
Under review as submission to TMLR

Advantage Shaping as Surrogate Reward Maximization:
Unifying Pass@K Policy Gradients

Anonymous authors
Paper under double-blind review

Abstract

We unify two seemingly distinct approaches to policy gradient optimization for the Pass@K
objective in reinforcement learning with verifiable rewards (RLVR): direct REINFORCE-
style methods and advantage-shaping techniques that modify GRPO. By reverse-engineering
existing advantage-shaping algorithms, we reveal that they implicitly optimize surrogate
rewards. We specifically interpret practical “hard-example upweighting” modifications to
GRPO as reward-level regularization. Conversely, starting from surrogate reward objectives,
we provide a simple recipe for deriving both existing and new advantage-shaping methods.
This perspective provides a lens for RLVR beyond our original motivation of Pass@K.

1 Introduction

When evaluating large language models on math and coding tasks, standard practice is to generate K
independent solutions and check whether any succeeds; the so-called Pass@K metric (Kulal et al., 2019;
Chen et al., 2021). Yet most policy gradient methods, from REINFORCE (Williams, 1992) to more recent
variants like RLOO (Kool et al., 2019; Ahmadian et al., 2024) and GRPO (Shao et al., 2024), optimize for
single-attempt reward creating a mismatch. Should we instead train what we test?

Recent work has approached this question from two seemingly distinct angles. Mahdavi et al. (2025); Walder
& Karkhanis (2025) derive policy gradients that directly maximize Pass@K reward, yielding REINFORCE-
style updates with reweighted advantages. Meanwhile, Chen et al. (2025) propose modifying GRPO through
advantage shaping, that is, directly adjusting advantage scores to account for the Pass@K objective. Both
improve Pass@K performance, but their relationship remains unclear. Are these fundamentally different
techniques, or two views of the same underlying principle?

This work unifies these seemingly distinct perspectives, showing that advantage shaping and direct opti-
mization are two sides of the same coin. The key is recognizing that different policy gradient methods can
be understood as optimizing different surrogate rewards; see Table 1. More broadly, we establish surrogate
rewards as a design mechanism for policy gradient optimization with verifiable rewards, providing a recipe
for algorithm interpretation via reverse-engineering and development via forward-engineering.

1.1 Problem Setup: Reinforcement Learning with Verifiable Rewards

We study reinforcement learning with verifiable rewards (RLVR) (Lambert et al., 2024; Shao et al., 2024; Guo
et al., 2025), a framework for training Large Language Models (LLMs) on tasks with objectively verifiable
outcomes (see (Zhang et al., 2025) for a recent survey). Concretely, we are given a distribution P over
problem-answer pairs (x, a), where x might be a math problem and a its final numeric answer. The goal is
to train an LLM to maximize the expected reward of finding correct answers to problems from P:

maxθ E(x,a)∼P
[
Ey∼πθ(·|x) r(y, a)

]
. (1)

We abstract the LLM as a conditional distribution πθ(response|prompt) parameterized by θ: Given prompt
x, the model generates response y (a sequence of tokens) by autoregressive sampling. The reward function
r(y, a) assesses whether the model response y agrees with the reference answer a. If it does, the response

1

Under review as submission to TMLR

is correct; otherwise it is wrong. RLVR assumes the reward can be verified externally. Note the nested
expectation: first over problem-answer pairs (x, a) ∼ P, then over model responses y ∼ πθ(·|x) per problem.

1.1.1 The 0/1 Reward

The most popular reward function in RLVR is the binary 0/1 reward:

r0/1(y, a) :=
{

1 if y agrees with a

0 otherwise
.

Model performance is measured by the expected 0/1 reward over all examples (x, a) in the distribution:
E(x,a)∼P [ρθ(x, a)], where the per-example expected 0/1 reward (equal to the probability that model θ gen-
erates a correct response for problem x) is:

ρθ(x, a) := Ey∼πθ(·|x) r0/1(y, a) .

A popular algorithm for maximizing expected 0/1 reward is REINFORCE Leave-One-Out (RLOO) (Kool
et al., 2019; Ahmadian et al., 2024), which extends the naive REINFORCE algorithm (Williams, 1992) using
multiple generated responses to form a baseline. At each iteration t, and for each pair (x, a) from a training
set D, RLOO updates the model parameters as

θt+1 = θt + η · ĜRLOO(θt; (x, a)) ,

where, η is the learning rate, and the gradient estimate is a weighted average over N generated responses
yi

IID∼ πθ(·|x):

ĜRLOO(θ; (x, a)) = 1
N

∑
i∈[N]

ARLOO
i · ∇θ log πθ(yi|x) . (RLOO)

The weights ARLOO
i are called advantage scores. The construction of RLOO’s advantages scores ensures

ĜRLOO is an unbiased, low-variance estimate of ∇θρθ(x, a), the gradient of the population (expected) 0/1
reward. Intuitively, for large N :

ĜRLOO(θ; (x, a)) ≈ ∇θρθ(x, a) . (2)

Despite its simplicity, RLOO is a strong baseline (Ahmadian et al., 2024). Its structure also underlies
recent popular variants like Group Relative Policy Optimization (GRPO) (Shao et al., 2024). In full online
mode (when clipping can be ignored), GRPO uses the same form as (RLOO) with normalized advantages
AGRPO

i = ARLOO
i /

√
ρ̂(1− ρ̂), where ρ̂ is the empirical 0/1 reward for example (x, a).

1.1.2 The Pass@K Reward

The 0/1 reward, however, misaligns with practical LLM usage. Given a problem x, users typically prompt
the model multiple times (say, K times) and examine the responses y1, . . . , yK to find one that produces the
desired answer. Accordingly, LLMs are often evaluated using the Pass@K metric (Chen et al., 2021), which
measures whether at least one solution is correct among K generated responses:

rPass@K({yi}i∈[K], a) =
{

1 if at least one yi agrees with a

0 otherwise
.

Since test-time performance is measured via Pass@K, we may train the model to directly maximize Pass@K
reward rather than 0/1 reward by maximizing E(x,a)∼P [ρK,θ(x, a)] , where we define the per-example expected
Pass@K reward as

ρK,θ(x, a) := E{yi}i∈[K]∼πθ(·|x) rPass@K({yi}i∈[K], a) .

This equals the probability that model θ generates at least one correct response in K samples.

2

Under review as submission to TMLR

1.2 Contributions

C-1. Direct Pass@K optimization. Building on Mahdavi et al. (2025), we show that the exact Pass@K
policy gradient equals the 0/1 gradient reweighted by per-example Fail@(K-1) probabilities. This yields
Monte Carlo unbiased estimators REINFORCEK/RLOOK and a biased variant GRPOK , all expressible as
asymmetric reweightings of their 0/1-reward counterparts.

C-2. Advantage shaping = surrogate reward maximization. We reverse-engineer the advantage-
shaping algorithm of Chen et al. (2025) and find that it asymptotically (in the number of generated re-
sponses) maximizes a surrogate reward 2

K arcsin(√ρK,θ). Conversely, we provide a forward-engineering
recipe: starting from any differentiable surrogate reward F (ρθ), advantage-shaping heuristics can be system-
atically derived as follows:

(i) Differentiate the surrogate reward: ∇θF (ρθ) = F ′(ρθ) · ∇θρθ

(ii) Substitute all population quantities with their empirical analogues:
(a) Replace F ′(ρθ) with F ′(ρ̂)
(b) Replace the population reward gradient ∇θρθ with its RLOO proxy ĜRLOO(θ) (Eq. (2)).

Put together, this yields an update ĜF (θ; (x, a)) = 1
N

∑
i∈[N] AF

i · ∇i with advantage shaped as AF
i =

F ′(ρ̂) ·
√

ρ̂(1− ρ̂) · AGRPO
i . A practical implementation can thus reuse existing GRPO code by multiplying

the GRPO advantages (before clipping) by this prefactor. As a corollary, when K=1, we show GRPO is (up
to clipping) effectively RLOO applied to the surrogate reward F (ρθ) = 2 arcsin(√ρθ), a variance-stabilizing
transformation of the 0/1 reward.

C-3. Reward-level regularization. We interpret commonly used heuristics that downweight “easy”
examples (those already solved with high probability) and upweight “hard” ones (Chen et al., 2025; Team
et al., 2025). Concretely, we show that multiplying the GRPO gradients by 1− ρ̂ is effectively equivalent to
optimizing a regularized surrogate reward arcsin(√ρθ)+

√
ρθ(1− ρθ). More generally, this can be interpreted

as a special instance of regularized surrogate reward maximization:

maxθ Ê(x,a)∼D
[

F
(
Ey∼πθ(·|x) r(y, a)

)
+ λ · Ω

(
Ey∼πθ(·|x) r(y, a)

)]
, (3)

where the stochastic training objective over examples (x, a) ∼ D consists of two components: a data-fitting
term F (e.g., the GRPO arcsin(√ρθ) surrogate) and an additive regularizer Ω that encourages maintaining
some probability mass on wrong responses, thereby exploring alternative solution paths that may generalize
beyond the training set. Unlike typical policy-level or parameter-level regularization, this form of regulariza-
tion operates simply at the reward level. To demonstrate its use, we instantiate the recipe of Contribution C-2
with entropy regularization, yielding a new tunable advantage-shaping algorithm.

Table 1: Unified view of main algorithms studied in this work. Rows grouped by target evaluation metric.
ρ, ρK are per-example expected 0/1 and Pass@K rewards; ρ̂, ρ̂K are their empirical estimators.

Algorithm Advantage Scores (A+, A−) Weighted Empirical Gradient Population Surrogate Reward
Targets 0/1 evaluation (K=1)
RLOO (Kool et al., 2019)

(
N(1−ρ̂)

N−1 , − Nρ̂
N−1

)
ρ̂(1− ρ̂) [∇̂+ − ∇̂−] ρ

GRPO (Shao et al., 2024)
(√

1−ρ̂
ρ̂ , −

√
ρ̂

1−ρ̂

) √
ρ̂(1− ρ̂) [∇̂+ − ∇̂−] 2 arcsin

(√
ρ
)

Skew-R [This work]1
(

(1− ρ̂)
√

1−ρ̂
ρ̂ , −(1− ρ̂)

√
ρ̂

1−ρ̂

)
(1− ρ̂)

√
ρ̂(1− ρ̂) [∇̂+ − ∇̂−] arcsin

(√
ρ
)

+
√

ρ(1− ρ)
Targets Pass@K evaluation (K≥2)
RLOOK [This work]

(
f̂+

K−1
N(1−ρ̂)

N−1 , −f̂−
K−1

Nρ̂
N−1

)
2 f̂+

K−1 ρ̂(1− ρ̂) ∇̂+ − f̂−
K−1 ρ̂(1− ρ̂) ∇̂− ρK

G̃RPOK (Chen et al., 2025)
(

ω̃K

√
1−ρ̂

ρ̂ , −ω̃K

√
ρ̂

1−ρ̂

)
3

√
1−ρ̂K

ρ̂K
ρ̂ [∇̂+ − ∇̂−] 2

K arcsin
(√

ρK

)
GRPOK [This work]

(
f̂+

K−1

√
1−ρ̂

ρ̂ , −f̂−
K−1

√
ρ̂

1−ρ̂

)
f̂+

K−1
√

ρ̂(1− ρ̂) ∇̂+ − f̂−
K−1

√
ρ̂(1− ρ̂) ∇̂− B

(
1− (1− ρK)1/K ; 1

2 , K − 1
2
) 4

1Effectively equivalent to Kimi 1.5 Prioritized Sampling (Team et al., 2025); see Sec. 6.2.
2f̂+

K−1, f̂−
K−1 are leave-one-out Fail@(K−1) scalers (Eq. (14)). Mahdavi et al. (2025) implements a biased version; App. C.3.

3The scaler ω̃K is defined in Eq. (20).
4Incomplete beta function B

(
x; a, b

)
=
∫ x

0 ua−1(1 − u)b−1 du.

