

# 000 001 002 003 004 005 MUSE: MODEL-AGNOSTIC TABULAR WATERMARK- 006 ING VIA MULTI-SAMPLE SELECTION 007 008 009

010 **Anonymous authors**  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026

Paper under double-blind review  
027  
028  
029  
030

## ABSTRACT

We introduce MUSE, a novel watermarking paradigm for tabular generative models. Existing approaches often exploit DDIM invertibility to watermark tabular diffusion models, but tabular diffusion models suffer from poor invertibility, leading to degraded performance. To overcome this limitation, we leverage the computational efficiency of tabular generative models and propose a multi-sample selection paradigm, where watermarks are embedded by generating multiple candidate samples and selecting one according to a specialized scoring function. The key advantages of MUSE include (1) **Model-agnostic**: compatible with any tabular generative model that supports repeated sampling; (2) **Flexible**: offers flexible designs to navigate the trade-off between generation quality, detectability, and robustness; (3) **Calibratable**: theoretical analysis provides principled calibration of watermarking strength, ensuring minimal distortion to the original data distribution. Extensive experiments on four datasets demonstrate that MUSE substantially outperforms existing methods. Notably, it reduces the distortion rates by 84 – 88% for fidelity metrics compared with the best performing baselines, while achieving 1.0 TPR@0.1%FPR detection rate. The code is available at <https://anonymous.4open.science/r/MUSE-ICLR-0856>.

## 1 INTRODUCTION

The rapid development of tabular generative models (Kotelnikov et al., 2023; Gulati and Roysdon, 2024; Castellon et al., 2023; Zhang et al., 2024c; Shi et al., 2024; Zhang et al., 2024a) has significantly advanced synthetic data generation capabilities for structured information. These breakthroughs have enabled the creation of high-quality synthetic tables for applications in privacy preservation, data augmentation, and missing value imputation (Zhang et al., 2024b; Hernandez et al., 2022; Fonseca and Bacao, 2023; Assefa et al., 2020). However, this advancement concurrently raises serious concerns about potential misuse, including data poisoning (Padhi et al., 2021) and financial fraud (Cartella et al., 2021). To address these risks, watermarking has emerged as a pivotal technique. By embedding imperceptible yet robust signatures into synthetic data, watermarking facilitates traceability, ownership verification, and misuse detection (Liu et al., 2024).

Earlier works on tabular data watermarking utilize *edit-based watermarking* (Zheng et al., 2024; He et al., 2024), embedding signals by modifying table values. However, this approach has a fundamental limitation with tabular data: direct value alterations, especially in columns with discrete or categorical data, can easily corrupt information or render entries invalid. For instance, such edits might introduce non-existent categories (Gu et al., 2024; Lin et al., 2021) or push values across critical decision boundaries (Ngo et al., 2024), significantly compromising data integrity. Recently, *generative watermarking* has emerged as an alternative approach for tabular data, drawing from successful techniques in diffusion models for images and videos (Wu et al., 2025; Yang et al., 2024; Wen et al., 2023; Hu et al., 2025). This approach leverages the reversibility of DDIM samplers (Song et al., 2020a) by initializing generation with patterned Gaussian noise and, during watermark detection, assessing its correlation with the noise reconstructed through the inverse process. TabWak (Zhu et al., 2025) applies this concept to tabular diffusion models (Zhang et al., 2024c; Kotelnikov et al., 2023; Lee et al., 2023; Kim et al., 2022). Unlike edit-based watermarking, generative watermarking maintains better generation quality since the watermark is embedded within noise patterns that closely resemble Gaussian distributions, minimizing impact on the generated content.

054  
 055  
 056  
 057  
 058  
 059  
 060  
 061  
 062  
 063  
 064  
 065  
 066  
 067  
 068  
 069  
 070  
 071  
 072  
 073  
 074  
 075  
 076  
 077  
 078  
 079  
 080  
 081  
 082  
 083  
 084  
 085  
 086  
 087  
 088  
 089  
 090  
 091  
 092  
 093  
 094  
 095  
 096  
 097  
 098  
 099  
 100  
 101  
 102  
 103  
 104  
 105  
 106  
 107  
 However, watermarking tabular diffusion models is significantly more challenging than for image and video diffusion models. This stems from the **substantially lower accuracy of DDIM inverse processes** in tabular diffusion models, as shown in Figure 1 (left). When using the same Gaussian shading algorithm (Yang et al., 2024), tabular modality exhibits the lowest reversibility accuracy. This challenge arises because tabular diffusion models incorporate multiple additional algorithmic components that are difficult to reverse, such as quantile normalization (Amaratunga and Cabrera, 2001) and Variational Autoencoders (VAEs) (Kingma and Welling, 2013) used in TabSyn (Zhang et al., 2024c). During watermark detection, the entire data processing pipeline must be inverted to recover the watermark signal, but this process accumulates errors as precisely reversing each step is often difficult or impossible. Key challenges in the inversion process include: (1) inverting quantile normalization is inherently problematic as this transformation is non-injective; (2) VAE decoder inversion relies on optimization methods without guarantees of perfect implementation. Due to limitations in tabular DDIM inversion accuracy, watermark detectability becomes highly dependent on model implementation, severely restricting its application scope and practical utility (see Section D for more details).

This paper introduces MUSE, a model-agnostic watermarking paradigm for tabular data that operates without relying on the invertibility of diffusion models. A key insight enabling our approach is that tabular data generation demands **significantly less computation** than image or video generation, as shown in Figure 1 (right). This computational efficiency makes a multi-sample selection process practical: MUSE leverages this by generating multiple candidate samples for each data row and embedding the watermark by selecting one candidate based on a keyed watermark scoring function, which is calculated using values from specific columns. We present MUSE as a general paradigm and introduce two specific implementations that navigate the crucial trade-off between data fidelity and watermark detectability/robustness: (1) Joint-Vector (JV) hashing, tailored for minimal distortion (distribution-preserving), and (2) Per-Column (PC) hashing, designed for maximal robustness and detectability. We ground this paradigm in rigorous theoretical analysis, providing a precise method to calibrate detectability and establishing conditions for distortion-free watermarking. Validated across diverse datasets, MUSE demonstrates high watermark detectability and strong robustness against attacks while maintaining the underlying model’s generation quality.

**Our Contributions.** We summarize the main contributions of this paper as follows:

- We propose tabular watermarking via multi-sample selection (MUSE), a novel generative watermarking paradigm for tabular data that completely avoids the inversion of generative and data processing pipelines, ensuring broad compatibility with any tabular generative model.
- We demonstrate the flexibility of the MUSE paradigm, showing how different score function designs enable a controllable trade-off between generation quality, detectability, and robustness.
- We provide theoretical analysis of MUSE, establishing its detectability for precise strength calibration and identifying the conditions for achieving distribution-preserving watermarking.
- Extensive experiments across multiple tabular datasets validate MUSE’s superior performance in generation quality, watermark detectability, and robustness against various tabular-specific attacks.

## 2 PRELIMINARIES

**Tabular Generative Models.** A tabular dataset with  $N$  rows and  $M$  columns consists of *i.i.d.* samples  $(\mathbf{x}_i)_{i=1}^N$  drawn from an unknown joint distribution  $p_{\text{data}}(\mathbf{x})$ , where each  $\mathbf{x}_i \in \mathbb{R}^M$  (or mixed-type space) represents a data row with  $M$  features. A tabular generative model aims to learn a parameterized distribution  $p_{\theta}(\mathbf{x}) \approx p_{\text{data}}(\mathbf{x})$  to generate new realistic samples.



Figure 1: **Left:** Tabular diffusion models exhibit the lowest inversion accuracy (bit accuracy) when compared to video and image diffusion models. **Right:** Tabular diffusion models require much fewer generation GFLOPs than video and image diffusion models. Models used: TabSyn (Zhang et al., 2024c) (tabular), Stable Diffusion (Rombach et al., 2022; Blattmann et al., 2023) (image/video).

This paper introduces MUSE, a model-agnostic watermarking paradigm for tabular data that operates without relying on the invertibility of diffusion models. A key insight enabling our approach is that tabular data generation demands **significantly less computation** than image or video generation, as shown in Figure 1 (right). This computational efficiency makes a multi-sample selection process practical: MUSE leverages this by generating multiple candidate samples for each data row and embedding the watermark by selecting one candidate based on a keyed watermark scoring function, which is calculated using values from specific columns. We present MUSE as a general paradigm and introduce two specific implementations that navigate the crucial trade-off between data fidelity and watermark detectability/robustness: (1) Joint-Vector (JV) hashing, tailored for minimal distortion (distribution-preserving), and (2) Per-Column (PC) hashing, designed for maximal robustness and detectability. We ground this paradigm in rigorous theoretical analysis, providing a precise method to calibrate detectability and establishing conditions for distortion-free watermarking. Validated across diverse datasets, MUSE demonstrates high watermark detectability and strong robustness against attacks while maintaining the underlying model’s generation quality.

**Our Contributions.** We summarize the main contributions of this paper as follows:

- We propose tabular watermarking via multi-sample selection (MUSE), a novel generative watermarking paradigm for tabular data that completely avoids the inversion of generative and data processing pipelines, ensuring broad compatibility with any tabular generative model.
- We demonstrate the flexibility of the MUSE paradigm, showing how different score function designs enable a controllable trade-off between generation quality, detectability, and robustness.
- We provide theoretical analysis of MUSE, establishing its detectability for precise strength calibration and identifying the conditions for achieving distribution-preserving watermarking.
- Extensive experiments across multiple tabular datasets validate MUSE’s superior performance in generation quality, watermark detectability, and robustness against various tabular-specific attacks.



Figure 2: An overview of the MUSE watermark generation process. MUSE operates by generating multiple samples and selecting the highest-scoring sample (ties are broken randomly). The selected row is appended to the watermarked table, while others are discarded.

**Watermark for Tabular Generative Models.** Tabular watermark involves two main functions. **(1) Generate:** Given a secret watermark key  $k$ , this function produces a watermarked table. Similar to standard generation, each row of this table is sampled *i.i.d.*, but from a distribution  $p(\mathbf{x}, k)$ . **(2) Detect:** Provided with a table and a specific key  $k$ , this function examines the table to determine if it carries the watermark associated with that particular key.

**Threat Model.** We consider the following watermarking protocol between three parties: the tabular data provider, the user, and the detector. **(1)** The tabular data provider shares a watermark key  $k$  and certain metadata related to the data distribution (e.g., the maximum and minimum values of each column) with the detector. **(2)** The user asks the tabular data provider to generate a table  $T$ . **(3)** The user publishes a table  $T'$ , which can either be an (edited version of the) original table  $T$  or an independent table. **(4)** The detector determines whether the table  $T'$  is watermarked or not.)

### 3 METHOD

In this section, we introduce MUSE, a general paradigm for watermarking tabular data generators. We begin by outlining the paradigm’s high-level architecture for generation and detection (Section 3.1). We then detail its core components: the scoring function (Section 3.2), which can be instantiated with different designs to balance trade-offs between detectability and distortion.

#### 3.1 WATERMARK GENERATION AND DETECTION PARADIGM

We define the overall generation and detection process of our MUSE method in this section. The generation of each watermarked row can be decomposed into the following two steps:

**Generation.** The generation of each watermarked row is achieved through a two-phase process:

- Sample Candidates.** Generate a set of  $m$  candidate rows by *i.i.d.* sampling from the model’s distribution  $p(\mathbf{x})$ .
- Select the Highest-Scoring Candidate.** Apply a *watermark scoring function*  $s_k(\cdot)$  to each candidate  $\mathbf{x}_i$  using watermark key  $k$  and select the **highest-scoring candidate** (ties are broken randomly) as the watermarked row. We will detail the watermark scoring function in Section 3.2.

To produce a watermarked table with  $N$  rows, we repeat the above process  $N$  times. In practice, the selection procedure can be **fully parallelized** across the  $N$  groups since each group contains *i.i.d.* samples. The watermark generation process is illustrated in Figure 2 and Algorithm 1.

**Detection.** The generation process naturally creates a statistical artifact. By consistently selecting the highest-scoring sample, we ensure that a watermarked table will exhibit a significantly higher average score than an unwatermarked one. To detect the watermark, we formalize this intuition as follows: given a (watermarked or unwatermarked) table  $T$  consists of  $N$  rows:  $T := (\mathbf{x}_1, \dots, \mathbf{x}_N)$ , we compute the detection statistic:

$$S(T) = \frac{1}{N} \sum_{i=1}^N s_k(\mathbf{x}_i). \quad (1)$$

A table is flagged as watermarked if its mean score  $S(T)$  surpasses a predefined threshold derived from the expected score of non-watermarked data. The formal statistical test is detailed in Appendix F.4.

162 3.2 WATERMARK SCORING FUNCTION  
163164 Our watermark scoring function,  $s_k(\cdot)$ , has two components: a score generation design, described in  
165 Section 3.2.1, and a column selection implementation, detailed in Section 3.2.2.  
166167 3.2.1 SCORE GENERATION DESIGNS  
168169 Let  $\pi(\mathbf{x})$  be a selection function that selects a subset of columns from a sample  $\mathbf{x}$  (we will detail the  
170 design of the selection function in Section 3.2.2), with  $\mathcal{J}$  being the set of selected column indices.  
171 We present two designs for generating a score from this selection and the watermark key  $k$ .  
172

- **Joint-Vector (JV) Hashing:** Hashes the entire vector of selected values as a concatenated vector.

173 
$$h = H(\pi(\mathbf{x}), , k), \quad s_k^{\text{JV}}(\mathbf{x}) = f(h). \quad (2)$$
  
174

- **Per-Column (PC) Hashing:** Hashes each selected column value independently then aggregates.

176 
$$h_i = H(\mathbf{x}_i, k) \quad (i \in \mathcal{J}), \quad s_k^{\text{PC}}(\mathbf{x}) = \frac{1}{|\mathcal{J}|} \sum_{i \in \mathcal{J}} f(h_i). \quad (3)$$
  
177  
178

179 In both designs,  $f$  is a pseudorandom function (PRF) whose output bit follows a Bernoulli(0.5)  
180 distribution. Intuitively, by placing equal probability mass on the two extreme values (0 and 1), this  
181 distribution provides maximal separation between binary signals (watermarked vs. non-watermarked).  
182 This intuition is rigorously established in Theorem 4.1.  
183184 **Robustness and Distortion Trade-off.** The choice between JV and PC hashing represents a funda-  
185 mental trade-off between robustness against attacks and the preservation of the original data  
186 distribution (low distortion). The JV design excels at minimizing distortion. By hashing a concate-  
187 nated vector of column values, it operates in a vast input space, making hash collisions rare and thus  
188 preserving the data’s statistical properties. However, this “all-or-nothing” approach is fragile; a single  
189 modification to any of the selected columns can alter the entire hash, compromising the watermark  
190 signal for that sample. In contrast, the PC design prioritizes robustness. It embeds the watermark  
191 signal independently across multiple columns, ensuring that the overall signal can survive partial  
192 data deletion or modification. This resilience comes at the cost of a higher potential for distortion, as  
193 the smaller input space of individual columns can lead to more frequent hash collisions and a more  
194 concentrated statistical bias. We empirically validate this trade-off in our experiments (Section 5).  
195196 3.2.2 COLUMN SELECTION IMPLEMENTATION  
197198 **Adaptive Selection for JV Hashing.** The selection strategy for Joint-Vector (JV) hashing must  
199 address two critical vulnerabilities. First, the design’s “all-or-nothing” nature makes it fragile: any  
200 modification to a selected value invalidates the entire watermark, which necessitates the use of a  
201 sparse selection (a small number of columns) to minimize the attack surface. However, simply  
202 choosing a fixed sparse set of columns creates a predictable target for adversaries, who could nullify  
203 the watermark by altering just those few features. To overcome both challenges, we propose a strategy  
204 that fulfills both requirements. This is achieved by selecting columns based on their quantile rank,  
205 which measures a value’s position relative to the empirical distribution of the training data. For each  
206 row  $\mathbf{x}$  and each column index  $j$ , we compute its rank  $r_j \in [0, 1]$ :  
207

208 
$$r_j = \frac{v_j - v_{\min,j}}{v_{\max,j} - v_{\min,j}}, \quad (4)$$
  
209

210 where for a numerical column,  $v_j$  equals the  $j$ -th column value of  $\mathbf{x}$ :  $v_j := \mathbf{x}_j$  and  $v_{\min,j}, v_{\max,j}$  are  
211 pre-computed min and max values from the training data. For a categorical column,  $v_j$  is its ordinal  
212 index. Finally, for each sample  $\mathbf{x}$ , we take its per-column ranks  $r_j$ , sort them within the row, and  
213 select the columns whose positions match a fixed quantile set  $\mathcal{Q}$ .  
214215 **Full Selection for PC Hashing.** In contrast to the JV design, the Per-Column (PC) approach is  
216 inherently robust, as it aggregates watermark signals embedded independently across each column.  
217 This design ensures that modifications to a *subset* of columns do not corrupt the entire watermark.  
218 The overall signal’s strength and resilience scale directly with the number of columns used. Therefore,  
219 to maximize robustness, the ideal strategy is to select *all available columns*. For this design, we  
220 configure  $\pi(\mathbf{x}) := \mathbf{x}$  to simply use all features, setting the index set to  $\mathcal{J} = \{1, \dots, M\}$ .  
221

216 *Remark 3.1* (Modification of All Columns). For datasets consisting of purely numerical columns, an  
 217 adversary may inject small perturbations across *all* entries simultaneously. To mitigate the sensitivity  
 218 of hashing to such noise, a preprocessing step  $f$  (e.g., quantization) can be applied prior to hashing,  
 219 ensuring that  $f(x) \approx f(x + \epsilon)$  for a small noise term  $\epsilon$ . See Appendix E.2 for a complete discussion.

