Under review as a conference paper at ICLR 2026

MUSE: MODEL-AGNOSTIC TABULAR WATERMARK-
ING VIA MULTI-SAMPLE SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce MUSE, a novel watermarking paradigm for tabular generative mod-
els. Existing approaches often exploit DDIM invertibility to watermark tabular
diffusion models, but tabular diffusion models suffer from poor invertibility, leading
to degraded performance. To overcome this limitation, we leverage the computa-
tional efficiency of tabular generative models and propose a multi-sample selection
paradigm, where watermarks are embedded by generating multiple candidate
samples and selecting one according to a specialized scoring function. The key
advantages of MUSE include (1) Model-agnostic: compatible with any tabular
generative model that supports repeated sampling; (2) Flexible: offers flexible
designs to navigate the trade-off between generation quality, detectability, and
robustness; (3) Calibratable: theoretical analysis provides principled calibra-
tion of watermarking strength, ensuring minimal distortion to the original data
distribution. Extensive experiments on four datasets demonstrate that MUSE
substantially outperforms existing methods. Notably, it reduces the distortion
rates by 84 — 88% for fidelity metrics compared with the best performing base-
lines, while achieving 1.0 TPR@0.1%FPR detection rate. The code is available at
https://anonymous.4open.science/r/MUSE-ICLR-0856.

1 INTRODUCTION

The rapid development of tabular generative models (Kotelnikov et al., 2023; Gulati and Roysdon,
2024; Castellon et al., 2023; Zhang et al., 2024c; Shi et al., 2024; Zhang et al., 2024a) has significantly
advanced synthetic data generation capabilities for structured information. These breakthroughs
have enabled the creation of high-quality synthetic tables for applications in privacy preservation,
data augmentation, and missing value imputation (Zhang et al., 2024b; Hernandez et al., 2022;
Fonseca and Bacao, 2023; Assefa et al., 2020). However, this advancement concurrently raises
serious concerns about potential misuse, including data poisoning (Padhi et al., 2021) and financial
fraud (Cartella et al., 2021). To address these risks, watermarking has emerged as a pivotal technique.
By embedding imperceptible yet robust signatures into synthetic data, watermarking facilitates
traceability, ownership verification, and misuse detection (Liu et al., 2024).

Earlier works on tabular data watermarking utilize edit-based watermarking (Zheng et al., 2024; He
et al., 2024), embedding signals by modifying table values. However, this approach has a fundamental
limitation with tabular data: direct value alterations, especially in columns with discrete or categorical
data, can easily corrupt information or render entries invalid. For instance, such edits might introduce
non-existent categories (Gu et al., 2024; Lin et al., 2021) or push values across critical decision
boundaries (Ngo et al., 2024), significantly compromising data integrity. Recently, generative
watermarking has emerged as an alternative approach for tabular data, drawing from successful
techniques in diffusion models for images and videos (Wu et al., 2025; Yang et al., 2024; Wen et al.,
2023; Hu et al., 2025). This approach leverages the reversibility of DDIM samplers (Song et al.,
2020a) by initializing generation with patterned Gaussian noise and, during watermark detection,
assessing its correlation with the noise reconstructed through the inverse process. TabWak (Zhu
et al., 2025) applies this concept to tabular diffusion models (Zhang et al., 2024c; Kotelnikov et al.,
2023; Lee et al., 2023; Kim et al., 2022). Unlike edit-based watermarking, generative watermarking
maintains better generation quality since the watermark is embedded within noise patterns that closely
resemble Gaussian distributions, minimizing impact on the generated content.

https://anonymous.4open.science/r/MUSE-ICLR-0856

Under review as a conference paper at ICLR 2026

However, watermarking tabular diffusion mod- 100

els is significantly more challenging than for im- SEY g 10*
age and video diffusion models. This stems from g 2 10°
the substantially lower accuracy of DDIM in- < | 2 o
verse processes in tabular diffusion models, as .2 401 % 0
shown in Figure 1 (left). When using the same g 201 g .
Gaussian shading algorithm (Yang et al., 2024), = o 107

tabular modality exhibits the lowest reversibility Tabular Video Image Tabular Video Image
accuracy. This challenge arises because tabu-

lar diffusion models incorporate multiple addi- Figure 1: Left: Tabular diffusion models exhibit
tional algorithmic components that are difficult the Jowest inversion accuracy (bit accuracy) when
to reverse, such as quantile normalization (Ama- compared to video and image diffusion models.
ratunga and Cabrera, 2001) and Variational Au- Rjght: Tabular diffusion models require much
toencoders (VAEs) (Kingma and Welling, 2013) fewer generation GFLOPs than video and image
used in TabSyn (Zhang et al., 2024c). During diffusion models. Models used: TabSyn (Zhang
watermark detection, the entire data processing e al., 2024c) (tabular), Stable Diffusion (Rombach

pipeline must be inverted to recover the water- e al,, 2022; Blattmann et al., 2023) (image/video).
mark signal, but this process accumulates errors

as precisely reversing each step is often difficult or impossible. Key challenges in the inversion
process include: (1) inverting quantile normalization is inherently problematic as this transformation
is non-injective; (2) VAE decoder inversion relies on optimization methods without guarantees of per-
fect implementation. Due to limitations in tabular DDIM inversion accuracy, watermark detectability
becomes highly dependent on model implementation, severely restricting its application scope and
practical utility (see Section D for more details).

This paper introduces MUSE, a model-agnostic watermarking paradigm for tabular data that operates
without relying on the invertibility of diffusion models. A key insight enabling our approach is that
tabular data generation demands significantly less computation than image or video generation, as
shown in Figure | (right). This computational efficiency makes a multi-sample selection process
practical: MUSE leverages this by generating multiple candidate samples for each data row and
embedding the watermark by selecting one candidate based on a keyed watermark scoring function,
which is calculated using values from specific columns. We present MUSE as a general paradigm
and introduce two specific implementations that navigate the crucial trade-off between data fidelity
and watermark detectability/robustness: (1) Joint-Vector (JV) hashing, tailored for minimal distortion
(distribution-preserving), and (2) Per-Column (PC) hashing, designed for maximal robustness and
detectability. We ground this paradigm in rigorous theoretical analysis, providing a precise method to
calibrate detectability and establishing conditions for distortion-free watermarking. Validated across
diverse datasets, MUSE demonstrates high watermark detectability and strong robustness against
attacks while maintaining the underlying model’s generation quality.

Our Contributions. We summarize the main contributions of this paper as follows:

* We propose tabular watermarking via multi-sample selection (MUSE), a novel generative water-
marking paradigm for tabular data that completely avoids the inversion of generative and data
processing pipelines, ensuring broad compatibility with any tabular generative model.

* We demonstrate the flexibility of the MUSE paradigm, showing how different score function
designs enable a controllable trade-off between generation quality, detectability, and robustness.

* We provide theoretical analysis of MUSE, establishing its detectability for precise strength calibra-
tion and identifying the conditions for achieving distribution-preserving watermarking.

* Extensive experiments across multiple tabular datasets validate MUSE’s superior performance in
generation quality, watermark detectability, and robustness against various tabular-specific attacks.

2 PRELIMINARIES

Tabular Generative Models. A tabular dataset with N rows and M columns consists of i.7.d.
samples (x;); drawn from an unknown joint distribution pgu, (x), where each x; € R (or mixed-
type space) represents a data row with M features. A tabular generative model aims to learn a
parameterized distribution pg(X) & Py (X) to generate new realistic samples.

Under review as a conference paper at ICLR 2026

Unwatermarked Selected Value Seed Score
Samples

I
1| 9 |870]1st| 60 2,3) Watermarked Sample
11 79 |5th| 80 ion | 79 “0110] ,@_,argma"
Col. Selectlon’ Hash Funcnon Bernulli n@
128[3th| 90| §322 101111 @
8 [400[ath[50 (001011 @
.Watermark Key Ay

Figure 2: An overview of the MUSE watermark generation process. MUSE operates by generating
multiple samples and selecting the highest-scoring sample (ties are broken randomly). The selected
row is appended to the watermarked table, while others are discarded.

£ B \V]
N

Watermark for Tabular Generative Models. Tabular watermark involves two main functions. (1)
Generate: Given a secret watermark key k, this function produces a watermarked table. Similar
to standard generation, each row of this table is sampled i.i.d., but from a distribution p(x, k). (2)
Detect: Provided with a table and a specific key k, this function examines the table to determine if it
carries the watermark associated with that particular key.

Threat Model. We consider the following watermarking protocol between three parties: the tabular
data provider, the user, and the detector. (1) The tabular data provider shares a watermark key & and
certain metadata related to the data distribution (e.g., the maximum and minimum values of each
column) with the detector. (2) The user asks the tabular data provider to generate a table 7'. (3)
The user publishes a table 7”, which can either be an (edited version of the) original table T or an
independent table. (4) The detector determines whether the table 7" is watermarked or not.)

3 METHOD

In this section, we introduce MUSE, a general paradigm for watermarking tabular data generators. We
begin by outlining the paradigm’s high-level architecture for generation and detection (Section 3.1).
We then detail its core components: the scoring function (Section 3.2), which can be instantiated with
different designs to balance trade-offs between detectability and distortion.

3.1 WATERMARK GENERATION AND DETECTION PARADIGM

We define the overall generation and detection process of our MUSE method in this section. The
generation of each watermarked row can be decomposed into the following two steps:

Generation. The generation of each watermarked row is achieved through a two-phase process:

1. Sample Candidates. Generate a set of m candidate rows by ¢.7.d. sampling from the model’s
distribution p(x).

2. Select the Highest-Scoring Candidate. Apply a watermark scoring function sj(-) to each
candidate x; using watermark key & and select the highest-scoring candidate (ties are broken
randomly) as the watermarked row. We will detail the watermark scoring function in Section 3.2.

To produce a watermarked table with N rows, we repeat the above process [V times. In practice, the
selection procedure can be fully parallelized across the [N groups since each group contains 7.:.d.
samples. The watermark generation process is illustrated in Figure 2 and Algorithm 1.

Detection. The generation process naturally creates a statistical artifact. By consistently selecting
the highest-scoring sample, we ensure that a watermarked table will exhibit a significantly higher
average score than an unwatermarked one. To detect the watermark, we formalize this intuition as
follows: given a (watermarked or unwatermarked) table 7" consists of N rows: T := (x1,...,Xn),
we compute the detection statistic:

1 N
=+ D sk(xi). e
=1

A table is flagged as watermarked if its mean score S(T') surpasses a predefined threshold derived from
the expected score of non-watermarked data. The formal statistical test is detailed in Appendix F.4.

Under review as a conference paper at ICLR 2026

3.2 WATERMARK SCORING FUNCTION

Our watermark scoring function, s (-), has two components: a score generation design, described in
Section 3.2.1, and a column selection implementation, detailed in Section 3.2.2.

3.2.1 SCORE GENERATION DESIGNS

Let 7(x) be a selection function that selects a subset of columns from a sample x (we will detail the
design of the selection function in Section 3.2.2), with J being the set of selected column indices.
We present two designs for generating a score from this selection and the watermark key k.

* Joint-Vector (JV) Hashing: Hashes the entire vector of selected values as a concatenated vector.

h=H(x(x),k), st*(x)=f(h). ©)
* Per-Column (PC) Hashing: Hashes each selected column value independently then aggregates.
) 1
hi=H(xi, k) (i€J), s.0x) ==Y f(h). 3)
|‘7‘ ieJ

In both designs, f is a pseudorandom function (PRF) whose output bit follows a Bernoulli(0.5)
distribution. Intuitively, by placing equal probability mass on the two extreme values (0 and 1), this
distribution provides maximal separation between binary signals (watermarked vs. non-watermarked).
This intuition is rigorously established in Theorem 4.1.

Robustness and Distortion Trade-off. The choice between JV and PC hashing represents a fun-
damental trade-off between robustness against attacks and the preservation of the original data
distribution (low distortion). The JV design excels at minimizing distortion. By hashing a concate-
nated vector of column values, it operates in a vast input space, making hash collisions rare and thus
preserving the data’s statistical properties. However, this “all-or-nothing” approach is fragile; a single
modification to any of the selected columns can alter the entire hash, compromising the watermark
signal for that sample. In contrast, the PC design prioritizes robustness. It embeds the watermark
signal independently across multiple columns, ensuring that the overall signal can survive partial
data deletion or modification. This resilience comes at the cost of a higher potential for distortion, as
the smaller input space of individual columns can lead to more frequent hash collisions and a more
concentrated statistical bias. We empirically validate this trade-off in our experiments (Section 5).

3.2.2 COLUMN SELECTION IMPLEMENTATION

Adaptive Selection for JV Hashing. The selection strategy for Joint-Vector (JV) hashing must
address two critical vulnerabilities. First, the design’s “all-or-nothing” nature makes it fragile: any
modification to a selected value invalidates the entire watermark, which necessitates the use of a
sparse selection (a small number of columns) to minimize the attack surface. However, simply
choosing a fixed sparse set of columns creates a predictable target for adversaries, who could nullify
the watermark by altering just those few features. To overcome both challenges, we propose a strategy
that fulfils both requirements. This is achieved by selecting columns based on their quantile rank,
which measures a value’s position relative to the empirical distribution of the training data. For each
row x and each column index j, we compute its rank r; € [0, 1]:

ry = i)

Umax,j — Umin,j

where for a numerical column, v; equals the j-th column value of x: v; := x; and Vpin, j, Vmax,; are
pre-computed min and max values from the training data. For a categorical column, v; is its ordinal
index. Finally, for each sample x, we take its per-column ranks r;, sort them within the row, and
select the columns whose positions match a fixed quantile set Q.