3

Under review as submission to TMLR

Table 1 unifies the main Pass@K policy-gradient algorithms studied in this work. Starting from their ad-
vantage scores, we express every method (middle column, ignoring normalization constants and clipping) as
w+ ∇̂+ − w− ∇̂−, where effective gradient weights w± multiply the average empirical gradients over correc-
t/wrong responses. Leveraging this unified representation, we reverse-engineer the corresponding population
surrogate reward that each algorithm implicitly optimizes (last column). Conversely, using the forward-
engineering recipe from Contribution C-2, we can map a chosen surrogate reward back to advantage scores,
establishing a bidirectional relationship:

advantage scores ←→ weighted gradients ←→ surrogate reward

Roadmap. The rest of the paper is organized as follows. We start in Sec. 2 by reviewing the 0/1-reward
setting and fixing the unified gradient/advantage notation that we use throughout. Sec. 3 then develops
C-1: we directly differentiate the Pass@K objective leading to the REINFORCEK/RLOOK estimators and
the GRPOK variant. Sec. 4 presents the complementary advantage-shaping route of G̃RPOK by Chen
et al. (2025) and contrasts its symmetric reweighting with the asymmetric reweighting arising from direct
Pass@K optimization. Sec. 5 establishes C-2 by bridging these views: we reverse-engineer G̃RPOK as
(asymptotically) optimizing an arcsin-transformed surrogate Pass@K reward (Sec. 5.1), recover it by forward-
engineering from this surrogate (Sec. 5.2), and then generalize the reverse/forward correspondence to a broad
class of binary-reward RLVR gradients (Sec. 5.3). Finally, Sec. 6 develops C-3 by interpreting practical
hard-example upweighting as reward-level regularization and instantiating the forward-engineering recipe
with concrete regularizers. Sec. 7 collects practical considerations and limitations of the surrogate-reward
viewpoint. We conclude in Sec. 8 with an outlook on our perspective and its prospects. The appendix
contains deferred derivations and proofs.

Notation. We define a training example as a tuple (x, a), where x is the prompt and a is the reference
answer. For this example (x, a), let y1, . . . , yN denote N responses generated IID from model πθ(·|x). Let
ri := r0/1(yi, a) denote the 0/1 reward of response i, and ρ̂ := 1

N

∑
i∈[N] ri denote the empirical 0/1 reward.

We denote the per-example expected 0/1 reward as ρθ(x, a) := Ey∼πθ(·|x)[r0/1(y, a)]. Let N+ :=
∑

i∈[N] ri

and N− := N − N+ denote the number of correct and wrong responses. We use the shorthand ∇i :=
∇θ log πθ(yi|x) for the log-probability gradient of individual response yi, and for the average log-probability
gradient over correct/wrong responses:

∇̂+ := 1
N+

∑
i:ri=1

∇θ log πθ(yi|x) and ∇̂− := 1
N−

∑
i:ri=0

∇θ log πθ(yi|x) . (4)

Ai denotes the advantage score of the i-th response to problem x and we silence its dependence on x when
it will be clear from context. Finally, we reserve K to denote the argument of Pass@K and quantities
with subscript K denote quantities related to Pass@K reward. In particular, ρK,θ denotes the per-example
expected Pass@K reward and ρ̂K its empirical counterpart. Notation specific to different algorithms we
study in this paper appear as they are introduced in the text.

2 Warm-up: Optimizing the 0/1 Reward

With access to a finite training set D of problem-answer pairs (x, a), which we call examples, a natural
approach to maximize the average (over D) reward is stochastic gradient ascent. At each iteration t, we
update θt+1 = θt + η ·G(θt;D) with learning rate η and gradient

G(θ;D) = Ê(x,a)∼D[∇θρθ(x, a)] = Ê(x,a)∼DEy∼πθ(·|x)
[
r0/1(y, a) · ∇θ log πθ(y|x)

]
, (5)

where ·̂ denotes empirical averages and we have applied the log-derivative trick: ∇θπθ(y|x) = πθ(y|x) ·
∇θ log πθ(y|x) . The REINFORCE-style algorithms reviewed below provide different approximations of the
per-example expected gradient G0/1(θ; (x, a)) = ∇θρθ(x, a).

4

Under review as submission to TMLR

REINFORCE. Classical REINFORCE (Williams, 1992) approximates the expectation over y ∼ πθ(·|x)
in (5) using the empirical average over N sampled responses. This yields the per-example gradient:

ĜREINFORCE(θ; (x, a)) = 1
N

∑
i∈[N]

ri · ∇i = ρ̂ · ∇̂+ . (6)

While simple, this estimator suffers from high variance and intuitively provides poor updates since it entirely
ignores wrong responses.

RLOO. REINFORCE with Leave-One-Out (RLOO) (Kool et al., 2019; Ahmadian et al., 2024) reduces
variance by replacing in Eq. (6) rewards ri with advantage scores that subtract a leave-one-out baseline:

Ai = ri −
1

N − 1
∑
j ̸=i

rj .

This also introduces learning signal from wrong responses. Since ri ∈ {0, 1}, the advantage scores depend
only on whether response yi is correct or wrong:

A+ = 1− Nρ̂− 1
N − 1 = N(1− ρ̂)

N − 1 and A− = − Nρ̂

N − 1 . (7)

Ignoring the common factor N/(N − 1) across all examples, the RLOO gradient simplifies to:

ĜRLOO(θ; (x, a)) = A+ · ρ̂ · ∇̂+ + A− · (1− ρ̂) · ∇̂−

= ρ̂ · (1− ρ̂) ·
[
∇̂+ − ∇̂−

]
. (8)

This is an unbiased estimator of ∇θρθ(x, a) with reduced variance compared to REINFORCE.

GRPO. GRPO (Shao et al., 2024) normalizes advantages by their empirical standard deviation:

Ai = ri − ρ̂√
ρ̂(1− ρ̂)

.

This yields correct/wrong advantage scores:5

A+ = 1− ρ̂√
ρ̂(1− ρ̂)

=

√
1− ρ̂

ρ̂
and A− = −ρ̂√

ρ̂(1− ρ̂)
= −

√
ρ̂

1− ρ̂
. (9)

Thus, in the fully-online (single-update-per-rollout) regime where the PPO-style clipping term is inactive,
and ignoring the KL regularization term (see App. A for the full GRPO objective and discussion), the GRPO
gradient can be expressed conveniently as (Deng et al., 2025a):

ĜGRPO(θ; (x, a)) =
√

ρ̂ · (1− ρ̂) ·
[
∇̂+ − ∇̂−

]
. (10)

Comparing Eqns. (8) and (10), we see both RLOO and GRPO have the form [∇̂+−∇̂−] scaled by a function
of ρ̂. RLOO scales by ρ̂(1− ρ̂), while GRPO uses

√
ρ̂(1− ρ̂). Throughout, we call such multiplicative factors

the effective gradient weights of the respective algorithm.

3 Pass@K by Direct Differentiation

In analogy to the 0/1 case, the natural approach to optimize the expected Pass@K reward is stochastic
gradient ascent with gradient

GPass@K(θ) = Ê(x,a)∼D[∇θρK,θ(x, a)] .

5Note that GRPO directly uses mean estimates across all responses (rather than leave-one-out). More importantly, it normalizes
by standard deviation, making the gradient a biased estimator of ∇θρθ(x, a).

5

Under review as submission to TMLR

To compute the gradient, we rewrite the per-example Pass@K reward in terms of the per-example 0/1 reward.
Using the IID nature of generated responses:

ρK,θ(x, a) = Pr
{yi}∼πθ(·|x)

(∃i ∈ [K] : yi is correct) = 1−
∏

i∈[K]

Pr
yi∼πθ(·|x)

(yi is not correct) = 1− (1− ρθ(x, a))K .

Thus, following Mahdavi et al. (2025): ∇θρK,θ(x, a) = K(1 − ρθ(x, a))K−1 · ∇θρθ(x, a) = K(1 −
ρθ(x, a))K−1·G0/1(θ; (x, a)). Now, we recognize that the term in parentheses equals the per-example Fail@(K-
1)= 1−Pass@(K-1) reward. Hence, we obtain the final expression for the per-example (population) gradient:

GPass@K(θ; (x, a)) := K · (1− ρK−1,θ(x, a))︸ ︷︷ ︸
Fail@(K-1)

·G0/1(θ; (x, a)) . (11)

This is a reweighting of the respective gradient G0/1(θ; (x, a)) = Ey∼πθ(·|x)
[
r0/1(y, a)∇θ log πθ(y|x)

]
for the

0/1 reward. For K = 1, the gradient updates are indeed equivalent.

REINFORCEK . With access to a finite number of responses per example, we need to approximate
GPass@K(θ; (x, a)) with an empirical estimate. To arrive at an unbiased estimator, we require an unbiased
estimator for the Fail@(K-1) term in Eq. (11). For this, we leverage the following unbiased estimator of
ρK,θ(x, a) (Chen et al., 2021):

ρ̂K := ρ̂K,θ(x, a) = 1−
(

N−

K

)/(N

K

)
, (12)

representing the probability of drawing K responses without replacement from N total responses such that
at least one is correct. Having unbiased estimators for both terms in Eq. (11), we combine them via the
leave-one-out trick to form an unbiased estimator of their product:

ĜREINFORCEK
(θ; (x, a)) = K

N

∑
i∈[N]

(1− ρ̂ loo,i
K−1) · ri · ∇i, (13)

where 1− ρ̂ loo,i
K−1 is the leave-one-out unbiased estimator of Fail@(K-1) excluding the i-th response. For binary

rewards, simple algebra (deferred to Appendix B.2) shows that

1− ρ̂ loo,i
K−1 =

{
f̂+

K−1 := (1− ρ̂K)
/

(1− ρ̂− K−1
N) if yi is correct

f̂−
K−1 := (1− ρ̂K)

/
(1− ρ̂) if yi is wrong

. (14)

The weights f̂+
K−1 and f̂−

K−1 are leave-one-out empirical estimates of Fail@(K-1), both expressed in terms of
the empirical Pass@K reward ρ̂K . With these, the REINFORCEK update takes the following final form:

ĜREINFORCEK
(θ; (x, a)) = f̂+

K−1 · ρ̂ · ∇̂+ = f̂+
K−1 · ĜREINFORCE(θ; (x, a)) . (15)

Reweighing the vanilla REINFORCE gradient6 by f̂+
K−1, the empirical Fail@(K-1) of the other N−1 samples,

amplifies gradients of examples with rare correct responses (large N−) and suppresses gradients of redundant
examples (small N−). When N− < K−1, the weight is 0 since Pass@K is already guaranteed. As in the 0/1
case, REINFORCE is unbiased but high-variance estimator. We can reduce variance by substituting rewards
ri in Eq. (13) with appropriately computed advantages. This way, we also introduce negative gradients.

RLOOK . Using the RLOO advantage scores from Eq. (7) in place of ri in Eq. (13), the RLOO algorithm
for Pass@K optimization has gradient (proportional to, ignoring constants N/(N − 1) and K):

ĜRLOOK
(θ; (x, a)) = f̂+

K−1 · ρ̂(1− ρ̂) · ∇̂+ − f̂−
K−1 · ρ̂(1− ρ̂) · ∇̂− . (16)

Note the asymmetric weighting for correct versus wrong responses due to Pass@K maximization. This is an
unbiased estimator of GPass@K(θ; (x, a)) with lower variance compared to ĜREINFORCEK

(θ; (x, a)).
6We have dropped a constant K factor across all examples, which can be absorbed into the learning rate.

6

Under review as submission to TMLR

Figure 1: Effective gradient weights of GRPOK (A±
K in Eq. (18)) vs. G̃RPOK (Ã±

K in Eq. (20)). These
weights scale the gradients of correct (solid lines) and wrong (dashed lines) responses by a factor A+ · ρ̂ and
A− · (1 − ρ̂), respectively. The scores are plotted against the empirical 0/1 rate (ρ̂) for a fixed sample size
N = 16 and varying K. For K = 1, both weights coincide with vanilla GRPO weights

√
ρ̂(1− ρ̂) (Eq. (10)).

Both methods downweight easy examples (large ρ̂), but GRPOK is more aggressive and uses asymmetric
correct/wrong weights, unlike the symmetric scaling in G̃RPOK .

GRPOK . Analogously, we obtain a GRPO update for Pass@K optimization by using the GRPO advantage
scores from Eq. (9) in place of ri in Eq. (13):

ĜGRPOK
(θ; (x, a)) = f̂+

K−1 ·
√

ρ̂(1− ρ̂) · ∇̂+ − f̂−
K−1 ·

√
ρ̂(1− ρ̂) · ∇̂− . (17)

4 Pass@K by Advantage Shaping

The two Pass@K optimization algorithms, RLOOK and GRPOK , of Section 3 differ from their vanilla
counterparts through asymmetric advantage reweighting. Specifically, their effective advantage score is:

A±
Pass@K = f̂±

K−1 ·A
± , (18)

where f̂±
K−1 are defined in Eq. (14), and A± are the vanilla advantage scores (e.g., Eq. (9) for GRPO).