220 *Remark 3.2* (Watermark Security). JV hashing selects a sparse subset of columns based on a fixed  
 221 quantile set, which introduces a potential vulnerability: if the quantile set is leaked, an adversary  
 222 can identify the watermark-carrying columns and scrub the watermark. In contrast, PV hashing is  
 223 inherently more resilient since the watermark signal is spread across all columns. A simple way to  
 224 improve the security of JV hashing is by applying a keyed pseudorandom permutation (PRP)  $\pi_k$  to  
 225 the column indices before quantile selection ( $\mathbf{x} \mapsto \pi_k(\mathbf{x})$ ). Under this design, the watermark-carrying  
 226 columns are indexed by the secret key  $k$ , and identifying them becomes computationally equivalent  
 227 to breaking the underlying PRP. We further provide empirical evidence showing that recovering the  
 228 quantile set is non-trivial in practice; We refer the reader to Appendix E.3 for a complete discussion.

## 229 4 ANALYSIS

231 In this section, we provide theoretical analysis of the detectability and distribution-preserving proper-  
 232 ties of the MUSE paradigm.

### 234 4.1 CALIBRATING THE NUMBER OF REPEATED SAMPLES

236 Given the detection statistic Equation (1), we will show how the detectability of MUSE depends on  
 237 (1) the number of watermarked samples  $N$  and (2) the number of repeated samples  $m$ .

238 **Theorem 4.1** (Watermark Calibration Guarantees). Denote a watermarked table as  $T_{\text{wm}}$  and an  
 239 unwatermarked table as  $T_{\text{no-wm}}$ , each consisting of  $N$  rows. Let  $\mathbf{x} \sim p(\mathbf{x})$  be a random vari-  
 240 able drawn from the data distribution, and let  $\mathbf{x}_1, \dots, \mathbf{x}_m$  be i.i.d. samples from  $p(\mathbf{x})$ . De-  
 241 fine  $\mu_{\text{no-wm}} = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})}[s_k(\mathbf{x})]$  as the expected score of an unwatermarked sample, and define  
 242  $\mu_{\text{wm}}^m = \mathbb{E}_{\mathbf{x}_i \sim p(\mathbf{x})} [\max_{i \in [m]} s_k(\mathbf{x}_i)]$  as the expected score of a watermarked sample obtained via  $m$   
 243 repeated samples. Suppose the scoring function satisfies  $s_k(\cdot) \in [0, 1]$ , we have:

244 1. The False Positive Rate (FPR) of the watermark detection is upper bounded:

$$246 \Pr(S(T_{\text{no-wm}}) > S(T_{\text{wm}})) \leq \exp\left(-\frac{N \cdot (\mu_{\text{wm}}^m - \mu_{\text{no-wm}})^2}{2}\right). \quad (5)$$

248 2. The RHS of the bound is minimized when  $s_k(\mathbf{x})$  follows a Bernoulli(0.5) distribution.

250 3. Under this optimal distribution, let  $N > 8 \log(1/\alpha)$ , then to ensure the FPR does not exceed a  
 251 target threshold  $\alpha$ , it suffices to set the number of repeated samples  $m$  as:

$$253 m = \max\left(2, \left\lceil \log_{0.5} \left(0.5 - \sqrt{\frac{2 \log(1/\alpha)}{N}}\right) \right\rceil\right). \quad (6)$$

255 Theorem 4.1 enables MUSE to calibrate the number of repeated  
 256 samples  $m$  to achieve a target false positive rate with theoretical  
 257 guarantees. This allows the method to embed *just enough* water-  
 258 marking signal to ensure the desired detectability. Intuitively, since  
 259 no redundant watermarking signal is embedded, the impact of water-  
 260 marking on the generation quality is minimal. In Figure 3, we plot  
 261  $m$  as a function of table size  $N$  for various target FPRs, based on  
 262 Equation (6) (omitting the ceiling operation for clarity). We observe  
 263 that  $m$  quickly saturates as  $N$  increases. For instance, to achieve a  
 264 0.01% FPR,  $m = 2$  suffices when  $N \geq 300$ , and even for  $N = 100$ ,  
 265  $m = 4$  is enough. In the rest of the paper, MUSE’s  $m$  is set by  
 266 Equation (6) unless otherwise specified.

### 267 4.2 DISTRIBUTION-PRESERVATION

268 An effective watermarking algorithm must not compromise the quality of the generated data, a re-  
 269 quirement formalized in domains like image (Gunn et al., 2024) and text generation (Kuditipudi et al.,



262 Figure 3:  $m$  vs.  $N$  under different  $\alpha$  values (smoothed).

---

**Algorithm 1** MUSE Watermark Generation
 

---

```

270
271 1: Input: watermark key  $k$ , a generative model  $p(\mathbf{x})$ , False Positive Rate  $\alpha$ , number of target
272    watermarked samples  $N$ 
273 2: Output: watermarked table  $T_{wm}$ 
274 3: Compute the number of repeated samples  $m$  based on  $N$  and  $\alpha$  via Equation (6)  $\triangleright$  Calibration.
275 4: Get  $m \cdot N$  i.i.d. samples from  $p(\mathbf{x})$  and divide them into  $N$  groups:  $(\mathcal{G}_i)_{i=1}^N$ .
276 5: Initialize a list  $T_{wm}$  to store the watermarked table
277 6: for  $i \leftarrow 1$  to  $N$  do  $\triangleright$  Fully parallelizable.
278    7:  $\mathbf{x}_1, \dots, \mathbf{x}_m \leftarrow \mathcal{G}_i$ 
279    8: for  $t \in \{1, \dots, m\}$  do
280      9: Select columns for  $\mathbf{x}_t$  with strategy in Section 3.2.2  $\triangleright$  Column selection.
281      10: Compute the score for  $\mathbf{x}_t$  with strategy in Section 3.2.1 to get  $s_t$   $\triangleright$  Score generation.
282    11: end for
283    12:  $i \leftarrow \arg \max_{t \in \{1, \dots, m\}} s_t$   $\triangleright$  Selection of the highest-scoring sample.
284    13: Append  $\mathbf{x}_i$  to  $T_{wm}$ 
285 14: end for
286 15: return  $T_{wm}$ 
  
```

---

2023). For tabular data generation, we adapt this requirement by demanding that the watermarking process preserves the original data distribution, which we formalize as follows:

289 **Definition 4.2** (Multi-Sample Distribution-Preservation). Denote the space of watermark keys as  $\mathcal{K}$   
 290 and the original data distribution as  $p_{\text{data}}(\mathbf{x})$ . Let  $(\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_N)$  be a sequence of  $N$  samples generated  
 291 consecutively by a watermarking algorithm  $\Gamma$  using the same key  $k \sim \text{Unif}(\mathcal{K})$ . The algorithm  $\Gamma$  is  
 292 *multi-sample distribution-preserving* if for any  $N > 0$ , it satisfies:

$$\mathbb{P}_{k \sim \text{Unif}(\mathcal{K})}(\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_N) = \prod_{i=1}^N p_{\text{data}}(\tilde{\mathbf{x}}_i). \quad (7)$$

296 Our algorithm attains the multi-sample distribution-preserving property through a mechanism we  
 297 call *Repeated Column Masking*. The key idea is to cache the history of column values that have  
 298 previously been selected for watermark embedding. When processing a new sample, if its candidate  
 299 column value has already been used for watermarking, the algorithm skips embedding on that sample.  
 300 This safeguard prevents systematic bias from repeated column reuse across samples. The design is  
 301 inspired by the *repeated key masking* technique in LLM watermarking, which ensures sequence-level  
 302 distribution-preserving guarantees (Hu et al., 2023; Dathathri et al., 2024). Formally, we have:

302 **Theorem 4.3.** *Let  $m = 2$ . The watermarking process in Algorithm 1, augmented with repeated*  
 303 *column masking, satisfies multi-sample distribution-preserving as defined in Definition 4.2.*

305 **Remark 4.4.** While the repeated column masking mechanism ensures distribution-preserving, it  
 306 introduces a practical trade-off. By design, this mechanism chooses to skip the watermarking process  
 307 when repeated column values are detected, which in turn weakens the watermark’s detectability. We  
 308 empirically validate this trade-off in our ablation studies (Section 5.4).

## 309 5 EXPERIMENTS

311 In this section, we provide a comprehensive empirical evaluation of MUSE. We aim to answer the  
 312 following research questions. **Q1: Detectability v.s. Distribution Preservation** (Section 5.2): Can  
 313 MUSE achieve strong detectability while preserving the distribution of the generated data? **Q2:**  
 314 **Robustness** (Section 5.3): How resilient is the watermark to a range of post-processing attacks, such  
 315 as row/column deletion or value perturbation? **Q3: Component-wise Analysis** (Section 5.4): How  
 316 does MUSE perform under different design choices of its components?

### 317 5.1 SETUP

319 **Datasets.** We consider four real-world tabular datasets containing both numerical and categorical  
 320 attributes: Adult, Default, Shoppers, and Beijing [and two datasets with only numerical](#)  
 321 [attributes: California and Letter](#). Detailed dataset statistics are provided in Appendix F.2.

323 **Evaluation Protocols.** **(1) Detectability:** To evaluate the detectability of the watermark, we report  
 the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, and the True

324 **Table 1: Watermark generation quality and detectability**,  indicates best performance,  indicates second-best performance.  $\uparrow$  indicates higher is better,  $\downarrow$  indicates lower is better. The  
 325 performance gain is computed with respect to the best performing baseline.  
 326

| 328<br>329<br>330<br>331<br>332<br>333<br>334<br>335<br>336<br>337<br>338<br>339 | 329<br>330<br>331<br>332<br>333<br>334<br>335<br>336<br>337<br>338<br>339 | 330<br>331<br>332<br>333<br>334<br>335<br>336<br>337<br>338<br>339 | Watermark Generation Quality |                       |                       |                          | Watermark Detectability |              |              |         |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------|-----------------------|-----------------------|--------------------------|-------------------------|--------------|--------------|---------|
|                                                                                  |                                                                           |                                                                    | Num. Training Rows           |                       |                       |                          | 100                     |              | 500          |         |
|                                                                                  |                                                                           |                                                                    | Marg. ( $\uparrow$ )         | Corr. ( $\uparrow$ )  | C2ST ( $\uparrow$ )   | MLE Gap ( $\downarrow$ ) | AUC                     | T@0.1%F      | AUC          | T@0.1%F |
| Adult                                                                            | w/o WM                                                                    | 0.994                                                              | 0.984                        | 0.996                 | 0.017                 | -                        | -                       | -            | -            |         |
|                                                                                  | TR                                                                        | 0.919                                                              | 0.870                        | 0.676                 | 0.046                 | 0.590                    | 0.004                   | 0.774        | 0.171        |         |
|                                                                                  | GS                                                                        | 0.751                                                              | 0.619                        | 0.058                 | 0.084                 | 1.000                    | 1.000                   | 1.000        | 1.000        |         |
|                                                                                  | TabWak                                                                    | 0.935                                                              | 0.885                        | 0.769                 | 0.048                 | 0.844                    | 0.089                   | 0.990        | 0.592        |         |
|                                                                                  | TabWak*                                                                   | 0.933                                                              | 0.879                        | 0.713                 | 0.085                 | 0.999                    | 0.942                   | 1.000        | 1.000        |         |
|                                                                                  | <b>MUSE-JV</b>                                                            | <b>0.979 (+74.6%)</b>                                              | <b>0.963 (+78.8%)</b>        | <b>0.883 (+50.2%)</b> | <b>0.017 (+63.0%)</b> | <b>1.000</b>             | <b>1.000</b>            | <b>1.000</b> | <b>1.000</b> |         |
| Default                                                                          | MUSE-PC                                                                   | 0.953 (+30.5%)                                                     | 0.925 (+40.4%)               | 0.790 (+9.3%)         | 0.018 (+60.9%)        | 1.000                    | 1.000                   | 1.000        | 1.000        |         |
|                                                                                  | w/o WM                                                                    | 0.990                                                              | 0.934                        | 0.979                 | 0.000                 | -                        | -                       | -            | -            |         |
|                                                                                  | TR                                                                        | 0.895                                                              | 0.888                        | 0.564                 | 0.161                 | 0.579                    | 0.001                   | 0.848        | 0.034        |         |
|                                                                                  | GS                                                                        | 0.701                                                              | 0.678                        | 0.059                 | 0.182                 | 1.000                    | 1.000                   | 1.000        | 1.000        |         |
|                                                                                  | TabWak                                                                    | 0.911                                                              | 0.902                        | 0.568                 | 0.156                 | 0.896                    | 0.071                   | 0.997        | 0.611        |         |
|                                                                                  | TabWak*                                                                   | 0.906                                                              | 0.894                        | 0.550                 | 0.176                 | 0.965                    | 0.218                   | 1.000        | 0.995        |         |
| Shoppers                                                                         | <b>MUSE-JV</b>                                                            | <b>0.983 (+91.1%)</b>                                              | <b>0.925 (+71.9%)</b>        | <b>0.963 (+96.1%)</b> | <b>0.002 (+98.7%)</b> | <b>1.000</b>             | <b>1.000</b>            | <b>1.000</b> | <b>1.000</b> |         |
|                                                                                  | MUSE-PC                                                                   | 0.960 (+62.0%)                                                     | 0.920 (+56.3%)               | 0.866 (+72.5%)        | 0.003 (+98.1%)        | 1.000                    | 1.000                   | 1.000        | 1.000        |         |
|                                                                                  | w/o WM                                                                    | 0.985                                                              | 0.974                        | 0.974                 | 0.017                 | -                        | -                       | -            | -            |         |
|                                                                                  | TR                                                                        | 0.888                                                              | 0.880                        | 0.501                 | 0.077                 | 0.575                    | 0.001                   | 0.830        | 0.058        |         |
|                                                                                  | GS                                                                        | 0.729                                                              | 0.688                        | 0.061                 | 0.154                 | 1.000                    | 1.000                   | 1.000        | 1.000        |         |
|                                                                                  | TabWak                                                                    | 0.903                                                              | 0.886                        | 0.548                 | 0.132                 | 0.860                    | 0.106                   | 0.990        | 0.353        |         |
| Beijing                                                                          | TabWak*                                                                   | 0.897                                                              | 0.879                        | 0.525                 | 0.384                 | 0.742                    | 0.002                   | 0.981        | 0.185        |         |
|                                                                                  | <b>MUSE-JV</b>                                                            | <b>0.982 (+96.3%)</b>                                              | <b>0.974 (+100.0%)</b>       | <b>0.950 (+94.4%)</b> | <b>0.015 (+80.5%)</b> | <b>1.000</b>             | <b>1.000</b>            | <b>1.000</b> | <b>1.000</b> |         |
|                                                                                  | MUSE-PC                                                                   | 0.962 (+72.0%)                                                     | 0.947 (+69.3%)               | 0.871 (+75.8%)        | 0.025 (+67.5%)        | 1.000                    | 1.000                   | 1.000        | 1.000        |         |
|                                                                                  | w/o WM                                                                    | 0.977                                                              | 0.958                        | 0.934                 | 0.199                 | -                        | -                       | -            | -            |         |
|                                                                                  | TR                                                                        | 0.914                                                              | 0.873                        | 0.734                 | 0.396                 | 0.577                    | 0.000                   | 0.548        | 0.007        |         |
|                                                                                  | GS                                                                        | 0.656                                                              | 0.529                        | 0.097                 | 0.715                 | 1.000                    | 1.000                   | 1.000        | 1.000        |         |
| Beijing                                                                          | TabWak                                                                    | 0.923                                                              | 0.871                        | 0.792                 | 0.375                 | 0.925                    | 0.096                   | 0.999        | 0.978        |         |
|                                                                                  | TabWak*                                                                   | 0.917                                                              | 0.860                        | 0.761                 | 0.403                 | 0.996                    | 0.734                   | 1.000        | 1.000        |         |
|                                                                                  | <b>MUSE-JV</b>                                                            | <b>0.972 (+90.7%)</b>                                              | <b>0.955 (+96.5%)</b>        | <b>0.926 (+94.4%)</b> | <b>0.209 (+44.3%)</b> | <b>1.000</b>             | <b>1.000</b>            | <b>1.000</b> | <b>1.000</b> |         |
|                                                                                  | MUSE-PC                                                                   | 0.963 (+74.1%)                                                     | 0.943 (+82.4%)               | 0.898 (+74.6%)        | 0.213 (+43.2%)        | 1.000                    | 1.000                   | 1.000        | 1.000        |         |



359 **Figure 4: The tradeoff between average  $z$ -statistic and data fidelity (computed as average of Marg.,**

360 **Corr., C2ST and MLE) under different number of repeated sample  $m$ .**

361 Positive Rate when the False Positive Rate is at 0.1%, denoted as  $TPR@0.1\%FPR$ . **(2) Distribution**

362 **Preservation:** To evaluate the distribution-preserving ability of the watermarked data, we follow

363 standard fidelity and utility metrics used in tabular data generation (Zhang et al., 2024c; Kotelnikov

364 et al., 2023): we report Marginal distribution (Marg.), Pair-wise column correlation (Corr.), Classifier

365 Two-Sample-Test (C2ST), and Machine Learning Efficiency (MLE). For MLE, we report the gap

366 between the downstream task performance of the generated data and the real test set (MLE Gap).