Full Selection for PC Hashing. In contrast to the JV design, the Per-Column (PC) approach is
inherently robust, as it aggregates watermark signals embedded independently across each column.
This design ensures that modifications to a subset of columns do not corrupt the entire watermark.
The overall signal’s strength and resilience scale directly with the number of columns used. Therefore,
to maximize robustness, the ideal strategy is to select all available columns. For this design, we
configure 7(x) := x to simply use all features, setting the index set to 7 = {1,..., M}.

Under review as a conference paper at ICLR 2026

Remark 3.1 (Modification of All Columns). For datasets consisting of purely numerical columns, an
adversary may inject small perturbations across all entries simultaneously. To mitigate the sensitivity
of hashing to such noise, a preprocessing step f (e.g., quantization) can be applied prior to hashing,
ensuring that f(z) &~ f(x + €) for a small noise term €. See Appendix E.2 for a complete discussion.
Remark 3.2 (Watermark Security). JV hashing selects a sparse subset of columns based on a fixed
quantile set, which introduces a potential vulnerability: if the quantile set is leaked, an adversary
can identify the watermark-carrying columns and scrub the watermark. In contrast, PV hashing is
inherently more resilient since the watermark signal is spread across all columns. A simple way to
improve the security of JV hashing is by applying a keyed pseudorandom permutation (PRP) 7, to
the column indices before quantile selection (x — 74 (x)). Under this design, the watermark-carrying
columns are indexed by the secret key k, and identifying them becomes computationally equivalent
to breaking the underlying PRP. We further provide empirical evidence showing that recovering the
quantile set is non-trivial in practice; We refer the reader to Appendix E.3 for a complete discussion.

4 ANALYSIS

In this section, we provide theoretical analysis of the detectability and distribution-preserving proper-
ties of the MUSE paradigm.

4.1 CALIBRATING THE NUMBER OF REPEATED SAMPLES

Given the detection statistic Equation (1), we will show how the detectability of MUSE depends on
(1) the number of watermarked samples [V and (2) the number of repeated samples m.

Theorem 4.1 (Watermark Calibration Guarantees). Denote a watermarked table as Ty, and an
unwatermarked table as Tyhowm, each consisting of N rows. Let x ~ p(x) be a random vari-
able drawn from the data distribution, and let x1,...,Xy, be i.id. samples from p(x). De-
fine pnowm = Expx)[sk(X)] as the expected score of an unwatermarked sample, and define
Ham = Ex;np(x) [maxie[m] sk(xi)] as the expected score of a watermarked sample obtained via m
repeated samples. Suppose the scoring function satisfies si(-) € [0, 1], we have:

1. The False Positive Rate (FPR) of the watermark detection is upper bounded:

. m o _ 2
Pr (S(Taomem) > S(Tom)) < exp (—N (st sen)) .)

2. The RHS of the bound is minimized when sj(x) follows a Bernoulli(0.5) distribution.

3. Under this optimal distribution, let N > 8log(1/«), then to ensure the FPR does not exceed a
target threshold «, it suffices to set the number of repeated samples m as:

m = max <2, {1og0_5 (0.5 - \/’“Ogﬁ/“)ﬂ) . (©6)

Theorem 4.1 enables MUSE to calibrate the number of repeated — a—o0l
samples m to achieve a target false positive rate with theoretical - — a=0001
guarantees. This allows the method to embed just enough water- — 4=0.0001
marking signal to ensure the desired detectability. Intuitively, since

no redundant watermarking signal is embedded, the impact of water- &
marking on the generation quality is minimal. In Figure 3, we plot

3.0

m as a function of table size N for various target FPRs, based on 257

Equation (6) (omitting the ceiling operation for clarity). We observe \

that m quickly saturates as [V increases. For instance, to achieve a 201 ; ! ! !
0.01% FPR, m = 2 suffices when N > 300, and even for N = 100, 100 200 300 400 500

N

Figure 3: m vs. N under dif-
ferent «v values (smoothed).

m = 4 is enough. In the rest of the paper, MUSE’s m is set by
Equation (6) unless otherwise specified.

4.2 DISTRIBUTION-PRESERVATION

An effective watermarking algorithm must not compromise the quality of the generated data, a re-
quirement formalized in domains like image (Gunn et al., 2024) and text generation (Kuditipudi et al.,

Under review as a conference paper at ICLR 2026

Algorithm 1 MUSE Watermark Generation

1: Input: watermark key k, a generative model p(x), False Positive Rate o, number of target
watermarked samples N
2: Output: watermarked table T,
3. Compute the number of repeated samples m based on /N and « via Equation (6) > Calibration.
4: Getm - N i.i.d. samples from p(x) and divide them into N groups: (G;)¥,.
5: Initialize a list T,,,,, to store the watermarked table
6
7
8

: fori < 1to N do > Fully parallelizable.
X155 Xm < G
fort € {1,...,m} do
9: Select columns for x; with strategy in Section 3.2.2 > Column selection.
10: Compute the score for x; with strategy in Section 3.2.1 to get s, > Score generation.
11: end for
12: @< argmaxycry . my St > Selection of the highest-scoring sample.
13: Append x; to Ty,
14: end for
15: return 7,

2023). For tabular data generation, we adapt this requirement by demanding that the watermarking
process preserves the original data distribution, which we formalize as follows:

Definition 4.2 (Multi-Sample Distribution-Preservation). Denote the space of watermark keys as X
and the original data distribution as pga,(x). Let (X1, ..., X) be a sequence of N samples generated
consecutively by a watermarking algorithm I" using the same key k& ~ Unif (XC). The algorithm T is
multi-sample distribution-preserving if for any N > 0, it satisfies:

N

P tnit(x) (X1, - -, XN) = deam(ii)~ (7)

i=1
Our algorithm attains the multi-sample distribution-preserving property through a mechanism we
call Repeated Column Masking. The key idea is to cache the history of column values that have
previously been selected for watermark embedding. When processing a new sample, if its candidate
column value has already been used for watermarking, the algorithm skips embedding on that sample.
This safeguard prevents systematic bias from repeated column reuse across samples. The design is
inspired by the repeated key masking technique in LLM watermarking, which ensures sequence-level
distribution-preserving guarantees (Hu et al., 2023; Dathathri et al., 2024). Formally, we have:

Theorem 4.3. Let m = 2. The watermarking process in Algorithm 1, augmented with repeated
column masking, satisfies multi-sample distribution-preserving as defined in Definition 4.2.

Remark 4.4. While the repeated column masking mechanism ensures distribution-preserving, it
introduces a practical trade-off. By design, this mechanism chooses to skip the watermarking process
when repeated column values are detected, which in turn weakens the watermark’s detectability. We
empirically validate this trade-off in our ablation studies (Section 5.4).

5 EXPERIMENTS

In this section, we provide a comprehensive empirical evaluation of MUSE. We aim to answer the
following research questions. Q1: Detectability v.s. Distribution Preservation (Section 5.2): Can
MUSE achieve strong detectability while preserving the distribution of the generated data? Q2:
Robustness (Section 5.3): How resilient is the watermark to a range of post-processing attacks, such
as row/column deletion or value perturbation? Q3: Component-wise Analysis (Section 5.4): How
does MUSE perform under different design choices of its components?

5.1 SETUP

Datasets. We consider four real-world tabular datasets containing both numerical and categorical
attributes: Adult, Default, Shoppers, and Beijing and two datasets with only numerical
attributes: California and Letter. Detailed dataset statistics are provided in Appendix F.2.

Evaluation Protocols. (1) Detectability: To evaluate the detectability of the watermark, we report
the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, and the True

Under review as a conference paper at ICLR 2026

Table 1: Watermark generation quality and detectability,

indicates best performance,

indicates second-best performance. 71 indicates higher is better, | indicates lower is better. The
performance gain is computed with respect to the best performing baseline.

Watermark Generation Quality

Watermark Detectability

Dataset Method Num. Training Rows 100 500
Marg. (1) Corr. (1) C2ST (1) MLE Gap (|) | AUC T@0.1%F AUC T@0.1%F
w/o WM 0.994 0.984 0.996 0.017 - - - -
TR 0.919 0.870 0.676 0.046 0.590 0.004 0.774 0.171
GS 0.751 0.619 0.058 0.084 1.000 1.000 1.000 1.000
Adult TabWak 0.935 0.885 0.769 0.048 0.844 0.089 0.990 0.592
TabWak* 0.933 0.879 0.713 0.085 0.999 0.942 1.000 1.000
MUSE-JV 0979 +74.6%) 0.963 +78.8%) 0.883 +50.2%) 0.017 (+63.0%) | 1.000 1.000 1.000 1.000
MUSE-PC 0.953 +30.5%) 0.925 (+40.4%) 0.790 +9.3%) 0.018 +60.9%) | 1.000 1.000 1.000 1.000
w/o WM 0.990 0.934 0.979 0.000 - - - -
TR 0.895 0.888 0.564 0.161 0.579 0.001 0.848 0.034
GS 0.701 0.678 0.059 0.182 1.000 1.000 1.000 1.000
Default TabWak 0911 0.902 0.568 0.156 0.896 0.071 0.997 0.611
TabWak* 0.906 0.894 0.550 0.176 0.965 0.218 1.000 0.995
MUSE-JV 0983 +91.1%) 0.925 +71.9%) 0.963 +96.1%) 0.002 +98.7%) | 1.000 1.000 1.000 1.000
MUSE-PC 0.960 +62.0%) 0.920 +56.3%) 0.866 (+72.5%) 0.003 +98.1%) | 1.000 1.000 1.000 1.000
w/o WM 0.985 0.974 0.974 0.017 - - - -
TR 0.888 0.880 0.501 0.077 0.575 0.001 0.830 0.058
GS 0.729 0.688 0.061 0.154 1.000 1.000 1.000 1.000
Shoppers TabWak 0.903 0.886 0.548 0.132 0.860 0.106 0.990 0.353
TabWak* 0.897 0.879 0.525 0.384 0.742 0.002 0.981 0.185
MUSE-JV 0982 +96.3%) 0.974 +100.0%) 0.950 +94.4%) 0.015 +80.5%) | 1.000 1.000 1.000 1.000
MUSE-PC 0.962 ¢+72.0%) 0.947 +69.3%) 0.871 +75.8%) 0.025 +67.5%) | 1.000 1.000 1.000 1.000
w/o WM 0.977 0.958 0.934 0.199 - - - -
TR 0.914 0.873 0.734 0.396 0.577 0.000 0.548 0.007
GS 0.656 0.529 0.097 0.715 1.000 1.000 1.000 1.000
Beijing TabWak 0.923 0.871 0.792 0.375 0.925 0.096 0.999 0.978
TabWak* 0.917 0.860 0.761 0.403 0.996 0.734 1.000 1.000
MUSE-JV 0972 +90.7%) 0.955 +96.5%) 0.926 +94.4%) 0.209 (+44.3%) | 1.000 1.000 1.000 1.000
MUSE-PC 0.963 +74.1%) 0.943 (+82.4%) 0.898 (+74.6%) 0.213 +43.2%) | 1.000 1.000 1.000 1.000
Adult Default Shoppers " Beijing
& *
12 W%g 16V Agg 12 VA 14 i%A&
= = = u = 8 =
0 * = i z o .. [+
<, & J‘ e o 5 10 o ‘f.‘ o °
= =] % A7 %10
= |2V 5w e o = %
6 6
’ ° 4 ° me 4 o . °© o
0.75 0.80 0.85 0.90 0.60 0.65 0.70 0.75 0.800 0.825 0.850 0.875 0.900 0.925 0.75. 0.80 0.85 0.90 0.95
Data Fidelity (1) Data Fidelity (1) Data Fidelity (1) Data Fidelity (1)
o m=2 O m=6 8 m=10 v om=14 O MUSE-PC @ MUSE-JV
o m=4 & m=8 A m=12 ® m=16

Figure 4: The tradeoff between average z-statistic and data fidelity (computed as average of Marg.,
Corr., C2ST and MLE) under different number of repeated sample m.

Positive Rate when the False Positive Rate is at 0.1%, denoted as TPR@0.1%FPR. (2) Distribution
Preservation: To evaluate the distribution-preserving ability of the watermarked data, we follow
standard fidelity and utility metrics used in tabular data generation (Zhang et al., 2024c; Kotelnikov
et al., 2023): we report Marginal distribution (Marg.), Pair-wise column correlation (Corr.), Classifier-
Two-Sample-Test (C2ST), and Machine Learning Efficiency (MLE). For MLE, we report the gap
between the downstream task performance of the generated data and the real test set (MLE Gap).
We refer the readers to Section F.3 for a more detailed definition of each evaluation metric. (3)
Robustness: We evaluate the robustness of the watermarked data against five representative post-
processing attacks. In addition, we also consider an adaptive adversary who tries to reverse-engineer
the watermark scheme. Detailed description will be presented in Section 5.3.

