness of TabWak.
Furthermore, even under coarse quantization (b = 16), MUSE-PC preserves higher data quality than
TabWak.

E.3 WATERMARK STEALING

In this section, we consider the watermark stealing problem, where an adversary attempts to reverse
engineer the watermark. We adopt the standard setting under Kerckhoffs’ principle: the adversary
has full knowledge of the watermarking algorithm, but does not know the secret key.

Two levels of reverse-engineering. It is useful to distinguish between two goals an attacker may
pursue:

• Spoofing attack (easier). The adversary trains a generative model to approximate the water-
marked data distribution Pwm, with the goal of generating new samples that pass the detector,
without necessarily recovering the secret key.

• Parameter-recovery attack (harder). The adversary attempts to deduce the secret parameters
of the scheme—specifically, the secret key k and/or the exact configuration of the quantile-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00

TP
R@

1%
FP

R
(

)

California

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

0.00

0.25

0.50

0.75

1.00
Letter

MUSE-PC TabWak TabWak*

Figure 14: Detection performance under Gaussian perturba-
tion attack across varying attack intensities. MUSE-PC (with
number of bin=32) achieves the best robustness.

16 32 64 128 256
Number of Bins

0.90

0.91

0.92

0.93

0.94

0.95

D
at

a
Q

ua
lit

y

California
Letter

Figure 15: Impact of bin number
on data quality. Finer discretiza-
tion leads to better data quality.

0.0 0.2 0.4 0.6 0.8 1.0
Attack Strength

256
128

64
32

16

Bin Number

0.0
0.2
0.4
0.6

0.8

1.0

T@
%

1F

Figure 16: Impact of bin number on robustness to
Gaussian perturbation: California dataset.

0.0 0.2 0.4 0.6
0.8

1.0
Attack Strength

256
128

64
32

16

Bin Number

0.0
0.2
0.4

0.6

0.8

1.0

T@
%

1F

Figure 17: Impact of bin number on robustness to
Gaussian perturbation: Letter dataset.

rank mapping (e.g., which columns and quantile levels are selected and hashed). A successful
parameter-recovery attack constitutes a total break: once the mechanism (known under Kerck-
hoffs’ principle) and the key are both recovered, the adversary can scrub or spoof the watermark
at will.

Parameter recovery is strictly harder than spoofing: if an attacker could recover the key and quantile
configuration, they could trivially simulate the watermarking process and thus succeed at spoofing.
The converse does not hold: in general, one can statistically approximate a distribution without
solving the cryptographic task of key recovery. This mirrors observations in prior watermarking work,
where key-recovery attacks are typically bespoke and non-trivial to construct (Jovanović et al., 2024).

Quantile ranks as a hard parameter-recovery target. For the sake of simplicity, our JV hashing
scheme presented in the main text uses a fixed quantile set (e.g., Q = {0, 0.5, 1} corresponding to
minimum, median, and maximum) to select a sparse subset of columns for watermark embedding.
Under Kerckhoffs’ principle, an attacker would know the fixed quantile set and thus be able to
compute which columns are used for watermarking for each sample. We provide a simple security
enhancement: applying a keyed pseudorandom permutation (PRP) πk over the column indices before
column selection. Specifically, for each row x, we first apply the permutation x 7→ πk(x), and then
compute the quantile ranks and select the minimum/median/maximum positions in this permuted
order. Under this construction, the set of watermark-carrying columns is entirely determined by the
secret key k, and recovering it is computationally equivalent to inverting the underlying PRP. In
other words, reverse-engineering the quantile-rank configuration becomes a full-fledged parameter-
recovery attack on a cryptographic primitive, which is significantly harder than merely mimicking
the watermark’s statistical footprint.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Empirical Evidence. Our analysis is supported empirically by the Adaptive Adversary experiments
presented in Section 5.3. We simulated a distillation attack—representing the easier “Spoofing”
threat—where a powerful generative model (TabSyn) attempted to learn the watermarked distribution.
As shown in Figure 4, the adversary failed to distinguish or approximate the watermark signal
(achieving an AUC ≈ 0.5). Since the adversary failed at the easier task of statistical approximation
(Spoofing), we conclude that they statistically cannot succeed at the strictly harder task of Parameter
Recovery.