367 We refer the readers to Section F.3 for a more detailed definition of each evaluation metric. **(3)**

368 **Robustness:** We evaluate the robustness of the watermarked data against five representative post-

369 processing attacks. In addition, we also consider an *adaptive adversary* who tries to reverse-engineer

370 the watermark scheme. Detailed description will be presented in Section 5.3.

371 **Baselines and Implementation Details.** We compare our method with TabWak (Zhu et al., 2025)

372 and its improved variant TabWak\*, the only existing generative watermarking approach for tabular

373 data, using their official implementations. We also include two image watermarking methods,

374 TreeRing (Wen et al., 2023) and Gaussian Shading (Yang et al., 2024), as auxiliary baselines (see

375 Appendix F.5 for detailed implementation). For completeness, we also include two edit-based

376 methods: TabularMark (Zheng et al., 2024) and WGTD (He et al., 2024), with detailed results in

377 Section C.2. All experiments use TabSyn (Zhang et al., 2024c) as the tabular generative model

378 trained with the official codebase. Notably, the official TabWak implementation bypasses *quantile*



Figure 5: Detection performance of watermarking methods against different types of tabular data attacks across varying attack intensities. The results are averaged over all datasets.

*normalization inversion*, assuming access to ground-truth data unavailable at detection time, which may favor its performance (see Section D.2 for more discussion). Generation quality is evaluated across ten repetitions, and we report the averaged results.

## 5.2 DETECTABILITY AND DISTRIBUTION PRESERVATION

We address the first question: whether the watermarking method achieves high watermark detectability while introducing minimal distortion to the generated data. Based on experiments results in Table 1, our observations are summarized as follows:

(1) Regarding generation quality, both MUSE variants consistently outperform the baselines across all datasets. The MUSE-JV variant is particularly effective, reducing distortion rates on fidelity metrics (Marg., Corr., C2ST) by 84 – 88% compared to the best performing baselines. In contrast, all inversion-based methods suffer from significant data distortion. We attribute this to the error accumulation inherent in their recovery process: to ensure a watermark can be detected after a noisy inversion, the initial signal must be excessively strong, which inherently leads to large distortion. (2) In terms of detectability, both variants of MUSE achieve perfect detection performance across all datasets, as measured by both AUC and T@0.1%F. While GS also achieves strong detection scores, this comes at the cost of significantly higher distortion across all fidelity metrics. (3) The JV variant achieves better fidelity metrics than the PC variant. We will show in the next section that the PC variant is more robust to post-processing attacks. In Figure 4, we visualize the tradeoff between detectability (*z*-stat) and data fidelity (computed as the average of Marg., Corr., C2ST, and MLE). Consistent with the theoretical analysis in Theorem 4.1, increasing  $m$  in both MUSE variants leads to stronger detectability but degrades data fidelity. The results also demonstrate that, for a fixed  $m$ , PC hashing generally yields higher detectability than JV-hashing (with the exception of the Shoppers dataset at  $m \in \{2, 4\}$ ), albeit at the cost of lower data fidelity. This empirically validates the design principles behind these two hashing strategies.

## 5.3 ROBUSTNESS AGAINST ATTACKS

**Post-processing Attacks.** We evaluate robustness against six common transformations in tabular data: *row shuffling*, *row deletion*, *column deletion*, *cell deletion*, *value alteration*, and *Gaussian perturbation*. Attacks are applied at perturbation levels from 0.0 to 1.0 in 0.2 increments. Deletion-based attacks replace a fraction of rows, columns, or cells with unwatermarked samples from the same generative model. Value alteration perturbs numerical entries by multiplying them with scalars from (0.8, 1.2), while row shuffling permutes a subset of rows. For the Gaussian perturbation attack, each numeric value is perturbed by zero-mean noise whose standard deviation is the perturbation level times the magnitude of that value. We benchmark the detectability of MUSE-JV and MUSE-PC against TabWak and TabWak\* on all mixed-type datasets ( $N=500$ ,  $m=2$ ), and additionally assess the robustness of MUSE-PC under Gaussian perturbation on the two numerical-only datasets. As shown in Figure 5 and Appendix E.2, MUSE-JV matches or surpasses TabWak and TabWak\* in five of six post-processing attacks, while the PC variant achieves the strongest robustness across all settings. The superior resilience of the PC design, contrasted with the higher fidelity of the JV design, illustrates the fundamental trade-off between robustness and distortion. The capability to select the desired point on the tradeoff spectrum underscores the inherent flexibility of our framework.

**Adaptive Attacks.** We assess the robustness of MUSE against adaptive adversaries attempting to reverse-engineer the watermark. Specifically, we focus on *spoofing attacks* (Sadasivan et al., 2023),

432 Table 3: **Component-wise ablation study** of MUSE. All experiments are conducted on the Adult  
 433 dataset (with 15 columns). For detectability, we report the  $z$ -statistic (defined in Section F.4). Each  
 434 color block indicates a different component of the method.  $\uparrow$  indicates higher is better.

| 436 | Hashing | Model    | PRF.      | Mask | Num. Col. | $z$ -stat. $\uparrow$ | Marg. $\uparrow$ | Corr. $\uparrow$ | C2ST $\uparrow$ |
|-----|---------|----------|-----------|------|-----------|-----------------------|------------------|------------------|-----------------|
| 437 | JV      | TabSyn   | Bernoulli | No   | 3         | 7.348                 | <b>0.979</b>     | <b>0.963</b>     | <b>0.883</b>    |
| 438 |         | TabDAR   | Bernoulli | No   | 3         | 7.270                 | 0.977            | 0.958            | 0.880           |
| 439 |         | DP-TBART | Bernoulli | No   | 3         | <b>7.544</b>          | 0.951            | 0.931            | 0.759           |
| 440 | JV      | TabSyn   | Bernoulli | No   | 3         | <b>7.348</b>          | <b>0.979</b>     | <b>0.963</b>     | <b>0.883</b>    |
| 441 |         | TabSyn   | Uniform   | No   | 3         | 5.012                 | 0.964            | 0.940            | 0.808           |
| 442 | PC      | TabSyn   | Bernoulli | No   | 15        | <b>20.001</b>         | <b>0.953</b>     | <b>0.925</b>     | <b>0.790</b>    |
| 443 |         | TabSyn   | Uniform   | No   | 15        | -11.164               | 0.937            | 0.912            | 0.788           |
| 444 | JV      | TabSyn   | Bernoulli | No   | 3         | <b>7.348</b>          | 0.979            | 0.963            | 0.883           |
| 445 |         | TabSyn   | Bernoulli | Yes  | 3         | 4.819                 | <b>0.985</b>     | <b>0.973</b>     | <b>0.940</b>    |
| 446 | PC      | TabSyn   | Bernoulli | No   | 3         | 16.505                | <b>0.958</b>     | <b>0.937</b>     | <b>0.826</b>    |
| 447 |         | TabSyn   | Bernoulli | Yes  | 7         | 19.998                | 0.950            | 0.929            | 0.797           |
| 448 |         | TabSyn   | Bernoulli | No   | 15        | <b>20.001</b>         | 0.953            | 0.925            | 0.790           |



461 Figure 6: Sensitivity results for different hash families. Error  
 462 bars denote standard deviation over the key space. MUSE  
 463 remains insensitive to both hash functions and key space.

464 where the attacker’s goal is to produce samples  
 465 that can be falsely claimed as watermarked,  
 466 without knowing the secret keys  
 467 of the watermark. Instead of developing  
 468 bespoke, scheme-specific spoofing attacks  
 469 (Jovanović et al., 2024), we adopt  
 470 a general distillation-based spoofing frame-  
 471 work (Sander et al., 2024; Gu et al., 2023):  
 472 an adversary trains a strong generative model  
 473 (e.g., TabSyn) directly on the watermarked data,  
 474 attempting to absorb and reproduce its statistical  
 475 structure. The spoofing attack is successful if the generated samples from the trained model are  
 476 detected as watermarked. The results in Table 2 demonstrate that the adversarial model largely fails  
 477 to replicate the watermark. On three of the four datasets (Adult, Default, and Beijing), its  
 478 generated output is statistically indistinguishable from clean data ( $AUC \approx 0.5$  and  $T@0.1\%F \approx 0.00$ ).  
 479 While a faint signal is detected on the Shoppers dataset, the watermark is severely degraded. This  
 480 failure of a powerful generative model to passively learn the watermark’s patterns provides strong  
 481 evidence for MUSE’s resilience against reverse-engineering attacks.

#### 482 5.4 ABLATION STUDY AND FURTHER ANALYSIS

483 We perform a component-wise ablation to evaluate the contribution of each design choice in our  
 484 watermarking framework. All experiments are conducted on the Adult dataset, and we generate  
 485 watermarked tables with  $N = 100$  rows unless otherwise noted. For detectability, we report the

450 Figure 7: Impact of the number of  
 451 watermarked rows  $N$  on detectabil-  
 452 ity, which increases monotonically as  
 453 more rows are watermarked.

454 Table 2: Adaptive attack results.

| Dataset  | 100 Rows |         | 500 Rows |         |
|----------|----------|---------|----------|---------|
|          | AUC      | T@0.1%F | AUC      | T@0.1%F |
| Adult    | 0.465    | 0.01    | 0.566    | 0.02    |
| Default  | 0.599    | 0.01    | 0.708    | 0.02    |
| Shoppers | 0.683    | 0.03    | 0.866    | 0.41    |
| Beijing  | 0.470    | 0.00    | 0.581    | 0.05    |

486  $z$ -statistic, which quantifies how many standard deviations the observed detection score deviates from  
 487 its null expectation (no watermark). The exact formulas for JV and PC are given in Section F.4.  
 488

489 **Impact of Score Function.** We compare two scoring distributions: (1) a Bernoulli distribution  
 490 with mean 0.5, and (2) a uniform distribution over  $[0, 1]$ . For both the JV and PC hashing designs,  
 491 the Bernoulli score consistently achieves superior detectability, as shown in Table 3. This result is  
 492 consistent with our theoretical analysis in Lemma G.2, which identifies Bernoulli(0.5) as the optimal  
 493 scoring distribution for our detection formulation.

494 **Impact of the Number of Selected Columns.** For the PC design, the number of selected columns  
 495 presents a trade-off between detectability and data quality. As shown in Table 3, using more columns  
 496 boosts detectability by strengthening the aggregated watermark signal. However, this also raises the  
 497 potential for distortion, as more frequent hash collisions on small column value spaces can introduce  
 498 a concentrated statistical bias.

499 **Impact of Repeated Column Masking.** The repeated column masking mechanism is designed to  
 500 enforce the formal distribution-preserving property of our watermark, thereby maintaining high data  
 501 quality. To quantify its impact, we ablate this component for both our JV and PC designs. As shown  
 502 in Table 3, enabling masking improves data fidelity at the cost of a reduction in detectability.

503 **Model-Agnostic Applicability.** While our main experiments use a diffusion model (Zhang et al.,  
 504 2024c), MUSE is a model-agnostic framework. To validate this, we apply it to two other diverse  
 505 generative paradigms: an autoregressive model (DP-TBART (Castellon et al., 2023)) and a masked  
 506 generative model (TabDAR (Zhang et al., 2024a)). As shown in Table 3, MUSE consistently achieves  
 507 high detectability and data fidelity across all three model families, confirming its broad applicability.

508 **Computation Time.** We compare the effective  
 509 watermarking time (generation + detection) of  
 510 MUSE with baselines that rely on DDIM inver-  
 511 sion. We generate 10K watermarked rows of the  
 512 Adult dataset. As shown in Figure 8, MUSE  
 513 achieves significantly lower detection time by  
 514 avoiding the costly inversion process. Notably,  
 515 its generation time is also lower than that of the  
 516 baselines, despite using multi-sample generation  
 517 ( $m = 2$ ). This efficiency arises from MUSE’s  
 518 compatibility with fast score-based diffusion mod-  
 519 els (Zhang et al., 2024c; Karras et al., 2022), which require only 50 sampling steps. Conversely,  
 520 the inversion-based baselines must use a much slower 1,000-step process for both generation and  
 521 detection (Zhu et al., 2025).

522 **Sensitivity analysis on hash function and key.** To ensure our method is not reliant on specific  
 523 implementation choices, we conducted a systematic sensitivity analysis on the Adult dataset  
 524 ( $N = 500, m = 2$ ). We evaluated MUSE across five distinct hash families available in the Python  
 525 `hashlib` library: SHA-256, SHA3-256, BLAKE2s, SHAKE-256, and MD5. Additionally, to assess  
 526 the impact of key space, we repeated the experiments 13 times for each hash family using randomly  
 527 sampled keys with bit-lengths ranging from 32 to 128 bits. We measured both detectability (AUC,  
 528 TPR@0.1%FPR) and data fidelity (Marg., Corr., C2ST, MLE). Figure 6 shows that MUSE is highly  
 529 robust: detectability remains perfect (AUC=1.0) across all configurations, and fidelity scores exhibit  
 530 negligible variance (standard deviation  $\approx 0.01$ ) across the different keys. This confirms that the  
 531 watermark’s efficacy is agnostic to the underlying hash function and secret key space.

## 532 6 CONCLUSION

533 We propose MUSE, a model-agnostic watermarking method that embeds signals via multi-sample  
 534 selection, eliminating the need for inversion. MUSE achieves strong detectability with minimal  
 535 distribution shift and scales across diverse generative models. Extensive experiments demonstrate  
 536 its superiority over existing methods in both generation quality and watermark detectability. As  
 537 synthetic tabular data becomes increasingly adopted in high-stakes domains, MUSE offers a practical  
 538 and generalizable safeguard for data provenance, ownership verification, and misuse detection. We  
 539 hope this work inspires further research into trustworthy and traceable synthetic data generation.



534 Figure 8: Watermark generation and detection  
 535 time of MUSE and inversion-based baselines.

540 REFERENCES  
541

542 Scott Aaronson and Hendrik Kirchner. Watermarking gpt outputs. [https://www.  
543 scottaaronson.com/talks/watermark.ppt](https://www.scottaaronson.com/talks/watermark.ppt), 2022. Presentation.

544 Dhammadika Amaratunga and Javier Cabrera. Analysis of data from viral dna microchips. *Journal  
545 of the American Statistical Association*, 96:1161 – 1170, 2001. URL [https://api.  
546 semanticscholar.org/CorpusID:18154109](https://api.semanticscholar.org/CorpusID:18154109).

547 Samuel A Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E Tillman, Prashant Reddy, and  
548 Manuela Veloso. Generating synthetic data in finance: opportunities, challenges and pitfalls. In  
549 *Proceedings of the First ACM International Conference on AI in Finance*, pages 1–8, 2020.

550 Dara Bahri and John Wieting. A watermark for black-box language models. *arXiv preprint  
551 arXiv:2410.02099*, 2024.

552 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik  
553 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling  
554 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

555 Francesco Cartella, Orlando Anunciacao, Yuki Funabiki, Daisuke Yamaguchi, Toru Akishita, and  
556 Olivier Elshocht. Adversarial attacks for tabular data: Application to fraud detection and imbal-  
557 anced data. *arXiv preprint arXiv:2101.08030*, 2021.

558 Rodrigo Castellon, Achintya Gopal, Brian Bloniarz, and David Rosenberg. Dp-tbart: A transformer-  
559 based autoregressive model for differentially private tabular data generation. *arXiv preprint  
560 arXiv:2307.10430*, 2023.

561 Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In *The  
562 Thirty Seventh Annual Conference on Learning Theory*, pages 1125–1139. PMLR, 2024.