G̃RPOK via advantage shaping. We now review the GRPO variant proposed by Chen et al. (2025),
which we denote G̃RPOK , and which directly shapes GRPO’s advantages to favor Pass@K improvements.
Their proposed advantage scores, which we denote Ã±

Pass@K, are given in (Chen et al., 2025, App. B3) as:

Ã+
Pass@K =

√
(1− ρ̂K)/ρ̂K and Ã−

Pass@K = (1− ρ̂K − f̂−
K−1)/

√
ρ̂K(1− ρ̂K) , (19)

expressed in our notation of empirical Pass@K reward ρ̂K (Eq. (12)) and the leave-one-wrong-out Fail@(K-1)
estimator f̂−

K−1 (Eq. (14)). As noted in (Deng et al., 2025b), this can be simplified: From Eq. (14), we have
1− ρ̂K = (1− ρ̂) · f̂−

K−1. Thus, Ã−
Pass@K = − ρ̂

1−ρ̂
Ã+

Pass@K, and in terms of vanilla GRPO advantage:

Ã±
Pass@K = ω̃K ·A±, where ω̃K :=

√
1− ρ̂K

ρ̂K
·

√
ρ̂

1− ρ̂
. (20)

Overall, the per-example gradient of G̃RPOK is:

ĜG̃RPOK
(θ; (x, a)) = ω̃K · ĜGRPO(θ; (x, a)) =

√
1− ρ̂K

ρ̂K
· ρ̂ ·

[
∇̂+ − ∇̂−

]
. (21)

Comparing the two approaches. Both methods reweigh vanilla advantages and have a similar effect:
compared to the vanilla methods of Sec. 2 that optimize 0/1 reward, they aggressively downweight gradient
contributions from examples with medium-to-high empirical 0/1 rewards, thereby favoring more difficult
examples. Yet, they differ structurally: The reweighting in Eq. (20) is symmetric (same multiplier ω̃K for
correct and wrong responses), whereas Eq. (18) uses asymmetric weights (f̂+

K−1 ̸= f̂−
K−1). Moreover, direct

optimization more aggressively dampens contributions when the empirical reward is high (and amplifies more
when low). Figure 1 visualizes the effective weights each algorithm applies to correct vs. wrong gradients.

7

Under review as submission to TMLR

5 Bridging the Views

5.1 Reverse-Engineering: Surrogate Reward from Advantage Shaping

Section 4 showed that both Pass@K methods, direct optimization (GRPOK) and advantage shaping
(G̃RPOK), can be expressed as reweightings of vanilla GRPO. We now tighten this connection by showing
that advantage shaping also admits an interpretation as direct optimization of surrogate Pass@K reward.
Claim 1 (Reverse-Engineering G̃RPOK). Recall ρ̂ := ρ̂θ(x, a) denotes the per-example empirical 0/1 reward
and ρ̂K := ρ̂K,θ(x, a) denotes the per-example empirical estimate of the Pass@K reward (Eq. (12)). The
method of Chen et al. (2025), G̃RPOK , rescales the vanilla GRPO empirical gradient yielding updates as
shown in Eq. (21). For sufficiently large sample size N ≫ K, this corresponds to direct maximization of the
per-example surrogate reward

ρ′
K,θ(x, a) = 2

K
arcsin

(√
ρK,θ(x, a)

)
, (22)

where ρK,θ(x, a) := E{yi}i∈[K]∼πθ(·|x) rPass@K({yi}i∈[K], a) is the expected Pass@K reward per example.

Thus, the advantage-shaping approach of Chen et al. (2025) implicitly optimizes a smooth, differentiable
transformation of the Pass@K reward, providing further justification for the validity of the different approach
by which the authors arrive at it. Note that the surrogate reward is maximized when the Pass@K reward
equals 1, and is actually strictly monotone, so both the original and surrogate objectives share the same
optimal solution, though the arcsin surrogate reward leads to a different optimization path.

Connection to variance stabilizing transforms. The arcsin transform that emerges is noteworthy: it
is a variance-stabilizing transformation (VST) for the binomial distribution. Specifically, for X ∼ Bin(M, p),
the arcsin transform satisfies Var(

√
M · arcsin(

√
X/M)) ≈ 1/4 independent of p (Anscombe, 1948). This

connection is not coincidental: Chen et al. (2025, Sec. 2.2) arrived at their method through arguments using
batched sampling, where N responses are partitioned into N/K groups of size K. In this setting, the number
of successful groups follows a binomial distribution with M = N/K trials, and the arcsin transform would
stabilize the variance of this estimate. Formalizing the connection between VSTs and optimization stability
when applying empirical gradients to transformed rewards is open direction for future work.

5.2 Forward-Engineering: Advantage Shaping from Surrogate Reward

G̃RPOK can be reverse-engineered as optimizing an implicit population-level surrogate reward. Now, we
address the forward direction: How to arrive at G̃RPOK starting from the arcsin-transform surrogate reward?
Claim 2 (G̃RPOK=RLOO on Surrogate Reward). For N ≫ K, the G̃RPOK policy-gradient update by
Chen et al. (2025) is equivalent to an RLOO-style policy gradient update to the surrogate per-example reward
2
K arcsin

(√
ρK,θ(x, a)

)
, from Eq. (22).

To see this, we work as in Sec. 3, but now with the arcsin-transformed objective. We proceed in two steps:
(i) By direct differentiation, the population per-example gradient is

2
K
∇θ arcsin

(√
ρK,θ

)
= 1

K

1√
ρK,θ(1− ρK,θ)

∇θρK,θ = 1√
ρK,θ(1− ρK,θ)

(1− ρθ)K−1∇θρθ

= 1√
ρK,θ(1− ρK,θ)

· 1− ρK,θ

1− ρθ
· ∇θρθ, (23)

(ii) To obtain an empirical version, we (a) approximate the multiplicative term of the gradient by substituting
ρK,θ and ρθ with their empirical counterparts ρ̂K and ρ̂, and (b) approximate the expected 0/1 reward
gradient term with the RLOO gradient update from Eq. (16) (recall Eq. (2)). The update then becomes:

1√
ρ̂K(1− ρ̂K)

· 1− ρ̂K

1− ρ̂
· ρ̂(1− ρ̂) ·

[
∇̂+ − ∇̂−

]
=

√
1− ρ̂K

ρ̂K
· ρ̂ ·

[
∇̂+ − ∇̂−

]
,

8

Under review as submission to TMLR

and we recognize ĜG̃RPOK
(θ; (x, a)) in the final expression (see Eq. (21)).

Alternative surrogate rewards. This connection invites exploration of alternative variance-stabilizing
transformations. The arcsin transform is a VST for the binomial distribution, which aligns with the batched
sampling scheme of Chen et al. (2025, Sec. 2.2). However, the standard combinatorial Pass@K estimator
does not strictly follow a binomial distribution. Also, the analysis above assumes N grows large while K
remains constant. Designing surrogate rewards that account for joint scaling of N and K is an interesting
direction, particularly for the practically relevant small-N regime where computational budgets are limited.

Biased versus unbiased estimation. In the derivation of Claim 2, contrary to our construction of
RLOOK in Sec. 3, we did not insist on maintaining unbiasedness of the gradient estimator. 1−ρ̂K

1−ρ̂
is a biased

estimator of the multiplicative term in Eq. (23), and even replacing ρ̂K with a leave-one-out estimate would
not remove this bias since the product of two unbiased estimators is generally biased. However, note that
even the strong vanilla GRPO baseline does not implement an unbiased empirical estimate of the gradient.

Special case: GRPO. In fact, applying the logic of Claim 2 to the K = 1 case provides an alternative
interpretation to GRPO’s normalization by the reward’s standard deviation.
Corollary 1 (GRPO as Surrogate Reward Optimization). For N ≫ 1, the GRPO update (Eq. (10)) by Shao
et al. (2024) is equivalent to an RLOO-style policy gradient update for the surrogate per-example reward

2 arcsin
(√

ρθ(x, a)
)

where ρθ(x, a) := Ey∼πθ(·|x) r0/1(y, a) is the per-example expected 0/1 reward.

Indeed, the population gradient of this surrogate is ∇θρ/
√

ρ(1− ρ). Approximating the leading multi-
plicative factor by 1/

√
ρ̂(1− ρ̂) and applying an RLOO-style estimator for ∇θρ (which is proportional to

ρ̂(1− ρ̂)[∇̂+ − ∇̂−] by Eq. (8)) yields update
√

ρ̂(1− ρ̂)[∇̂+ − ∇̂−], matching that of vanilla GRPO.

This surrogate reward perspective should be distinguished from GRPO’s original formulation. As presented
by Shao et al. (2024), GRPO maximizes a PPO-style objective designed for the multi-epoch off-policy setting,
where the expectation is over the old policy. Our surrogate reward, in contrast, identifies the on-policy
population objective that the GRPO gradient ascends in the fully online setting. We detail this distinction
in App. A, showing why the PPO-style objective cannot directly yield this on-policy surrogate.

5.3 Equivalence of Advantage Shaping and Surrogate Reward

The surrogate-reward perspective developed in the previous part of this section for G̃RPOK (and its special
case vanilla GRPO for K = 1) applies more generally to a broad class of binary-reward RLVR policy gradient
algorithms whose per-example gradient can be expressed as:

Ĝ(θ; (x, a)) = ω+(ρ̂) · ∇̂+ − ω−(ρ̂) · ∇̂− , (24)

for some functions ω± : [0, 1] → R which determine the effective gradient weights multiplying the average
empirical gradients of correct and incorrect responses respectively. This form corresponds to the middle
column (Weighted Empirical Gradient) of Table 1; as seen, all algorithms we study here fit this expression.

The surrogate reward perspective provides an interpretation of any such algorithm in the population limit
of large N . Specifically, the following claim generalizes Claim 1.
Claim 3. In the population limit N → ∞, a policy-gradient algorithm with per-example gradient of the
form (24) performs gradient ascent on a per-example surrogate reward F (ρθ(x, a)) , where F : [0, 1] → R
satisfies for u ∈ (0, 1):

F ′(u) = ω+(u)
u

+ ω−(u)
1− u

.

9

Under review as submission to TMLR

Consequently, the update averaged over examples targets maximizing the population surrogate objective

E(x,a)∼D

[
F
(
Ey∼πθ(·|x)r(y, a)

)]
. (25)

This objective is a surrogate transformation of the conventional RLVR objective in Eq. (1).

Proof. Replacing empirical quantities ·̂ with their population counterparts, the population-level per-example
gradient is

G(θ; (x, a)) = ω+(ρθ)·Ey∼πθ(·|x)[∇θ log πθ(y|x) | r(y, a) = 1] − ω−(ρθ)·Ey∼πθ(·|x)[∇θ log πθ(y|x) | r(y, a) = 0] ,

where we use our shorthand ρθ = ρθ(x, a). Evaluating the conditional expectations (Lemma 2 in App. B.1)
yields

G(θ; (x, a)) = ω+(ρθ) · ∇θρθ

ρθ
+ ω−(ρθ) · ∇θρθ

1− ρθ
=
[

ω+(ρθ)
ρθ

+ ω−(ρθ)
1− ρθ

]
∇θρθ =: F ′(ρθ) · ∇θρθ.

Thus, in the population limit, the algorithm updates are of the form

θt+1 = θt + η · F ′(ρθ) · ∇θρθ, (26)

which is gradient ascent on the surrogate reward F (ρθ) (up to an additive constant in F).

Examples (reverse-engineering). For ω−(u) = ω+(u) = u(1−u) (RLOO, Eq. (8)), we obtain F ′(u) = 1,
hence F (u) = u (up to a constant). Similarly, for ω+(u) = u and ω−(u) = 0 (REINFORCE, Eq. (6)), we
also have F ′(u) = 1 and thus F (u) = u. For GRPO, where ω−(u) = ω+(u) =

√
u(1− u) (Eq. (10)), we have

F ′(u) = 1√
u(1−u)

and thus F (u) = 2 arcsin(
√

u) (up to a constant), matching Corollary 1.

Conversely, starting from a differentiable surrogate reward F : [0, 1] → R, we can derive an RLVR policy-
gradient update that (in the population limit) performs gradient ascent on F (ρθ). At the population level,
gradient ascent corresponds exactly to (26). To obtain a practical finite-N algorithm, we replace population
quantities by empirical analogues: (a) replace F ′(ρθ) with F ′(ρ̂), where ρ̂ is the empirical (finite-N) estimate
of ρθ; and (b) replace ∇θρθ with its RLOO proxy ĜRLOO(θ) = ρ̂(1− ρ̂) · (∇̂+ − ∇̂−) (Eq. (2)).

This yields the surrogate-driven finite-N gradient estimator

ĜF (θ; (x, a)) = ω(ρ̂) · (∇̂+ − ∇̂−), where ω(u) := F ′(u) · u · (1− u).