F EXPERIMENTAL DETAILS

F.1 HARDWARE SPECIFICATION

We use a single hardware for all experiments. The hardware specifications are as follows:

• GPU: NVIDIA RTX 4090
• CPU: Intel 14900K

F.2 DATASET STATISTICS

The dataset used in this paper could be automatically downloaded using the script in the provided code.
We use 6 tabular datasets from UCI Machine Learning Repository1 or Kaggle2: Adult3, Default4,
Shoppers5, Beijing6, California7, and Letter8, which contain different numbers of numerical and
categorical features. The statistics of the datasets are presented in Table 7.

Table 7: Dataset statistics.

Dataset # Rows # Continuous # Discrete # Target # Train # Test Task

Adult 32, 561 6 8 1 22, 792 16, 281 Classification
Default 30, 000 14 10 1 27, 000 3, 000 Classification
Shoppers 12, 330 10 7 1 11, 098 1, 232 Classification
Beijing 43, 824 7 5 1 39, 441 4, 383 Regression
California 20, 640 9 - 1 18, 390 2, 520 Classification
Letter 20, 000 16 - 1 18, 000 2, 000 Classification

In Table 7, # Rows refers to the total records in each dataset, while # Continuous and # Discrete
denote the count of numerical and categorical features, respectively. The # Target column indicates
whether the prediction task involves a continuous (regression) or discrete (classification) target
variable. All datasets except Adult are partitioned into training and testing sets using a 9:1 ratio, with
splits generated using a fixed random seed for reproducibility. The Adult dataset uses its predefined
official testing set. For evaluating Machine Learning Efficiency (MLE), the training data is further
subdivided into training and validation subsets with an 8:1 ratio, ensuring consistent evaluation
protocols across experiments.

F.3 FIDELITY METRICS

The fidelity metrics used in this paper (Marginal, Correlation, C2ST and MLE) are standard metrics
in the field of tabualr data synthesis. Here is a reference:

• Marginal: Appendix E.3.1 in (Zhang et al., 2024c).
1https://archive.ics.uci.edu/datasets
2https://www.kaggle.com
3https://archive.ics.uci.edu/dataset/2/adult
4https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
5https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+

intention+dataset
6https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
7https://www.kaggle.com/datasets/camnugent/california-housing-prices
8https://archive.ics.uci.edu/dataset/59/letter+recognition

25

https://archive.ics.uci.edu/datasets
https://www.kaggle.com
https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://archive.ics.uci.edu/dataset/59/letter+recognition

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• Correlation: Appendix E.3.2 in (Zhang et al., 2024c).

• C2ST: Appendix F.3 in (Zhang et al., 2024c).

• MLE: Appendix E.4 in (Zhang et al., 2024c).

Below is a summary of how these metrics work.

F.3.1 MARGINAL DISTRIBUTION

The Marginal metric assesses how well the marginal distribution of each column is preserved in the
synthetic data. For continuous columns, we use the Kolmogorov–Smirnov Test (KST); for categorical
columns, we use the Total Variation Distance (TVD).

Kolmogorov–Smirnov Test (KST) Given two continuous distributions pr(x) and ps(x) (real and
synthetic, respectively), the KST measures the maximum discrepancy between their cumulative
distribution functions (CDFs):

KST = sup
x
|Fr(x)− Fs(x)| , (8)

where Fr(x) and Fs(x) denote the CDFs of pr(x) and ps(x):

F (x) =

∫ x

−∞
p(x) dx. (9)

Total Variation Distance (TVD) TVD measures the difference between the categorical distributions
of real and synthetic data. Let Ω be the set of possible categories in a column. Then:

TVD =
1

2

∑
ω∈Ω

|R(ω)− S(ω)| , (10)

where R(·) and S(·) denote the empirical probabilities in real and synthetic data, respectively.