563 Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl,  
564 Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, Jamie Hayes, Nidhi  
565 Vyas, Majd Al Merey, Jonah Brown-Cohen, Rudy Bunel, Borja Balle, Taylan Cemgil, Zahra  
566 Ahmed, Kitty Stacpoole, Ilia Shumailov, Ciprian Baetu, Sven Gowal, Demis Hassabis, and  
567 Pushmeet Kohli. Scalable watermarking for identifying large language model outputs. *Nature*,  
568 634(8035):818–823, Oct 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-08025-4. URL  
569 <https://doi.org/10.1038/s41586-024-08025-4>.

570 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances  
571 in neural information processing systems*, 34:8780–8794, 2021.

572 Joao Fonseca and Fernando Bacao. Tabular and latent space synthetic data generation: a literature  
573 review. *Journal of Big Data*, 10(1):115, 2023.

574 Eva Giboulot and Teddy Furon. Watermax: breaking the llm watermark detectability-robustness-  
575 quality trade-off. *arXiv preprint arXiv:2403.04808*, 2024.

576 Bochao Gu, Hengzhi He, and Guang Cheng. Watermarking generative categorical data. *arXiv  
577 preprint arXiv:2411.10898*, 2024.

578 Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of water-  
579 marks for language models. *arXiv preprint arXiv:2312.04469*, 2023.

580 Manbir Gulati and Paul Roysdon. Tabmt: Generating tabular data with masked transformers.  
581 *Advances in Neural Information Processing Systems*, 36, 2024.

582 Sam Gunn, Xuandong Zhao, and Dawn Song. An undetectable watermark for generative image  
583 models. *arXiv preprint arXiv:2410.07369*, 2024.

584 Hengzhi He, Peiyu Yu, Junpeng Ren, Ying Nian Wu, and Guang Cheng. Watermarking generative  
585 tabular data. *arXiv preprint arXiv:2405.14018*, 2024.

586 Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic data  
587 generation for tabular health records: A systematic review. *Neurocomputing*, 493:28–45, 2022.

594 Seongmin Hong, Kyeonghyun Lee, Suh Yoon Jeon, Hyewon Bae, and Se Young Chun. On exact  
 595 inversion of dpm-solvers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*  
 596 *Pattern Recognition*, pages 7069–7078, 2024.

597 Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, and Tianwei Zhang. Videoshield:  
 598 Regulating diffusion-based video generation models via watermarking. *arXiv preprint*  
 599 *arXiv:2501.14195*, 2025.

600 Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbiased  
 601 watermark for large language models. *arXiv preprint arXiv:2310.10669*, 2023.

602 Huayang Huang, Yu Wu, and Qian Wang. Robin: Robust and invisible watermarks for diffusion  
 603 models with adversarial optimization. *Advances in Neural Information Processing Systems*, 37:  
 604 3937–3963, 2024.

605 Nikola Jovanović, Robin Staab, and Martin Vechev. Watermark stealing in large language models.  
 606 *arXiv preprint arXiv:2402.19361*, 2024.

607 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-  
 608 based generative models. *Advances in neural information processing systems*, 35:26565–26577,  
 609 2022.

610 Jayoung Kim, Chaejeong Lee, and Noseong Park. Stasy: Score-based tabular data synthesis. *arXiv*  
 611 *preprint arXiv:2210.04018*, 2022.

612 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*  
 613 *arXiv:1312.6114*, 2013.

614 John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A  
 615 watermark for large language models. In *International Conference on Machine Learning*, pages  
 616 17061–17084. PMLR, 2023a.

617 John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A  
 618 watermark for large language models. In *International Conference on Machine Learning*, pages  
 619 17061–17084. PMLR, 2023b.

620 Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling  
 621 tabular data with diffusion models. In *International Conference on Machine Learning*, pages  
 622 17564–17579. PMLR, 2023.

623 Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free  
 624 watermarks for language models. *arXiv preprint arXiv:2307.15593*, 2023.

625 Chaejeong Lee, Jayoung Kim, and Noseong Park. Codi: Co-evolving contrastive diffusion models  
 626 for mixed-type tabular synthesis. In *International Conference on Machine Learning*, pages 18940–  
 627 18956. PMLR, 2023.

628 Chia-Chen Lin, Thai Son Nguyen, and Chinchen Chang. Lrw-crdb: Lossless robust watermarking  
 629 scheme for categorical relational databases. *Symmetry*, 13:2191, 2021. URL <https://api.semanticscholar.org/CorpusID:244412746>.

630 Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust watermark  
 631 for large language models. *ArXiv*, abs/2310.06356, 2023.

632 Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen, Irwin King, Hui  
 633 Xiong, and Philip Yu. A survey of text watermarking in the era of large language models. *ACM*  
 634 *Computing Surveys*, 57(2):1–36, 2024.

635 Dung Daniel Ngo, Daniel Scott, Saheed Obitayo, Vamsi K Potluru, and Manuela Veloso. Adaptive  
 636 and robust watermark for generative tabular data. *arXiv preprint arXiv:2409.14700*, 2024.

637 Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh, Pierre Dognin, Jerret Ross,  
 638 Ravi Nair, and Erik Altman. Tabular transformers for modeling multivariate time series. In *ICASSP*  
 639 *2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*,  
 640 pages 3565–3569. IEEE, 2021.

648 Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuandong Zhao, Yijian Lu, Binglin Zhou, Shuliang  
 649 Liu, Xuming Hu, Lijie Wen, et al. Markllm: An open-source toolkit for llm watermarking. *arXiv*  
 650 *preprint arXiv:2405.10051*, 2024.

651

652 Zhihong Pan, Riccardo Gherardi, Xiufeng Xie, and Stephen Huang. Effective real image editing with  
 653 accelerated iterative diffusion inversion. In *Proceedings of the IEEE/CVF International Conference*  
 654 *on Computer Vision*, pages 15912–15921, 2023.

655 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 656 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-  
 657 ence on computer vision and pattern recognition*, pages 10684–10695, 2022.

658

659 Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.  
 660 Can ai-generated text be reliably detected? *arXiv preprint arXiv:2303.11156*, 2023.

661

662 Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, and Teddy Furon. Watermarking  
 663 makes language models radioactive. *Advances in Neural Information Processing Systems*, 37:  
 664 21079–21113, 2024.

665 Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabdiff:  
 666 a unified diffusion model for multi-modal tabular data generation. In *NeurIPS 2024 Third Table  
 667 Representation Learning Workshop*, 2024.

668

669 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv  
 670 preprint arXiv:2010.02502*, 2020a.

671

672 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv  
 673 preprint arXiv:2010.02502*, 2020b.

674

675 Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-ring watermarks: Fin-  
 676 gerprints for diffusion images that are invisible and robust. *arXiv preprint arXiv:2305.20030*,  
 677 2023.

678 Wikipedia contributors. Quantile normalization – Wikipedia, the free encyclopedia. [https://en.wikipedia.org/wiki/Quantile\\_normalization](https://en.wikipedia.org/wiki/Quantile_normalization), 2025. Accessed: 2025-05-  
 679 11.

680

681 Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan, Lidia Sam Chao, and Derek Fai Wong. A  
 682 survey on llm-generated text detection: Necessity, methods, and future directions. *Computational  
 683 Linguistics*, pages 1–66, 2025.

684

685 Zijin Yang, Kai Zeng, Kejiang Chen, Han Fang, Weiming Zhang, and Nenghai Yu. Gaussian shading:  
 686 Provable performance-lossless image watermarking for diffusion models. In *Proceedings of the  
 687 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12162–12171, 2024.

688

689 Hengrui Zhang, Liancheng Fang, Qitian Wu, and Philip S Yu. Diffusion-nested auto-regressive  
 690 synthesis of heterogeneous tabular data. *arXiv preprint arXiv:2410.21523*, 2024a.

691

692 Hengrui Zhang, Liancheng Fang, and Philip S Yu. Unleashing the potential of diffusion models for  
 693 incomplete data imputation. *arXiv preprint arXiv:2405.20690*, 2024b.

694

695 Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Chris-  
 696 tos Faloutsos, Huzeifa Rangwala, and George Karypis. Mixed-type tabular data synthesis with  
 697 score-based diffusion in latent space. In *The twelfth International Conference on Learning Repre-  
 698 sentations*, 2024c.

699

700 Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for  
 701 ai-generated text. *arXiv preprint arXiv:2306.17439*, 2023a.

702

703 Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for  
 704 ai-generated text. *arXiv preprint arXiv:2306.17439*, 2023b.

702 Yihao Zheng, Haocheng Xia, Junyuan Pang, Jinfei Liu, Kui Ren, Lingyang Chu, Yang Cao, and  
703 Li Xiong. Tabularmark: Watermarking tabular datasets for machine learning. In *Proceedings of the*  
704 *2024 on ACM SIGSAC Conference on Computer and Communications Security*, pages 3570–3584,  
705 2024.

706 Chaoyi Zhu, Jiayi Tang, Jeroen M. Galjaard, Pin-Yu Chen, Robert Birke, Cornelis Bos, and Lydia Y.  
707 Chen. Tabwak: A watermark for tabular diffusion models. In *The Thirteenth International*  
708 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=71pur4y8gs>.

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

## APPENDIX

|     |                                                                   |           |
|-----|-------------------------------------------------------------------|-----------|
| 759 | <b>A The Use of Large Language Models (LLMs)</b>                  | <b>16</b> |
| 760 |                                                                   |           |
| 761 | <b>B Related Work</b>                                             | <b>16</b> |
| 762 |                                                                   |           |
| 763 | <b>C Additional Experiments Results</b>                           | <b>17</b> |
| 764 |                                                                   |           |
| 765 | C.1 Omitted Results on Robustness . . . . .                       | 17        |
| 766 | C.2 Omitted Results on Edit-based Watermarking . . . . .          | 17        |
| 767 | C.3 Visualization of statistical signal . . . . .                 | 19        |
| 768 |                                                                   |           |
| 769 |                                                                   |           |
| 770 | <b>D Further Analysis of the Inversion-Based Watermarking</b>     | <b>19</b> |
| 771 |                                                                   |           |
| 772 | D.1 Pipeline of Inversion-based Watermarking . . . . .            | 20        |
| 773 | D.2 Inversion of (Inverse) Quantile Transformation . . . . .      | 20        |
| 774 | D.3 Inversion of VAE decoder . . . . .                            | 20        |
| 775 | D.4 DDIM Inversion . . . . .                                      | 20        |
| 776 | D.5 Error Accumulation . . . . .                                  | 21        |
| 777 |                                                                   |           |
| 778 |                                                                   |           |
| 779 | <b>E Further Analysis on Robustness</b>                           | <b>22</b> |
| 780 |                                                                   |           |
| 781 | E.1 Column permutation attack . . . . .                           | 22        |
| 782 | E.2 Global perturbation . . . . .                                 | 22        |
| 783 | E.3 Watermark stealing . . . . .                                  | 23        |
| 784 |                                                                   |           |
| 785 |                                                                   |           |
| 786 | <b>F Experimental Details</b>                                     | <b>25</b> |
| 787 |                                                                   |           |
| 788 | F.1 Hardware Specification . . . . .                              | 25        |
| 789 | F.2 Dataset Statistics . . . . .                                  | 25        |
| 790 | F.3 Fidelity Metrics . . . . .                                    | 25        |
| 791 | F.3.1 Marginal Distribution . . . . .                             | 26        |
| 792 | F.3.2 Correlation . . . . .                                       | 26        |
| 793 | F.3.3 Classifier Two-Sample Test (C2ST) . . . . .                 | 27        |
| 794 | F.3.4 Machine Learning Efficiency (MLE) . . . . .                 | 27        |
| 795 |                                                                   |           |
| 796 | F.4 Watermark Detection Metrics . . . . .                         | 27        |
| 797 |                                                                   |           |
| 798 | F.5 Implementation Details of Image Watermark Baselines . . . . . | 28        |
| 799 |                                                                   |           |
| 800 |                                                                   |           |
| 801 | <b>G Ommited Proofs in Section 3</b>                              | <b>29</b> |
| 802 |                                                                   |           |
| 803 | <b>H Technical Lemmas</b>                                         | <b>32</b> |
| 804 |                                                                   |           |
| 805 |                                                                   |           |
| 806 |                                                                   |           |
| 807 |                                                                   |           |
| 808 |                                                                   |           |
| 809 |                                                                   |           |

810 A THE USE OF LARGE LANGUAGE MODELS (LLMs)  
811812 In the preparation of this manuscript, we utilized Large Language Model (LLM) as a general-purpose  
813 assistive tool. The primary applications of the LLM were for polishing the writing, including  
814 improving grammar, clarity, and conciseness of the text. Additionally, the LLM was used to generate  
815 boilerplate code for setting up and running experiments, which helped accelerate the implementation  
816 process.817 The LLM did not contribute to the core research ideation, the development of the proposed method-  
818 ology, the analysis of the results, or the scientific conclusions presented in this paper. All content,  
819 including the final text and experimental code, was reviewed, edited, and validated by the authors,  
820 who take full responsibility for the accuracy and integrity of this work.  
821822 B RELATED WORK  
823824 **Generative Watermarking.** Generative watermarking embeds watermark signals during the gener-  
825 ation process, typically by manipulating the generation randomness through pseudorandom seeds.  
826 This approach has proven effective and efficient for watermarking in image, video, and large language  
827 model (LLM) generation. In image and video generation, where diffusion-based models are the  
828 *de facto* standard, watermarking methods inject structured signals into the noise vector in latent  
829 space (Wen et al., 2023; Yang et al., 2024; Huang et al., 2024). Detection involves inverting the  
830 diffusion sampling process (Dhariwal and Nichol, 2021; Hong et al., 2024; Pan et al., 2023) to recover  
831 the original noise vector and verify the presence of the embedded watermark. For LLMs, generative  
832 watermarking methods fall into two categories: (1) *Watermarking during logits generation*, which  
833 embeds signals by manipulating the model’s output logits distribution (Kirchenbauer et al., 2023a;  
834 Zhao et al., 2023a; Hu et al., 2023; Dathathri et al., 2024; Giboulot and Furon, 2024; Liu et al.,  
835 2023); and (2) *Watermarking during token sampling*, which preserves the logits distribution but  
836 replaces the stochastic token sampling process (e.g., multinomial sampling) with a pseudorandom  
837 procedure seeded for watermarking (Aaronson and Kirchner, 2022; Kuditipudi et al., 2023; Christ  
838 et al., 2024). In this sense, sampling-based watermarking is conceptually similar to inversion-based  
839 watermarking used in diffusion models. We refer the reader to (Liu et al., 2024; Pan et al., 2024) for  
840 a comprehensive survey of watermarking for LLMs. Bahri and Wieting (2024), SynthID (Dathathri  
841 et al., 2024), and WaterMax (Giboulot and Furon, 2024) similarly explore watermarking via repeated  
842 candidate sampling. However, the distinct nature of tabular data necessitates a fundamentally differ-  
843 ent technical approach compared to text. First, the generative structures differ: text watermarking  
844 operates on a conditional 1D distribution (next-token-prediction), relying on a prefix window of  
845 context for hashing (Kirchenbauer et al., 2023b). In contrast, tabular models generate full rows  
846 i.i.d. from a multi-dimensional unconditional distribution (Kotelnikov et al., 2023; Zhang et al.,  
847 2024c;a), lacking the sequential history required for prefix-based hashing. While context-independent  
848 methods like Unigram (Zhao et al., 2023b) eliminate prefix reliance, applying their fixed Green-Red  
849 vocabulary split to tables introduces severe distributional distortion by permanently banning a subset  
850 of values across all columns. Second, the threat models diverge significantly: while text methods  
851 target token-level edits (insertion, substitution), tabular watermarking must withstand attacks unique  
852 to its data structure, such as row/column shuffling, row/column/cell deletion, and numerical value  
853 perturbation.854 **Watermarking for Tabular Data** Traditional tabular watermarking techniques are edit-based, in-  
855 jecting signals by modifying existing data values. WGTD (He et al., 2024) embeds watermarks by  
856 altering the fractional parts of continuous values using a green list of intervals, but it is inapplicable  
857 to categorical-only data. TabularMark (Zheng et al., 2024) perturbs values in a selected numerical  
858 column using pseudorandom domain partitioning, but relies on access to the original table for detec-  
859 tion, limiting its robustness in adversarial settings. Another significant drawback of such methods is  
860 the potential to distort the original data distribution or violate inherent constraints. To overcome this,  
861 TabWak (Zhu et al., 2025) introduced the first generative watermarking approach for tabular data.  
862 Analogous to inversion-based watermarks in diffusion models, TabWak embeds detectable patterns  
863 into the noise vector within the latent space. It also employs a self-clone and shuffling technique to  
minimize distortion to the data distribution. While TabWak avoids post-hoc editing, its reliance on  
inverting both the sampling process (e.g., DDIM (Song et al., 2020b)) and preprocessing steps (e.g.,

864  
865  
866  
867  
Table 4: Watermark generation quality and detectability,  indicates best performance,  indicates second-best performance. For clarity, only our method is highlighted in detection.