Baselines and Implementation Details. We compare our method with TabWak (Zhu et al., 2025)
and its improved variant TabWak*, the only existing generative watermarking approach for tabular
data, using their official implementations. We also include two image watermarking methods,
TreeRing (Wen et al., 2023) and Gaussian Shading (Yang et al., 2024), as auxiliary baselines (see
Appendix E.5 for detailed implementation). For completeness, we also include two edit-based
methods: TabularMark (Zheng et al., 2024) and WGTD (He et al., 2024), with detailed results in
Section C.2. All experiments use TabSyn (Zhang et al., 2024c) as the tabular generative model
trained with the official codebase. Notably, the official TabWak implementation bypasses quantile

Under review as a conference paper at ICLR 2026

Shuffle Alteration Gaussian Cell Deletion Row Deletion Column Deletion

LO0{d—A_AA 4 1 0 1.00 1.00 1.00 1.00

<

oz 0.75 0.75 A 0.75 . 0.75 0.75 0.75

[y

=) -

= 0.50 0.50 0.50 - 050 0.50 0.50 A\

=

Q

E 0.25 0.25 0.25 0.25 0.25 \ 0.25 L

= \\
0.00 0.00 0.00 0.00 < 0.00 0 0.00

0.00.20.40.6 0.8 1.0 0.00.20.40.60.81.0 0.00.20.40.6 0.8 1.0 0.00.20.40.60.81.0 0.00.20.40.60.81.0 0.00.20.40.60.81.0
Attack Strength Attack Strength Attack Strength Attack Strength Attack Strength Attack Strength

MUSE-JV —4— MUSE-PC TabWak —A— TabWak*

Figure 5: Detection performance of watermarking methods against different types of tabular data
attacks across varying attack intensities. The results are averaged over all datasets.

normalization inversion, assuming access to ground-truth data unavailable at detection time, which
may favor its performance (see Section D.2 for more discussion). Generation quality is evaluated
across ten repetitions, and we report the averaged results.

5.2 DETECTABILITY AND DISTRIBUTION PRESERVATION

We address the first question: whether the watermarking method achieves high watermark detectability
while introducing minimal distortion to the generated data. Based on experiments results in Table 1,
our obervations are summarized as follows:

(1) Regarding generation quality, both MUSE variants consistently outperform the baselines across
all datasets. The MUSE-JV variant is particularly effective, reducing distortion rates on fidelity
metrics (Marg., Corr., C2ST) by 84 — 88% compared to the best performing baselines. In contrast,
all inversion-based methods suffer from significant data distortion. We attribute this to the error
accumulation inherent in their recovery process: to ensure a watermark can be detected after a noisy
inversion, the initial signal must be excessively strong, which inherently leads to large distortion. (2)
In terms of detectability, both variants of MUSE achieve perfect detection performance across all
datasets, as measured by both AUC and T@0.1%F. While GS also achieves strong detection scores,
this comes at the cost of significantly higher distortion across all fidelity metrics. (3) The JV variant
achieves better fidelity metrics than the PC variant. We will show in the next section that the PC
variant is more robust to post-processing attacks. In Figure 4, we visualize the tradeoff between
detectability (z-stat) and data fidelity (computed as the average of Marg., Corr., C2ST, and MLE).
Consistent with the theoretical analysis in Theorem 4.1, increasing m in both MUSE variants leads to
stronger detectability but degrades data fidelity. The results also demonstrate that, for a fixed m, PC
hashing generally yields higher detectability than JV-hashing (with the exception of the Shoppers
dataset at m € {2,4}), albeit at the cost of lower data fidelity. This empirically validates the design
principles behind these two hashing strategies.

5.3 ROBUSTNESS AGAINST ATTACKS

Post-processing Attacks. We evaluate robustness against six common transformations in tabular
data: row shuffling, row deletion, column deletion, cell deletion, value alteration, and Gaussian
perturbation. Attacks are applied at perturbation levels from 0.0 to 1.0 in 0.2 increments. Deletion-
based attacks replace a fraction of rows, columns, or cells with unwatermarked samples from the
same generative model. Value alteration perturbs numerical entries by multiplying them with scalars
from (0.8, 1.2), while row shuffling permutes a subset of rows. For the Gaussian perturbation attack,
each numeric value is perturbed by zero-mean noise whose standard deviation is the perturbation level
times the magnitude of that value. We benchmark the detectability of MUSE-JV and MUSE-PC
against TabWak and TabWak* on all mixed-type datasets (IN=500, m=2), and additionally assess
the robustness of MUSE-PC under Gaussian perturbation on the two numerical-only datasets. As
shown in Figure 5 and Appendix E.2, MUSE-JV matches or surpasses TabWak and TabWak* in five
of six post-processing attacks, while the PC variant achieves the strongest robustness across all
settings. The superior resilience of the PC design, contrasted with the higher fidelity of the JV design,
illustrates the fundamental trade-off between robustness and distortion. The capability to select the
desired point on the tradeoff spectrum underscores the inherent flexibility of our framework.

Adaptive Attacks. We assess the robustness of MUSE against adaptive adversaries attempting to
reverse-engineer the watermark. Specifically, we focus on spoofing attacks (Sadasivan et al., 2023),

Under review as a conference paper at ICLR 2026

Table 3: Component-wise ablation study of MUSE. All experiments are conducted on the Adult
dataset (with 15 columns). For detectability, we report the z-statistic (defined in Section F.4). Each
color block indicates a different component of the method. 1 indicates higher is better.

Hashing Model PRFE. Mask Num. Col. z-stat.t Marg.t Corr.f C2ST?T
v TabSyn Bernoulli No 3 7.348 0.979 0.963 0.883
v TabDAR Bernoulli No 3 7.270 0977 0958 0.880
A% DP-TBART Bernoulli No 3 7.544 0.951 0.931 0.759
v TabSyn Bernoulli No 3 7.348 0979 0963 0.883
A% TabSyn Uniform No 3 5.012 0.964 0.940 0.808
PC TabSyn Bernoulli No 15 20.001 0953 0925 0.790
PC TabSyn Uniform No 15 -11.164 0937 0912 0.788
v TabSyn Bernoulli No 3 7.348 0.979 0.963 0.883
v TabSyn Bernoulli ~ Yes 3 4.819 0.985 0973 0.940
PC TabSyn Bernoulli No 3 16.505 0.958 0.937 0.826
PC TabSyn Bernoulli Yes 7 19.998 0.950 0.929 0.797
PC TabSyn Bernoulli No 15 20.001 0.953 0.925 0.790

Marg. Corr. C2sT Adult Default

MUSE-PC MUSE-PC MUSE-PC

] — MUSE-JV 30 — MUSE-JV 1 —MUsEV
o975 {E——3—4—3 u»s}-i\H\i n.o«i‘—%\{/~ T

0.950 A

z-statistic
W
3

0.8]
0.925 4 — MUSE-PC 090 1 nusE-pC ././’Xa—**—*
1925 1 — MUSE-IV — MUSE-JV ol | |

T T T T T T T T T T T T T T T

T T T T
Shoppers Beijing

0.015 MLE Lot AUC Lot TPR@0.1%FPR g0 husere [s
MUSE-PC MUSE-PC MUSE-PC . MUSE-) SE-)
— MUSE-JV — MUSE-JV — MUSEJV Z 0] |
0.910 i I i 3 S /'/
1.00 4 1.00 & 104 1/
0

0.905

z-statistic

T T T T T T T T
0 1000 2000 3000 0 1000 2000 3000
N -

™ 0.99

Figure 7: Impact of the number of

Figure 6: Sensitivity results for different hash families. Error Watermarked rows N on detectabil-
bars denote standard deviation over the key space. MUSE ity, which increases monotonically as

remains insensitive to both hash functions and key space. more rows are watermarked.
where the attacker’s goal is to produce sam- Table 2: Adaptive attack results.
ples that can be falsely claimed as water-

marked, without knowing the secret keys 100 Rows 500 Rows

of the watermark. Instead of develop- Dataset AUC T@0.1%F AUC T@0.1%F
ing bespoke, scheme-specific spoofing at- 5 0465 001 0566 0.02
tacks (Jovan0v1c et al., 2024), we adopt Default 0.599 0.01 0.708 0.02

a general distillation-based spoofing frame- Shoppers 0.683 0.03 0.866 0.41
work (Sander et al., 2024; Gu et al., 2023): Beijing 0.470 0.00 0.581 0.05
an adversary trains a strong generative model
(e.g., TabSyn) directly on the watermarked data, attempting to absorb and reproduce its statistical
structure. The spoofing attack is successful if the generated samples from the trained model are
detected as watermarked. The results in Table 2 demonstrate that the adversarial model largely fails
to replicate the watermark. On three of the four datasets (ARdult, Default, and Beijing), its
generated output is statistically indistinguishable from clean data (AUC = 0.5 and T@0.1%F = 0.00).
While a faint signal is detected on the Shoppers dataset, the watermark is severely degraded. This
failure of a powerful generative model to passively learn the watermark’s patterns provides strong
evidence for MUSE’s resilience against reverse-engineering attacks.

5.4 ABLATION STUDY AND FURTHER ANALYSIS

We perform a component-wise ablation to evaluate the contribution of each design choice in our
watermarking framework. All experiments are conducted on the Adult dataset, and we generate
watermarked tables with N = 100 rows unless otherwise noted. For detectability, we report the

Under review as a conference paper at ICLR 2026

z-statistic, which quantifies how many standard deviations the observed detection score deviates from
its null expectation (no watermark). The exact formulas for JV and PC are given in Section F.4.

Impact of Score Function. We compare two scoring distributions: (1) a Bernoulli distribution
with mean 0.5, and (2) a uniform distribution over [0, 1]. For both the JV and PC hashing designs,
the Bernoulli score consistently achieves superior detectability, as shown in Table 3. This result is
consistent with our theoretical analysis in Lemma G.2, which identifies Bernoulli(0.5) as the optimal
scoring distribution for our detection formulation.

Impact of the Number of Selected Columns. For the PC design, the number of selected columns
presents a trade-off between detectability and data quality. As shown in Table 3, using more columns
boosts detectability by strengthening the aggregated watermark signal. However, this also raises the
potential for distortion, as more frequent hash collisions on small column value spaces can introduce
a concentrated statistical bias.

Impact of Repeated Column Masking. The repeated column masking mechanism is designed to
enforce the formal distribution-preserving property of our watermark, thereby maintaining high data
quality. To quantify its impact, we ablate this component for both our JV and PC designs. As shown
in Table 3, enabling masking improves data fidelity at the cost of a reduction in detectability.

Model-Agnostic Applicability. While our main experiments use a diffusion model (Zhang et al.,
2024c), MUSE is a model-agnostic framework. To validate this, we apply it to two other diverse
generative paradigms: an autoregressive model (DP-TBART (Castellon et al., 2023)) and a masked
generative model (TabDAR (Zhang et al., 2024a)). As shown in Table 3, MUSE consistently achieves
high detectability and data fidelity across all three model families, confirming its broad applicability.

Computation Time. We compare the effective
watermarking time (generation + detection) of GS
MUSE with baselines that rely on DDIM inver- TR
sion. We generate 10K watermarked rows of the TabWak Detection
Adult dataset. As shown in Figure 8, MUSE Tabwak* |
achieves significantly lower detection time by MUSE
avoiding the costly inversion process. Notably, 0 20 40 60 80 100
its generation time is also lower than that of the Time (5)

baselines, despite using multi-sample generation Figure 8: Watermark generation and detection
(m = 2). This efficiency arises from MUSE’s time of MUSE and inversion-based baselines.
compatibility with fast score-based diffusion mod-

els (Zhang et al., 2024c; Karras et al., 2022), which require only 50 sampling steps. Conversely,
the inversion-based baselines must use a much slower 1,000-step process for both generation and
detection (Zhu et al., 2025).

1
B Generation

Sensitivity analysis on hash function and key. To ensure our method is not reliant on specific
implementation choices, we conducted a systematic sensitivity analysis on the Adult dataset
(N = 500, m = 2). We evaluated MUSE across five distinct hash families available in the Python
hashlib library: SHA-256, SHA3-256, BLAKE2s, SHAKE-256, and MDS5. Additionally, to assess
the impact of key space, we repeated the experiments 13 times for each hash family using randomly
sampled keys with bit-lengths ranging from 32 to 128 bits. We measured both detectability (AUC,
TPR@0.1%FPR) and data fidelity (Marg., Corr., C2ST, MLE). Figure 6 shows that MUSE is highly
robust: detectability remains perfect (AUC=1.0) across all configurations, and fidelity scores exhibit
negligible variance (standard deviation ~ 0.01) across the different keys. This confirms that the
watermark’s efficacy is agnostic to the underlying hash function and secret key space.

6 CONCLUSION

We propose MUSE, a model-agnostic watermarking method that embeds signals via multi-sample
selection, eliminating the need for inversion. MUSE achieves strong detectability with minimal
distribution shift and scales across diverse generative models. Extensive experiments demonstrate
its superiority over existing methods in both generation quality and watermark detectability. As
synthetic tabular data becomes increasingly adopted in high-stakes domains, MUSE offers a practical
and generalizable safeguard for data provenance, ownership verification, and misuse detection. We
hope this work inspires further research into trustworthy and traceable synthetic data generation.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Scott Aaronson and Hendrik Kirchner. Watermarking gpt outputs. https://www.
scottaaronson.com/talks/watermark.ppt, 2022. Presentation.