Equivalently, in the conventional advantage form,

ĜF (θ; (x, a)) = 1
N

∑
i∈[N]

AF
i · ∇i, AF

i :=
{

F ′(ρ̂) · (1− ρ̂) ri = 1,

−F ′(ρ̂) · ρ̂ ri = 0.
(27)

Up to clipping and KL regularization, (27) is a GRPO-style update in which the surrogate choice F shapes
(i.e., reweights) the binary learning signal through the scalar factor F ′(ρ̂). In fact, it can be easily checked
that

AF
i = F ′(ρ̂)

√
ρ̂(1− ρ̂) ·AGRPO

i ,

with AGRPO
i the vanilla GRPO advantage scores in Eq. (9).

Examples (forward-engineering). Letting F (u) = u recovers (up to a constant scaling N/(N − 1))
the vanilla RLOO update. Letting F (u) = 2 arcsin(

√
u) recovers the GRPO advantage shaping (Corol-

lary 1). For Pass@K optimization, letting F (u) = 1 − (1 − u)K yields RLOOK , while letting F (u) =
2
K arcsin

(√
1− (1− u)K

)
yields G̃RPOK (Claim 2). As another example, letting F (u) = q−1uq for any

q > 0 yields a one-parameter family of strictly increasing surrogate objectives with F ′(ρ̂) = ρ̂ q−1, i.e.,
ω(ρ̂) = ρ̂q(1− ρ̂): q < 1 upweights low-ρ̂ examples, while q > 1 upweights high-ρ̂ examples.

10

Under review as submission to TMLR

In all these cases F is strictly increasing: F (ρθ) is maximized at 1 just like ρθ, but induces possibly different
optimization dynamics via shaped advantages. In the following section, we provide additional examples
of surrogate objectives that yield new RLVR algorithmic instances while relaxing the requirement of the
optimization objective being strictly increasing. We then conclude with practical remarks in Sec. 7, including
the generally biased nature of the finite-N update (27), and how one can incorporate clipping and KL
regularization to obtain practical GRPO-like algorithms in offline settings (at the cost of sacrificing the
exact surrogate-maximization guarantee). We also invite the community to explore alternative choices of F
and their potential practical benefits.

6 A Regularized Surrogate Rewards Perspective

Both Pass@K routes examined in Secs. 3 and 4 tilt the learning signal toward the hard cases. Chen et al.
(2025) argue this is aligned with the exploit/explore roles of the two metrics. Maximizing the 0/1 reward
emphasizes exploitation: making individual responses more often correct, even on already-easy examples. In
contrast, Pass@K encourages exploration: for a given example, only one of K responses must be correct,
so once an example is “solved” in the Pass@K sense, further pushing its 0/1 reward is less valuable than
allocating gradient signal to unsolved examples where more search could pay off. Ideally, we want a controlled
balance: retain sufficient signal on solved examples while injecting additional search signal on unsolved ones.
To achieve this, they propose mixing Pass@K-shaped and vanilla advantages.

Using reverse-engineering, we arrive at a complementary interpretation of their method as regularized sur-
rogate reward maximization. This perspective decomposes the RL objective into a data-fitting term (the
transformation of the mean reward that the GRPO baseline optimizes) and a regularizer (an uncertainty
term such as the reward’s standard deviation). While the data-fitting term can be interpreted as exploitation
and the regularizer as exploration, the regularization viewpoint itself provides a possibly more elementary
justification for practical advantage-shaping heuristic-modifications of GRPO.

6.1 Combined 0/1 and Pass@K Advantage Shaping

Having observed that Pass@K optimization can aggressively favor difficult examples (small ρ̂) while poten-
tially zeroing out useful signal on easier ones (medium/large ρ̂), Chen et al. (2025) propose a simple blend
between optimizing the 0/1 reward and optimizing Pass@K. They combine the Pass@K advantage with the
vanilla advantage using the empirical 0/1 reward ρ̂ as a mixing weight. In our notation:

Ã±
mix = ρ̂ Ã±

Pass@K + (1− ρ̂) A± =
(
1− ρ̂ + ρ̂ · ω̃K

)
A±, (28)

where we used Eq. (20) to write Ã±
Pass@K = ω̃K A±. The same idea can be instantiated for the direct Pass@K

optimization view presented in Sec. 3. Since A±
Pass@K = f̂±

K−1 A± by (18), an analogous combination yields

A±
mix = ρ̂ A±

Pass@K + (1− ρ̂) A± =
(
1− ρ̂ + ρ̂ · f̂±

K−1
)

A±. (29)

Figure 2 visualizes the resulting effective gradient weights (i.e., ρ̂A+
mix for correct and (1− ρ̂)|A−

mix| for wrong
responses). Observe this blending avoids the overdamping of mid/large-ρ̂ training signal that can occur
under pure Pass@K optimization. Interestingly, the two combinations become numerically very close as K
grows. Moreover, except when K is small relative to N , both essentially collapse to the lower envelope
(1− ρ̂)A±. That is, they essentially no longer exploit an explicit Pass@K signal.

6.2 Reward Regularization Interpretation of Skew-R

What reward does the combined 0/1 and Pass@K advantage shaping actually optimize? Because Sec. 4 con-
nects advantage shaping to direct Pass@K optimization, one might guess it maximizes a convex combination
of the 0/1 and Pass@K rewards. The catch is that in (28) the mixing weight ρ̂ is adaptive to the instance
“difficulty” (as measured by ρ̂), so the combination is not a fixed convex blend at the objective level.

To simplify reverse engineering and obtain a more interpretable surrogate reward, we leverage the empirical
observation from the previous subsection: except when K is small relative to N , both combined schemes

11

Under review as submission to TMLR

Figure 2: Combined Pass@K effective gradient scores for N = 16 and various K. Green uses Eq. (29); Blue
uses Eq. (28); Dotted gray is the skew-R (1 − ρ̂)A±. For K = 2, 4 the two combinations differ slightly at
mid/high ρ̂ (blue is modestly larger); for K ≥ 6 they nearly coincide across ρ̂. This is because, for most ρ̂, the
Pass@K scalers vanish for ρ̂ < 1−K/N , reducing both combinations to the same envelope (1− ρ̂)

√
ρ̂(1− ρ̂).

Ã±
mix and A±

mix are numerically close in terms of effective weights to the simpler right-skew shaping

A±
skew-R := (1− ρ̂) A± .

Claim 4 (Skew-R= Regularized Surrogate Reward Maximization). Recall ρ̂ := ρ̂θ(x, a) denotes the per-
example empirical 0/1 reward. The skew-R (pronounced “skewer”) method rescales the vanilla 0/1 advantage
by (1 − ρ̂), yielding gradient updates Ĝskew-R(θ; (x, a)) = (1 − ρ̂) · ĜGRPO(θ; (x, a)) . When N ≫ 1, this
corresponds to maximization of the per-example reward

arcsin(√ρ) +
√

ρ (1− ρ) , (30)

where ρ := ρθ(x, a) := Ey∼πθ(·|x)[r0/1(y, a)] is the (population) 0/1 reward per example.

Reward-regularization perspective. Vanilla REINFORCE and RLOO maximize the expected 0/1
reward ρ (pure exploitation). As we saw in Corollary 1, vanilla GRPO maximizes a strictly monotone trans-
form of the mean, arcsin(√ρ), so it has the same maximizers as ρ and likewise corresponds to exploitation.
In contrast, the skew-R reward can be interpreted as stochastic gradient ascent on a regularized surrogate
reward that combines a data-fitting term and a regularizer. The data-fitting term incentivizes finding a
policy that maximizes the reward over the training examples (x, a) ∈ D. In contrast, the regularizer alone
is maximized at ρ = 1/2 where the binary correct and wrong policy outcomes are equally probable. An
intuitive explanation of this term, aligning with the regularization effect in classical supervised learning,
is that it incentivizes the model to not “overfit” on the training examples, maintaining diversity in wrong
response that may explore different solution paths generalizing to unseen examples. Formalizing such a
notion of overfitting and its connection to regularization could provide deeper insights into RLVR learning
tradeoffs. We note that the argmax of the combined reward in Eq. (30) is still at ρ = 1, reassuring here that
we incentivize ultimately finding parameters that maximize the average reward. However, mirroring lessons
from supervised fine-tuning, this might not always be the best strategy for generalization, and stronger
regularization with an explicit parameter controlling the strength could be beneficial (see next subsection).

Implications for the “Prioritized Sampling” strategy of Kimi 1.5. An interesting observation
potentially supporting the practical value of skew-R: Kimi 1.5 (Team et al., 2025) performs priority sampling
in their RL experiments, reweighting each example by 1 − ρ̂ to allow harder examples to appear more
frequently. This corresponds to the advantage shaping of skew-R (Eq. (30)) applied at the example level
rather than within gradient computation. Thus, our interpretation as regularized reward maximization
provides a direct justification for their empirically motivated practical choice.

Consistency of interpretations. In the large-sample limit N ≫ 1, skew-R is equivalent to GRPOK=2.
In Appendix C.2, we elaborate on this comparison with emphasis on interpreting the reverse-engineered
surrogate reward. We show that GRPOK=2 effectively optimizes an incomplete-beta-function transformation
of the Pass@2 (ρ2) reward, B(1 − (1 − ρ2)1/2; 1/2, 3/2), and that this objective is algebraically identical to
the skew-R surrogate in Eq. (30). Thus, in the population limit, both methods are in fact maximizing
the same scalar objective. This validates our surrogate-reward reverse-engineering framework, but it also

12

Under review as submission to TMLR

Figure 3: Comparison of (regularized) surrogate objectives (GRPO, Skew-R, and Entropy-Augmented). (a)
Effective Gradient Weight: Empirical gradient’s scaling factor as a function of the empirical reward ρ̂. The
vanilla GRPO (blue, dashed) is symmetric. Skew-R (green) and the Entropy-augmented methods (red,
purple) are asymmetric, suppressing gradients for high ρ̂. Skew-R gradients are multiplied here by 2, so all
four curves have the same area under the curve. (b) Surrogate Reward Value: Corresponding surrogate reward
functions, normalized so that they evaluate to 1 at ρ = 1. Takeaway: these regularized surrogates prioritize
improving low/mid-reward prompts. The regularization strength (larger λ) controls how strongly updates
are shifted away from high-ρ̂ prompts, while the regularizer type controls the shape of this reweighting (e.g.,
entropy retains a small but nonzero weight even at high ρ̂).

highlights a subtle interpretive question about what constitutes “regularization.” The interpretation depends
on which performance metric we take as the target: (1) Pass@K target. If Pass@K (ρK) is treated as the true
performance metric, then GRPOK should be viewed as directly maximizing a smooth, monotone surrogate
of ρK . In this view there is no extra penalty term: we are simply doing surrogate maximization of the
evaluation metric itself. (2) 0/1 target. In contrast, if 0/1 reward is the ultimate objective (as with skew-R),
the interpretation changes. The baseline GRPO already optimizes a surrogate arcsin(√ρ), and the extra
multiplicative (1− ρ̂) reweighting is interpreted as adding a regularizer term to that baseline.

6.3 An Example of Reward-Level Regularization

To further illustrate the use of reward regularization, we show how to optimize a surrogate reward that
combines the data-fitting term with an entropy regularizer H(ρ) = −ρ log(ρ)−(1−ρ) log(1−ρ) of the binary
0/1 reward. Intuitively, similar to the standard-deviation regularization of skew-R, H(ρ) favors examples
where the model is still “undecided,” redistributing gradient effort toward those rather than repeatedly
polishing ones it already gets right. The overall surrogate reward is 2 arcsin(√ρ) + λ ·H(ρ) . Applying the
forward-engineering recipe (differentiate the per-example regularized objective above, then replace population
quantities by their empirical estimates ρ̂ and plug in the usual low-variance RLOO estimator for ∇θρ; see
Appendix B.6) yields a tunable advantage-shaping rule that scales the vanilla GRPO gradient as follows:

Ĝentropy =
[
1− λ ·

√
ρ̂(1− ρ̂) log

(
ρ̂

1− ρ̂

)]
· ĜGRPO . (31)

This mirrors the structure of skew-R, but with a different weighting function. Whereas skew-R uses (1− ρ̂)
and therefore drives the weight for already-solved examples (ρ̂ ≈ 1) essentially to zero, the entropy-based
weight retains a significantly reduced, but nontrivial, weight even for easy prompts, while still sharply
boosting harder examples. See Fig. 3 for illustration. Unlike Skew-R’s objective in Eq. (30), which is
maximized at ρ = 1, the entropy-augmented objective need not be globally maximized at ρ = 1 for all λ: For
λ ≲ 1.5, its maximizer remains at ρ = 1, so we are still ultimately pushing toward perfect success. For larger
regularization strengths, the entropy term is strong enough that the overall maximizer shifts to some ρ < 1,
providing a mechanism to penalize perfect fitting of the training data, a stronger form of regularization.