| Dataset  | Method         | Watermark Generation Quality                                                            |                                                                                         |                                                                                         |                                                                                         | Watermark Detectability |         |       |                                                                                         |
|----------|----------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------|---------|-------|-----------------------------------------------------------------------------------------|
|          |                | Num. Training Rows                                                                      |                                                                                         |                                                                                         |                                                                                         | 100                     |         | 500   |                                                                                         |
|          |                | Marg. $z\uparrow$                                                                       | Corr. $\uparrow$                                                                        | C2ST $\uparrow$                                                                         | MLE Gap $\downarrow$                                                                    | AUC                     | T@0.1%F | AUC   | T@0.1%F                                                                                 |
| Adult    | w/o WM         | 0.994                                                                                   | 0.984                                                                                   | 0.996                                                                                   | 0.017                                                                                   | -                       | -       | -     | -                                                                                       |
|          | TabularMark    |  0.983 | 0.949                                                                                   |  0.987 | 0.021                                                                                   | 1.000                   | 1.000   | 1.000 | 1.000                                                                                   |
|          | WGTD           |  0.987 |  0.972 | 0.978                                                                                   | 0.019                                                                                   | 1.000                   | 1.000   | 1.000 | 1.000                                                                                   |
|          | <b>MUSE-JV</b> | 0.979                                                                                   | 0.963                                                                                   | 0.883                                                                                   |  0.017 | 1.000                   | 1.000   | 1.000 |  1.000 |
| Beijing  | w/o WM         | 0.977                                                                                   | 0.958                                                                                   | 0.934                                                                                   | 0.199                                                                                   | -                       | -       | -     | -                                                                                       |
|          | TabularMark    | 0.935                                                                                   | 0.789                                                                                   |  0.941 |  0.528 | 1.000                   | 1.000   | 1.000 | 1.000                                                                                   |
|          | WGTD           | 0.964                                                                                   | 0.948                                                                                   | 0.929                                                                                   |  0.527 | 1.000                   | 1.000   | 1.000 | 1.000                                                                                   |
|          | <b>MUSE-JV</b> | 0.972                                                                                   | 0.955                                                                                   | 0.926                                                                                   |  0.209 | 1.000                   | 1.000   | 1.000 |  1.000 |
| Default  | w/o WM         | 0.990                                                                                   | 0.934                                                                                   | 0.979                                                                                   | 0.000                                                                                   | -                       | -       | -     | -                                                                                       |
|          | TabularMark    | 0.987                                                                                   |  0.939 | 0.961                                                                                   | 0.004                                                                                   | 1.000                   | 1.000   | 1.000 | 1.000                                                                                   |
|          | WGTD           |  0.989 | 0.913                                                                                   | 0.919                                                                                   |  0.000 | 1.000                   | 1.000   | 1.000 | 1.000                                                                                   |
|          | <b>MUSE-JV</b> | 0.983                                                                                   | 0.925                                                                                   |  0.963 | 0.002                                                                                   | 1.000                   | 1.000   | 1.000 |  1.000 |
| Shoppers | w/o WM         | 0.985                                                                                   | 0.974                                                                                   | 0.974                                                                                   | 0.017                                                                                   | -                       | -       | -     | -                                                                                       |
|          | TabularMark    |  0.974 | 0.930                                                                                   |  0.975 |  0.013 | 1.000                   | 1.000   | 1.000 | 1.000                                                                                   |
|          | WGTD           | 0.964                                                                                   | 0.944                                                                                   | 0.887                                                                                   | 0.008                                                                                   | 1.000                   | 1.000   | 1.000 | 1.000                                                                                   |
|          | <b>MUSE-JV</b> | 0.982                                                                                   | 0.974                                                                                   | 0.950                                                                                   | 0.015                                                                                   | 1.000                   | 1.000   | 1.000 |  1.000 |

884  
885  
quantile normalization ([Wikipedia contributors, 2025](#)) can introduce reconstruction errors. These  
886  
errors will in turn impair the watermark’s detectability.

## 887 888 C ADDITIONAL EXPERIMENTS RESULTS

### 889 C.1 OMITTED RESULTS ON ROBUSTNESS

890  
891 We present the omitted robustness results in Figure 9, where MUSE is compared against TabWak  
892 and TabWak\* on the Adult, Beijing, Default, and Shoppers datasets. Overall, MUSE  
893 demonstrates stronger robustness under cell deletion and row deletion attacks, while achieving com-  
894 parable performance on alteration and column deletion attacks. Both MUSE and TabWak/TabWak\*  
895 remain resilient to shuffle attacks, due to embedding watermarks at the individual row level. Notably,  
896 we observe that TabWak and TabWak\* exhibit instability on certain datasets, such as Shoppers  
897 and Beijing, where detection performance fluctuates—first decreasing and then increasing—as  
898 attack intensity increases. We hypothesize that this behavior stems from the inherent instability of the  
899 VAE inversion process.

### 900 C.2 OMITTED RESULTS ON EDIT-BASED WATERMARKING

901  
902 We compare our method against two representative **edit-based** watermarking baselines, which embed  
903 watermarks by directly altering table entries. Since the official implementations of these methods are  
904 not publicly available, we reimplement them based on the descriptions in their original papers. We  
905 first outline their core methodologies and our reimplementation details, then present the comparative  
906 results in Table 4. **Our reproduced codes are provided in the supplementary material.** Below are  
907 the detailed implementations of the baselines.

908  
909 **WGTD** ([He et al., 2024](#)). WGTD embeds watermarks by modifying the fractional part of continuous  
910 data points, replacing them with values from a predefined green list. Consequently, **it is limited to**  
911 **continuous data and cannot be applied to tables containing only categorical features.**

912  
913 The watermarking process in WGTD involves three main steps: (i) dividing the interval  $[0, 1]$  into  
914 2m equal sub-intervals to form m pairs of consecutive intervals; (ii) randomly selecting one interval  
915 from each pair to construct a set of m “green list” intervals; and (iii) replacing the fractional part  
916 of each data point with a value sampled from the nearest green list interval, if the original does not  
917 already fall within one. Detection is performed via a hypothesis-testing framework that exploits the  
918 statistical properties of the modified distribution to reliably identify the presence of a watermark. For  
919 reproducibility, we adopt the original hyperparameter setting with  $m = 5$  green list intervals.



Figure 9: Detection performance of MUSE vs. TabWak/TabWak\* against different types of tabular data attacks across varying attack intensities. From top to bottom: Adult, Beijing, Default and Shoppers.

**TabularMark** (Zheng et al., 2024). TabularMark embeds watermarks by perturbing specific cells in the data. It first pick a selected attribute/column to embed the watermark, then it generate pesudorandom partition of a fixed range into multiple unit domains, and label them with red and green domains, and finally perturb the selected column with a random number from the green domain. In our implementation, we choose the first numerical column as the selected attribute, and set the number of unit domains  $k = 500$ , the perturbation range controlled by  $p = 25$ , and configure  $n_w$  as 10% of the total number of rows.

During detection, TabularMark leverages the original unwatermarked table to reverse the perturbations and verify whether the restored differences fall within the green domain. However, **this approach assumes access to the original unwatermarked table**, which is often impractical, especially in scenarios where the watermarked table can be modified by adversaries.

972 **Discussions.** As demonstrated in Table 4, both WGTD and TabularMark exhibit strong detection  
 973 performance across all datasets. Furthermore, their generation quality is generally comparable to that  
 974 of MUSE. However, a notable observation is the significant performance degradation measured by  
 975 the MLE metric for both WGTD and TabularMark on the **Beijing** dataset (highlighted in bold).  
 976 We hypothesize that this performance drop stems from the post-editing process, which may introduce  
 977 substantial artifacts into the data. These artifacts, in turn, could negatively impact the performance of  
 978 downstream machine learning tasks.

### 981 C.3 VISUALIZATION OF STATISTICAL SIGNAL

984 Intuitively, our method embeds watermarks by biasing the score distribution towards high score  
 985 values. In this section, we provide visualizations that directly illustrate the statistical signal introduced  
 986 by our watermark in both the JV and PC hashing variants.

987 **JV-hashing.** For JV hashing, each row-level score is a PRF following  $\text{Bernoulli}(0.5)$ . We plot the  
 988 empirical probability mass function (PMF) of these scores for both watermarked and unwatermarked  
 989 tables in Figure 10. As expected, the unwatermarked data yields an approximately symmetric  
 990 distribution over  $\{0, 1\}$ , while watermarked tables exhibit a clear shift of probability mass toward  
 991 larger score values due to multi-sample selection.

992 **PC-hashing.** For PC hashing, the row-level score is the sum of per-column Bernoulli bits, taking  
 993 values in  $\{0, \dots, n\}$  where  $n$  is the number of columns. We visualize the empirical PMF over the  
 994 normalized score (defined in Equation (3)) in Figure 11. Again, unwatermarked tables show the  
 995 expected symmetric distribution, while watermarked tables exhibit a rightward shift in mass, reflecting  
 996 the watermark signal.



1010 **Figure 10:** Probability mass function of JV  
 1011 detection score for both watermarked and un-  
 1012 watermarked table. Watermarked table biases  
 1013 the score distribution toward values with larger  
 1014 scores.



1015 **Figure 11:** Probability mass function of PC detec-  
 1016 tion score for both watermarked and unwatermarked  
 1017 table. Watermarked table biases the score distribu-  
 1018 tion toward values with larger scores.

## 1019 D FURTHER ANALYSIS OF THE INVERSION-BASED WATERMARKING

1023 We first introduce the overall pipeline of inversion-based watermarking in Figure 12. The difficulty  
 1024 lies in the inversion of three components, in sequential order: (1) inverse Quantile Transformation  
 1025 (IQT) §D.2, (2) the VAE decoder §D.3, and (3) the DDIM sampling process §D.4. Finally, we analyze  
 the error accumulation and detection performance across the inversion stages in §D.5.

1026  
1027 D.1 PIPELINE OF INVERSION-BASED WATERMARKING1028  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
Figure 12: Pipeline of Inversion-based Watermarking. **Top:** The watermark signal is embedded in the noise vector in the latent space, a watermarked table is subsequently generated. **Bottom:** To detect the watermark signal, we need to reverse the entire pipeline. IQT stands for the inverse map of Quantile Transformation.

## D.2 INVERSION OF (INVERSE) QUANTILE TRANSFORMATION

The Quantile Transformation (Wikipedia contributors, 2025) is a widely used (Zhang et al., 2024c;a; Shi et al., 2024; Kotelnikov et al., 2023) data preprocessing step in tabular data synthesis. It regularizes the data distribution to a standard normal distribution. The Quantile Transformation can be implemented as follows:

- 1) Estimate the empirical cumulative distribution function (CDF) of the features.
- 2) Map to uniform distribution with the estimated CDF.
- 3) Map to standard normal distribution with inverse transform sampling:  $z = \Phi^{-1}(u)$ , where  $\Phi$  is the CDF of the standard normal distribution.

Note that in the second step, only the ordering of the data is preserved, and the exact values are not preserved, making the map non-injective, therefore, the inverse of the Quantile Transformation is inherently error-prone. Based on the official codebase, TabWak (Zhu et al., 2025) bypasses the inversion of quantile normalization by caching the original data during watermarking, this is infeasible in practical scenarios where the ground truth is unavailable. To study the impact of the inversion error of the Quantile Transformation, we apply the original Quantile Transformation to the sampled tabular data to invert the inverse quantile transformation.

## D.3 INVERSION OF VAE DECODER

Denote the VAE decoder as  $f_\theta$ , and the VAE decoder output as  $\mathbf{x} = f_\theta(\mathbf{z})$ . To get  $\mathbf{z}$  from  $\mathbf{x}$ , (Zhu et al., 2025) employs a gradient-based optimization to approximate the inverse of the VAE decoder. Specifically, we can parametrize the unknown  $\mathbf{z}$  with trainable parameters, and optimize the following objective with standard gradient descent:

$$\mathbf{z} = \arg \min_{\mathbf{z}} \|\mathbf{x} - f_\theta(\mathbf{z})\|_2^2.$$

where  $\mathbf{z}$  is initialized as  $g(f_\theta(\mathbf{x}))$ , and  $g(\cdot)$  is a VAE encoder. However, there is no guarantee that the above optimization will converge to the true  $\mathbf{z}$ , and we observed that the optimization process is unstable (sometimes produces NaN) for tabular data and introduces significant error in the inversion process.

## D.4 DDIM INVERSION

The DDIM diffusion forward process is defined as:

$$q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}),$$

where  $\mathbf{x}_0$  is the original data,  $\mathbf{x}_t$  is the data at time  $t$ , and  $\beta_t$  is the variance of the noise at step  $t$ . Based on the above definition, we can write  $\mathbf{x}_t$  as:

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_{t-1} + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad (\text{Forward process})$$

1080 where  $\bar{\alpha}_t = \prod_{i=0}^t (1 - \beta_i)$ ,  $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ .  
 1081

1082 Starting from  $\mathbf{x}_T$ , we sample  $\mathbf{x}_{T-1}, \dots, \mathbf{x}_0$  recursively according to the following process:  
 1083

$$\mathbf{x}_0^t = (\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(\mathbf{x}_t, t)) / \sqrt{\bar{\alpha}_t} \quad (\text{Reverse process})$$

$$\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0^t + \sqrt{1 - \bar{\alpha}_{t-1}} \epsilon_\theta(\mathbf{x}_t, t),$$

1086 where  $\epsilon_\theta(\mathbf{x}_t, t)$  is noise predicted by a neural network.  
 1087

1088 The **DDIM inversion process** is defined as the inverse of the DDIM reverse process. Specifically,  
 1089 starting from  $\mathbf{x}_0$ , our goal is to recover the original noise vector  $\mathbf{x}_T$  in the latent space. We introduce  
 1090 the basic DDIM inversion process proposed in (Dhariwal and Nichol, 2021), which is widely adopted  
 1091 in inversion-based watermark methods (Wen et al., 2023; Yang et al., 2024; Zhu et al., 2025; Hu et al.,  
 1092 2025).

1093 We can obtain the inverse of the DDIM forward process by replacing the  $t - 1$  subscript with  $t + 1$  in  
 1094 Equation (Reverse process), but use  $\mathbf{x}_t$  to approximate the unknown  $\mathbf{x}_{t+2}$ :

$$\mathbf{x}_{t+1} = \sqrt{\bar{\alpha}_{t+1}} \mathbf{x}_0^t + \sqrt{1 - \bar{\alpha}_{t+1}} \epsilon_\theta(\mathbf{x}_t, t),$$

1095 Due to the approximation  $\mathbf{x}_t \approx \mathbf{x}_{t+2}$ , the inversion process generally demands a finer discretization  
 1096 of the time steps. For instance, inversion-based watermarking methods (Wen et al., 2023; Zhu et al.,  
 1097 2025) typically adopt  $T = 1000$  steps, whereas diffusion models optimized for fast inference (Karras  
 1098 et al., 2022; Zhang et al., 2024c) often operate with a coarser discretization of  $T = 50$  steps.  
 1099

1100 **Advanced Inversion Methods.** To address the inexactness of the above inversion process, recent  
 1101 works (Hong et al., 2024; Pan et al., 2023) have proposed more accurate inversion methods based on  
 1102 iterative optimization. However, we empirically found that those methods still suffer from inversion  
 1103 error due to already noisy input from the previous steps (VAE decoder and Quantile Transformation).  
 1104



1116 Figure 13: Error Accumulation and Detection Performance Across Inversion Stages of TabWak. The  
 1117  $\ell_1$  error is computed between the estimated and ground truth noise vectors in latent space.  
 1118

## 1119 D.5 ERROR ACCUMULATION

1120 In Figure 13, we analyze the error accumulated at each inversion stage and its impact on detection  
 1121 performance using the Adult dataset. Specifically, we compute the TPR@1%FPR over 100  
 1122 watermarked tables, each with 100 rows. The top bar chart shows detection performance when  
 1123 progressively inverting different parts of the pipeline. From left to right:  
 1124

- 1125 • When we invert the entire pipeline (IQ  $\rightarrow$  VAE  $\rightarrow$  DDIM), the detection performance drops  
 1126 to 0.07 TPR@1%FPR.
- 1127 • When we provide the ground-truth IQ and only invert the VAE decoder and DDIM, the  
 1128 performance improves to 0.24 TPR@1%FPR.
- 1129 • When both the ground-truth IQ and VAE decoder outputs are provided (i.e., only DDIM is  
 1130 inverted), detection reaches a perfect 1.0 TPR@1%FPR.

1131 The bottom bar chart reports the  $\ell_1$  error between the estimated and ground-truth noise vectors in the  
 1132 latent space. From left to right, the bars correspond to:  
 1133

1134     • Inverting only DDIM (given the ground-truth VAE output),  
 1135     • Inverting both the VAE decoder and DDIM (given the ground-truth IQ), and  
 1136     • Inverting the full pipeline (IQ → VAE → DDIM).