Dhammika Amaratunga and Javier Cabrera. Analysis of data from viral dna microchips. Jour-
nal of the American Statistical Association, 96:1161 — 1170, 2001. URL https://api.
semanticscholar.org/CorpusID:181541009.

Samuel A Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E Tillman, Prashant Reddy, and
Manuela Veloso. Generating synthetic data in finance: opportunities, challenges and pitfalls. In
Proceedings of the First ACM International Conference on Al in Finance, pages 1-8, 2020.

Dara Bahri and John Wieting. A watermark for black-box language models. arXiv preprint
arXiv:2410.02099, 2024.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Francesco Cartella, Orlando Anunciacao, Yuki Funabiki, Daisuke Yamaguchi, Toru Akishita, and
Olivier Elshocht. Adversarial attacks for tabular data: Application to fraud detection and imbal-
anced data. arXiv preprint arXiv:2101.08030, 2021.

Rodrigo Castellon, Achintya Gopal, Brian Bloniarz, and David Rosenberg. Dp-tbart: A transformer-
based autoregressive model for differentially private tabular data generation. arXiv preprint
arXiv:2307.10430, 2023.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, pages 1125-1139. PMLR, 2024.

Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl,
Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, Jamie Hayes, Nidhi
Vyas, Majd Al Merey, Jonah Brown-Cohen, Rudy Bunel, Borja Balle, Taylan Cemgil, Zahra
Ahmed, Kitty Stacpoole, Ilia Shumailov, Ciprian Baetu, Sven Gowal, Demis Hassabis, and
Pushmeet Kohli. Scalable watermarking for identifying large language model outputs. Nature,
634(8035):818-823, Oct 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-08025-4. URL
https://doi.org/10.1038/s41586-024-08025-4.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780-8794, 2021.

Joao Fonseca and Fernando Bacao. Tabular and latent space synthetic data generation: a literature
review. Journal of Big Data, 10(1):115, 2023.

Eva Giboulot and Teddy Furon. Watermax: breaking the 1lm watermark detectability-robustness-
quality trade-off. arXiv preprint arXiv:2403.04808, 2024.

Bochao Gu, Hengzhi He, and Guang Cheng. Watermarking generative categorical data. arXiv
preprint arXiv:2411.10898, 2024.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of water-
marks for language models. arXiv preprint arXiv:2312.04469, 2023.

Manbir Gulati and Paul Roysdon. Tabmt: Generating tabular data with masked transformers.
Advances in Neural Information Processing Systems, 36, 2024.

Sam Gunn, Xuandong Zhao, and Dawn Song. An undetectable watermark for generative image
models. arXiv preprint arXiv:2410.07369, 2024.

Hengzhi He, Peiyu Yu, Junpeng Ren, Ying Nian Wu, and Guang Cheng. Watermarking generative
tabular data. arXiv preprint arXiv:2405.14018, 2024.

Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic data
generation for tabular health records: A systematic review. Neurocomputing, 493:28-45, 2022.

11

https://www.scottaaronson.com/talks/watermark.ppt
https://www.scottaaronson.com/talks/watermark.ppt
https://api.semanticscholar.org/CorpusID:18154109
https://api.semanticscholar.org/CorpusID:18154109
https://doi.org/10.1038/s41586-024-08025-4

Under review as a conference paper at ICLR 2026

Seongmin Hong, Kyeonghyun Lee, Suh Yoon Jeon, Hyewon Bae, and Se Young Chun. On exact
inversion of dpm-solvers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7069-7078, 2024.

Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, and Tianwei Zhang. Videoshield:
Regulating diffusion-based video generation models via watermarking. arXiv preprint
arXiv:2501.14195, 2025.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbiased
watermark for large language models. arXiv preprint arXiv:2310.10669, 2023.

Huayang Huang, Yu Wu, and Qian Wang. Robin: Robust and invisible watermarks for diffusion
models with adversarial optimization. Advances in Neural Information Processing Systems, 37:
3937-3963, 2024.

Nikola Jovanovi¢, Robin Staab, and Martin Vechev. Watermark stealing in large language models.
arXiv preprint arXiv:2402.19361, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565-26577,
2022.

Jayoung Kim, Chaejeong Lee, and Noseong Park. Stasy: Score-based tabular data synthesis. arXiv
preprint arXiv:2210.04018, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pages
17061-17084. PMLR, 2023a.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pages
17061-17084. PMLR, 2023b.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International Conference on Machine Learning, pages
17564-17579. PMLR, 2023.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

Chaejeong Lee, Jayoung Kim, and Noseong Park. Codi: Co-evolving contrastive diffusion models
for mixed-type tabular synthesis. In International Conference on Machine Learning, pages 18940—
18956. PMLR, 2023.

Chia-Chen Lin, Thai Son Nguyen, and Chinchen Chang. Lrw-crdb: Lossless robust watermarking
scheme for categorical relational databases. Symmetry, 13:2191, 2021. URL https://api.
semanticscholar.org/CorpusID:244412746.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust watermark
for large language models. ArXiv, abs/2310.06356, 2023.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen, Irwin King, Hui
Xiong, and Philip Yu. A survey of text watermarking in the era of large language models. ACM
Computing Surveys, 57(2):1-36, 2024.

Dung Daniel Ngo, Daniel Scott, Saheed Obitayo, Vamsi K Potluru, and Manuela Veloso. Adaptive
and robust watermark for generative tabular data. arXiv preprint arXiv:2409.14700, 2024.

Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh, Pierre Dognin, Jerret Ross,
Ravi Nair, and Erik Altman. Tabular transformers for modeling multivariate time series. In ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3565-3569. IEEE, 2021.

12

https://api.semanticscholar.org/CorpusID:244412746
https://api.semanticscholar.org/CorpusID:244412746

Under review as a conference paper at ICLR 2026

Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuandong Zhao, Yijian Lu, Binglin Zhou, Shuliang
Liu, Xuming Hu, Lijie Wen, et al. Markllm: An open-source toolkit for Ilm watermarking. arXiv
preprint arXiv:2405.10051, 2024.

Zhihong Pan, Riccardo Gherardi, Xiufeng Xie, and Stephen Huang. Effective real image editing with
accelerated iterative diffusion inversion. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 15912-15921, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 10684—10695, 2022.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023.

Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, and Teddy Furon. Watermarking
makes language models radioactive. Advances in Neural Information Processing Systems, 37:
21079-21113, 2024.

Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabdiff:
a unified diffusion model for multi-modal tabular data generation. In NeurIPS 2024 Third Table
Representation Learning Workshop, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020b.

Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-ring watermarks: Fin-
gerprints for diffusion images that are invisible and robust. arXiv preprint arXiv:2305.20030,
2023.

Wikipedia contributors. Quantile normalization — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/Quantile_normalization,2025. Accessed: 2025-05-
11.

Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan, Lidia Sam Chao, and Derek Fai Wong. A
survey on llm-generated text detection: Necessity, methods, and future directions. Computational
Linguistics, pages 1-66, 2025.

Zijin Yang, Kai Zeng, Kejiang Chen, Han Fang, Weiming Zhang, and Nenghai Yu. Gaussian shading:
Provable performance-lossless image watermarking for diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12162-12171, 2024.

Hengrui Zhang, Liancheng Fang, Qitian Wu, and Philip S Yu. Diffusion-nested auto-regressive
synthesis of heterogeneous tabular data. arXiv preprint arXiv:2410.21523, 2024a.

Hengrui Zhang, Liancheng Fang, and Philip S Yu. Unleashing the potential of diffusion models for
incomplete data imputation. arXiv preprint arXiv:2405.20690, 2024b.

Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Chris-
tos Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with
score-based diffusion in latent space. In The twelfth International Conference on Learning Repre-
sentations, 2024c.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for
ai-generated text. arXiv preprint arXiv:2306.17439, 2023a.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for
ai-generated text. arXiv preprint arXiv:2306.17439, 2023b.

13

https://en.wikipedia.org/wiki/Quantile_normalization
https://en.wikipedia.org/wiki/Quantile_normalization

Under review as a conference paper at ICLR 2026

Yihao Zheng, Haocheng Xia, Junyuan Pang, Jinfei Liu, Kui Ren, Lingyang Chu, Yang Cao, and
Li Xiong. Tabularmark: Watermarking tabular datasets for machine learning. In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications Security, pages 3570-3584,
2024.

Chaoyi Zhu, Jiayi Tang, Jeroen M. Galjaard, Pin-Yu Chen, Robert Birke, Cornelis Bos, and Lydia Y.
Chen. Tabwak: A watermark for tabular diffusion models. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=71purdy8gs.

14

https://openreview.net/forum?id=71pur4y8gs
https://openreview.net/forum?id=71pur4y8gs

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A The Use of Large Language Models (LLMs)
B Related Work

C Additional Experiments Results

C.1 Onmitted Results on Robustness
C.2 Onmitted Results on Edit-based Watermarking

C.3 Visualization of statistical signal

D Further Analysis of the Inversion-Based Watermarking

D.1 Pipeline of Inversion-based Watermarking
D.2 Inversion of (Inverse) Quantile Transformation
D.3 Inversionof VAEdecoder.
D4 DDIMInversion.

D.5 Error Accumulation

E Further Analysis on Robustness

E.1 Column permutation attack
E.2 Global perturbation
E.3 Watermark stealing

F Experimental Details

F.1 Hardware Specification
F.2 Dataset Statistics
F3 Fidelity Metrics,
F3.1 Marginal Distribution
F3.2 Correlation
F.3.3 Classifier Two-Sample Test (C2ST)
F.3.4 Machine Learning Efficiency MLE)
F4 Watermark Detection Metrics

F.5 Implementation Details of Image Watermark Baselines

G Ommited Proofs in Section 3

H Technical Lemmas

15

16

16

17
17
17
19

19
20
20
20
20
21

22
22
22
23

25
25
25
25
26
26
27
27
27
28

29

32

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we utilized Large Language Model (LLM) as a general-purpose
assistive tool. The primary applications of the LLM were for polishing the writing, including
improving grammar, clarity, and conciseness of the text. Additionally, the LLM was used to generate
boilerplate code for setting up and running experiments, which helped accelerate the implementation
process.

The LLM did not contribute to the core research ideation, the development of the proposed method-
ology, the analysis of the results, or the scientific conclusions presented in this paper. All content,
including the final text and experimental code, was reviewed, edited, and validated by the authors,
who take full responsibility for the accuracy and integrity of this work.

B RELATED WORK

Generative Watermarking. Generative watermarking embeds watermark signals during the gener-
ation process, typically by manipulating the generation randomness through pseudorandom seeds.
This approach has proven effective and efficient for watermarking in image, video, and large language
model (LLM) generation. In image and video generation, where diffusion-based models are the
de facto standard, watermarking methods inject structured signals into the noise vector in latent
space (Wen et al., 2023; Yang et al., 2024; Huang et al., 2024). Detection involves inverting the
diffusion sampling process (Dhariwal and Nichol, 2021; Hong et al., 2024; Pan et al., 2023) to recover
the original noise vector and verify the presence of the embedded watermark. For LLMs, generative
watermarking methods fall into two categories: (1) Watermarking during logits generation, which
embeds signals by manipulating the model’s output logits distribution (Kirchenbauer et al., 2023a;
Zhao et al., 2023a; Hu et al., 2023; Dathathri et al., 2024; Giboulot and Furon, 2024; Liu et al.,
2023); and (2) Watermarking during token sampling, which preserves the logits distribution but
replaces the stochastic token sampling process (e.g., multinomial sampling) with a pseudorandom
procedure seeded for watermarking (Aaronson and Kirchner, 2022; Kuditipudi et al., 2023; Christ
et al., 2024). In this sense, sampling-based watermarking is conceptually similar to inversion-based
watermarking used in diffusion models. We refer the reader to (Liu et al., 2024; Pan et al., 2024) for
a comprehensive survey of watermarking for LLMs. Bahri and Wieting (2024), SynthID (Dathathri
et al., 2024), and WaterMax (Giboulot and Furon, 2024) similarly explore watermarking via repeated
candidate sampling. However, the distinct nature of tabular data necessitates a fundamentally differ-
ent technical approach compared to text. First, the generative structures differ: text watermarking
operates on a conditional 1D distribution (next-token-prediction), relying on a prefix window of
context for hashing (Kirchenbauer et al., 2023b). In contrast, tabular models generate full rows
i.i.d. from a multi-dimensional unconditional distribution (Kotelnikov et al., 2023; Zhang et al.,
2024c;a), lacking the sequential history required for prefix-based hashing. While context-independent
methods like Unigram (Zhao et al., 2023b) eliminate prefix reliance, applying their fixed Green-Red
vocabulary split to tables introduces severe distributional distortion by permanently banning a subset
of values across all columns. Second, the threat models diverge significantly: while text methods
target token-level edits (insertion, substitution), tabular watermarking must withstand attacks unique
to its data structure, such as row/column shuffling, row/column/cell deletion, and numerical value
perturbation.