F.3.2 CORRELATION

The Correlation metric evaluates whether pairwise relationships between columns are preserved.

Pearson Correlation Coefficient For two continuous columns x and y, the Pearson correlation
coefficient is defined as:

ρx,y =
Cov(x, y)

σxσy
, (11)

where Cov(·) is the covariance and σ denotes standard deviation. We evaluate the preservation of
correlation by computing the mean absolute difference between correlations in real and synthetic
data:

Pearson Score =
1

2
Ex,y

∣∣ρR(x, y)− ρS(x, y)
∣∣ , (12)

where ρR and ρS denote correlations in real and synthetic data. The score is scaled by 1
2 to ensure it

lies in [0, 1]. Lower values indicate better alignment.

Contingency Similarity For categorical columns A and B, we compute the Total Variation Distance
between their contingency tables:

Contingency Score =
1

2

∑
α∈A

∑
β∈B

|Rα,β − Sα,β | , (13)

where Rα,β and Sα,β are the joint frequencies of (α, β) in the real and synthetic data, respectively.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F.3.3 CLASSIFIER TWO-SAMPLE TEST (C2ST)

C2ST evaluates how distinguishable the synthetic data is from real data. If a classifier can eas-
ily separate the two, the synthetic data poorly approximates the real distribution. We adopt the
implementation provided by the SDMetrics library.9

F.3.4 MACHINE LEARNING EFFICIENCY (MLE)

MLE evaluates the utility of synthetic data for downstream machine learning tasks. Each dataset
is split into training and testing subsets using real data. Generative models are trained on the real
training set, and a synthetic dataset of equal size is sampled.

For both real and synthetic data, we use the following protocol:

• Split the training set into train/validation with an 8:1 ratio.
• Train a classifier/regressor on the train split.
• Tune hyperparameters based on validation performance.
• Retrain the model on the full training set using the optimal hyperparameters.
• Evaluate on the real test set.

This process is repeated over 20 random train/validation splits. Final scores (AUC for classification
task or RMSE for regression task) are averaged over the 20 trials for both real and synthetic training
data. In our experiments, we report the MLE Gap, which is the difference between the MLE score of
the (unwatermarked) real data and the MLE score of the synthetic data.

F.4 WATERMARK DETECTION METRICS

For watermark detection metrics, we primarily use the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve: AUC, and the True Positive Rate (TPR) at a given False
Positive Rate (FPR): TPR@x%FPR.

z-statistic In addition, we can formalize a statistical test for watermark detection. We formulate
this as a hypothesis testing problem:

H0 : The table is not watermarked.
vs. H1 : The table is watermarked.

Recall the definition of our detection statistic in Equation (1): given a (watermarked or unwater-
marked) table T that consists of N rows: T := (x1, . . . ,xN), we compute the detection statistic:

S(T) =
1

N

N∑
i=1

sk(xi).

For the Joint-Vector (JV) hashing design, where each row is assigned a single score, the form of
the test statistic depends on the score’s distribution under the null hypothesis H0. If the row score
follows Burnulli(0.5), we denote the total count of rows with a score of 1 as |W |. Under H0,
|W | follows a binomial distribution with mean µ = N/2 and variance σ2 = N/4. Finally, since
|W | =

∑N
i=1 sk(xi) = N · S(T), thus the z-statistic is computed as:

z =
N · S(T)−N/2√

N/4
. (JV hash)

For the Per-Column (PC) design, this framework must be adapted, as the score for each row, si,
is the average of scores from M individual columns (see Equation (3)): sk(x) = 1

M

∑M
j=1 Cij ,

9https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/
detection-single-table

27

https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/detection-single-table
https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/detection-single-table

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

where Cij is the score assigned to the value at i-th row, j-th column. If Ci,j are i.i.d and follows
Bernulli(0.5), we have that

∑N
i=1 sk(xi) follows a binomial distribution with mean µ = M ·N

2 and
variance σ2 = N ·M

4 , yielding a z−statistic as follows:

z =
N · S(T)− N ·M

2√
N ·M
4

. (JV hash)

Estimating the statistic under H0 via Monte Carlo. While directly assuming certain distributions
under null hypotheses like above is standard in LLM watermarking (Kirchenbauer et al., 2023b; Zhao
et al., 2023a; Giboulot and Furon, 2024), they can be inaccurate when the table contains low-entropy
columns (e.g., binary attributes). In such cases, the exact distribution of row-level hash outputs under
H0 may deviate from the idealized Bernoulli model.