1138     This comparison highlights how errors accumulate through the inversion stages and directly affect  
 1139     watermark detectability.

## 1141     E FURTHER ANALYSIS ON ROBUSTNESS

### 1143     E.1 COLUMN PERMUTATION ATTACK

1145     In our primary robustness evaluation (Section 5.3), we aligned with prior literature (Zhu et al.,  
 1146     2025) by not explicitly modeling column permutation attacks. This decision relied on the practical  
 1147     assumption that original column ordering is easily recoverable via column headers or statistical  
 1148     properties. However, to evaluate the resilience of our methods under a stricter threat model where  
 1149     column alignment is impossible or headers are stripped, we analyze the impact of column permutation  
 1150     below. We demonstrate that MUSE-PC is naturally robust to this attack, while MUSE-JV can be  
 1151     adapted to achieve permutation robustness with minimal performance trade-offs.

1152     **MUSE-PC.** This variant exhibits inherent invariance to column permutation. Since the watermark  
 1153     detection score for a row is calculated as a summation over all feature columns, the calculation is  
 1154     commutative. Consequently, the spatial arrangement of the columns does not influence the final  
 1155     aggregate score, rendering column permutation attacks ineffective.

1156     **MUSE-JV.** The standard implementation of MUSE-JV relies on pre-computed per-column statistics  
 1157     (see Equation (4)) to determine quantile ranks. A full column permutation disrupts the mapping  
 1158     between columns and their stored statistics. To mitigate this, we can apply a simple modification:  
 1159     estimating the min/max values directly from the target synthetic table rather than relying on pre-stored  
 1160     metadata. This adaptation decouples the detector from specific column indices. While estimating  
 1161     statistics from the sample introduces a potential approximation error compared to the injector’s  
 1162     ground truth, our experiments indicate that this deviation is negligible for detection purposes. To  
 1163     validate this, we conducted an experiment where both injection and detection utilized min/max  
 1164     estimates derived from 10,000 independently generated samples. As shown in Table 5, the proposed  
 1165     adaptation maintains high detectability across all datasets.

| 1166         Dataset  | AUC   | T@R 0.1 |
|-----------------------|-------|---------|
| 1168         Adult    | 1.000 | 1.000   |
| 1169         Default  | 0.997 | 0.809   |
| 1170         Shoppers | 1.000 | 1.000   |
| 1171         Beijing  | 1.000 | 1.000   |

1172     Table 5: Detection performance under estimated max/min.

### 1174     E.2 GLOBAL PERTURBATION

1176     In this section, we extend our evaluation to datasets consisting exclusively of numerical columns. We  
 1177     analyze the performance of MUSE-PC compared to baselines under a threat model where all entries  
 1178     are subject to noise, distinct from the subset perturbation model discussed in the main text.

1179     The original design of MUSE-PC targets a threat model where an adversary perturbs a subset of  
 1180     values with arbitrary strength, while other values remain unchanged. In that regime, robustness  
 1181     is achieved by spreading the watermark signal across all columns. However, in a scenario where  
 1182     every entry is perturbed by small noise (e.g., Gaussian noise), directly computing the score on raw  
 1183     continuous features can be sensitive to these ubiquitous minor shifts.

1184     **Normalization.** To address this, we introduce a lightweight normalization step prior to computing  
 1185     the score. We apply a transformation  $f$  such that  $f(x) \approx f(x + z)$  when  $z$  is a small perturbation.  
 1186     This ensures the downstream score remains stable even if all entries receive noise.

1187     Specifically, we instantiate  $f$  as **quantization in the log domain**. The process is as follows:

1188 Table 6: Watermark generation quality and detectability on fully numerical datasets,  indicates  
 1189 best performance,  indicates second-best performance. For clarity, only our method is highlighted  
 1190 in detection.

| Dataset    | Method         | Watermark Generation Quality |                  |                 |                | Watermark Detectability |                  |
|------------|----------------|------------------------------|------------------|-----------------|----------------|-------------------------|------------------|
|            |                | Marg. $\uparrow$             | Corr. $\uparrow$ | C2ST $\uparrow$ | MLE $\uparrow$ | AUC $\uparrow$          | T@1%F $\uparrow$ |
| California | no-wm          | 0.992                        | 0.992            | 0.995           | 0.994          | -                       | -                |
|            | TabWak         | 0.905                        | 0.937            | 0.783           | 0.787          | 0.871                   | 0.39             |
|            | TabWak*        | 0.891                        | 0.930            | 0.753           | 0.934          | 0.976                   | 0.53             |
|            | <b>MUSE-PC</b> | <b>0.933</b>                 | <b>0.964</b>     | <b>0.851</b>    | <b>0.994</b>   | <b>1.000</b>            | <b>1.00</b>      |
| Letter     | no-wm          | 0.975                        | 0.980            | 0.980           | 0.992          | -                       | -                |
|            | TabWak         | 0.928                        | 0.938            | 0.685           | 0.926          | 0.999                   | 0.90             |
|            | TabWak*        | 0.922                        | 0.930            | 0.607           | 0.919          | 1.000                   | 1.00             |
|            | <b>MUSE-PC</b> | <b>0.928</b>                 | <b>0.964</b>     | <b>0.740</b>    | <b>0.990</b>   | <b>1.000</b>            | <b>1.00</b>      |

1202 1) Map each numerical value to its logarithmic scale.  
 1203 2) Assign the value to one of a fixed number of bins (denoted as bin\_num).

1204 This logarithmic transformation makes the bin widths adaptive: larger magnitude values ( $|x|$ ) are  
 1205 assigned wider bins. This aligns with the intuition that larger values can tolerate larger absolute per-  
 1206 turbations without altering their semantic meaning or watermark bin assignment. This preprocessing  
 1207 does not alter the fundamental sampling or scoring procedure of MUSE-PC.

1208 **Robustness to Global Perturbation.** We evaluate the robustness of MUSE-PC—augmented with a  
 1209 quantisation step prior to score computation—under global perturbations, instantiated as Gaussian  
 1210 noise applied to every entry in fully numerical datasets. We set the number of bins to 32,  $N = 500$ ,  
 1211  $m = 2$ , and compare the detectability of MUSE-PC against TabWak and TabWak\*. As shown in  
 1212 Figure 14, MUSE-PC consistently outperforms both baselines across all attack strengths on both  
 1213 datasets. It is worth noting that although TabWak/TabWak\* demonstrates relatively strong robustness  
 1214 on the Letter dataset, its performance deteriorates substantially on California. We hypothesize  
 1215 that this variability stems from the inherent instability of reversing the entire sampling pipeline, which  
 1216 TabWak relies on for detection.

1217 **Distortion and Detectability Performance.** While the normalization step renders MUSE-PC robust  
 1218 to global perturbations, evaluating its potential impact on distortion remains critical. With the number  
 1219 of bins fixed at 32, results in Table 6 demonstrate that MUSE-PC consistently outperforms TabWak  
 1220 and TabWak\* in terms of both distortion and detectability.

1221 **Ablation Study on Number of Bins.** In this section, we examine the impact of the bin count,  
 1222  $b \in \{16, 32, 64, 128, 256\}$ , on the data quality and robustness of MUSE-PC. As shown in Figure 15,  
 1223 Figure 16, and Figure 17, the number of bins introduces a fundamental trade-off: coarser binning  
 1224 enhances robustness at the cost of slightly increased distortion, while finer binning favors fidelity  
 1225 but reduces robustness. Notably, choosing  $b = 32$  is sufficient to surpass the robustness of TabWak.  
 1226 Furthermore, even under coarse quantization ( $b = 16$ ), MUSE-PC preserves higher data quality than  
 1227 TabWak.

### 1228 E.3 WATERMARK STEALING

1229 In this section, we consider the *watermark stealing* problem, where an adversary attempts to reverse  
 1230 engineer the watermark. We adopt the standard setting under Kerckhoffs’ principle: the adversary  
 1231 has full knowledge of the watermarking algorithm, but does not know the secret key.

1232 **Two levels of reverse-engineering.** It is useful to distinguish between two goals an attacker may  
 1233 pursue:

- 1234 • **Spoofing attack (easier).** The adversary trains a generative model to approximate the water-  
 1235 marked data distribution  $P_{wm}$ , with the goal of generating new samples that pass the detector,  
 1236 without necessarily recovering the secret key.
- 1237 • **Parameter-recovery attack (harder).** The adversary attempts to deduce the secret parameters  
 1238 of the scheme—specifically, the secret key  $k$  and/or the exact configuration of the quantile-



Figure 14: Detection performance under Gaussian perturbation attack across varying attack intensities. MUSE-PC (with number of bin=32) achieves the best robustness.



Figure 15: Impact of bin number on data quality. Finer discretization leads to better data quality.



Figure 16: Impact of bin number on robustness to Gaussian perturbation: California dataset.



Figure 17: Impact of bin number on robustness to Gaussian perturbation: Letter dataset.

rank mapping (e.g., which columns and quantile levels are selected and hashed). A successful parameter-recovery attack constitutes a *total break*: once the mechanism (known under Kerckhoffs' principle) and the key are both recovered, the adversary can scrub or spoof the watermark at will.

Parameter recovery is strictly harder than spoofing: if an attacker could recover the key and quantile configuration, they could trivially simulate the watermarking process and thus succeed at spoofing. The converse does not hold: in general, one can statistically approximate a distribution without solving the cryptographic task of key recovery. This mirrors observations in prior watermarking work, where key-recovery attacks are typically bespoke and non-trivial to construct (Jovanović et al., 2024).

**Quantile ranks as a hard parameter-recovery target.** For the sake of simplicity, our JV hashing scheme presented in the main text uses a fixed quantile set (e.g.,  $\mathcal{Q} = \{0, 0.5, 1\}$ ) corresponding to minimum, median, and maximum) to select a sparse subset of columns for watermark embedding. Under Kerckhoffs' principle, an attacker would know the fixed quantile set and thus be able to compute which columns are used for watermarking for each sample. We provide a simple security enhancement: applying a keyed pseudorandom permutation (PRP)  $\pi_k$  over the column indices before column selection. Specifically, for each row  $\mathbf{x}$ , we first apply the permutation  $\mathbf{x} \mapsto \pi_k(\mathbf{x})$ , and then compute the quantile ranks and select the minimum/median/maximum positions in this permuted order. Under this construction, the set of watermark-carrying columns is entirely determined by the secret key  $k$ , and recovering it is computationally equivalent to inverting the underlying PRP. In other words, reverse-engineering the quantile-rank configuration becomes a full-fledged parameter-recovery attack on a cryptographic primitive, which is significantly harder than merely mimicking the watermark's statistical footprint.

1296 **Empirical Evidence.** Our analysis is supported empirically by the *Adaptive Adversary* experiments  
 1297 presented in Section 5.3. We simulated a distillation attack—representing the easier “Spoofing”  
 1298 threat—where a powerful generative model (TabSyn) attempted to learn the watermarked distribution.  
 1299 As shown in Figure 4, the adversary failed to distinguish or approximate the watermark signal  
 1300 (achieving an AUC  $\approx 0.5$ ). Since the adversary failed at the easier task of statistical approximation  
 1301 (Spoofing), we conclude that they statistically cannot succeed at the strictly harder task of Parameter  
 1302 Recovery.

## 1304 F EXPERIMENTAL DETAILS

### 1306 F.1 HARDWARE SPECIFICATION

1308 We use a single hardware for all experiments. The hardware specifications are as follows:

- 1310 • GPU: NVIDIA RTX 4090
- 1311 • CPU: Intel 14900K

### 1313 F.2 DATASET STATISTICS

1315 The dataset used in this paper could be automatically downloaded using the script in the provided code.  
 1316 We use 6 tabular datasets from UCI Machine Learning Repository<sup>1</sup> or Kaggle<sup>2</sup>: Adult<sup>3</sup>, Default<sup>4</sup>,  
 1317 Shoppers<sup>5</sup>, Beijing<sup>6</sup>, California<sup>7</sup>, and Letter<sup>8</sup>, which contain different numbers of numerical and  
 1318 categorical features. The statistics of the datasets are presented in Table 7.

1319 Table 7: Dataset statistics.

| 1320 <b>Dataset</b>    | # Rows | # Continuous | # Discrete | # Target | # Train | # Test | Task           |
|------------------------|--------|--------------|------------|----------|---------|--------|----------------|
| 1322 <b>Adult</b>      | 32,561 | 6            | 8          | 1        | 22,792  | 16,281 | Classification |
| 1323 <b>Default</b>    | 30,000 | 14           | 10         | 1        | 27,000  | 3,000  | Classification |
| 1324 <b>Shoppers</b>   | 12,330 | 10           | 7          | 1        | 11,098  | 1,232  | Classification |
| 1325 <b>Beijing</b>    | 43,824 | 7            | 5          | 1        | 39,441  | 4,383  | Regression     |
| 1326 <b>California</b> | 20,640 | 9            | -          | 1        | 18,390  | 2,520  | Classification |
| 1327 <b>Letter</b>     | 20,000 | 16           | -          | 1        | 18,000  | 2,000  | Classification |

1328 In Table 7, # Rows refers to the total records in each dataset, while # Continuous and # Discrete  
 1329 denote the count of numerical and categorical features, respectively. The # Target column indicates  
 1330 whether the prediction task involves a continuous (regression) or discrete (classification) target  
 1331 variable. All datasets except Adult are partitioned into training and testing sets using a 9:1 ratio, with  
 1332 splits generated using a fixed random seed for reproducibility. The Adult dataset uses its predefined  
 1333 official testing set. For evaluating Machine Learning Efficiency (MLE), the training data is further  
 1334 subdivided into training and validation subsets with an 8:1 ratio, ensuring consistent evaluation  
 1335 protocols across experiments.

### 1336 F.3 FIDELITY METRICS

1338 The fidelity metrics used in this paper (Marginal, Correlation, C2ST and MLE) are standard metrics  
 1339 in the field of tabular data synthesis. Here is a reference:

- 1341 • Marginal: Appendix E.3.1 in (Zhang et al., 2024c).

1342 <sup>1</sup><https://archive.ics.uci.edu/datasets>

1343 <sup>2</sup><https://www.kaggle.com>

1344 <sup>3</sup><https://archive.ics.uci.edu/dataset/2/adult>

1345 <sup>4</sup><https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients>

1346 <sup>5</sup><https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset>

1347 <sup>6</sup><https://archive.ics.uci.edu/dataset/381/beijing+pm2.5+data>

1348 <sup>7</sup><https://www.kaggle.com/datasets/camnugent/california-housing-prices>

1349 <sup>8</sup><https://archive.ics.uci.edu/dataset/59/letter+recognition>

- Correlation: Appendix E.3.2 in (Zhang et al., 2024c).
- C2ST: Appendix F.3 in (Zhang et al., 2024c).
- MLE: Appendix E.4 in (Zhang et al., 2024c).

Below is a summary of how these metrics work.

### F.3.1 MARGINAL DISTRIBUTION

The **Marginal** metric assesses how well the marginal distribution of each column is preserved in the synthetic data. For continuous columns, we use the Kolmogorov–Smirnov Test (KST); for categorical columns, we use the Total Variation Distance (TVD).

**Kolmogorov–Smirnov Test (KST)** Given two continuous distributions  $p_r(x)$  and  $p_s(x)$  (real and synthetic, respectively), the KST measures the maximum discrepancy between their cumulative distribution functions (CDFs):

$$\text{KST} = \sup_x |F_r(x) - F_s(x)|, \quad (8)$$

where  $F_r(x)$  and  $F_s(x)$  denote the CDFs of  $p_r(x)$  and  $p_s(x)$ :

$$F(x) = \int_{-\infty}^x p(x) \, dx. \quad (9)$$

**Total Variation Distance (TVD)** TVD measures the difference between the categorical distributions of real and synthetic data. Let  $\Omega$  be the set of possible categories in a column. Then:

$$\text{TVD} = \frac{1}{2} \sum_{\omega \in \Omega} |R(\omega) - S(\omega)|, \quad (10)$$

where  $R(\cdot)$  and  $S(\cdot)$  denote the empirical probabilities in real and synthetic data, respectively.

### F.3.2 CORRELATION

The **Correlation** metric evaluates whether pairwise relationships between columns are preserved.

**Pearson Correlation Coefficient** For two continuous columns  $x$  and  $y$ , the Pearson correlation coefficient is defined as:

$$\rho_{x,y} = \frac{\text{Cov}(x, y)}{\sigma_x \sigma_y}, \quad (11)$$

where  $\text{Cov}(\cdot)$  is the covariance and  $\sigma$  denotes standard deviation. We evaluate the preservation of correlation by computing the mean absolute difference between correlations in real and synthetic data:

$$\text{Pearson Score} = \frac{1}{2} \mathbb{E}_{x,y} |\rho^R(x, y) - \rho^S(x, y)|, \quad (12)$$

where  $\rho^R$  and  $\rho^S$  denote correlations in real and synthetic data. The score is scaled by  $\frac{1}{2}$  to ensure it lies in  $[0, 1]$ . Lower values indicate better alignment.