Watermarking for Tabular Data Traditional tabular watermarking techniques are edit-based, in-
jecting signals by modifying existing data values. WGTD (He et al., 2024) embeds watermarks by
altering the fractional parts of continuous values using a green list of intervals, but it is inapplicable
to categorical-only data. TabularMark (Zheng et al., 2024) perturbs values in a selected numerical
column using pseudorandom domain partitioning, but relies on access to the original table for detec-
tion, limiting its robustness in adversarial settings. Another significant drawback of such methods is
the potential to distort the original data distribution or violate inherent constraints. To overcome this,
TabWak (Zhu et al., 2025) introduced the first generative watermarking approach for tabular data.
Analogous to inversion-based watermarks in diffusion models, TabWak embeds detectable patterns
into the noise vector within the latent space. It also employs a self-clone and shuffling technique to
minimize distortion to the data distribution. While TabWak avoids post-hoc editing, its reliance on
inverting both the sampling process (e.g., DDIM (Song et al., 2020b)) and preprocessing steps (e.g.,

16

Under review as a conference paper at ICLR 2026

Table 4: Watermark generation quality and detectability, indicates best performance,
indicates second-best performance. For clarity, only our method is highlighted in detection.

Watermark Generation Quality Watermark Detectability
Dataset Method Num. Training Rows 100 500
Margz? Corr.t C2STt MLE Gap| | AUC T@0.1%F AUC T@0.1%F
w/o WM 0.994 0.984 0.996 0.017 - - - -
TabularMark ~ 0.983 0.949 | 0.987 0.021 1.000 1.000 1.000 1.000
Adult WGTD 0.987 0972 0.978 0.019 1.000 1.000 1.000 1.000
MUSE-JV 0.979 0963 0.883 0.017 1.000 1.000 1.000 1.000
w/o WM 0.977 0.958 0.934 0.199 - - - -
TabularMark 0.935 0.789 | 0.941 0.528 1.000 1.000 1.000 1.000
Beijing WGTD 0.964 0.948 0.929 0.527 1.000 1.000 1.000 1.000
MUSE-JV 0.972 0955 0.926 0.209 1.000 1.000 1.000 1.000
w/o WM 0.990 0934 0979 0.000 - - - -
TabularMark ~ 0.987 0939 0.961 0.004 1.000 1.000 1.000 1.000
Default WGTD 0.989 0913 0919 0.000 1.000 1.000 1.000 1.000
MUSE-JV 0.983 0.925 | 0.963 0.002 1.000 1.000 1.000 1.000
w/o WM 0.985 0974 0974 0.017 - - - -
Shoppers TabularMark ~ 0.974 0.930 | 0.975 0.013 1.000 1.000 1.000 1.000
PP WGTD 0.964 0.944 0.887 0.008 1.000 1.000 1.000 1.000
MUSE-JV 0.982 0974 0.950 0.015 1.000 1.000 1.000 1.000

quantile normalization (Wikipedia contributors, 2025)) can introduce reconstruction errors. These
errors will in turn impair the watermark’s detectability.

C ADDITIONAL EXPERIMENTS RESULTS

C.1 OMITTED RESULTS ON ROBUSTNESS

We present the omitted robustness results in Figure 9, where MUSE is compared against TabWak
and TabWak* on the Adult, Beijing, Default, and Shoppers datasets. Overall, MUSE
demonstrates stronger robustness under cell deletion and row deletion attacks, while achieving com-
parable performance on alteration and column deletion attacks. Both MUSE and TabWak/TabWak*
remain resilient to shuffle attacks, due to embedding watermarks at the individual row level. Notably,
we observe that TabWak and TabWak* exhibit instability on certain datasets, such as Shoppers
and Be1i jing, where detection performance fluctuates—first decreasing and then increasing—as
attack intensity increases. We hypothesize that this behavior stems from the inherent instability of the
VAE inversion process.

C.2 OMITTED RESULTS ON EDIT-BASED WATERMARKING

We compare our method against two representative edit-based watermarking baselines, which embed
watermarks by directly altering table entries. Since the official implementations of these methods are
not publicly available, we reimplement them based on the descriptions in their original papers. We
first outline their core methodologies and our reimplementation details, then present the comparative
results in Table 4. Our reproduced codes are provided in the supplementary material. Below are
the detailed implementations of the baselines.

WGTD (He et al., 2024). WGTD embeds watermarks by modifying the fractional part of continuous
data points, replacing them with values from a predefined green list. Consequently, it is limited to
continuous data and cannot be applied to tables containing only categorical features.

The watermarking process in WGTD involves three main steps: (i) dividing the interval [0, 1] into
2m equal sub-intervals to form m pairs of consecutive intervals; (ii) randomly selecting one interval
from each pair to construct a set of m “green list” intervals; and (iii) replacing the fractional part
of each data point with a value sampled from the nearest green list interval, if the original does not
already fall within one. Detection is performed via a hypothesis-testing framework that exploits the
statistical properties of the modified distribution to reliably identify the presence of a watermark. For
reproducibility, we adopt the original hyperparameter setting with m = 5 green list intervals.

17

Under review as a conference paper at ICLR 2026

Shuffle Alteration Gaussian Cell deletion Row deletion Column deletion
100 1.00 &9 1.00 1.00 1.00
e ’
o= 0.75 0.75 0.75 0.75 0.75
o
=
= 0.50 0.50 0.50 0.50 0.50
—
©
E 0.25 0.25 0.25 . 0.25 e 0.25
= i

0.00 0.00

0.00

2 0.00

0.00

0.00.20.40.6 0.8 1.0
Attack Strength

0.00.20.40.60.81.0

Attack Strength

0.00.20.4 0.6 0.8 1.0
Attack Strength

0.00.20.40.6 0.8 1.0
Attack Strength

0.00.20.4 0.6 0.8 1.0
Attack Strength

0.00.20.4 0.6 0.8 1.0
Attack Strength

MUSE-JV —— MUSE-PC TabWak —A&— TabWak*
Shuffle Alteration Gaussian Cell deletion Row deletion Column deletion

1.00 {S=A—A—A—A—A 1.00{0=A—0—0—0—0 1.00 00 < 1.00 1.00 1.00
=
o= 0.75 0.75 0.75 0.75 0.75 0.75
)
= 0.50 0.50 0.50 0.50 0.50 A 0.50
e
£ 0.25 0.25 0.25 0.25 0.25 0.25
B N

0.00 0.00 0.00 —0—0—0—0 0.00 1 0.00 L 0.00 A—

0.00.20.40.6 0.8 1.0
Attack Strength

0.00.20.40.60.81.0

Attack Strength

0.00.20.4 0.6 0.8 1.0
Attack Strength

0.00.20.40.6 0.8 1.0
Attack Strength

0.00.20.40.6 0.8 1.0
Attack Strength

0.00.20.40.6 0.8 1.0
Attack Strength

MUSE-JV —— MUSE-PC TabWak —&— TabWak*
Shuffle Alteration Gaussian Cell deletion Row deletion Column deletion

1.00 {——=A-a-4&_¢ 1 00 {9999 1.00 1.00 1 1.00 4 1.00
=
o 0.75 0.75 0.75 0.75 0.75 0.75
a9}
=
< 0.50 0.50 0.50 0.50 0.50 0.50
5 a
E 0.25 0.25 0.25 0.25 0.25 0.25
H ~

0.00 0.00 0.00 0.00 = = 0.00 L 0.00

0.00.20.40.6 0.8 1.0
Attack Strength

0.00.20.40.60.81.0

Attack Strength

0.00.20.4 0.6 0.8 1.0
Attack Strength

0.00.20.40.6 0.8 1.0
Attack Strength

0.00.20.40.6 0.8 1.0
Attack Strength

0.00.20.40.6 0.8 1.0
Attack Strength

MUSE-JV —— MUSE-PC TabWak —A— TabWak*
Shuffle Alteration Gaussian Cell deletion Row deletion Column deletion

1.00 1.00 1.00 1.00 1.00
=
o 0.75 0.75 0.75 0.75 0.75
o
=
=2 0.50 0.50 0.50 0.50 0.50
8
E‘ 0.25 0.25 0.25 0.25 0.25
=

0.00 0.00 0.00 1 0.00 = 0.001__ A—a—

0.00.20.40.6 0.8 1.0
Attack Strength

0.00.20.40.6 0.8 1.0
Attack Strength

TabWak

0.00.20.40.6 0.8 1.0
Attack Strength

—A— TabWak*

0.00.20.40.6 0.8 1.0
Attack Strength

0.00.20.4 0.6 0.8 1.0
Attack Strength

MUSE-JV

0.00.20.4 0.6 0.8 1.0
Attack Strength

—— MUSE-PC

Figure 9: Detection performance of MUSE vs. TabWak/TabWak* against different types of tabular
data attacks across varying attack intensities. From top to bottom: Adult, Beijing, Default
and Shoppers.

TabularMark (Zheng et al., 2024). TabularMark embeds watermarks by perturbing specific cells
in the data. It first pick a selected attribute/column to embed the watermark, then it generate
pesudorandom partition of a fixed range into multiple unit domains, and label them with red and
green domains, and finally perturb the selected column with a random number from the green domain.
In our implementation, we choose the first numerical column as the selected attribute, and set the
number of unit domains & = 500, the perturbation range controlled by p = 25, and configure n,, as
10% of the total number of rows.

During detection, TabularMark leverages the original unwatermarked table to reverse the perturbations
and verify whether the restored differences fall within the green domain. However, this approach
assumes access to the original unwatermarked table, which is often impractical, especially in
scenarios where the watermarked table can be modified by adversaries.

18

Under review as a conference paper at ICLR 2026

Discussions. As demonstrated in Table 4, both WGTD and TabularMark exhibit strong detection
performance across all datasets. Furthermore, their generation quality is generally comparable to that
of MUSE. However, a notable observation is the significant performance degradation measured by
the MLE metric for both WGTD and TabularMark on the Be i jing dataset (highlighted in bold).
We hypothesize that this performance drop stems from the post-editing process, which may introduce
substantial artifacts into the data. These artifacts, in turn, could negatively impact the performance of
downstream machine learning tasks.

C.3 VISUALIZATION OF STATISTICAL SIGNAL

Intuitively, our method embeds watermarks by biasing the score distribution towards high score
values. In this section, we provide visualizations that directly illustrate the statistical signal introduced
by our watermark in both the JV and PC hashing variants.

JV-hashing. For JV hashing, each row-level score is a PRF following Bernulli(0.5). We plot the
empirical probability mass function (PMF) of these scores for both watermarked and unwatermarked
tables in Figure 10. As expected, the unwatermarked data yields an approximately symmetric
distribution over {0, 1}, while watermarked tables exhibit a clear shift of probability mass toward
larger score values due to multi-sample selection.

PC-hashing. For PC hashing, the row-level score is the sum of per-column Bernoulli bits, taking
values in {0, ...,n} where n is the number of columns. We visualize the empirical PMF over the
normalized score (defined in Equation (3)) in Figure 11. Again, unwatermarked tables show the
expected symmetric distribution, while watermarked tables exhibit a rightward shift in mass, reflecting
the watermark signal.

1.0 1.0

B no watermark B no watermark
B with watermark

. with watermark

0.75 { 081

o
o

Probability
o
[
Probability

I
IS
L

0.2+

0.0 0.0

score =0 score =1 0.0 0.5 10
normalized row score
Figure 10: Probability mass function of JV
detection score for both watermarked and un- Figure 11: Probability mass function of PC detec-
watermarked table. Watermarked table biases tion score for both watermarked and unwatermarked
the score distribution toward values with larger table. Watermarked table biases the score distribu-
scores. tion toward values with larger scores.

D FURTHER ANALYSIS OF THE INVERSION-BASED WATERMARKING

We first introduce the overall pipeline of inversion-based watermarking in Figure 12. The difficulty
lies in the inversion of three components, in sequential order: (1) inverse Quantile Transformation
IQT) §D.2, (2) the VAE decoder §D.3, and (3) the DDIM sampling process §D.4. Finally, we analyze
the error accumulation and detection performance across the inversion stages in §D.5.

19

Under review as a conference paper at ICLR 2026

D.1 PIPELINE OF INVERSION-BASED WATERMARKING

(Watermark Generation
Noise vector lefus%on VAE QT Tabular
(Watermarked) Sampling Decoder Data
N\ A

Compare Attack

Watermark Detection

Y
Noise vector DDIM Inverse VAE Tabular
(—.
[(Recoverd) Inversion Decoder Tnverse IQT Data
N %

Figure 12: Pipeline of Inversion-based Watermarking. Top: The watermark signal is embedded in
the noise vector in the latent space, a watermarked table is subsequently generated. Bottom: To
detect the watermark signal, we need to reverse the entire pipeline. IQT stands for the inverse map of
Quantile Transformation.

D.2 INVERSION OF (INVERSE) QUANTILE TRANSFORMATION

The Quantile Transformation (Wikipedia contributors, 2025) is a widely used (Zhang et al., 2024c;a;
Shi et al., 2024; Kotelnikov et al., 2023) data preprocessing step in tabular data synthesis. It
regularizes the data distribution to a standard normal distribution. The Quantile Transformation can
be implemented as follows:

1) Estimate the empirical cumulative distribution function (CDF) of the features.
2) Map to uniform distribution with the estimated CDF.

3) Map to standard normal distribution with inverse transform sampling: z = ®~!(u), where
® is the CDF of the standard normal distribution.