13

Under review as submission to TMLR

7 Practical Considerations

Biased vs Unbiased Scalings. In Sec. 3 we derived Pass@K advantages by using a leave-one-out con-
struction to obtain unbiased estimates of the two components in (11): Fail@(K − 1) and G0/1(θ; (x, a)),
resulting in the unbiased empirical gradient ĜRLOOK

in Eq. (16). In contrast, Mahdavi et al. (2025) apply
a biased empirical gradient with advantage scaling (1 − ρ̂)K−1 · A± . This remains biased even if A± cor-
respond to an unbiased method, such as RLOO. Reverse-engineering their biased estimator shows that it
maximizes the same surrogate reward as our unbiased RLOOK . In fact, the advantage scores resulting from
our forward-engineering of surrogate rewards are all biased. Thus, while the surrogate reward provides a
unifying perspective to advantage scores, it does not differentiate between biased vs unbiased implementa-
tions. While unbiasedness is intuitively a desirably property, see App. C.3 for a discussion on regimes where
biased variants can be attractive. Finally, we remark that when the number of responses N per prompt is
small, plug-in estimates such as ρ̂ (or ρ̂K) can be noisy, and the resulting reweightings may deviate from
their large-sample forms assumed by our surrogate-reward interpretations. Characterizing these finite-N
effects is an important direction for future work; we view the surrogate-reward lens as still useful here as an
organizing principle that identifies the population objective/gradient field being approximated.

Normalization Factors. The main difference of GRPO from classical RLOO is, up to the clipping, the
normalization with respect to the reward’s standard deviation. Cor. 1 provides an alternative interpretation
of this scaling: at the level of the training objective, it maximizes a transformation of the 0/1 reward that
stabilizes the variance of its empirical estimator. More broadly, our forward-engineering of reward surrogates
F (ρ) uses RLOO empirical gradients as a robust estimate of the population reward gradient ∇θρ and scales
them by F ′(ρ) that generalizes the specific GRPO normalization via standard deviation. On the empirical
side, there is ongoing debate about whether such normalizations are necessary for good performance. For
example, in support of earlier works (Ahmadian et al., 2024), a recent study by Khatri et al. (2025) finds that
RLOO is competitive to GRPO, with zero-mean advantages being the main driver behind its success (Xiong
et al., 2025). This raises an interesting question: Could we theoretically characterize how properties of a
surrogate F (e.g., variance stabilization) relate to favorable optimization dynamics? Such an analysis might
shed light on if, when and why these normalizations matter in practice.

Clipping. Our analysis omits the clip operation of GRPO (Shao et al., 2024), which is itself inherited
from PPO (Schulman et al., 2017). This is accurate when GRPO operates in full online mode (single
update per model generation), as originally done by Shao et al. (2024). However, if multiple updates are
performed per generation, the GRPO gradient expression in Eq. (10) that our analysis uses is only a proxy.
That said, current systems are often optimized to be on-policy (Liu et al.; Qi et al., 2025). Either way,
all advantage-shaping methods studied here (e.g., GRPOK , skew-R, entropy-augmented) can be empirically
applied in practical, multi-epoch training regimes by simply substituting the respective advantage scores
into the original GRPO formulation with the clip operation and/or KL regularization (or follow-up variants,
e.g., (Yu et al., 2025a; Zheng et al., 2025)). Specifically, using a surrogate F is a one-line change in existing
GRPO code: following (27), set Ai ← F ′(ρ̂)

√
ρ̂(1− ρ̂) AGRPO

i (with ρ̂ the batch success rate) before clipping,
then apply the usual clipping/KL.

Granular Advantage Shaping. The methods we study shape the advantage at the example level. This is
the case for all methods that result from forward-engineering a (regularized) reward surrogate (as in Eq. (3)):
they scale vanilla RLOO by a factor F ′(ρ̂) + λ · Ω′(ρ̂) that depends only on the per-example empirical 0/1
reward ρ̂. The only exception is the Pass@K methods designed in Sec. 3, which introduce asymmetric weights
for correct versus wrong responses. Here, advantage shaping is done at the response level. 7 Finer-grained
shaping is also possible. For example, Deng et al. (2025b); Cheng et al. (2025); Cui et al. (2025) investigate
token-level advantage shaping and would be interesting to reverse-engineer those as regularized surrogate
rewards, albeit in the form of finer-grained regularization at the policy/model-representation level.

7In this specific case, the weights of correct (f̂+
K−1) and wrong gradients (f̂−

K−1) have the same population limit. The reverse-
engineering approach of Claims 1, 4 can still be applied even if these limits are themselves asymmetric (see Appendix C.4).

14

Under review as submission to TMLR

Empirical evaluation and surrogate selection. Beyond providing a unifying lens for interpreting exist-
ing RLVR/GRPO-style policy-gradient methods, the established bi-directional relation “advantage shapes↔
weighted gradients↔ surrogate reward” offers an algorithmic opportunity: a forward-engineering recipe for
designing advantage-shaping rules. As noted above, the updates derived from this recipe are plug-and-play
in existing GRPO implementations. In Secs. 5–6, we introduce concrete surrogates as starting points, and
in App. D we provide proof-of-concept experiments comparing the performance of variants like Skew-R,
GRPOK , and entropy-regularized methods against vanilla GRPO. For designing future algorithms, the most
convenient objects to work with are the surrogate reward F (ρθ) or the associated weighting functions ω±(ρθ),
as these directly specify how the update reweights correct vs. incorrect responses (see Sec. 5.3). Conceptually,
the equivalence “weighted gradients↔ surrogate reward” mirrors the duality in supervised learning between
modifying gradients and modifying loss functions. This suggests that well-studied robust or imbalance-aware
loss-design principles from supervised learning can serve as starting points for designing corresponding RLVR
updates. Overall, the recipe is intentionally general; a systematic empirical study of this design space that
involves identifying robust families across tasks/compute regimes and characterizing trade-offs is an impor-
tant next step, which we leave to future work. Combined with the theoretical unification through surrogate
rewards, such a study may also yield concrete guidelines for when properties of the data distribution, model
capacity, or task structure favor one algorithm over another.

8 Conclusion

Motivated by an effort to reconcile recent Pass@K policy gradient methods, we show that advantage shaping
is (asymptotically) equivalent to RLOO-style optimization of surrogate rewards F (ρ). This equivalence
extends beyond Pass@K: for instance, “hard-example upweighting" heuristics correspond to adding reward-
level regularization Ω(ρ) to the training objective. While F (ρ) is maximized at ρ = 1, acting as a data-fitting
term, the regularizer Ω(ρ) provides an opposing force that can be interpreted as preventing overfitting,
particularly to easy training examples.

Advantage shaping and surrogate reward design are two sides of the same coin. This equivalence mirrors
classical supervised learning, where modifying the training objective is analogous to directly modifying the
gradient. Both design approaches have proven effective, with a strong parallel in supervised classification
for imbalanced data, e.g. (Lin et al., 2017; Menon et al., 2020; Ye et al., 2021; Kini et al., 2021). At a
conceptual level, understanding this equivalence is instructive: irrespective of the design choice—whether
starting from advantage shapes or surrogate rewards—analyzing the counterpart can provide valuable insight.
Looking forward, while direct parallels to supervised learning should be drawn cautiously, the (regularized)
surrogate reward lens may facilitate (i) a theoretical bridge between iterative policy-gradient optimization
and the population performance metrics these algorithms ultimately aim to optimize, (ii) designing new
practically relevant advantage shapes, with surrogate losses and reweighting schemes from supervised learning
as potential starting points, and (iii) gaining insight into what properties (e.g., of the data distribution or
model) determine when existing or new algorithms perform well.

References

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet
Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Francis J Anscombe. The transformation of poisson, binomial and negative-binomial data. Biometrika, 35
(3/4):246–254, 1948.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

15

Under review as submission to TMLR

Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi. Pass@ k
training for adaptively balancing exploration and exploitation of large reasoning models. arXiv preprint
arXiv:2508.10751, 2025.

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and Furu Wei.
Reasoning with exploration: An entropy perspective. arXiv preprint arXiv:2506.14758, 2025.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen Fan,
Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for reasoning language
models. arXiv preprint arXiv:2505.22617, 2025.

Wenlong Deng, Yi Ren, Muchen Li, Danica J Sutherland, Xiaoxiao Li, and Christos Thrampoulidis.
On the effect of negative gradient in group relative deep reinforcement optimization. arXiv preprint
arXiv:2505.18830, 2025a.

Wenlong Deng, Yi Ren, Yushu Li, Boying Gong, Danica J Sutherland, Xiaoxiao Li, and Christos Thram-
poulidis. Token hidden reward: Steering exploration-exploitation in group relative deep reinforcement
learning. arXiv preprint arXiv:2510.03669, 2025b.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS, 2021.

Devvrit Khatri, Lovish Madaan, Rishabh Tiwari, Rachit Bansal, Sai Surya Duvvuri, Manzil Zaheer, Inderjit S
Dhillon, David Brandfonbrener, and Rishabh Agarwal. The art of scaling reinforcement learning compute
for llms. arXiv preprint arXiv:2510.13786, 2025.

Ganesh Ramachandra Kini, Orestis Paraskevas, Samet Oymak, and Christos Thrampoulidis. Label-
imbalanced and group-sensitive classification under overparameterization. Advances in Neural Information
Processing Systems, 34:18970–18983, 2021.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for free! 2019.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S Liang.
Spoc: Search-based pseudocode to code. Advances in Neural Information Processing Systems, 32, 2019.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester
James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in open language
model post-training. arXiv preprint arXiv:2411.15124, 2024.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017.

Jiacai Liu, Yingru Li, Yuqian Fu, Jiawei Wang, Qian Liu, and Yu Shen. When speed kills stability: Demys-
tifying rl collapse from the training-inference mismatch, september 2025. URL https://richardli. xyz/rl-
collapse.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783, 2025.

Sadegh Mahdavi, Muchen Li, Kaiwen Liu, Renjie Liao, and Christos Thrampoulidis. Beyond accuracy: A
policy gradient reweighting approach for pass@ k maximization in llms. In 2nd AI for Math Workshop@
ICML 2025, 2025.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and Sanjiv
Kumar. Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314, 2020.

16

Under review as submission to TMLR

Youssef Mroueh. Reinforcement learning with verifiable rewards: Grpo’s effective loss, dynamics, and success
amplification. arXiv preprint arXiv:2503.06639, 2025.

Penghui Qi, Zichen Liu, Xiangxin Zhou, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin. Defeating the
training-inference mismatch via fp16. arXiv preprint arXiv:2510.26788, 2025.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pp. 1889–1897. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao,
Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. arXiv
preprint arXiv:2501.12599, 2025.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor Gitman.
Openmathinstruct-2: Accelerating ai for math with massive open-source instruction data. arXiv preprint
arXiv:2410.01560, 2024.

Christian Walder and Deep Karkhanis. Pass@ k policy optimization: Solving harder reinforcement learning
problems. arXiv preprint arXiv:2505.15201, 2025.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3):229–256, 1992.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong Zhang,
Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling to reinforce. arXiv
preprint arXiv:2504.11343, 2025.

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu,
Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang,
Zihan Qiu, Shanghaoran Quan, and Zekun Wang. Qwen2.5 technical report. ArXiv, abs/2412.15115, 2024.
URL https://api.semanticscholar.org/CorpusID:274859421.

Han-Jia Ye, De-Chuan Zhan, and Wei-Lun Chao. Procrustean training for imbalanced deep learning. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 92–102, 2021.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan,
Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. arXiv
preprint arXiv:2503.14476, 2025a.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. arXiv
preprint arXiv:2503.14476, 2025b.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-zoo:
Investigating and taming zero reinforcement learning for open base models in the wild. arXiv preprint
arXiv:2503.18892, 2025.

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai Tian,
Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models. arXiv preprint
arXiv:2509.08827, 2025.

17

https://api.semanticscholar.org/CorpusID:274859421

Under review as submission to TMLR

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang, Yuqiong Liu,
Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint arXiv:2507.18071, 2025.

18

Under review as submission to TMLR

Summary of Notations and Algorithms

Notations. For the reader’s convenience, we list the core notation used throughout the paper.

(x, a) A problem-prompt (x) and reference-answer (a) pair.
πθ(·|x) The policy (LLM) parameterized by θ.
N Number of IID responses generated per example.
yi The i-th response, yi ∼ πθ(·|x).
ri The binary 0/1 reward r0/1(yi, a).
ρ = ρθ The (population) expected 0/1 reward Ey∼πθ

[ri].