**Contingency Similarity** For categorical columns  $A$  and  $B$ , we compute the Total Variation Distance between their contingency tables:

$$\text{Contingency Score} = \frac{1}{2} \sum_{\alpha \in A} \sum_{\beta \in B} |R_{\alpha,\beta} - S_{\alpha,\beta}|, \quad (13)$$

where  $R_{\alpha,\beta}$  and  $S_{\alpha,\beta}$  are the joint frequencies of  $(\alpha, \beta)$  in the real and synthetic data, respectively.

1404 F.3.3 CLASSIFIER TWO-SAMPLE TEST (C2ST)  
14051406 C2ST evaluates how distinguishable the synthetic data is from real data. If a classifier can eas-  
1407 ily separate the two, the synthetic data poorly approximates the real distribution. We adopt the  
1408 implementation provided by the SDMetrics library.<sup>9</sup>

1409

1410 F.3.4 MACHINE LEARNING EFFICIENCY (MLE)  
14111412 MLE evaluates the utility of synthetic data for downstream machine learning tasks. Each dataset  
1413 is split into training and testing subsets using real data. Generative models are trained on the real  
1414 training set, and a synthetic dataset of equal size is sampled.

1415 For both real and synthetic data, we use the following protocol:

1416

- 1417 • Split the training set into train/validation with an 8:1 ratio.
- 1418 • Train a classifier/regressor on the train split.
- 1419 • Tune hyperparameters based on validation performance.
- 1420 • Retrain the model on the full training set using the optimal hyperparameters.
- 1421 • Evaluate on the real test set.

1423

1424 This process is repeated over 20 random train/validation splits. Final scores (AUC for classification  
1425 task or RMSE for regression task) are averaged over the 20 trials for both real and synthetic training  
1426 data. In our experiments, we report the MLE Gap, which is the difference between the MLE score of  
1427 the (unwatermarked) real data and the MLE score of the synthetic data.

1428

## F.4 WATERMARK DETECTION METRICS

1429

1430 For watermark detection metrics, we primarily use the area under the curve (AUC) of the receiver  
1431 operating characteristic (ROC) curve: **AUC**, and the True Positive Rate (TPR) at a given False  
1432 Positive Rate (FPR): **TPR@x%FPR**.

1433

1434 **z-statistic** In addition, we can formalize a statistical test for watermark detection. We formulate  
1435 this as a hypothesis testing problem:

1436

1437  $H_0$  : The table is not watermarked.  
1438 vs.  $H_1$  : The table is watermarked.

1439

1440 Recall the definition of our detection statistic in Equation (1): given a (watermarked or unwater-  
1441 marked) table  $T$  that consists of  $N$  rows:  $T := (\mathbf{x}_1, \dots, \mathbf{x}_N)$ , we compute the detection statistic:

1442

1443 
$$S(T) = \frac{1}{N} \sum_{i=1}^N s_k(\mathbf{x}_i).$$
  
1444

1445

1446 For the Joint-Vector (JV) hashing design, where each row is assigned a single score, the form of  
1447 the test statistic depends on the score's distribution under the null hypothesis  $H_0$ . If the row score  
1448 follows Burnulli(0.5), we denote the total count of rows with a score of 1 as  $|W|$ . Under  $H_0$ ,  
1449  $|W|$  follows a binomial distribution with mean  $\mu = N/2$  and variance  $\sigma^2 = N/4$ . Finally, since  
1450  $|W| = \sum_{i=1}^N s_k(\mathbf{x}_i) = N \cdot S(T)$ , thus the  $z$ -statistic is computed as:

1451

1452 
$$z = \frac{N \cdot S(T) - N/2}{\sqrt{N/4}}. \quad (\text{JV hash})$$
  
1453

1454

1455 For the Per-Column (PC) design, this framework must be adapted, as the score for each row,  $s_i$ ,  
1456 is the average of scores from  $M$  individual columns (see Equation (3)):  $s_k(\mathbf{x}) = \frac{1}{M} \sum_{j=1}^M C_{ij}$ ,

1457

<sup>9</sup><https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/detection-single-table>

1458 where  $C_{ij}$  is the score assigned to the value at  $i$ -th row,  $j$ -th column. If  $C_{i,j}$  are *i.i.d* and follows  
 1459 Bernoulli(0.5), we have that  $\sum_{i=1}^N s_k(\mathbf{x}_i)$  follows a binomial distribution with mean  $\mu = \frac{M \cdot N}{2}$  and  
 1460 variance  $\sigma^2 = \frac{N \cdot M}{4}$ , yielding a  $z$ -statistic as follows:  
 1461

$$z = \frac{N \cdot S(T) - \frac{N \cdot M}{2}}{\sqrt{\frac{N \cdot M}{4}}}. \quad (\text{JV hash})$$

1462  
 1463  
 1464  
 1465  
 1466 **Estimating the statistic under  $H_0$  via Monte Carlo.** While directly assuming certain distributions  
 1467 under null hypotheses like above is standard in LLM watermarking (Kirchenbauer et al., 2023b; Zhao  
 1468 et al., 2023a; Giboulot and Furon, 2024), they can be inaccurate when the table contains low-entropy  
 1469 columns (e.g., binary attributes). In such cases, the exact distribution of row-level hash outputs under  
 1470  $H_0$  may deviate from the idealized Bernoulli model.

1471 One way to address this problem is to estimate the mean and variance of the detection statistic under  
 1472  $H_0$  using *Monte Carlo simulation*, which is also used in TabWak (Zhu et al., 2025).

1473 Specifically, we first sample  $K$  unwatermarked tables with  $N$  rows, denoted as  $T_{nw}^1, \dots, T_{nw}^K$ . Denote  
 1474  $s_i$  as  $N \cdot S(T_{nw}^i)$ , then we compute:  
 1475

- $\hat{\mu}_{nw}$ : the empirical mean of  $\{s_1, \dots, s_K\}$ .
- $\hat{\sigma}_{nw}$ : the empirical standard derivation of  $\{s_1, \dots, s_K\}$ .

1476 Then the one-sided  $z$ -statistic can be computed as:  
 1477

$$z = \frac{N \cdot S(T) - \hat{\mu}_{nw}}{\hat{\sigma}_{nw}}$$

1478 where  $s$  is the test statistic computed on the suspect table. Unlike TabWak (Zhu et al., 2025), no  
 1479 additional  $1/\sqrt{N}$  scaling is required because  $\hat{\sigma}_{nw}$  is estimated directly from the full statistic  $N \cdot S(T)$ ,  
 1480 whose variance already incorporates the dependence on  $N$ .  
 1481

1482 **Detection threshold.** Given the estimated (or assumed) null distribution of our detection statistic,  
 1483 we next define a threshold for deciding whether a table is watermarked. Let  $\mu_0$  and  $\sigma_0$  denote the  
 1484 mean and standard deviation of the statistic under  $H_0$ , obtained either analytically (e.g., assuming a  
 1485 Bernoulli or binomial model) or empirically via Monte Carlo simulation as described above. For a  
 1486 suspect table  $T$ , the corresponding  $z$ -score is:  
 1487

$$z = \frac{N \cdot S(T) - \mu_0}{\sigma_0}. \quad (14)$$

1488 To control the false-positive rate at a user-specified significance level  $\alpha$ , we compute the critical value  
 1489  $z_\alpha$  such that

$$\Pr(Z > z_\alpha | H_0) = \alpha, \quad Z \sim \mathcal{N}(0, 1), \quad (15)$$

1490 and declare the table as watermarked whenever  $z > z_\alpha$ . Equivalently, this induces a threshold on the  
 1491 normalized statistic  $S(T)$ :

$$S(T) > \frac{\mu_0}{N} + z_\alpha \frac{\sigma_0}{N}. \quad (16)$$

1492 When the theoretical Bernoulli(0.5) assumption holds (e.g., JV-hash), we have  $\mu_0 = N/2$  and  $\sigma_0 =$   
 1493  $\sqrt{N/4}$ , which recovers the familiar closed-form thresholds used in prior work. When Monte Carlo  
 1494 estimation is used instead, the same decision rule applies but with empirical estimates  $(\hat{\mu}_{nw}, \hat{\sigma}_{nw})$ ,  
 1495 enabling the threshold to automatically adapt to low-entropy or skewed tabular datasets.  
 1496

## 1497 F.5 IMPLEMENTATION DETAILS OF IMAGE WATERMARK BASELINES

1498 In this work, we also benchmark our method against established watermarking techniques originally  
 1499 designed for visual generative models: Tree-Ring Watermark (Wen et al., 2023) and Gaussian  
 1500 Shading (Yang et al., 2024). To apply these image-based methods to the tabular domain, we strictly  
 1501 follow the adaptation strategies proposed in TabWak (Zhu et al., 2025). We include a brief description  
 1502

1512 of these strategies below for completeness; for full algorithmic details, we refer readers to Appendix  
 1513 D of TabWak.

1514 **Tree-Ring Watermark.** This method embeds the watermark into the initial noise vector of the  
 1515 diffusion process by transforming it into the frequency domain. Importantly, this method treats the  
 1516 full table ( $m$  rows and  $n$  columns) as a single latent image for the watermark. While standard image  
 1517 models typically process square inputs, where standard centralized ring patterns are embedded in  
 1518 the latent. Tabular datasets are characterized by a high aspect ratio, where the number of rows ( $m$ )  
 1519 significantly exceeds the number of columns ( $n$ ). To address this geometric discrepancy, we embed a  
 1520 *ripple-shaped pattern* across the Fourier space. However, it is worth noting that treating the full table  
 1521 as a single unit makes this method inherently vulnerable to row shuffling attacks: simply permuting  
 1522 the rows destroys the global spatial pattern, thereby severely compromising detectability.

1523 **Gaussian Shading.** Unlike the Tree-Ring watermark, Gaussian Shading is applied at the individual  
 1524 row level. This approach treats each tabular row as a distinct entity, similar to how watermarking is  
 1525 applied to individual images. Crucially, we maintain a fixed control seed across the entire dataset. If  
 1526 we were to assign a unique seed to each row index, a simple row shuffling attack would decouple the  
 1527 data from its corresponding seed, making verification impossible. By enforcing a constant seed, we  
 1528 ensure that the watermark remains detectable even if the rows are arbitrarily permuted.

1529 **Discussion.** The key distinction between watermarking techniques for tabular data and those for  
 1530 images lies in the application setting. Tabular watermarking typically operates on an entire table—a  
 1531 batch of i.i.d. samples—where each row contributes to the aggregate  $z$ -score and collectively boosts  
 1532 detectability. In contrast, image watermarking generally requires detecting a watermark from a *single*  
 1533 generated instance. For example, as shown in Theorem 4.1, achieving a target detectability of FPR  
 1534 = 0.01% under MUSE requires a batch size of  $N = 100$  and  $m = 4$  repeated samples per instance.  
 1535 Applied to images, this would require roughly 400 forward passes of an image generator to watermark  
 1536 a batch of 100 images, making the method impractical for standard single-image watermarking  
 1537 scenarios. That said, in specialized applications where images are naturally generated and verified in  
 1538 batches, MUSE could still offer a viable and effective watermarking strategy.

## G OMMITED PROOFS IN SECTION 3

1540 Recall that for a table  $T$  (watermarked or unwatermarked) with  $N$  rows:  $\mathbf{x}_1, \dots, \mathbf{x}_N$ , we define the  
 1541 watermark detection score as

$$1544 \quad 1545 \quad S(T) = \frac{1}{N} \sum_{i=1}^N s_k(\mathbf{x}_i), \quad (17)$$

1546 where  $s_k(\mathbf{x}_i)$  is the score of the  $i$ -th sample,  $k$  is the fixed watermark key.

1547 **Theorem 4.1** (Watermark Calibration Guarantees). *Denote a watermarked table as  $T_{\text{wm}}$  and an  
 1548 unwatermarked table as  $T_{\text{no-wm}}$ , each consisting of  $N$  rows. Let  $\mathbf{x} \sim p(\mathbf{x})$  be a random variable  
 1549 drawn from the data distribution, and let  $\mathbf{x}_1, \dots, \mathbf{x}_m$  be i.i.d. samples from  $p(\mathbf{x})$ . Define  
 1550  $\mu_{\text{no-wm}} = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})}[s_k(\mathbf{x})]$  as the expected score of an unwatermarked sample, and define  
 1551  $\mu_{\text{wm}}^m = \mathbb{E}_{\mathbf{x}_i \sim p(\mathbf{x})} [\max_{i \in [m]} s_k(\mathbf{x}_i)]$  as the expected score of a watermarked sample obtained via  $m$   
 1552 repeated samples. Suppose the scoring function satisfies  $s_k(\cdot) \in [0, 1]$ , we have:*

1553 1. *The False Positive Rate (FPR) of the watermark detection is upper bounded:*

$$1554 \quad 1555 \quad \Pr(S(T_{\text{no-wm}}) > S(T_{\text{wm}})) \leq \exp\left(-\frac{N \cdot (\mu_{\text{wm}}^m - \mu_{\text{no-wm}})^2}{2}\right). \quad (5)$$

1556 2. *The RHS of the bound is minimized when  $s_k(\mathbf{x})$  follows a Bernoulli(0.5) distribution.*

1557 3. *Under this optimal distribution, let  $N > 8 \log(1/\alpha)$ , then to ensure the FPR does not exceed a  
 1558 target threshold  $\alpha$ , it suffices to set the number of repeated samples  $m$  as:*

$$1559 \quad 1560 \quad m = \max\left(2, \left\lceil \log_{0.5} \left(0.5 - \sqrt{\frac{2 \log(1/\alpha)}{N}}\right) \right\rceil\right). \quad (6)$$

1561 *Proof.* The proof of each statement is provided in Lemma G.1, Lemma G.2, and Theorem G.3,  
 1562 respectively.  $\square$

1566 **Lemma G.1.** Denote a watermarked table as  $T_{\text{wm}}$  and an unwatermarked table as  $T_{\text{no-wm}}$ , each  
 1567 consisting of  $N$  rows. Let  $\mathbf{x} \sim p(\mathbf{x})$  be a random variable drawn from the data distribution, and  
 1568 let  $\mathbf{x}_1, \dots, \mathbf{x}_m$  be i.i.d. samples from  $p(\mathbf{x})$ . Define  $\mu_{\text{no-wm}} = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})}[s_k(\mathbf{x})]$  as the expected score  
 1569 of an unwatermarked sample, and define  $\mu_{\text{wm}}^m = \mathbb{E}_{\mathbf{x}_i \sim p(\mathbf{x})}[\max_{i \in [m]} s_k(\mathbf{x}_i)]$  as the expected score  
 1570 of a watermarked sample obtained via  $m$  repeated samples. Suppose the scoring function satisfies  
 1571  $s_k(\cdot) \in [0, 1]$ , then the False Positive Rate (FPR) of the watermark detection satisfies:

$$\Pr(S(T_{\text{no-wm}}) > S(T_{\text{wm}})) \leq \exp\left(-\frac{N(\mu_{\text{wm}}^m - \mu_{\text{no-wm}})^2}{2}\right). \quad (18)$$

1575

1576 *Proof.* Let  $S(T_{\text{no-wm}}) = \sum_{i=1}^N c_i$  denote the sum of  $N$  i.i.d. scores from the unwatermarked table,  
 1577 where each  $c_i = s_k(\mathbf{x}_i)$  for  $\mathbf{x}_i \sim p(\mathbf{x})$ , and similarly let  $S(T_{\text{wm}}) = \sum_{i=1}^N c'_i$  denote the sum of  
 1578  $N$  i.i.d. scores from the watermarked table, where each  $c'_i = \max\{s_k(\mathbf{x}_{i1}), \dots, s_k(\mathbf{x}_{im})\}$  with  
 1579  $\mathbf{x}_{ij} \sim p(\mathbf{x})$ .

1580

1581 Define the expected values:

$$\mu_{\text{no-wm}} = \mathbb{E}[c_i], \quad \mu_{\text{wm}}^m = \mathbb{E}[c'_i].$$

1582

1583

1584 We are interested in bounding the false positive rate:

1585

1586

1587

1588

$$\Pr(S(T_{\text{no-wm}}) > S(T_{\text{wm}})) = \Pr\left(\sum_{i=1}^N (c_i - c'_i) > 0\right).$$

1589

1590

1591

1592

Let  $w_i = c_i - c'_i$ . Since  $s_k(x) \in [0, 1]$ , we have  $c_i \in [0, 1]$  and  $c'_i \in [0, 1]$ , so  $w_i \in [-1, 1]$ . Moreover,  
 $\mathbb{E}[w_i] = \mu_{\text{no-wm}} - \mu_{\text{wm}}^m =: -\delta$ , where  $\delta = \mu_{\text{wm}}^m - \mu_{\text{no-wm}} > 0$ .