One way to address this problem is to estimate the mean and variance of the detection statistic under
H0 using Monte Carlo simulation, which is also used in TabWak (Zhu et al., 2025).

Specifically, we first sample K unwatermarked tables with N rows, denoted as T 1
nw, ..., T

K
nw. Denote

si as N · S(T i
nw), then we compute:

• µ̂nw: the empirical mean of {s1, ..., sK}.
• σ̂nw: the empirical standard derivation of {s1, ..., sK}.

Then the one-sided z-statistic can be computed as:

z =
N · S(T)− µ̂nw

σ̂nw

where s is the test statistic computed on the suspect table. Unlike TabWak (Zhu et al., 2025), no
additional 1/

√
N scaling is required because σ̂nw is estimated directly from the full statistic N ·S(T),

whose variance already incorporates the dependence on N .

Detection threshold. Given the estimated (or assumed) null distribution of our detection statistic,
we next define a threshold for deciding whether a table is watermarked. Let µ0 and σ0 denote the
mean and standard deviation of the statistic under H0, obtained either analytically (e.g., assuming a
Bernoulli or binomial model) or empirically via Monte Carlo simulation as described above. For a
suspect table T , the corresponding z-score is:

z =
N · S(T)− µ0

σ0
. (14)

To control the false-positive rate at a user-specified significance level α, we compute the critical value
zα such that

Pr(Z > zα | H0) = α, Z ∼ N (0, 1), (15)

and declare the table as watermarked whenever z > zα. Equivalently, this induces a threshold on the
normalized statistic S(T):

S(T) >
µ0

N
+ zα

σ0

N
. (16)

When the theoretical Bernoulli(0.5) assumption holds (e.g., JV-hash), we have µ0 = N/2 and σ0 =√
N/4, which recovers the familiar closed-form thresholds used in prior work. When Monte Carlo

estimation is used instead, the same decision rule applies but with empirical estimates (µ̂nw, σ̂nw),
enabling the threshold to automatically adapt to low-entropy or skewed tabular datasets.

F.5 IMPLEMENTATION DETAILS OF IMAGE WATERMARK BASELINES

In this work, we also benchmark our method against established watermarking techniques originally
designed for visual generative models: Tree-Ring Watermark (Wen et al., 2023) and Gaussian
Shading (Yang et al., 2024). To apply these image-based methods to the tabular domain, we strictly
follow the adaptation strategies proposed in TabWak (Zhu et al., 2025). We include a brief description

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

of these strategies below for completeness; for full algorithmic details, we refer readers to Appendix
D of TabWak.

Tree-Ring Watermark. This method embeds the watermark into the initial noise vector of the
diffusion process by transforming it into the frequency domain. Importantly, this method treats the
full table (m rows and n columns) as a single latent image for the watermark. While standard image
models typically process square inputs, where standard centralized ring patterns are embedded in
the latent. Tabular datasets are characterized by a high aspect ratio, where the number of rows (m)
significantly exceeds the number of columns (n). To address this geometric discrepancy, we embed a
ripple-shaped pattern across the Fourier space. However, it is worth noting that treating the full table
as a single unit makes this method inherently vulnerable to row shuffling attacks: simply permuting
the rows destroys the global spatial pattern, thereby severely compromising detectability.