ρ̂ The empirical 0/1 reward 1
N

∑N
i=1 ri.

N+, N− Number of correct (ri = 1) and wrong (ri = 0) responses.
ρK = ρK,θ The (population) expected Pass@K reward.
ρ̂K The unbiased empirical estimator of ρK,θ.
∇i The log-probability gradient ∇θ log πθ(yi|x).

∇̂+ Average empirical gradient over correct responses: 1
N+

∑
i:ri=1∇i.

∇̂− Average empirical gradient over wrong responses: 1
N−

∑
i:ri=0∇i.

A GRPO’s PPO-Style vs Surrogate Reward Objectives

In the original paper, Shao et al. (2024) present GRPO as optimizing a PPO-style objective (Schulman et al.,
2017). This section reconciles that formulation with the surrogate reward objective derived in our Corollary
1.

PPO-style objective. Following common practice (Yu et al., 2025a; Liu et al., 2025; Zeng et al., 2025;
Deng et al., 2025a), we omit the KL regularization term8 and the 1/|yi| length normalization (which is found
responsible for length-bias) from the original GRPO objective of Shao et al. (2024), yielding:

E
{yi}i∈[N]

IID∼ πθold (·|x)

[
1
N

N∑
i=1

|yi|∑
t=1

min(γi,tAi, [γi,t]1+ϵ
1−ϵ Ai)

]
, (32)

where [·]ba is the clip function at levels a and b, and γit = πθ(yit|x, yi,<t)/πθold(yit|x, yi,<t) is the policy ratio
between the current model θ (to be updated) and the model θold that generates the responses. For clarity,
further omit the clip operation, as done for example in Shao et al. (2024, App. A.1.6). Then the above
objective simplifies to

Eyi∼πθold (·|x)

[
1
N

N∑
i=1

|yi|∑
t=1

γi,t ·Ai

]
.

Note that the expectation here is defined with respect to samples from the old policy πθold , following the
TRPO and PPO frameworks (Schulman et al., 2015; 2017). Thus, when taking gradients, πθold is held fixed;
only the numerator πθ depends on θ.

Taking the gradient with respect to θ and using the log-derivative trick, the gradient becomes

Eyi∼πθold (·|x)

[
1
N

N∑
i=1

|yi|∑
t=1

γi,t ·Ai · ∇θ log πθ(yit|x, yi,<t|x)
]

. (33)

8We refer the reader to Mroueh (2025) for a complementary analysis of GRPO’s optimization dynamics focusing on the trajectory
of the probability of success under explicit KL regularization towards a reference policy. Instead here, we focus solely on the
implicit objective optimized by the gradients corresponding to the “advantage term” of the GRPO objective.

19

Under review as submission to TMLR

The fully online setting (corresponding to µ = 1 iterations in (Shao et al., 2024, Alg. 1)) implies πθ = πθold .
Then, by γi,t = 1, this simplifies to

Eyi∼πθ(·|x)

[1
N

N∑
i=1

Ai · ∇θ log πθ(yi|x)
]

. (34)

The empirical version of this, 1
N

∑N
i=1 Ai ·∇θ log πθ(yi|x), is precisely the GRPO gradient we analyze in Sec.

2 and Eq. (10).

Difference to our surrogate reward. A natural question arises: How does the PPO-style objective in
Eq. (33) relate to the surrogate reward 2 arcsin(√ρθ) that Corollary 1 identifies as the function optimized by
the GRPO gradient (Eq. (34))?

The resolution lies in recognizing that these are fundamentally different types of objectives:

• As mentioned, the PPO-style objective (Eq. (33)) is defined over a fixed distribution πθold .

• Our surrogate reward identifies the on-policy population objective that the gradient in Eq. (34)
ascends.

To illustrate this distinction, consider what happens if we incorrectly interpret the PPO objective as fully
on-policy by substituting πθold = πθ everywhere (both in the integrand and the sampling distribution) in
Eq. (33). This would yield:

Eyi∼πθ(·|x)

[1
N

N∑
i=1

Ai

]
. (35)

However, recall that Ai = (ri − ρ̂)/
√

ρ̂(1− ρ̂): by construction, the advantages are zero-centered:∑
i∈[N] Ai = 0 for any batch. Therefore, this naive on-policy interpretation yields a trivial objective that is

identically zero; clearly not what GRPO optimizes.

As established in Corollary 1, the actual population objective that the on-policy GRPO gradient (Eq. (34))
ascends is the surrogate reward: 2 arcsin(√ρθ).

Perspective Beyond the Fully Online Setting. This surrogate reward perspective provides a principled
way to interpret and design advantage functions. Our analysis shows how algorithms like GRPO and G̃RPOK

correspond to specific surrogate rewards in the on-policy setting. This link is constructive: new advantage-
shaping methods, derived from new surrogate rewards (as in Sec. 3 and 6), are not limited to the fully online
setting. Their resulting advantage scores, Ai, can be seamlessly embedded within the PPO-style objective
(Eq. (32)), allowing them to be used in practical, multi-epoch training regimes.

B Missing Proofs

B.1 Auxiliary Technical Results

Lemma 1 (Relating f̂+
K−1, f̂−

K−1, and ρ̂K). With

ρ̂K = 1−
(

N−

K

)(
N
K

) , f̂+
K−1 =

(
N−

K−1
)(

N−1
K−1

) , f̂−
K−1 =

(
N−−1
K−1

)(
N−1
K−1

) ,

and the conventions
(

N
k

)
= 0 when N < k and

(
N
0
)

= 1, we have for ρ̂ = N+

N :

1− ρ̂K = (1− ρ̂) · f̂−
K−1 = (1− ρ̂− K − 1

N
) · f̂+

K−1 .

20

Under review as submission to TMLR

Proof. Use the standard identities
(

N
k

)
= N

k

(
N−1
k−1

)
and

(
N
K

)
= N

K

(
N−1
K−1

)
. Then(

N−

K

)(
N
K

) =
N−

K

(
N−−1
K−1

)
N
K

(
N−1
K−1

) = N−

N
·
(

N−−1
K−1

)(
N−1
K−1

) = N−

N
f̂−

K−1,

which implies ρ̂K = 1− N−

N f̂−
K−1.

Alternatively, using
(

N−1
k

)
= N−k

N

(
N
k

)
with N = N− and k = K − 1,

f̂−
K−1 =

(
N−−1
K−1

)(
N−1
K−1

) = N− − (K − 1)
N− ·

(
N−

K−1
)(

N−1
K−1

) = N− − (K − 1)
N− f̂+

K−1.

Substitute this into the previous display to get(
N−

K

)(
N
K

) = N−

N
· N− − (K − 1)

N− f̂+
K−1 = N− − (K − 1)

N
f̂+

K−1,

hence ρ̂K = 1 − N−−(K−1)
N f̂+

K−1. The boundary conventions cover cases K = 1 (both weights = 1) and
N− < K (ratio = 0).

Lemma 2 (Conditional-gradient identity). Let r := r0/1(y, a) and ρ := ρθ(x, a) := Ey∼πθ(·|x)[r0/1(y, a)].
With expectations over y ∼ πθ(·|x), define

∆ := E[∇θ log πθ(y|x) | r = 1] − E[∇θ log πθ(y|x) | r = 0] .

Then
∆ = 1

ρ(1− ρ) ∇θρ.

Proof. By conditioning and the log-derivative trick,

E[∇θ log πθ(y|x) | r = 1] = E[r∇θ log πθ(y|x)]
ρ

= ∇θρ

ρ
.

Using E[∇θ log πθ(y|x)] = 0,

E[∇θ log πθ(y|x) | r = 0] = E[(1− r)∇θ log πθ(y|x)]
1− ρ

= − ∇θρ

1− ρ
.

Subtracting gives ∆ =
(1

ρ + 1
1−ρ

)
∇θρ = 1

ρ(1−ρ) ∇θρ.

B.2 Proof of Equation (14)

The leave-one-out unbiased estimator of Fail@(K-1) excluding response i is:

1− ρ̂ loo,i
K−1 =

((N−1)(1−ρ̂ loo,i)
K−1

)(
N−1
K−1

) ,

where the leave-one-out empirical 0/1 reward is

ρ̂ loo,i =
{

N+−1
N−1 if yi is correct
N+

N−1 if yi is wrong
.

For correct responses: (N − 1)(1− ρ̂ loo,i) = (N − 1)− (N+ − 1) = N−.

For wrong responses: (N − 1)(1− ρ̂ loo,i) = (N − 1)−N+ = N− − 1.

Apply now Lemma 1 to yield Eq. (14).

21

Under review as submission to TMLR

B.3 Proof of Unbiasedness for RLOOK

Fix an example (x, a) and an index i ∈ [N]. Let ylooi := {yj}j ̸=i denote the other N − 1 IID samples, and
define for convenience the leave-one-out Fail@(K−1) weight W RLOOi := 1 − ρ̂loo,i

K−1 and the RLOO baseline
blooi := 1

N−1
∑

j ̸=i rj . As mentioned in the main body, the RLOOK gradient results from replacing in the
gradient formula of ĜREINFORCEK

in Eq. (13) the reward ri with the vanilla RLOO advantage Ai = ri−blooi .
Thus, the RLOOK estimator for sample i is defined as:

ĝi := W RLOOi (ri − blooi)∇i, ∇i := ∇θ log πθ(yi|x).

Since W RLOOi and blooi are functions of ylooi only, they are independent of (ri,∇i). Hence, conditioning on
ylooi ,

E[ĝi] = E
[
W RLOOi E[(ri − blooi)∇i | ylooi]

]
= E

[
W RLOOi

(
E[ri∇i]− blooiE[∇i]

)]
= E[W RLOOi] · E[ri∇i] =

(
1− ρK−1,θ(x, a)

)
· ∇θρθ(x, a),

where we used E[∇i] = 0, E[ri∇i] = ∇θρθ(x, a), and E[W RLOOi] = 1 − ρK−1,θ(x, a) since W RLOOi is the
standard unbiased estimator of Fail@(K−1) computed from N−1 samples. Averaging over i and multiplying
by K yields E[ĜRLOOK

(θ; (x, a))] = K(1− ρθ)K−1∇θρθ = ∇θρK,θ, proving unbiasedness.

B.4 Proof of of Claim 1: Reverse-Engineering G̃RPOK

Recall the empirical update for the advantage-shaping method from Eq. (20):

ĜG̃RPOK
= ω̃K · ĜGRPO =

√
1− ρ̂K

ρ̂K

√
ρ̂

1− ρ̂
· ĜGRPO

=

√
1− ρ̂K

ρ̂K

√
ρ̂

1− ρ̂
·
√

ρ̂(1− ρ̂) ·
(
∇̂+ − ∇̂−

)
. (36)

Replacing empirical ·̂ quantities with their population counterparts, the population-level gradient (call it)
GGRPOK

is:

GG̃RPOK
=
(√

1− ρK

ρK
·
√

ρ

1− ρ

)√
ρ(1− ρ) · Eyi∼πθ(·|x)

[
∇̂+ − ∇̂−

]
.

The expectation in the last term becomes

Ey∼πθ(·|x)[∇θ log πθ(y|x) | r(y, a) = 1] − Ey∼πθ(·|x)[∇θ log πθ(y|x) | r(y, a) = 0] .

Using Lemma 2, this equals ∇θρ/(ρ(1− ρ)). Thus,

GG̃RPOK
=
(√

1− ρK

ρK
·
√

ρ

1− ρ

)
·

(
1√

ρ(1− ρ)
∇θρ

)
=
(√

1− ρK

ρK
· 1

1− ρ

)
· ∇θρ . (37)

We now relate ρ to ρK . Recall that ρK = 1 − (1 − ρ)K =⇒ 1 − ρ = (1 − ρK)1/K . From this also
∇θρK = K(1− ρ)K−1∇θρ = K(1− ρK)1−1/K∇θρ .

Substitute these two relationships back into (37):

GG̃RPOK
=
(

1
K
·
√

1− ρK

ρK
· 1

(1− ρK)1/K(1− ρK)1−1/K

)
· ∇θρK

=
(

1
K
√

ρK(1− ρK)

)
· ∇θρK . (38)

22

Under review as submission to TMLR

This is now in the form GG̃RPOK
= F ′(ρK)∇θρK . We integrate in ρK to find the surrogate F :∫ 1√

ρK(1− ρK)
dρK = 2 arcsin(√ρK) + C = arcsin(2ρK − 1) + C ′ , (39)

where C, C ′ are constants. This completes the proof of the claim.