Note that in the second step, only the ordering of the data is preserved, and the exact values are
not preserved, making the map non-injective, therefore, the inverse of the Quantile Transformation
is inherently error-prone. Based on the official codebase, TabWak (Zhu et al., 2025) bypasses the
inversion of quantile normalization by caching the original data during watermarking, this is infeasible
in practical scenarios where the ground truth is unavailable. To study the impact of the inversion error
of the Quantile Transformation, we apply the original Quantile Transformation to the sampled tabular
data to invert the inverse quantile transformation.

D.3 INVERSION OF VAE DECODER

Denote the VAE decoder as fy, and the VAE decoder output as x = fy(z). To get z from x, (Zhu
et al., 2025) employs a gradient-based optimization to approximate the inverse of the VAE decoder.
Specifically, we can parametrize the unknown z with trainable parameters, and optimize the following
objective with standard gradient descent:

z = argmzin Ix — fa(Z)Hg .

where z is inilitaized as g(fp(x)), and ¢(-) is a VAE encoder. However, there is no guarantee that
the above optimization will converge to the true z, and we observed that the optimization process is
unstable (sometimes produces NaN) for tabular data and introduces significant error in the inversion
process.

D.4 DDIM INVERSION

The DDIM diffusion forward process is defined as:

Q(Xt | Xt—l) = N(Xt; Vvi1i- Bixi—1, 5t1),
where x is the original data, x; is the data at time ¢, and f; is the variance of the noise at step ¢.
Based on the above definition, we can write x; as:

Xt = VX1 + V1 — que, (Forward process)

20

Under review as a conference paper at ICLR 2026

where a@; = [['_y(1 — i), € ~ N(0,1).

Starting from xr, we sample xr_1, ..., Xq recursively according to the following process:
XB = (Xt — 1-— @t€9(Xt,t)) /\/ @t
Xt—1 = /A_1X4 + /1 — Gr_1€9(x¢, 1),

where ey(x;, t) is noise predicted by a neural network.

(Reverse process)

The DDIM inversion process is defined as the inverse of the DDIM reverse process. Specifically,
starting from xg, our goal is to recover the original noise vector x7 in the latent space. We introduce
the basic DDIM inversion process proposed in (Dhariwal and Nichol, 2021), which is widely adopted
in inversion-based watermark methods (Wen et al., 2023; Yang et al., 2024; Zhu et al., 2025; Hu et al.,
2025).

We can obtain the inverse of the DDIM forward process by replacing the ¢ — 1 subscript with ¢t + 1 in
Equation (Reverse process), but use x; to approximate the unknown x;o:

Xi+1 = Var1Xh + /1 — aprea(xs, t),

Due to the approximation x; /2 X2, the inversion process generally demands a finer discretization
of the time steps. For instance, inversion-based watermarking methods (Wen et al., 2023; Zhu et al.,
2025) typically adopt T' = 1000 steps, whereas diffusion models optimized for fast inference (Karras
et al., 2022; Zhang et al., 2024c¢) often operate with a coarser discretization of T = 50 steps.

Advanced Inversion Methods. To address the inexactness of the above inversion process, recent
works (Hong et al., 2024; Pan et al., 2023) have proposed more accurate inversion methods based on
iterative optimization. However, we empirically found that those methods still suffer from inversion
error due to already noisy input from the previous steps (VAE decoder and Quantile Transformation).

TPR@1%FPR

0.07 0.24 1.00
i [DDIM

1 VAE Decoder
[1 Inverse Quantile

Detectability 1

IQ+VAE+DDIM VAE+DDIM DDIM

L1 ErrorH I ‘

000 025 050 075 100 125 150 175 2.00
Cumulative Error

Figure 13: Error Accumulation and Detection Performance Across Inversion Stages of TabWak. The
{7 error is computed between the estimated and ground truth noise vectors in latent space.

D.5 ERROR ACCUMULATION

In Figure 13, we analyze the error accumulated at each inversion stage and its impact on detection
performance using the Adult dataset. Specifically, we compute the TPR@1%FPR over 100
watermarked tables, each with 100 rows. The top bar chart shows detection performance when
progressively inverting different parts of the pipeline. From left to right:

* When we invert the entire pipeline (IQ — VAE — DDIM), the detection performance drops
to 0.07 TPR@1%FPR.

* When we provide the ground-truth IQ and only invert the VAE decoder and DDIM, the
performance improves to 0.24 TPR@ 1%FPR.

* When both the ground-truth IQ and VAE decoder outputs are provided (i.e., only DDIM is
inverted), detection reaches a perfect 1.0 TPR@ 1%FPR.

The bottom bar chart reports the ¢; error between the estimated and ground-truth noise vectors in the
latent space. From left to right, the bars correspond to:

21

Under review as a conference paper at ICLR 2026

* Inverting only DDIM (given the ground-truth VAE output),
* Inverting both the VAE decoder and DDIM (given the ground-truth 1Q), and
¢ Inverting the full pipeline (IQ — VAE — DDIM).

This comparison highlights how errors accumulate through the inversion stages and directly affect
watermark detectability.

E FURTHER ANALYSIS ON ROBUSTNESS

E.1 COLUMN PERMUTATION ATTACK

In our primary robustness evaluation (Section 5.3), we aligned with prior literature (Zhu et al.,
2025) by not explicitly modeling column permutation attacks. This decision relied on the practical
assumption that original column ordering is easily recoverable via column headers or statistical
properties. However, to evaluate the resilience of our methods under a stricter threat model where
column alignment is impossible or headers are stripped, we analyze the impact of column permutation
below. We demonstrate that MUSE-PC is naturally robust to this attack, while MUSE-JV can be
adapted to achieve permutation robustness with minimal performance trade-offs.

MUSE-PC. This variant exhibits inherent invariance to column permutation. Since the watermark
detection score for a row is calculated as a summation over all feature columns, the calculation is
commutative. Consequently, the spatial arrangement of the columns does not influence the final
aggregate score, rendering column permutation attacks ineffective.

MUSE-JV. The standard implementation of MUSE-JV relies on pre-computed per-column statistics
(see Equation (4)) to determine quantile ranks. A full column permutation disrupts the mapping
between columns and their stored statistics. To mitigate this, we can apply a simple modification:
estimating the min/max values directly from the target synthetic table rather than relying on pre-stored
metadata. This adaptation decouples the detector from specific column indices. While estimating
statistics from the sample introduces a potential approximation error compared to the injector’s
ground truth, our experiments indicate that this deviation is negligible for detection purposes. To
validate this, we conducted an experiment where both injection and detection utilized min/max
estimates derived from 10,000 independently generated samples. As shown in Table 5, the proposed
adaptation maintains high detectability across all datasets.

Dataset AUC T@RO0.1

Adult 1.000 1.000
Default 0.997 0.809
Shoppers 1.000 1.000
Beijing 1.000 1.000

Table 5: Detection performance under estimated max/min.

E.2 GLOBAL PERTURBATION

In this section, we extend our evaluation to datasets consisting exclusively of numerical columns. We
analyze the performance of MUSE-PC compared to baselines under a threat model where all entries
are subject to noise, distinct from the subset perturbation model discussed in the main text.

The original design of MUSE-PC targets a threat model where an adversary perturbs a subset of
values with arbitrary strength, while other values remain unchanged. In that regime, robustness
is achieved by spreading the watermark signal across all columns. However, in a scenario where
every entry is perturbed by small noise (e.g., Gaussian noise), directly computing the score on raw
continuous features can be sensitive to these ubiquitous minor shifts.

Normalization. To address this, we introduce a lightweight normalization step prior to computing
the score. We apply a transformation f such that f(z) ~ f(x + z) when z is a small perturbation.
This ensures the downstream score remains stable even if all entries receive noise.

Specifically, we instantiate f as quantization in the log domain. The process is as follows:

22

Under review as a conference paper at ICLR 2026

Table 6: Watermark generation quality and detectability on fully numerical datasets, indicates
best performance, indicates second-best performance. For clarity, only our method is highlighted
in detection.

Watermark Generation Quality Watermark Detectability
Dataset ~ Method Marg.t Corr.t C2STt MLE? | AUCT T@1%Ft
no-wm 0.992 0.992 0.995 0.994 - -
Californi TabWak 0.905 0.937 0.783 0.787 0.871 0.39
Autoria) bWak* 0.891 0930 0753 0934 0976 0.53
MUSE-PC 0.933 0.964 0.851 0.994 1.000 1.00
no-wm 0.975 0.980 0.980 0.992 - -
Letter TabWak 0.928 0.938 0.685 0.926 0.999 0.90
TabWak* 0.922 0.930 0.607 0919 1.000 1.00
MUSE-PC 0.928 0.964 0.740 0.990 1.000 1.00

1) Map each numerical value to its logarithmic scale.

2) Assign the value to one of a fixed number of bins (denoted as bin_num).

This logarithmic transformation makes the bin widths adaptive: larger magnitude values (|x|) are
assigned wider bins. This aligns with the intuition that larger values can tolerate larger absolute per-
turbations without altering their semantic meaning or watermark bin assignment. This preprocessing
does not alter the fundamental sampling or scoring procedure of MUSE-PC.

Robustness to Global Perturbation. We evaluate the robustness of MUSE-PC—augmented with a
quantisation step prior to score computation—under global perturbations, instantiated as Gaussian
noise applied to every entry in fully numerical datasets. We set the number of bins to 32, N = 500,
m = 2, and compare the detectability of MUSE-PC against TabWak and TabWak*. As shown in
Figure 14, MUSE-PC consistently outperforms both baselines across all attack strengths on both
datasets. It is worth noting that although TabWak/TabWak* demonstrates relatively strong robustness
on the Let ter dataset, its performance deteriorates substantially on California. We hypothesize
that this variability stems from the inherent instability of reversing the entire sampling pipeline, which
TabWak relies on for detection.

Distortion and Detectability Performance. While the normalization step renders MUSE-PC robust
to global perturbations, evaluating its potential impact on distortion remains critical. With the number
of bins fixed at 32, results in Table 6 demonstrate that MUSE-PC consistently outperforms TabWak
and TabWak* in terms of both distortion and detectability.

Ablation Study on Number of Bins. In this section, we examine the impact of the bin count,
b € {16, 32,64, 128,256}, on the data quality and robustness of MUSE-PC. As shown in Figure 15,
Figure 16, and Figure 17, the number of bins introduces a fundamental trade-off: coarser binning
enhances robustness at the cost of slightly increased distortion, while finer binning favors fidelity
but reduces robustness. Notably, choosing b = 32 is sufficient to surpass the robustness of TabWak.
Furthermore, even under coarse quantization (b = 16), MUSE-PC preserves higher data quality than
TabWak.

E.3 WATERMARK STEALING

In this section, we consider the watermark stealing problem, where an adversary attempts to reverse
engineer the watermark. We adopt the standard setting under Kerckhoffs’ principle: the adversary
has full knowledge of the watermarking algorithm, but does not know the secret key.

Two levels of reverse-engineering. It is useful to distinguish between two goals an attacker may
pursue:

* Spoofing attack (easier). The adversary trains a generative model to approximate the water-
marked data distribution Py, with the goal of generating new samples that pass the detector,
without necessarily recovering the secret key.

* Parameter-recovery attack (harder). The adversary attempts to deduce the secret parameters
of the scheme—specifically, the secret key k and/or the exact configuration of the quantile-

23

Under review as a conference paper at ICLR 2026

California Letter

1.00 H—w
4 0'75 1 0.95
N 0.94

A\ 0.50 1 5 o
0.93

SN T 0251 :
L

=

=3

S
.

o
9
=

Data Quality

TPR@1%FPR (1)
=3 o
(<2 o

0.00, I i . i _ 0.001, I I I I I o
0.0 02 04 06 08 1.0 0.0 0.2 04 06 08 1.0 090 - " . = =
Attack Strength Attack Strength Number of Bins
—— MUSE-PC TabWak —A— TabWak*

Figure 15: Impact of bin number
on data quality. Finer discretiza-
Figure 14: Detection performance under Gaussian perturba- tion leads to better data quality.
tion attack across varying attack intensities. MUSE-PC (with

number of bin=32) achieves the best robustness.

T@%1F
T@%1F

Figure 16: Impact of bin number on robustness to Figure 17: Impact of bin number on robustness to
Gaussian perturbation: California dataset. Gaussian perturbation: Letter dataset.

rank mapping (e.g., which columns and quantile levels are selected and hashed). A successful
parameter-recovery attack constitutes a total break: once the mechanism (known under Kerck-
hoffs’ principle) and the key are both recovered, the adversary can scrub or spoof the watermark
at will.

Parameter recovery is strictly harder than spoofing: if an attacker could recover the key and quantile
configuration, they could trivially simulate the watermarking process and thus succeed at spoofing.
The converse does not hold: in general, one can statistically approximate a distribution without
solving the cryptographic task of key recovery. This mirrors observations in prior watermarking work,
where key-recovery attacks are typically bespoke and non-trivial to construct (Jovanovic et al., 2024).