Gaussian Shading. Unlike the Tree-Ring watermark, Gaussian Shading is applied at the individual
row level. This approach treats each tabular row as a distinct entity, similar to how watermarking is
applied to individual images. Crucially, we maintain a fixed control seed across the entire dataset. If
we were to assign a unique seed to each row index, a simple row shuffling attack would decouple the
data from its corresponding seed, making verification impossible. By enforcing a constant seed, we
ensure that the watermark remains detectable even if the rows are arbitrarily permuted.

Discussion. The key distinction between watermarking techniques for tabular data and those for
images lies in the application setting. Tabular watermarking typically operates on an entire table—a
batch of i.i.d. samples—where each row contributes to the aggregate z-score and collectively boosts
detectability. In contrast, image watermarking generally requires detecting a watermark from a single
generated instance. For example, as shown in Theorem 4.1, achieving a target detectability of FPR
= 0.01% under MUSE requires a batch size of N = 100 and m = 4 repeated samples per instance.
Applied to images, this would require roughly 400 forward passes of an image generator to watermark
a batch of 100 images, making the method impractical for standard single-image watermarking
scenarios. That said, in specialized applications where images are naturally generated and verified in
batches, MUSE could still offer a viable and effective watermarking strategy.

G OMMITED PROOFS IN SECTION 3

Recall that for a table T (wateramarked or unwatermarked) with N rows: x1, . . . ,xN , we define the
watermark detection score as

S(T) =
1

N

N∑
i=1

sk(xi), (17)

where sk(xi) is the score of the i-th sample, k is the fixed watermark key.
Theorem 4.1 (Watermark Calibration Guarantees). Denote a watermarked table as Twm and an
unwatermarked table as Tno-wm, each consisting of N rows. Let x ∼ p(x) be a random vari-
able drawn from the data distribution, and let x1, . . . ,xm be i.i.d. samples from p(x). De-
fine µno-wm = Ex∼p(x)[sk(x)] as the expected score of an unwatermarked sample, and define
µm
wm = Exi∼p(x)

[
maxi∈[m] sk(xi)

]
as the expected score of a watermarked sample obtained via m

repeated samples. Suppose the scoring function satisfies sk(·) ∈ [0, 1], we have:

1. The False Positive Rate (FPR) of the watermark detection is upper bounded:

Pr (S(Tno-wm) > S(Twm)) ≤ exp

(
−N · (µm

wm − µno-wm)
2

2

)
. (5)

2. The RHS of the bound is minimized when sk(x) follows a Bernoulli(0.5) distribution.

3. Under this optimal distribution, let N > 8 log(1/α), then to ensure the FPR does not exceed a
target threshold α, it suffices to set the number of repeated samples m as:

m = max

(
2,

⌈
log0.5

(
0.5−

√
2 log(1/α)

N

)⌉)
. (6)

Proof. The proof of each statement is provided in Lemma G.1, Lemma G.2, and Theorem G.3,
respectively.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Lemma G.1. Denote a watermarked table as Twm and an unwatermarked table as Tno-wm, each
consisting of N rows. Let x ∼ p(x) be a random variable drawn from the data distribution, and
let x1, . . . ,xm be i.i.d. samples from p(x). Define µno-wm = Ex∼p(x)[sk(x)] as the expected score
of an unwatermarked sample, and define µm

wm = Exi∼p(x)

[
maxi∈[m] sk(xi)

]
as the expected score

of a watermarked sample obtained via m repeated samples. Suppose the scoring function satisfies
sk(·) ∈ [0, 1], then the False Positive Rate (FPR) of the watermark detection satisfies:

Pr (S(Tno-wm) > S(Twm)) ≤ exp

(
−N(µm

wm − µno-wm)
2

2

)
. (18)

Proof. Let S(Tno-wm) =
∑N

i=1 ci denote the sum of N i.i.d. scores from the unwatermarked table,
where each ci = sk(xi) for xi ∼ p(x), and similarly let S(Twm) =

∑N
i=1 c′i denote the sum of

N i.i.d. scores from the watermarked table, where each c′i = max{sk(xi1), . . . , sk(xim)} with
xij ∼ p(x).