B.5 Proof of Claim 4: Reverse-engineering Skew-R

Recall the empirical GRPO update (no clipping) from Eq. (10):

ĜGRPO =
√

ρ̂(1− ρ̂)
[
∇̂+ − ∇̂−

]
.

We have seen in the proof of Claim 1 that, at the population level this update becomes

GGRPO = 1√
ρ(1− ρ)

∇θρ,

Then, the skew-R update at the population level is

Gskew-R = (1− ρ) GGRPO =
√

1− ρ

ρ
∇θρ.

We can more conveniently express this as

Gskew-R = 1
2
√

ρ(1− ρ)
· ∇θρ + 1− 2ρ

2
√

ρ(1− ρ)
· ∇θρ .

We know from Corollary 1 that the first term corresponds to a surrogate reward arcsin(√ρ). Analogously,
the second term corresponds to Ω(ρ) for Ω such that Ω′(ρ) = 1−2ρ

2
√

ρ(1−ρ)
. Integrating gives (up to a constant)

Ω(ρ) =
√

ρ(1− ρ) completing the proof of the claim.

B.6 Reward-Level Entropy Regularization

We start by computing the population gradient of the per example entropy-surrogate reward 2 arcsin(√ρ) +
λ ·H(ρ) , where recall H(ρ) = −ρ log(ρ)− (1− ρ) log(1− ρ). By direct differentiation

Gentropy(θ; (x, a)) =
[

1√
ρ(1− ρ)

+ λ · log
(1− ρ

ρ

)]
· ∇θρ

Following the recipe of transforming the population objective into an empirical estimate we (1) substitute
population quantities with their empirical counterparts in the multiplicative factor of the gradient, (2)
substitute the population gradient with the an RLOO empirical gradient. We then get

Ĝentropy(θ; (x, a)) =
[

1√
ρ̂(1− ρ̂)

+ λ · log
(1− ρ̂

ρ̂

)]
· ρ̂(1− ρ̂)

[
∇̂+ − ∇̂−

]
.

Recalling that ĜGRPO =
√

ρ̂(1− ρ̂)
[
∇̂+ − ∇̂−

]
, we find

Ĝentropy(θ; (x, a)) =
[
1 + λ · log

(1− ρ̂

ρ̂

)
·
√

ρ̂(1− ρ̂)
]
· ĜGRPO .

Equivalently, the advantage scores of the new method are

A±
entropy =

[
1 + λ · log

(1− ρ̂

ρ̂

)
·
√

ρ̂(1− ρ̂)
]
·A± .

23

Under review as submission to TMLR

C Additional Analysis and Discussion of GRPOK

C.1 Reverse-Engineering GRPOK

Taking limit of N →∞ and replacing empirical quantities with population counterparts in Eq. (17), we find

GGRPOK
= 1− ρK

1− ρ

√
ρ(1− ρ) ·∆

where the term ∆ = ∇θρ/(ρ(1−ρ)) is the difference of correct/wrong population gradients defined in Lemma
2. Simplifying,

GGRPOK
= (1− ρ)K−1√

ρ(1− ρ)
· ∇θρ .

Integrating the multiplicative factor (1− ρ)K− 3
2 ρ− 1

2 over ρ the per-example surrogate reward that gives this
gradient is the incomplete beta function with parameters 1/2 and K − 1/2:

B
(
ρ; 1/2, K − 1/2

)
.

Written in terms of Pass@K reward, the surrogate reward is

B
(
1− (1− ρK)1/K ; 1/2, K − 1/2

)
. (40)

By symmetry properties of the incomplete beta function, this is up to (a K-dependent) constant equivalent
to −B

(
(1− ρK)1/K ; 1/2, K − 1/2

)
.

For K = 1,

B
(
1− (1− ρK)1/K ; 1/2, K − 1/2

)
= B

(
ρK ; 1/2, 1/2

)
=
∫ ρK

0

1√
τ(1− τ)

dτ = 2 arcsin(√ρK).

Thus, the surrogate function coincides with that of G̃RPOK (Claim 2). However, for K ≥ 2, the two
surrogates differ. Specifically, GRPOK ’s surrogate is adaptive to the value of K. See Fig. 4.

C.2 GRPOK=2 vs. Skew-R

For K = 2: f̂+
K−1 = (1− ρ̂2 − 1/N)/(1− ρ̂) and f̂−

K−1 = (1− ρ̂2)/(1− ρ̂), which applied to Eq. (17) gives

ĜGRPOK=2 = 1− ρ̂2 − 1/N

1− ρ̂

√
ρ̂(1− ρ̂) · ∇̂+ −

1− ρ̂2

1− ρ̂

√
ρ̂(1− ρ̂) · ∇̂− .

For N ≫ 1, for which 1− ρ̂2 − 1/N ≈ 1 − ρ̂2 ≈ (1 − ρ̂)2, this becomes the same as the skew-R ob-
jective in Eq. (30): (1 − ρ̂)

√
ρ̂(1− ρ̂)

[
∇̂+ − ∇̂−

]
. This raises a question with regards to our reverse-

engineering perspective: On the one hand, we have argued that at population level skew-R maximizes
arcsin(√ρ) +

√
ρ(1− ρ). On the other hand, we have seen in the previous subsection that GRPOK=2

maximizes B
(
1− (1− ρ2)1/2; 1/2, 3/2

)
.

First, note that the two surrogates are in fact algebraically identical. To see this, we can express
B
(
1− (1− ρ2)1/2; 1/2, 3/2

)
in terms of ρ (using the definition ρ2 = 1− (1− ρ)2):

B
(
ρ; 1/2, 3/2

)
=
∫ ρ

0

√
1− τ

τ
dτ =

∫ ρ

0

1
2
√

τ(1− τ)
dτ +

∫ ρ

0

1− 2τ

2
√

τ(1− τ)
dτ .

The first integral is arcsin(√ρ) and the second
√

ρ(1− ρ), confirming the identity. This means there is no in-
consistency in our reverse-engineering strategy. At the same time, the simple three-step forward-engineering
recipe operates by substituting population quantities with empirical estimates without accounting for unbi-
asedness (e.g., via leave-one-out): thus it cannot recover the finite-sample (N not ≫ 1) version of GRPOK

and arrives at skew-R.

24

Under review as submission to TMLR

Figure 4: A comparison of surrogate reward functions, plotted against the Pass@K reward ρK . The colored
lines show the GRPOK surrogate, Eq. (40) for various K values. The black dashed line shows the (nor-
malized) G̃RPOK surrogate, 2

π arcsin(√ρK). (All curves are normalized to reach value 1 at ρK = 1.) The
surrogates agree for K = 1 (dashed and purple solid lines coincide), but for K > 1 the GRPOK surrogates
become concave providing stronger optimization incentive for hard prompts.

This algebraic identity, however, raises a subtle question of interpretation for how we talk about “regu-
larization.” One reading (a 0/1-reward-centric lens) is to say: GRPOK=1 already optimizes the surrogate
arcsin(√ρ); moving to K = 2 simply adds the extra term

√
ρ(1− ρ), which one might then call a reward-level

regularizer

However, for the Pass@K methods, we argue it is more appropriate to adopt a Pass@K-centric lens. For
Pass@K methods, ρK is the actual performance metric of interest, and the 0/1 reward (ρ) is merely an
intermediate quantity used in its calculation (since ρK = 1− (1− ρ)K). From this perspective, the objective
in Eq. (40) is not a ’regularized 0/1 surrogate’ but rather a direct surrogate for ρK : a monotone transformation
of the Pass@K objective itself. Under this view, GRPOK is just doing standard surrogate maximization of
the performance metric (analogous to cross-entropy as a surrogate for 0/1 risk), rather than “optimizing ρ
with an added regularizer.”

Both interpretations are mathematically consistent; the choice depends on whether one views the opti-
mization goal as improving the 0/1 reward (and thus interpreting K > 1 as regularization) or as directly
optimizing the Pass@K metric (and thus interpreting the objective as a simple, monotone transformation of
ρK).

C.3 Comparison to Biased Scaling

In Sec. 3 we applied the log-derivative trick directly to the Pass@K objective, yielding the expected gradient
GPass@K(θ; (x, a)) in Eq. (11). We then derived Pass@K variants of REINFORCE by using a leave-one-out
construction to obtain unbiased estimates of the two components in (11): Fail@(K − 1) and G0/1(θ; (x, a)),
resulting in the unbiased empirical gradient ĜRLOOK

in Eq. (16).

In contrast, Mahdavi et al. (2025) apply a biased empirical gradient that estimates the Fail@(K − 1) factor
as (1− ρ̂)K−1. The corresponding advantage-score scaling is (up to constant multiplicative factor K)

(1− ρ̂)K−1 ·A± . (41)

25

Under review as submission to TMLR

Figure 5: Comparison of absolute effective gradient weights (log scale) for Pass@K training with N = 16.
Each panel shows a different K and plots the magnitude applied to correct (solid) and wrong (dashed)
responses under three schemes: GRPOK (Eq. (18); green), G̃RPOK (Eq. (20); blue), and the biased scaler
(Eq. (41); red). For small ρ̂, GRPOK assigns slightly larger weights than the biased scaler. As ρ̂ increases,
GRPOK enforces a hard zero once ρ̂ > 1− K−1

N , whereas the biased scaler decays smoothly. G̃RPOK applies
a symmetric, example-level scale and often yields the largest mid-ρ̂ weights until ρ̂K saturates. Only the
GRPOK exhibits asymmetric scaling between correct and wrong responses.

Unlike the estimators in Sec. 3, this remains biased even if the advantage-scores A± correspond to an
unbiased method (e.g., RLOO), because (1− ρ̂)K−1 is itself a biased estimator of Fail@(K − 1). Replacing
it by a leave-one-out version (1− ρ̂loo)K−1 does not remove this bias.

Note that such biased scaling is also present in advantage-shapes resulting from our forward-engineering
of surrogate rewards in Sec. 5. Even our reverse-engineering operates at the population level. Thus,
here, it would tell us that both GRPOK (which applies unbiased reweightings to vanilla GRPO) and the
method of Mahdavi et al. (2025), both implicitly maximize the same surrogate reward (as derived in App.
C.1). In the practical regime of few samples though the two methods could lead to different behaviors.
While unbiasedness is intuitively a good property, we discuss below regimes where the biased variant can be
particularly attractive. It is worth noting that for K = 2 the biased variant coincides with skew-R.

When a biased reweighting factor can help. There are practical regimes where biased scalings are
intuitively attractive. Specifically, for Pass@K optimization this includes (see also Fig. 5): (1) Compute-
constrained N ≤K. The unbiased Pass@K estimator in Sec. 3 (and the grouping-based method of Sec. 4)
is undefined when K > N , whereas (1 − ρ̂)K−1 still yields a meaningful signal. (2) Small N relative to
K. When N > K but not by much, the unbiased combinatorial weight becomes exactly zero whenever
N− < K − 1, prematurely killing gradients; the smooth scaler (1 − ρ̂)K−1 avoids this early saturation and
provides a gentler shaping A±

Pass@K = (1 − ρ̂)K−1A± that maintains nonzero updates. (3) Very large N

relative to K. When N ≫ K, f̂+
K−1 ≈ f̂−

K−1 ≈
(
N−/(N − 1)

)K−1 ≈ (1 − ρ̂)K−1, so the two estimators
nearly coincide.

C.4 Comparison to Further Related Work

In the main body, we compared GRPOK to its biased variant from Mahdavi et al. (2025) and to G̃RPOK

as implemented by Chen et al. (2025). Policy optimization for Pass@K has also been studied by Walder &
Karkhanis (2025). Their approach differs from both ours and Mahdavi et al. (2025) in two important ways.

First, Walder & Karkhanis (2025) do not formulate GRPO-style estimators. The fair comparison is therefore
with our REINFORCEK / RLOOK estimators from Sec. 3, which directly target the Pass@K objective. Like
us, they construct an unbiased estimator of ∇θρK,θ(x, a), but the structure of their estimator is different.

26

Under review as submission to TMLR

In our notation (and dropping an overall prefactor K that is common across examples and matches Sec. 3),
their per-example estimator for ∇θρK,θ(x, a) has the following form:

1
N

∑
i∈[N]

∇θ log πθ(yi|x) ·
{

1, if r0/1(yi, a) = 1,

1−
(

N−−1
K−1

)/(
N−1
K−1

)
, if r0/1(yi, a) = 0.

(42)

This should be contrasted with our REINFORCEK estimator which can be interpreted as a reweighting of
vanilla REINFORCE. By contrast, the estimator in Eq. (42) assigns a positive coefficient not only to correct
responses but also to incorrect responses. That is, it explicitly takes positive gradient steps in directions
corresponding to some incorrect samples in the batch. Thus, it is also not comparable to RLOOK .