We apply Hoeffding's inequality to the sum of  $w_i$ 's:

1593

1594

1595

1596

$$\Pr\left(\sum_{i=1}^N w_i > 0\right) = \Pr\left(\sum_{i=1}^N w_i - \mathbb{E}[\sum_{i=1}^N w_i] > N\delta\right) \leq \exp\left(-\frac{2N^2\delta^2}{4N}\right).$$

1597

Plug in the definition of  $\delta$ , we have:

1598

1599

1600

$$\Pr(S(T_{\text{no-wm}}) > S(T_{\text{wm}})) \leq \exp\left(-\frac{N^2\delta^2}{2}\right) = \exp\left(-\frac{N(\mu_{\text{wm}}^m - \mu_{\text{no-wm}})^2}{2}\right).$$

1601

1602

which proves the result.  $\square$

1603

1604

1605

1606

1607

1608

1609

**Lemma G.2** (Optimal Scoring Distribution). Let  $s_k(\mathbf{x})$  be any random variable supported on  $[0, 1]$  with mean 0.5, the right-hand-side of Equation (18) is minimized when  $s_k(\mathbf{x})$  follows a  $\text{Bernoulli}(0.5)$  distribution.

1610

1611

1612

1613

Let  $s_1, \dots, s_m$  be i.i.d. copies of a random variable  $s_k(\mathbf{x}) \in [0, 1]$  with fixed mean  $\mathbb{E}[s_k(\mathbf{x})] = 0.5$ . Define:

1614

1615

1616

$$\mu := \mathbb{E}[s_k(\mathbf{x})] = 0.5, \quad \mu_{\text{max}} := \mathbb{E}[\max(s_1, \dots, s_m)].$$

Let  $\Delta := \mu_{\text{max}} - \mu$  be the gap between the expected maximum score over  $m$  repetitions and the mean score. The upper bound in Equation (18) is:

1617

1618

1619

$$\Pr(S_{\text{no-wm}} > S_{\text{wm}}) \leq \exp\left(-\frac{N\Delta^2}{2}\right),$$

so minimizing the FPR corresponds to maximizing  $\Delta$  under the constraint that  $\mathbb{E}[s_k(\mathbf{x})] = 0.5$  and  $s_k(\mathbf{x}) \in [0, 1]$ .

We now show that  $\Delta$  is maximized when  $s_k(\mathbf{x}) \sim \text{Bernoulli}(0.5)$ .

1620 **Step 1: Write  $\mu_{\max}$  and  $\mu$  as integrals over the CDF.** Let  $F$  be the cumulative distribution  
 1621 function (CDF) of  $s_k(\mathbf{x})$ . Then the CDF of  $\max(s_1, \dots, s_m)$  is  $F^m(x)$ . By the tail integration  
 1622 formula, we can compute the expected maximum as:  
 1623

$$\begin{aligned}\mu_{\max} &= \int_0^1 \Pr(\max(s_1, \dots, s_m) > x) \\ &= \int_0^1 (1 - F(x)^m) dx.\end{aligned}$$

1629 Similarly, we have:  $\mu = \int_0^1 (1 - F(x)) dx$ .  
 1630

1631 Therefore, the gap  $\Delta$  can be written as:  
 1632

$$\Delta = \mu_{\max} - \mu = \int_0^1 [F(x) - F(x)^m] dx.$$

1635 **Step 2: Leverage the concavity.** By Lemma H.1, the integrand  $F(x) - F(x)^m$  is concave in  $F(x)$ .  
 1636 By Lemma H.2, the integral is maximized when  $F(x)$  is the CDF of a Bernoulli distribution with  
 1637 mean  $\mu = 0.5$ .  
 1638

1639 Therefore, among all  $s_k(\mathbf{x}) \in [0, 1]$  with  $\mathbb{E}[s_k(\mathbf{x})] = 0.5$ , the Bernoulli(0.5) distribution maximizes  
 1640  $\Delta$ , which minimizes the upper bound on the FPR. Hence, the lemma holds.  $\square$   
 1641

**Theorem G.3 (Minimum Watermarking Signal).** *Under the same assumptions as in Lemma G.1, suppose the scoring function  $s_k(\mathbf{x})$  is instantiated as a hash-seeded pseudorandom function such that  $s_k(\mathbf{x}) \sim \text{Bernoulli}(0.5)$ . Then the FPR is upper-bounded by:*

$$\Pr(S(T_{\text{no-wm}}) > S(T_{\text{wm}})) \leq \exp\left(-\frac{N}{2}(0.5 - 0.5^m)^2\right). \quad (19)$$

1647 To ensure the FPR does not exceed a target threshold  $\alpha$ , it suffices to set the number of repeated  
 1648 samples  $m$  as:  
 1649

$$m = \max\left(2, \left\lceil \log_{0.5} \left(0.5 - \sqrt{\frac{2 \log(1/\alpha)}{N}}\right) \right\rceil\right), \quad (20)$$

1651 where  $\lceil \cdot \rceil$  denotes the ceiling function. This expression is valid when  $N > 8 \log(1/\alpha)$ .  
 1652

1653 *Proof.* When  $s_k(\mathbf{x}) \sim \text{Bernoulli}(0.5)$ , we have:  
 1654

$$\mu_{\text{no-wm}} = \mathbb{E}[s_k(\mathbf{x})] = 0.5, \quad \mu_{\text{wm}}^m = \mathbb{E}[\max(s_1, \dots, s_m)] = 1 - 0.5^m.$$

1656 Plug in into the FPR bound Equation (22), we have:  
 1657

$$\Pr(S(T_{\text{no-wm}}) > S(T_{\text{wm}})) \leq \exp\left(-\frac{N}{2}(0.5 - 0.5^m)^2\right),$$

1660 which completes the proof.  $\square$   
 1661

1662 **Theorem 4.3.** *Let  $m = 2$ . The watermarking process in Algorithm 1, augmented with repeated  
 1663 column masking, satisfies multi-sample distribution-preserving as defined in Definition 4.2.*

1664 *Proof.* Suppose  $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_K$  are generated consecutively from Algorithm 1 with the same watermark  
 1665 key  $k$  and data distribution  $p(\mathbf{x})$ . Assume the repeated column masking is enabled. Denote  $W \subseteq$   
 1666  $\{1, \dots, K\}$  denote the index set where the repeated column masking is triggered. Then we have:  
 1667

$$\begin{aligned}\mathbb{P}(\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_K) &= \prod_{i=1}^K \mathbb{P}(\tilde{\mathbf{x}}_i \mid \tilde{\mathbf{x}}_{<i}) \\ &= \underbrace{\prod_{i \in W} \mathbb{P}(\tilde{\mathbf{x}}_i \mid \tilde{\mathbf{x}}_{<i})}_{\textcircled{1}} \underbrace{\prod_{i \notin W} \mathbb{P}(\tilde{\mathbf{x}}_i \mid \tilde{\mathbf{x}}_{<i})}_{\textcircled{2}}\end{aligned}$$

1674 Due to the deployment of repeated column masking, when repeated column values are detected,  
 1675 Algorithm 1 defaults to skipping the watermarking process. Therefore, for ①, we have:  
 1676

$$\prod_{i \in W} \mathbb{P}(\tilde{\mathbf{x}}_i \mid \tilde{\mathbf{x}}_{<i}) = \prod_{i \in W} p(\tilde{\mathbf{x}}_i)$$

1679 For ②, there will be no repeated column values used for seed generation. Note the dependency  
 1680 between current sample  $\mathbf{x}_i$  and previous samples  $\tilde{\mathbf{x}}_{<i}$  are only on the watermark key  $k$  and selected  
 1681 column values  $\pi(\mathbf{x})$  (recall we compute a hash function  $h(k, \pi(\mathbf{x}))$  to seed a score function). There-  
 1682 fore, when the selected columns contain no repeated values, due to the property of the hash function,  
 1683 we have  $\tilde{\mathbf{x}}_i$  is independent of  $\tilde{\mathbf{x}}_{<i}$ . Therefore, we have:

$$\begin{aligned} \prod_{i \notin W} \mathbb{P}(\tilde{\mathbf{x}}_i \mid \tilde{\mathbf{x}}_{<i}) &= \prod_{i \notin W} \mathbb{P}(\Gamma(p, h(k, \tilde{\mathbf{x}}_i))) \\ &= \prod_{i \notin W} p(\tilde{\mathbf{x}}_i) \end{aligned} \quad (\text{by Lemma H.3})$$

1690 Finally, we combine the above results, we have:

$$\mathbb{P}(\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_K) = \prod_{i=1}^K p(\tilde{\mathbf{x}}_i)$$

1695 which completes the proof.  $\square$

## H TECHNICAL LEMMAS

1699 **Lemma H.1.** *For any integer  $m \geq 2$ , the function  $f(x) = x - x^m$  is concave on the interval  $[0, 1]$ .*

1700 *Proof.* To prove that  $f(x) = x - x^m$  is concave on  $[0, 1]$ , we show that its second derivative is  
 1701 non-positive on this interval.

1704 Compute the first derivative:

$$f'(x) = \frac{d}{dx}(x - x^m) = 1 - mx^{m-1}.$$

1709 Compute the second derivative:

$$f''(x) = \frac{d}{dx}(1 - mx^{m-1}) = -m(m-1)x^{m-2}.$$

1713 Observe that for all  $x \in [0, 1]$  and  $m \geq 2$ :  $m(m-1) > 0$  and  $x^{m-2} \geq 0$ .

1714 Therefore,

$$f''(x) = -m(m-1)x^{m-2} \leq 0 \quad \text{for all } x \in [0, 1].$$

1718 Hence,  $f(x)$  is concave on  $[0, 1]$ .  $\square$

1719 **Lemma H.2.** *Let  $\phi : [0, 1] \rightarrow \mathbb{R}$  be a concave function, and let  $F$  be the cumulative distribution  
 1720 function (CDF) of a random variable supported on  $[0, 1]$  with fixed mean  $\mu \in (0, 1)$ . Then the integral*

$$\int_0^1 \phi(F(x)) dx$$

1724 is maximized when  $F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 - \mu & \text{if } 0 \leq x < 1, \text{ i.e. the CDF of a Bernoulli distribution with} \\ 1 & \text{if } x \geq 1 \end{cases}$   
 1725 mean  $\mu$ .

1728 **Proof. Step 1: Rewrite the Mean Constraint**  
17291730 By the tail integration formula, the mean constraint for the random variable  $X$  with CDF  $F(x)$   
1731 supported on  $[0, 1]$  is:  
1732

1733 
$$\int_0^1 (1 - F(x)) dx = \mu.$$

1734 Rearranging this equation gives the integral of  $F(x)$ :  
1735

1736 
$$\int_0^1 F(x) dx = 1 - \mu. \quad (21)$$
  
1737

1738 **Step 2: Upper Bound the Integral**  
17391740 The function  $\phi : [0, 1] \rightarrow \mathbb{R}$  is concave. The CDF  $F(x)$  takes values in  $[0, 1]$  for  $x \in [0, 1]$ , so  
1741  $\phi(F(x))$  is well-defined. We can apply Jensen's inequality for integrals, which for a concave function  
1742  $\phi$  and an integrable function  $g(x)$  on an interval  $[a, b]$  states:  
1743

1744 
$$\frac{1}{b-a} \int_a^b \phi(g(x)) dx \leq \phi\left(\frac{1}{b-a} \int_a^b g(x) dx\right).$$
  
1745

1746 Plug in  $a = 0, b = 1, g(x) = F(x)$ . Jensen's inequality then becomes:  
1747

1748 
$$\int_0^1 \phi(F(x)) dx \leq \phi\left(\int_0^1 F(x) dx\right).$$
  
1749

1750 Substituting Equation (21) into the right hand side, we have:  
1751

1752 
$$\int_0^1 \phi(F(x)) dx \leq \phi(1 - \mu). \quad (22)$$
  
1753

1754 **Step 3: Verify  $F(x)$  achieves the upper bound**  
17551756 It is straightforward to verify that  $F(x)$  satisfies the mean constraint. Next, we will show that  $F(x)$   
1757 achieves the upper bound  $\phi(1 - \mu)$ . For  $x \in [0, 1], F(x) = 1 - \mu$ . Therefore, we have:  
1758

1759 
$$\int_0^1 \phi(F(x)) dx = \int_0^1 \phi(1 - \mu) dx = \phi(1 - \mu).$$
  
1760

1761 We have shown that  $F(x)$  satisfies the mean constraint and achieves the upper bound  $\phi(1 - \mu)$ , which  
1762 completes the proof.  $\square$   
17631764 The following proof adapts the single-token distortion-free analysis from (Dathathri et al., 2024) to our  
1765 single-sample setting. The core ideas and structure of the proof remain the same, with modifications  
1766 primarily to the notation.  
17671768 **Lemma H.3** (Single Sample Distortion-free). *Assume  $m = 2$ , for any data distribution  $p(\cdot)$ , it holds  
1769 that, under the randomness of the watermark key  $k$ , the watermarked data distribution is the same as  
1770 the original data distribution:*  
1771

1772 
$$\mathbb{P}_{k \sim \text{Unif}(\mathcal{K})}(\Gamma(p, k) = \tilde{\mathbf{x}}) = p(\tilde{\mathbf{x}}) \quad (23)$$
  
1773

1774 *Proof.* By definition of the watermarking mechanism with  $m = 2$ , for any sample  $\tilde{\mathbf{x}}$  we can write  
1775

1776 
$$\begin{aligned} \mathbb{P}_{k \sim \text{Unif}(\mathcal{K})}(\Gamma(p, k) = \tilde{\mathbf{x}}) \\ = \mathbb{E}_{k \sim \text{Unif}(\mathcal{K})} \left[ p(\tilde{\mathbf{x}}) \left( \sum_{\mathbf{x} \in \mathcal{X}: s_k(\mathbf{x}) = s_k(\tilde{\mathbf{x}})} p(\mathbf{x}) + 2 \sum_{\mathbf{x} \in \mathcal{X}: s_k(\mathbf{x}) < s_k(\tilde{\mathbf{x}})} p(\mathbf{x}) \right) \right] \\ = \mathbb{E}_{k \sim \text{Unif}(\mathcal{K})} \left[ p(\tilde{\mathbf{x}}) \left( \sum_{\mathbf{x} \in \mathcal{X}} p(\mathbf{x}) [\mathbf{1}_{s_k(\mathbf{x}) = s_k(\tilde{\mathbf{x}})} + 2\mathbf{1}_{s_k(\mathbf{x}) < s_k(\tilde{\mathbf{x}})}] \right) \right] \end{aligned}$$
  
1777  
1778  
1779  
1780  
1781

1782 where  $s_k(\mathbf{x})$  is the score function on sample  $\mathbf{x}$  with key  $k$ .  
 1783

1784 Next observe that for any fixed  $\mathbf{x}$ , under  $k \sim \text{Unif}(\mathcal{K})$  we have:  
 1785

$$\begin{aligned} & \mathbb{E}_{k \sim \text{Unif}(\mathcal{K})} [\mathbf{1}_{(s_k(\mathbf{x}), k) = s_k(\tilde{\mathbf{x}})} + 2\mathbf{1}_{s_k(\mathbf{x}) < s_k(\tilde{\mathbf{x}})}] \\ &= \mathbb{E}_{k \sim \text{Unif}(\mathcal{K})} [\mathbf{1}_{(s_k(\mathbf{x}), k) = s_k(\tilde{\mathbf{x}})}] + \mathbb{E}_{k \sim \text{Unif}(\mathcal{K})} [\mathbf{1}_{s_k(\mathbf{x}) < s_k(\tilde{\mathbf{x}})}] + \mathbb{E}_{k \sim \text{Unif}(\mathcal{K})} [\mathbf{1}_{s_k(\mathbf{x}) > s_k(\tilde{\mathbf{x}})}] \\ &= \mathbb{E}_{k \sim \text{Unif}(\mathcal{K})} [1] \\ &= 1 \end{aligned}$$

1790  
 1791 Substituting back, we obtain  
 1792

$$\mathbb{P}_{k \sim \text{Unif}(\mathcal{K})}(\Gamma(p, k) = \mathbf{x}) = p(\mathbf{x}) \cdot 1 = p(\mathbf{x}).$$

1793  
 1794 Thus, the watermarked distribution coincides with the original distribution, proving the claim.  $\square$   
 1795  
 1796  
 1797  
 1798  
 1799  
 1800  
 1801  
 1802  
 1803  
 1804  
 1805  
 1806  
 1807  
 1808  
 1809  
 1810  
 1811  
 1812  
 1813  
 1814  
 1815  
 1816  
 1817  
 1818  
 1819  
 1820  
 1821  
 1822  
 1823  
 1824  
 1825  
 1826  
 1827  
 1828  
 1829  
 1830  
 1831  
 1832  
 1833  
 1834  
 1835