Define the expected values:
µno-wm = E[ci], µm

wm = E[c′i].

We are interested in bounding the false positive rate:

Pr(S(Tno-wm) > S(Twm)) = Pr

(
N∑
i=1

(ci − c′i) > 0

)
.

Let wi = ci−c′i. Since sk(x) ∈ [0, 1], we have ci ∈ [0, 1] and c′i ∈ [0, 1], so wi ∈ [−1, 1]. Moreover,
E[wi] = µno-wm − µm

wm =: −δ, where δ = µm
wm − µno-wm > 0.

We apply Hoeffding’s inequality to the sum of wi’s:

Pr

(
N∑
i=1

wi > 0

)
= Pr

(
N∑
i=1

wi − E[
N∑
i=1

wi] > Nδ

)
≤ exp

(
−2N2δ2

4N

)
.

Plug in the definition of δ, we have:

Pr(S(Tno-wm) > S(Twm)) ≤ exp

(
−N2δ2

2

)
= exp

(
−N(µm

wm − µno-wm)
2

2

)
.

which proves the result.

Lemma G.2 (Optimal Scoring Distribution). Let sk(x) be any random variable supported on [0, 1]
with mean 0.5, the right-hand-side of Equation (18) is minimized when sk(x) follows a Bernoulli(0.5)
distribution.

Proof. Let s1, . . . , sm be i.i.d. copies of a random variable sk(x) ∈ [0, 1] with fixed mean
E[sk(x)] = 0.5. Define:

µ := E[sk(x)] = 0.5, µmax := E[max(s1, . . . , sm)].

Let ∆ := µmax − µ be the gap between the expected maximum score over m repetitions and the
mean score. The upper bound in Equation (18) is:

Pr(Sno-wm > Swm) ≤ exp

(
−N∆2

2

)
,

so minimizing the FPR corresponds to maximizing ∆ under the constraint that E[sk(x)] = 0.5 and
sk(x) ∈ [0, 1].

We now show that ∆ is maximized when sk(x) ∼ Bernoulli(0.5).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Step 1: Write µmax and µ as integrals over the CDF. Let F be the cumulative distribution
function (CDF) of sk(x). Then the CDF of max(s1, . . . , sm) is Fm(x). By the tail integration
formula, we can compute the expected maximum as:

µmax =

∫ 1

0

Pr(max(s1, . . . , sm) > x)

=

∫ 1

0

(1− F (x)m) dx.

Similarly, we have: µ =
∫ 1

0
(1− F (x)) dx.

Therefore, the gap ∆ can be written as:

∆ = µmax − µ =

∫ 1

0

[F (x)− F (x)m] dx.

Step 2: Leverage the concavity. By Lemma H.1, the integrand F (x)−F (x)m is concave in F (x).
By Lemma H.2, the integral is maximized when F (x) is the CDF of a Bernoulli distribution with
mean µ = 0.5.

Therefore, among all sk(x) ∈ [0, 1] with E[sk(x)] = 0.5, the Bernoulli(0.5) distribution maximizes
∆, which minimizes the upper bound on the FPR. Hence, the lemma holds.

Theorem G.3 (Minimum Watermarking Signal). Under the same assumptions as in Lemma G.1,
suppose the scoring function sk(x) is instantiated as a hash-seeded pseudorandom function such
that sk(x) ∼ Bernoulli(0.5). Then the FPR is upper-bounded by:

Pr (S(Tno-wm) > S(Twm)) ≤ exp

(
−N

2
(0.5− 0.5m)

2

)
. (19)

To ensure the FPR does not exceed a target threshold α, it suffices to set the number of repeated
samples m as:

m = max

(
2,

⌈
log0.5

(
0.5−

√
2 log(1/α)

N

)⌉)
, (20)

where ⌈·⌉ denotes the ceiling function. This expression is valid when N > 8 log(1/α).

Proof. When sk(x) ∼ Bernoulli(0.5), we have:

µno-wm = E[sk(x)] = 0.5, µm
wm = E[max(s1, . . . , sm)] = 1− 0.5m.