Quantile ranks as a hard parameter-recovery target. For the sake of simplicity, our JV hashing
scheme presented in the main text uses a fixed quantile set (e.g., @ = {0,0.5, 1} corresponding to
minimum, median, and maximum) to select a sparse subset of columns for watermark embedding.
Under Kerckhoffs’ principle, an attacker would know the fixed quantile set and thus be able to
compute which columns are used for watermarking for each sample. We provide a simple security
enhancement: applying a keyed pseudorandom permutation (PRP) 7, over the column indices before
column selection. Specifically, for each row x, we first apply the permutation x — 7 (x), and then
compute the quantile ranks and select the minimum/median/maximum positions in this permuted
order. Under this construction, the set of watermark-carrying columns is entirely determined by the
secret key k, and recovering it is computationally equivalent to inverting the underlying PRP. In
other words, reverse-engineering the quantile-rank configuration becomes a full-fledged parameter-
recovery attack on a cryptographic primitive, which is significantly harder than merely mimicking
the watermark’s statistical footprint.

24

Under review as a conference paper at ICLR 2026

Empirical Evidence. Our analysis is supported empirically by the Adaptive Adversary experiments
presented in Section 5.3. We simulated a distillation attack—representing the easier “Spoofing”
threat—where a powerful generative model (TabSyn) attempted to learn the watermarked distribution.
As shown in Figure 4, the adversary failed to distinguish or approximate the watermark signal
(achieving an AUC = 0.5). Since the adversary failed at the easier task of statistical approximation
(Spoofing), we conclude that they statistically cannot succeed at the strictly harder task of Parameter
Recovery.

F EXPERIMENTAL DETAILS

F.1 HARDWARE SPECIFICATION
We use a single hardware for all experiments. The hardware specifications are as follows:

¢ GPU: NVIDIA RTX 4090
e CPU: Intel 14900K

F.2 DATASET STATISTICS

The dataset used in this paper could be automatically downloaded using the script in the provided code.
We use 6 tabular datasets from UCI Machine Learning Repository' or Kaggle’: Adult’, Default?,
Shopperss, Beijing(‘, California’, and Letter®, which contain different numbers of numerical and
categorical features. The statistics of the datasets are presented in Table 7.

Table 7: Dataset statistics.

Dataset #Rows # Continuous # Discrete # Target # Train # Test Task
Adult 32,561 6 8 1 22,792 16,281 Classification
Default 30,000 14 10 1 27,000 3,000 Classification
Shoppers 12,330 10 7 1 11,098 1,232 Classification
Beijing 43,824 7 5 1 39,441 4,383 Regression
California 20, 640 9 - 1 18,390 2,520 Classification
Letter 20,000 16 - 1 18,000 2,000 Classification

In Table 7, # Rows refers to the total records in each dataset, while # Continuous and # Discrete
denote the count of numerical and categorical features, respectively. The # Target column indicates
whether the prediction task involves a continuous (regression) or discrete (classification) target
variable. All datasets except Adult are partitioned into training and testing sets using a 9:1 ratio, with
splits generated using a fixed random seed for reproducibility. The Adult dataset uses its predefined
official testing set. For evaluating Machine Learning Efficiency (MLE), the training data is further
subdivided into training and validation subsets with an 8:1 ratio, ensuring consistent evaluation
protocols across experiments.

F.3 FIDELITY METRICS

The fidelity metrics used in this paper (Marginal, Correlation, C2ST and MLE) are standard metrics
in the field of tabualr data synthesis. Here is a reference:

* Marginal: Appendix E.3.1 in (Zhang et al., 2024c).

'nttps://archive.ics.uci.edu/datasets

https://www.kaggle.com

https://archive.ics.uci.edu/dataset/2/adult

*nttps://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients

Shttps://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+
intentiontdataset

Shttps://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data

"https://www.kaggle.com/datasets/camnugent/california-housing-prices

$https://archive.ics.uci.edu/dataset/59/letter+recognition

25

https://archive.ics.uci.edu/datasets
https://www.kaggle.com
https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://archive.ics.uci.edu/dataset/59/letter+recognition

Under review as a conference paper at ICLR 2026

* Correlation: Appendix E.3.2 in (Zhang et al., 2024c).
* C2ST: Appendix F.3 in (Zhang et al., 2024c).
* MLE: Appendix E.4 in (Zhang et al., 2024c).

Below is a summary of how these metrics work.

F.3.1 MARGINAL DISTRIBUTION

The Marginal metric assesses how well the marginal distribution of each column is preserved in the
synthetic data. For continuous columns, we use the Kolmogorov—Smirnov Test (KST); for categorical
columns, we use the Total Variation Distance (TVD).

Kolmogorov-Smirnov Test (KST) Given two continuous distributions p,.(z) and ps(z) (real and
synthetic, respectively), the KST measures the maximum discrepancy between their cumulative
distribution functions (CDFs):

KST = sup |F,.(z) — Fs(z)], (3

where F.(z) and F(z) denote the CDFs of p,.(z) and ps(z):
F@) = [pla)ds ©

Total Variation Distance (TVD) TVD measures the difference between the categorical distributions
of real and synthetic data. Let €2 be the set of possible categories in a column. Then:

1
TVD = o % |R(w) = S(w)|, (10)

where R(-) and S(-) denote the empirical probabilities in real and synthetic data, respectively.

F.3.2 CORRELATION

The Correlation metric evaluates whether pairwise relationships between columns are preserved.

Pearson Correlation Coefficient For two continuous columns x and y, the Pearson correlation
coefficient is defined as:
Cov(z,y)
Poy=———"", 1D
O30y
where Cov(-) is the covariance and o denotes standard deviation. We evaluate the preservation of
correlation by computing the mean absolute difference between correlations in real and synthetic
data:
1 R S

Pearson Score = EE%y |p"(z,y) — p°(z,y)], (12)
where p’ and p° denote correlations in real and synthetic data. The score is scaled by % to ensure it
lies in [0, 1]. Lower values indicate better alignment.

Contingency Similarity For categorical columns A and B, we compute the Total Variation Distance
between their contingency tables:

. 1
Contingency Score = 5 Z Z |Ra.p — Sa.pl (13)
acA BEB

where R, g and S, g are the joint frequencies of («, 8) in the real and synthetic data, respectively.

26

Under review as a conference paper at ICLR 2026

F.3.3 CLASSIFIER TWO-SAMPLE TEST (C2ST)

C2ST evaluates how distinguishable the synthetic data is from real data. If a classifier can eas-
ily separate the two, the synthetic data poorly approximates the real distribution. We adopt the
implementation provided by the SDMetrics library.’

F.3.4 MACHINE LEARNING EFFICIENCY (MLE)

MLE evaluates the utility of synthetic data for downstream machine learning tasks. Each dataset
is split into training and testing subsets using real data. Generative models are trained on the real
training set, and a synthetic dataset of equal size is sampled.

For both real and synthetic data, we use the following protocol:

* Split the training set into train/validation with an 8:1 ratio.

* Train a classifier/regressor on the train split.

* Tune hyperparameters based on validation performance.

* Retrain the model on the full training set using the optimal hyperparameters.
* Evaluate on the real test set.

This process is repeated over 20 random train/validation splits. Final scores (AUC for classification
task or RMSE for regression task) are averaged over the 20 trials for both real and synthetic training
data. In our experiments, we report the MLE Gap, which is the difference between the MLE score of
the (unwatermarked) real data and the MLE score of the synthetic data.

F.4 WATERMARK DETECTION METRICS

For watermark detection metrics, we primarily use the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve: AUC, and the True Positive Rate (TPR) at a given False
Positive Rate (FPR): TPR@x%FPR.

z-statistic In addition, we can formalize a statistical test for watermark detection. We formulate
this as a hypothesis testing problem:

Hj : The table is not watermarked.

vs. H; : The table is watermarked.

Recall the definition of our detection statistic in Equation (1): given a (watermarked or unwater-
marked) table 7" that consists of N rows: T":= (x1,...,Xy), we compute the detection statistic:

1 N
S(T) = stk(xi).

For the Joint-Vector (JV) hashing design, where each row is assigned a single score, the form of
the test statistic depends on the score’s distribution under the null hypothesis Hy. If the row score
follows Burnulli(0.5), we denote the total count of rows with a score of 1 as |WW|. Under H,,
|W| follows a binomial distribution with mean y = N/2 and variance 0> = N/4. Finally, since

[W| = Zfil sk(xi) = N - S(T), thus the z-statistic is computed as:
N -S(T) - N/2
2=

JV hash
NJa (IV hash)

For the Per-Column (PC) design, this framework must be adapted, as the score for each row, s;,
is the average of scores from M individual columns (see Equation (3)): sx(x) = ﬁ Z;wzl Cij,

*https://docs.sdv.dev/sdmetrics/metrics/metrics—in-beta/
detection-single-table

27

https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/detection-single-table
https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/detection-single-table

Under review as a conference paper at ICLR 2026

where C; is the score assigned to the value at i-th row, j-th column. If C; ; are ¢.i.d and follows

Bernulli(0.5), we have that Zfil sk(x;) follows a binomial distribution with mean p = @ and
variance 02 = %, yielding a z—statistic as follows:
N-S(T)— M
2= "= (JV hash)
N-M
1

Estimating the statistic under H via Monte Carlo. While directly assuming certain distributions
under null hypotheses like above is standard in LLM watermarking (Kirchenbauer et al., 2023b; Zhao
et al., 2023a; Giboulot and Furon, 2024), they can be inaccurate when the table contains low-entropy
columns (e.g., binary attributes). In such cases, the exact distribution of row-level hash outputs under
Hjy may deviate from the idealized Bernoulli model.

One way to address this problem is to estimate the mean and variance of the detection statistic under
Hy using Monte Carlo simulation, which is also used in TabWak (Zhu et al., 2025).

Specifically, we first sample K unwatermarked tables with N rows, denoted as 7'}, ..., T.X . Denote

s; as N - S(T%,,), then we compute:

w

* [inq: the empirical mean of {sq, ..., sk }.

* Opw: the empirical standard derivation of {s1, ..., Sk }.

Then the one-sided z-statistic can be computed as:
s = N - S(T) — ﬂnw
OA-nu)

where s is the test statistic computed on the suspect table. Unlike TabWak (Zhu et al., 2025), no
additional 1/ VN scaling is required because G, is estimated directly from the full statistic N - S(T),
whose variance already incorporates the dependence on N.

Detection threshold. Given the estimated (or assumed) null distribution of our detection statistic,
we next define a threshold for deciding whether a table is watermarked. Let 19 and o denote the
mean and standard deviation of the statistic under Hy, obtained either analytically (e.g., assuming a
Bernoulli or binomial model) or empirically via Monte Carlo simulation as described above. For a
suspect table 7', the corresponding z-score is:

, = NS = (14)

g0

To control the false-positive rate at a user-specified significance level a,, we compute the critical value
Zq such that

Pr(Z > zo | Hy) = «a, Z ~N(0,1), (15)
and declare the table as watermarked whenever z > z,. Equivalently, this induces a threshold on the
normalized statistic S(T'):

Ho 90
When the theoretical Bernoulli(0.5) assumption holds (e.g., JV-hash), we have pip = N/2 and o¢ =
\/N/4, which recovers the familiar closed-form thresholds used in prior work. When Monte Carlo
estimation is used instead, the same decision rule applies but with empirical estimates (fiyw, Fnw),
enabling the threshold to automatically adapt to low-entropy or skewed tabular datasets.

(16)

F.5 IMPLEMENTATION DETAILS OF IMAGE WATERMARK BASELINES

In this work, we also benchmark our method against established watermarking techniques originally
designed for visual generative models: Tree-Ring Watermark (Wen et al., 2023) and Gaussian
Shading (Yang et al., 2024). To apply these image-based methods to the tabular domain, we strictly
follow the adaptation strategies proposed in TabWak (Zhu et al., 2025). We include a brief description

28

Under review as a conference paper at ICLR 2026

of these strategies below for completeness; for full algorithmic details, we refer readers to Appendix
D of TabWak.

Tree-Ring Watermark. This method embeds the watermark into the initial noise vector of the
diffusion process by transforming it into the frequency domain. Importantly, this method treats the
full table (m rows and n columns) as a single latent image for the watermark. While standard image
models typically process square inputs, where standard centralized ring patterns are embedded in
the latent. Tabular datasets are characterized by a high aspect ratio, where the number of rows (m)
significantly exceeds the number of columns (n). To address this geometric discrepancy, we embed a
ripple-shaped pattern across the Fourier space. However, it is worth noting that treating the full table
as a single unit makes this method inherently vulnerable to row shuffling attacks: simply permuting
the rows destroys the global spatial pattern, thereby severely compromising detectability.

Gaussian Shading. Unlike the Tree-Ring watermark, Gaussian Shading is applied at the individual
row level. This approach treats each tabular row as a distinct entity, similar to how watermarking is
applied to individual images. Crucially, we maintain a fixed control seed across the entire dataset. If
we were to assign a unique seed to each row index, a simple row shuffling attack would decouple the
data from its corresponding seed, making verification impossible. By enforcing a constant seed, we
ensure that the watermark remains detectable even if the rows are arbitrarily permuted.

Discussion. The key distinction between watermarking techniques for tabular data and those for
images lies in the application setting. Tabular watermarking typically operates on an entire table—a
batch of i.i.d. samples—where each row contributes to the aggregate z-score and collectively boosts
detectability. In contrast, image watermarking generally requires detecting a watermark from a single
generated instance. For example, as shown in Theorem 4.1, achieving a target detectability of FPR
=0.01% under MUSE requires a batch size of N = 100 and m = 4 repeated samples per instance.
Applied to images, this would require roughly 400 forward passes of an image generator to watermark
a batch of 100 images, making the method impractical for standard single-image watermarking
scenarios. That said, in specialized applications where images are naturally generated and verified in
batches, MUSE could still offer a viable and effective watermarking strategy.