Besides, it is not immediately clear from (42) how to subtract a baseline to reduce variance while maintaining
unbiasedness. Instead, going from REINFORCEK to RLOOK in Sec. 3 was rather intuitive. We refer the
reader to (Walder & Karkhanis, 2025, Sec. 4) for more discussion on variance reduction of their method.

For completeness, we can apply our reverse-engineering lens to Eq. (42) and verify that it indeed ascends
the Pass@K objective in expectation. Rewriting Eq. (42) more compactly using our notation for conditional
gradients ∇̂+ and ∇̂− and for f̂−

K−1, we obtain (for a single (x, a))

ρ̂ ∇̂+ + (1− ρ̂)
(
1− f̂−

K−1
)
∇̂− .

Passing to population quantities (Lemmas 1 and 2) and using ρK = 1− (1− ρ)K , this expression becomes

ρ · ∇θρ

ρ
− (1− ρ)

(
1− 1− ρK

1− ρ

)
· ∇θρ

1− ρ
=
(

1− ρK

1− ρ

)
∇θρ = (1− ρ)K−1∇θρ = 1

K
∇θρK,θ.

Thus, in population, the estimator from Walder & Karkhanis (2025) is indeed maximizing ρK,θ, consistent
with our own derivations. The difference is at finite-samples: (i) how gradient weight is assigned across
samples (especially incorrect ones), and (ii) how variance reduction is handled at finite N .

Finally, Walder & Karkhanis (2025) explicitly emphasize extending Pass@K-style optimization to non-binary
continuous rewards. It would be interesting future work to extend the surrogate reward lens to such reward
settings beyond binary.

D Empirical validations

Here we provide preliminary empirical validation of several policy-gradient methods discussed in this paper on
controlled mathematical reasoning tasks. The goal of these experiments is not a comprehensive benchmark,
but rather to demonstrate that the derived/identified updates can be implemented and can be competitive
with the strong GRPO baseline in a controlled setting. As discussed in Sec. 7, a systematic empirical study
across tasks, compute regimes, and hyperparameter choices is beyond the scope of this paper and is left to
future work.

D.1 Synthetic Data

Setting. We perform a lightweight round of supervised fine-tuning (SFT) on Qwen2.5-0.5B-Base Yang
et al. (2024) using 1,000 randomly sampled problems from OpenMathInstruct-2 (Toshniwal et al., 2024).
This SFTed model serves as the baseline and primarily learns proper formatting and instruction-following
behavior for mathematical problems.

We then apply RL to a synthetic arithmetic task of the following form: What is a× b+ c×d? The training,
validation, and test splits consist of 50,000, 500, and 500 problems, respectively. For training, we use a
learning rate of 10−6, weight decay 0.01, sampling temperature 1, 16 unique prompts per optimization step,
and N = 8 rollouts per prompt (i.e., batch size of 128 sequences per optimization step). The training is done
on-policy for eight epochs, and without KL regularization term.

27

Under review as submission to TMLR

20 21 22 23 24 25 26 27

K

65

70

75

80

85

90

95

100

Pa
ss

@
K

(%
)

Temperature = 0.8

20 21 22 23 24 25 26 27

K

65

70

75

80

85

90

95

100

Pa
ss

@
K

(%
)

Temperature = 1.0

K = 1.0 K = 2.0 K = 3.0 K = 4.0 K = 5.0

Figure 6: Performance of (biased) GRPOK̂ (Eq. (41) with K ← K̂). K̂ = 1 corresponds to vanilla GRPO,
while K̂ = 2 is equivalent to skew-R. Larger values of K̂ explicitly target higher Pass@K. Empirically,
increasing K̂ improves Pass@K at larger evaluation values of K, but degrades performance at smaller K.
Gains diminish as K̂ increases.

To avoid ambiguity between the Pass@K metric used for evaluation and the targeted Pass@K objective
used during training, we denote K̂ as the target value of K used for training, and K as the value used for
evaluation. For evaluation we use a test-time rollout size of M = 128.

We evaluate the following algorithms: GRPOK (Eq. (17)), the biased GRPOK implementation of Mahdavi
et al. (2025) (Eq. (41)), G̃RPOK of Chen et al. (2025) (Eq. (21), our skew-R variant (Eq. (30)), and the
entropy-regularized method (Eq. (31)). For unbiased and biased GRPOK and G̃RPOK , we set K ← K̂
(with K̂ ∈ {2, 3}) in Eqns (17), (41), and (21) respectively. For the entropy method, we set λ = 1.

Higher values of K̂ lead to higher Pass@K. Figure 6 shows the effect of varying the target K̂ during
training on downstream Pass@K performance. We observe that increasing K̂ generally improves Pass@K
at larger evaluation values of K. However, this improvement comes at the cost of reduced performance for
smaller K, suggesting a trade-off between single-sample accuracy and multi-sample coverage. Moreover, the
gains diminish as K̂ increases, indicating diminishing returns for very large target values.

Algorithm comparisons. Figure 7 compares the performance of the algorithms across values of K used
for evaluation and for sampling temperatures 0.8 and 1. Recall that for K̂ = 2, the biased GRPOK variant
is identical to skew-R.

For K̂ = 2 (Figure 7a), the unbiased estimator outperforms the biased estimator (which in this case coincides
with skew-R) across most evaluation values of K, suggesting that reducing finite-N bias can be beneficial
when optimizing for relatively small target K. Recall from Sec. C.2 that for K̂ = 2 skew-R and the biased
estimator correspond to the same population surrogate objective, which does not capture the finite-N effects
reflected in this experiment.

In contrast, for K̂ = 3 (Fig. 7b), the biased estimator achieves better performance at larger evaluation values
of K, indicating that the finite-sample trade-off can shift with K̂. This may be due to the higher variance
of the unbiased estimator in this regime, or because the unbiased estimator too aggressively dampens the
advantage scores for high-ρ̂ prompts, as seen in Fig. 1.

Across both settings: the entropy-based method achieves stronger Pass@1, indicating improved single-sample
accuracy. However, as expected, at higher Pass@K values, it underperforms both the biased and unbiased

28

Under review as submission to TMLR

GRPOK estimators which aim to directly maximize a surrogate of the Pass@K reward ρK,θ. Furthermore,
G̃RPOK performs on par with the biased GRPOK estimator.

20 21 22 23 24 25 26 27

K

70

75

80

85

90

95

100

Pa
ss

@
K

(%
)

Temperature = 0.8

Biased (K = 2)
Unbiased (K = 2)
Entropy (= 1)
GRPOK (K = 2)

20 21 22 23 24 25 26 27

K

70

75

80

85

90

95

100

Pa
ss

@
K

(%
)

Temperature = 1.0

Biased (K = 2)
Unbiased (K = 2)
Entropy (= 1)
GRPOK (K = 2)

(a)

20 21 22 23 24 25 26 27

K

70

75

80

85

90

95

100

Pa
ss

@
K

(%
)

Temperature = 0.8

Biased (K = 3)
Unbiased (K = 3)
Entropy (= 1)
GRPOK (K = 3)

20 21 22 23 24 25 26 27

K

70

75

80

85

90

95

100
Pa

ss
@

K
(%

)
Temperature = 1.0

Biased (K = 3)
Unbiased (K = 3)
Entropy (= 1)
GRPOK (K = 3)

(b)

Figure 7: Performance comparison of different methods on the synthetic dataset of Sec. D.1, using N = 8
responses per prompt and test-time sampling temperature 0.8 (Left) and 1 (Right). (a) K̂ = 2: The
unbiased GRPOK̂ is best performing across K ≥ 2. The entropy-based method achieves stronger 0/1 reward
(i.e., Pass@1) (b) K̂ = 3: The biased GRPOK̂ is best performing for K ≥ 4. G̃RPOK ’s performance is
comparable. The entropy-based method yields again the strongest Pass@1 performance.

D.2 Real math problems

Here, we conduct additional initial evaluations on real-world mathematical reasoning tasks. Specifically, we
compare three methods: GRPO, Pass@K-mixed (Eq. (28), K̂ = 4), and Skew-R (Eq. (30)). Following
the training protocol of Deng et al. (2025b), we fine-tune Qwen2.5-Math-1.5B (Yang et al., 2024) on the
MATH dataset (levels 3–5) (Hendrycks et al., 2021). To accelerate training, we adopt dynamic sampling
(Yu et al., 2025b), which discards samples with zero advantage and resamples until a full batch is formed.
All methods share identical reinforcement-learning hyperparameters. Concretely, training is performed on
four A100 GPUs with a prompt batch size of 256 and N = 8 rollouts per prompt. We use a learning rate
of 1 × 10−6 and a mini-batch size of 64, yielding 32 gradient updates per step. Training runs for 40 steps,
corresponding to more than two effective epochs due to the increased throughput from dynamic sampling.
We set the sampling temperature to 1.0, the clipping ratio to 0.2, and the KL regularization coefficient to

29

Under review as submission to TMLR

Method Qwen2.5-Math-1.5B Pass@K

1 2 4 8 16 32 64 128 256

AIME 2025
GRPO 5.9 9.9 15.0 20.5 26.5 33.6 41.5 49.8 56.7
Pass@K-mixed 5.6 9.6 14.6 20.1 26.1 33.3 41.7 50.0 56.7
skew-R 5.7 9.7 14.9 20.4 25.9 31.8 37.8 44.8 53.3

AIME 2024
GRPO 11.4 17.7 24.3 30.5 36.7 43.4 50.0 56.0 63.3
Pass@K-mixed 10.6 16.7 23.5 30.3 37.1 44.3 51.2 57.5 63.3
skew-R 10.2 16.0 22.3 28.3 34.7 42.3 50.8 60.3 70.0

AMC23
GRPO 46.6 59.1 70.0 78.9 85.5 90.2 93.7 96.0 97.5
Pass@K-mixed 45.2 58.1 69.4 78.4 85.3 90.2 95.2 98.5 100.0
skew-R 45.7 58.3 69.0 77.6 84.5 90.0 94.8 98.6 100.0

Average
GRPO 21.3 28.9 36.4 43.3 49.6 55.7 61.7 67.3 72.5
Pass@K-mixed 20.5 28.1 35.8 42.9 49.5 56.1 62.7 68.7 73.3
skew-R 20.5 28.0 35.4 42.1 48.4 54.7 61.1 67.9 74.4

Table 2: Performance comparison of different methods (see text) on AIME 2025, AIME 2024, and AMC23
under Qwen2.5-Math-1.5B.

1× 10−4. We evaluate on the challenging AIME2024, AIME2025, and AMC23 benchmarks using unbiased
Pass@K accuracy with temperature 1.0, which better reflects exploration settings. Final performance is
reported using the unbiased Pass@K metric with a test-time rollout size of M = 256.

Table 2 shows that Skew-R achieves strong average performance at K = 128 and K = 256, matching or
surpassing pass@K-mixed. Since large-K primarily reflects the ability to discover diverse correct solutions
rather than improving single-sample accuracy, these gains suggest that Skew-R enhances exploration. This
observation supports our interpretation that reallocating gradient emphasis toward low-success prompts leads
to broader solution coverage. We expect these effects to be amplified when the rollout-size N is larger; such
ablations are out of scope and we leave them to future work.

30

	Introduction
	Problem Setup: Reinforcement Learning with Verifiable Rewards
	The 0/1 Reward
	The Pass@K Reward

	Contributions

	Warm-up: Optimizing the 0/1 Reward
	Pass@K by Direct Differentiation
	Pass@K by Advantage Shaping
	Bridging the Views
	Reverse-Engineering: Surrogate Reward from Advantage Shaping
	Forward-Engineering: Advantage Shaping from Surrogate Reward
	Equivalence of Advantage Shaping and Surrogate Reward

	A Regularized Surrogate Rewards Perspective
	Combined 0/1 and Pass@K Advantage Shaping
	Reward Regularization Interpretation of Skew-R
	An Example of Reward-Level Regularization

	Practical Considerations
	Conclusion
	 GRPO's PPO-Style vs Surrogate Reward Objectives
	Missing Proofs
	Auxiliary Technical Results
	Proof of Equation (14)
	Proof of Unbiasedness for RLOOK
	Proof of of Claim 1: Reverse-Engineering GRPO"0365GRPOK
	Proof of Claim 4: Reverse-engineering Skew-R
	Reward-Level Entropy Regularization

	Additional Analysis and Discussion of GRPOK
	Reverse-Engineering GRPOK
	GRPOK=2 vs. Skew-R
	Comparison to Biased Scaling
	Comparison to Further Related Work

	Empirical validations
	Synthetic Data
	Real math problems