Plug in into the FPR bound Equation (22), we have:

Pr (S(Tno-wm) > S(Twm)) ≤ exp

(
−N

2
(0.5− 0.5m)

2

)
,

which completes the proof.

Theorem 4.3. Let m = 2. The watermarking process in Algorithm 1, augmented with repeated
column masking, satisfies multi-sample distribution-preserving as defined in Definition 4.2.

Proof. Suppose x̃1, . . . , x̃K are generated consecutively from Algorithm 1 with the same watermark
key k and data distribution p(x). Assume the repeated column masking is enabled. Denote W ⊆
{1, ...,K} denote the index set where the repeated column masking is triggered. Then we have:

P(x̃1, . . . , x̃K) =

K∏
i=1

P(x̃i | x̃<i)

=
∏
i∈W

P(x̃i | x̃<i)︸ ︷︷ ︸
1

∏
i̸∈W

P(x̃i | x̃<i)︸ ︷︷ ︸
2

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Due to the deployment of repeated column masking, when repeated column values are detected,
Algorithm 1 defaults to skipping the watermarking process. Therefore, for 1 , we have:∏

i∈W

P(x̃i | x̃<i) =
∏
i∈W

p(x̃i)

For 2 , there will be no repeated column values used for seed generation. Note the dependency
between current sample xi and previous samples x̃<i are only on the watermark key k and selected
column values π(x) (recall we compute a hash function h(k, π(x)) to seed a score function). There-
fore, when the selected columns contain no repeated values, due to the property of the hash function,
we have x̃i is independent of x̃<i. Therefore, we have:∏

i̸∈W

P(x̃i | x̃<i) =
∏
i̸∈W

P(Γ(p, h(k, x̃i)))

=
∏
i̸∈W

p(x̃i) (by Lemma H.3)

Finally, we combine the above results, we have:

P(x̃1, . . . , x̃K) =

K∏
i=1

p(x̃i)

which completes the proof.

H TECHNICAL LEMMAS

Lemma H.1. For any integer m ≥ 2, the function f(x) = x− xm is concave on the interval [0, 1].

Proof. To prove that f(x) = x − xm is concave on [0, 1], we show that its second derivative is
non-positive on this interval.

Compute the first derivative:

f ′(x) =
d

dx
(x− xm) = 1−mxm−1.

Compute the second derivative:

f ′′(x) =
d

dx
(1−mxm−1) = −m(m− 1)xm−2.

Observe that for all x ∈ [0, 1] and m ≥ 2: m(m− 1) > 0 and xm−2 ≥ 0.

Therefore,
f ′′(x) = −m(m− 1)xm−2 ≤ 0 for all x ∈ [0, 1].

Hence, f(x) is concave on [0, 1].

Lemma H.2. Let ϕ : [0, 1] → R be a concave function, and let F be the cumulative distribution
function (CDF) of a random variable supported on [0, 1] with fixed mean µ ∈ (0, 1). Then the integral∫ 1

0

ϕ(F (x))dx

is maximized when F (x) =


0 if x < 0

1− µ if 0 ≤ x < 1

1 if x ≥ 1

, i.e. the CDF of a Bernoulli distribution with

mean µ.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Proof. Step 1: Rewrite the Mean Constraint

By the tail integration formula, the mean constraint for the random variable X with CDF F (x)
supported on [0, 1] is: ∫ 1

0

(1− F (x)) dx = µ.

Rearranging this equation gives the integral of F (x):∫ 1

0

F (x) dx = 1− µ. (21)

Step 2: Upper Bound the Integral

The function ϕ : [0, 1] → R is concave. The CDF F (x) takes values in [0, 1] for x ∈ [0, 1], so
ϕ(F (x)) is well-defined. We can apply Jensen’s inequality for integrals, which for a concave function
ϕ and an integrable function g(x) on an interval [a, b] states:

1

b− a

∫ b

a

ϕ(g(x)) dx ≤ ϕ

(
1

b− a

∫ b

a

g(x) dx

)
.