G OMMITED PROOFS IN SECTION 3

Recall that for a table T (wateramarked or unwatermarked) with IV rows: x1, ..., Xy, we define the
watermark detection score as

1 N
S(T) =+ D swlxi), (17)
=1

where s (x;) is the score of the i-th sample, k is the fixed watermark key.

Theorem 4.1 (Watermark Calibration Guarantees). Denote a watermarked table as Ty, and an
unwatermarked table as Tyo.wm, each consisting of N rows. Let x ~ p(x) be a random vari-
able drawn from the data distribution, and let X1, ...,X,, be iid. samples from p(x). De-
fine finowm = Exopx)[5k(X)] as the expected score of an unwatermarked sample, and define
M = Eximop(x) [maxie[m] sk(xl)] as the expected score of a watermarked sample obtained via m
repeated samples. Suppose the scoring function satisfies si(-) € [0, 1], we have:

1. The False Positive Rate (FPR) of the watermark detection is upper bounded:

. m 2
Pt (S(Thom) > S(Tum)) < exp (—N (s —)))

2. The RHS of the bound is minimized when sj(x) follows a Bernoulli(0.5) distribution.

3. Under this optimal distribution, let N > 8log(1/«), then to ensure the FPR does not exceed a
target threshold «, it suffices to set the number of repeated samples m as:

m = max (2, [1og0_5 (0.5 - \/“‘)gﬁ/"‘)ﬂ) : (6)

Proof. The proof of each statement is provided in Lemma G.1, Lemma G.2, and Theorem G.3,
respectively. O

29

Under review as a conference paper at ICLR 2026

Lemma G.1. Denote a watermarked table as T, and an unwatermarked table as Typo.wm, each
consisting of N rows. Let x ~ p(x) be a random variable drawn from the data distribution, and
letx1, ..., Xy beiid. samples from p(x). Define jino-wm = Ex~p(x)[5k(X)] as the expected score
of an unwatermarked sample, and define pg,, = Ex, ~p(x) [maxie[m] sk(x,-)] as the expected score
of a watermarked sample obtained via m repeated samples. Suppose the scoring function satisfies
sk(+) € [0, 1], then the False Positive Rate (FPR) of the watermark detection satisfies:

m 2
Pr(S(Taonsm) > S(Tum)) < exp (—N (s~ o)) (s)

Proof. Let S(Tho-wm) = Zfil ¢; denote the sum of [V i.i.d. scores from the unwatermarked table,

where each ¢; = sj(x;) for x; ~ p(x), and similarly let S(Ty,) = Zivzl ¢} denote the sum of
N i.id. scores from the watermarked table, where each ¢; = max{sy(Xi1), ..., Sk(Xim)} With
Xij ~ p(x).

Define the expected values:
tnowm = E[ci], pg, =]E[C/L]

We are interested in bounding the false positive rate:
N
Pr(S(Thowm) > S(Tim)) = Pr (Z(ci —ch) > o) .
i=1

Let w; = ¢; —c/. Since si(x) € [0, 1], we have ¢; € [0,1] and ¢} € [0, 1], so w; € [—1, 1]. Moreover,

m

E[w;] = tnowm — pi, =: —0, where § = . — fino-wm > 0.

We apply Hoeffding’s inequality to the sum of w;’s:

N N N 9 N282
Pr(E Wi>O>Pr<E WifE[E Wi]>N5>§exp< AN >
=1 i=1

i=1

Plug in the definition of §, we have:

N262 N (pm — no-wm 2
PT(S(THO-Wm) > S(Twm)) < exp (_) = exp (_ (H’Wm o’)) .
which proves the result. -

Lemma G.2 (Optimal Scoring Distribution). Let sy (x) be any random variable supported on [0, 1]
with mean 0.5, the right-hand-side of Equation (18) is minimized when sy,(x) follows a Bernoulli(0.5)
distribution.

Proof. Let s1,...,8y, be i.i.d. copies of a random variable si(x) € [0,1] with fixed mean
E[sk(x)] = 0.5. Define:
= E[sg(x)] = 0.5, pimax := E[max(s1,...,8m)]

Let A := ppmax — p be the gap between the expected maximum score over m repetitions and the
mean score. The upper bound in Equation (18) is:

NA?
PI'<Sn0—wm > Swm) < exp (_ 9))

so minimizing the FPR corresponds to maximizing A under the constraint that E[sj(x)] = 0.5 and
skp(x) € [0,1].

We now show that A is maximized when sy (x) ~ Bernoulli(0.5).

30

Under review as a conference paper at ICLR 2026

Step 1: Write 1, and p as integrals over the CDF. Let F' be the cumulative distribution
function (CDF) of s(x). Then the CDF of max(s1,...,Sy,) is F"(z). By the tail integration
formula, we can compute the expected maximum as:

1
Lhmax = / Pr(max(s1,...,8m) > T)
0

- /01<1 — F(z)™) da.

Similarly, we have: p = fol(l — F(z)) da.

Therefore, the gap A can be written as:
1
A= i == [[F(@) - Fla)"]da.
0

Step 2: Leverage the concavity. By Lemma H.1, the integrand F'(x) — F'(z)™ is concave in F(z).
By Lemma H.2, the integral is maximized when F'(z) is the CDF of a Bernoulli distribution with
mean p = 0.5.

Therefore, among all s (x) € [0, 1] with E[s;(x)] = 0.5, the Bernoulli(0.5) distribution maximizes
A, which minimizes the upper bound on the FPR. Hence, the lemma holds. O

Theorem G.3 (Minimum Watermarking Signal). Under the same assumptions as in Lemma G. 1,
suppose the scoring function sy (x) is instantiated as a hash-seeded pseudorandom function such
that s (x) ~ Bernoulli(0.5). Then the FPR is upper-bounded by:

Pr (S(Taorwm) > S(Tom)) < exp (-Z (0.5 — 0.5’”)2> . (19)

To ensure the FPR does not exceed a target threshold o, it suffices to set the number of repeated

samples m as:
m = max (2, {logoﬁ (0.5 — 4/ 210%(\,1/Q)>-D) (20)

where [-] denotes the ceiling function. This expression is valid when N > 8log(1/a).

Proof. When sj(x) ~ Bernoulli(0.5), we have:
tnowm = E[sg(x)] = 0.5, pi, = E[max(s1,...,8m)] =1—0.5".
Plug in into the FPR bound Equation (22), we have:

Pr (S(Taomem) > S(Tim)) < exp (N 05 - o.5m>2> ,

2
which completes the proof. O

Theorem 4.3. Let m = 2. The watermarking process in Algorithm 1, augmented with repeated
column masking, satisfies multi-sample distribution-preserving as defined in Definition 4.2.

Proof. Suppose X1, ...,Xx are generated consecutively from Algorithm | with the same watermark
key k and data distribution p(x). Assume the repeated column masking is enabled. Denote W C
{1, ..., K'} denote the index set where the repeated column masking is triggered. Then we have:

K
P(X1,...,%x) = [[P(X: | %<i)
=1
=[] Pxi | %<i) [P(%i | %<i)
iEW igW

0] ®

31

Under review as a conference paper at ICLR 2026

Due to the deployment of repeated column masking, when repeated column values are detected,
Algorithm 1 defaults to skipping the watermarking process. Therefore, for (1), we have:

[[P& 1%<) =] (%)
ieW eW

For (2), there will be no repeated column values used for seed generation. Note the dependency
between current sample x; and previous samples X ; are only on the watermark key k and selected
column values 7(x) (recall we compute a hash function h(k, 7(x)) to seed a score function). There-
fore, when the selected columns contain no repeated values, due to the property of the hash function,
we have x; is independent of X ;. Therefore, we have:

[1 P& | %<i) =] P(T(p, bk, %:)))
igWw igW

=[] »(x:) (by Lemma H.3)
igW

Finally, we combine the above results, we have:

P(%,,..., %K) :Hp(ii)

which completes the proof. O

H TECHNICAL LEMMAS

Lemma H.1. For any integer m > 2, the function f(x) = x — 2™ is concave on the interval [0, 1].

Proof. To prove that f(x) = x — 2™ is concave on [0, 1], we show that its second derivative is
non-positive on this interval.

Compute the first derivative:

d

f(z) = d—(m —2™) =1—ma™ L.
x
Compute the second derivative:
d
f//(CL') _ 7(1 _ mxm—l) — _m(m _ 1)xm—2.

dx

Observe that for all z € [0,1] and m > 2: m(m — 1) > 0 and 2™~ 2 > 0.

Therefore,
f(z) = —m(m —1)z™ 2 <0 forallz € [0,1].

Hence, f(x) is concave on [0, 1]. O

Lemma H.2. Let ¢ : [0,1] — R be a concave function, and let F' be the cumulative distribution
function (CDF) of a random variable supported on [0, 1] with fixed mean p € (0, 1). Then the integral

1
/ o(F(x))dz
0

0 ifx <0
is maximized when F(z) = (1 —p if 0 <x < 1, i.e. the CDF of a Bernoulli distribution with
1 ife>1

mean [4.

32

Under review as a conference paper at ICLR 2026

Proof. Step 1: Rewrite the Mean Constraint

By the tail integration formula, the mean constraint for the random variable X with CDF F'(z)
supported on [0, 1] is:

/ (1= F(x))dz = p.
0

Rearranging this equation gives the integral of F'(z):
1
/ F(x)de=1-p. 21
0

Step 2: Upper Bound the Integral

The function ¢ : [0,1] — R is concave. The CDF F(x) takes values in [0, 1] for € [0, 1], so
¢(F(x)) is well-defined. We can apply Jensen’s inequality for integrals, which for a concave function
¢ and an integrable function g(x) on an interval [a,] states:

b_a/¢ dx<¢< 1a/abg(x)dx>.

Plugina = 0,b =1, g(x) = F(z). Jensen’s inequality then becomes:

/¢ dx<¢</01 ()dm)

Substituting Equation (21) into the right hand side, we have:

/¢) de < 61— p). 22)

Step 3: Verify F'(x) achieves the upper bound

It is straightforward to verify that F'(x) satisfies the mean constraint. Next, we will show that F'(z)
achieves the upper bound ¢(1 —). For z € [0, 1), F(z) = 1 — p. Therefore, we have:

1 1
| otp@nan= [o1 -pydz = o1~ p)
0 0

We have shown that F'(x) satisfies the mean constraint and achieves the upper bound ¢(1 — 1), which
completes the proof.

The following proof adapts the single-token distortion-free analysis from (Dathathri et al., 2024) to our
single-sample setting. The core ideas and structure of the proof remain the same, with modifications
primarily to the notation.

Lemma H.3 (Single Sample Distortion-free). Assume m = 2, for any data distribution p(-), it holds
that, under the randomness of the watermark key k, the watermarked data distribution is the same as
the original data distribution:

Pr~umito) (D(p, k) = X) = p(X) (23)

Proof. By definition of the watermarking mechanism with m = 2, for any sample X we can write

Pp~umit(c) (T(p, k) = %)

= Ep~unit(c) |P(X) > p(x) +2 > p(x)

XEX sy (x)=sk(X) XEX sy (x)<sk(X)
= Ep~unit(x) [p(i) (Z P(X) [Loy (x)=si (%) + 2lsk(x)<sk(i)]>]
xeX

33

Under review as a conference paper at ICLR 2026

where s (x) is the score function on sample x with key k.

Next observe that for any fixed x, under k& ~ Unif(K) we have:

B Unit(ic) [L(sk () ,k) s (%) + 2L (x) < (%))
= Ertnit() [L(sk(),k)=sx ()] T Brntmit(c) [Lop(0)<se @] + Ermtnit(c) [Lswo>se ()]
= Epunit(x) [1]
=1

Substituting back, we obtain
Prunit(o) (F(p, k) = x) = p(x) - 1 = p(x).

Thus, the watermarked distribution coincides with the original distribution, proving the claim.

34

O

	Introduction
	Preliminaries
	Method
	Watermark Generation and Detection Paradigm
	Watermark Scoring Function
	Score Generation Designs
	Column Selection Implementation

	Analysis
	Calibrating the Number of Repeated Samples
	Distribution-Preservation

	Experiments
	Setup
	Detectability and Distribution Preservation
	Robustness against Attacks
	Ablation Study and Further Analysis

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Related Work
	Additional Experiments Results
	Omitted Results on Robustness
	Omitted Results on Edit-based Watermarking
	Visualization of statistical signal

	Further Analysis of the Inversion-Based Watermarking
	Pipeline of Inversion-based Watermarking
	Inversion of (Inverse) Quantile Transformation
	Inversion of VAE decoder
	DDIM Inversion
	Error Accumulation

	Further Analysis on Robustness
	Column permutation attack
	Global perturbation
	Watermark stealing

	Experimental Details
	Hardware Specification
	Dataset Statistics
	Fidelity Metrics
	Marginal Distribution
	Correlation
	Classifier Two-Sample Test (C2ST)
	Machine Learning Efficiency (MLE)

	Watermark Detection Metrics
	Implementation Details of Image Watermark Baselines

	Ommited Proofs in sec:methods
	Technical Lemmas