Plug in a = 0, b = 1, g(x) = F (x). Jensen’s inequality then becomes:∫ 1

0

ϕ(F (x)) dx ≤ ϕ

(∫ 1

0

F (x) dx

)
.

Substituting Equation (21) into the right hand side, we have:∫ 1

0

ϕ(F (x)) dx ≤ ϕ(1− µ). (22)

Step 3: Verify F (x) achieves the upper bound

It is straightforward to verify that F (x) satisfies the mean constraint. Next, we will show that F (x)
achieves the upper bound ϕ(1− µ). For x ∈ [0, 1), F (x) = 1− µ. Therefore, we have:∫ 1

0

ϕ(F (x)) dx =

∫ 1

0

ϕ(1− µ) dx = ϕ(1− µ).

We have shown that F (x) satisfies the mean constraint and achieves the upper bound ϕ(1−µ), which
completes the proof.

The following proof adapts the single-token distortion-free analysis from (Dathathri et al., 2024) to our
single-sample setting. The core ideas and structure of the proof remain the same, with modifications
primarily to the notation.
Lemma H.3 (Single Sample Distortion-free). Assume m = 2, for any data distribution p(·), it holds
that, under the randomness of the watermark key k, the watermarked data distribution is the same as
the original data distribution:

Pk∼Unif(K)(Γ(p, k) = x̃) = p(x̃) (23)

Proof. By definition of the watermarking mechanism with m = 2, for any sample x̃ we can write

Pk∼Unif(K)(Γ(p, k) = x̃)

= Ek∼Unif(K)

p(x̃)
 ∑

x∈X :sk(x)=sk(x̃)

p(x) + 2
∑

x∈X :sk(x)<sk(x̃)

p(x)


= Ek∼Unif(K)

[
p(x̃)

(∑
x∈X

p(x)
[
1sk(x)=sk(x̃) + 21sk(x)<sk(x̃)

])]

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

where sk(x) is the score function on sample x with key k.

Next observe that for any fixed x, under k ∼ Unif(K) we have:

Ek∼Unif(K)

[
1(sk(x),k)=sk(x̃) + 21sk(x)<sk(x̃)

]
= Ek∼Unif(K)

[
1(sk(x),k)=sk(x̃)

]
+ Ek∼Unif(K)

[
1sk(x)<sk(x̃)

]
+ Ek∼Unif(K)

[
1sk(x)>sk(x̃)

]
= Ek∼Unif(K) [1]

= 1

Substituting back, we obtain

Pk∼Unif(K)(Γ(p, k) = x) = p(x) · 1 = p(x).

Thus, the watermarked distribution coincides with the original distribution, proving the claim.

34

	Introduction
	Preliminaries
	Method
	Watermark Generation and Detection Paradigm
	Watermark Scoring Function
	Score Generation Designs
	Column Selection Implementation

	Analysis
	Calibrating the Number of Repeated Samples
	Distribution-Preservation

	Experiments
	Setup
	Detectability and Distribution Preservation
	Robustness against Attacks
	Ablation Study and Further Analysis

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Related Work
	Additional Experiments Results
	Omitted Results on Robustness
	Omitted Results on Edit-based Watermarking
	Visualization of statistical signal

	Further Analysis of the Inversion-Based Watermarking
	Pipeline of Inversion-based Watermarking
	Inversion of (Inverse) Quantile Transformation
	Inversion of VAE decoder
	DDIM Inversion
	Error Accumulation

	Further Analysis on Robustness
	Column permutation attack
	Global perturbation
	Watermark stealing

	Experimental Details
	Hardware Specification
	Dataset Statistics
	Fidelity Metrics
	Marginal Distribution
	Correlation
	Classifier Two-Sample Test (C2ST)
	Machine Learning Efficiency (MLE)

	Watermark Detection Metrics
	Implementation Details of Image Watermark Baselines

	Ommited Proofs in sec:methods
	Technical Lemmas

