
EZ-HOI: VLM Adaptation via Guided Prompt
Learning for Zero-Shot HOI Detection

Qinqian Lei1 Bo Wang2 Robby T. Tan1,3

1National University of Singapore
2University of Mississippi

3ASUS Intelligent Cloud Services (AICS)
qinqian.lei@u.nus.edu , hawk.rsrch@gmail.com , robby_tan@asus.com

Abstract

Detecting Human-Object Interactions (HOI) in zero-shot settings, where models
must handle unseen classes, poses significant challenges. Existing methods that rely
on aligning visual encoders with large Vision-Language Models (VLMs) to tap into
the extensive knowledge of VLMs, require large, computationally expensive models
and encounter training difficulties. Adapting VLMs with prompt learning offers
an alternative to direct alignment. However, fine-tuning on task-specific datasets
often leads to overfitting to seen classes and suboptimal performance on unseen
classes, due to the absence of unseen class labels. To address these challenges, we
introduce a novel prompt learning-based framework for Efficient Zero-Shot HOI
detection (EZ-HOI). First, we introduce Large Language Model (LLM) and VLM
guidance for learnable prompts, integrating detailed HOI descriptions and visual
semantics to adapt VLMs to HOI tasks. However, because training datasets contain
seen-class labels alone, fine-tuning VLMs on such datasets tends to optimize
learnable prompts for seen classes instead of unseen ones. Therefore, we design
prompt learning for unseen classes using information from related seen classes,
with LLMs utilized to highlight the differences between unseen and related seen
classes. Quantitative evaluations on benchmark datasets demonstrate that our EZ-
HOI achieves state-of-the-art performance across various zero-shot settings with
only 10.35% to 33.95% of the trainable parameters compared to existing methods.
Code is available at https://github.com/ChelsieLei/EZ-HOI.

1 Introduction

Human-Object Interaction (HOI) detection localizes human-object pairs and identifies the interactions.
HOI has various practical applications, including robot manipulations, human-computer interaction,
and human activity understanding [38, 41, 24, 32, 26, 1]. Additionally, it is a building block for
related tasks such as action recognition, visual question answering, and image generation [18, 24,
4, 43, 11, 54]. However, the limited generalization ability of many existing HOI detectors makes
zero-shot HOI detection particularly challenging, as it requires models to identify unseen HOI classes.

Vision-Language Models (VLMs) [47, 29, 2, 30] have gained popularity due to their extensive
knowledge bases and effective ability to process and correlate complex patterns across visual and text
data. Consequently, a group of methods has been developed to align HOI visual features with those
of VLMs, leveraging the extensive knowledge from these models [51, 33, 44, 41, 4]. This alignment
ensures that both the HOI model and the VLM can extract similar features to represent the same
concept (e.g., an action). The degree of feature alignment can be quantified using cosine similarity,
which measures the similarity between feature vectors. However, aligning with VLMs requires
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Figure 1: Comparison of zero-shot HOI detection paradigms. (a) Methods that align HOI features
with fixed VLMs [44, 33, 4, 41]. (b) Prompt learning methods to adapt VLMs for downstream
tasks [22, 57]. (c) Our approach, which adapts VLMs to HOI tasks without compromising VLM
generation capabilities. (d) Unseen, seen, and full mAP indicate the performance for unseen-verb,
seen-verb, and full sets on the HICO-DET dataset [6]. Our EZ-HOI shows superior performance in
these categories, with competitive trainable parameters and training epochs.

training transformer-based models, which is computationally expensive and leads to extended training
time and significant difficulties.

An alternative approach involves adapting VLMs for HOI tasks, bypassing the demanding alignment
process and leveraging VLM capabilities for action understanding in HOI detection. Prompt tuning,
which adapts VLMs to various downstream tasks with a small number of learnable parameters, has
shown considerable efficacy [62, 61, 19, 21]. One notable method, MaPLe [22], utilizes multi-modal
prompt tuning specifically for image classification tasks. However, since adaptation typically involves
only seen class labels, the adapted VLMs often overfit to seen classes but struggle to deal with
unseen classes in zero-shot settings [62, 7, 9, 22]. Consequently, this limitation results in suboptimal
performance for unseen classes in zero-shot HOI detection.

In this paper, we introduce a novel method, Efficient Zero-Shot HOI detection (EZ-HOI), to enhance
VLM adaptation via guided prompt learning with information from foundation models (e.g., LLM
and VLM). We design both learnable text and visual prompts, leveraging fixed LLM and VLM to
guide the adaptation process. Specifically, the text prompts are designed to capture detailed HOI
class insights from an LLM, while the visual prompts are tailored to incorporate external visual
semantics from a VLM. However, as the training datasets contain images with seen-class labels alone,
the trainable prompts are naturally optimized for these seen classes rather than the unseen ones.

To address this limitation, we develop the Unseen Text Prompt Learning (UTPL) to leverage prompts
from related seen classes effectively. We begin by measuring the relationship between HOIs using
cosine similarity of text embeddings, which helps identify closely related seen classes for each
unseen one. After establishing these connections, we enhance the learning of unseen prompts based
on those from selected seen classes. To capture the distinctions between unseen and seen classes,
we incorporate an LLM. This LLM provides what we call “disparity information”, enhancing the
learning of the distinctions and similarities between seen and unseen classes. Additionally, we
enhance our approach by introducing intra- and inter-HOI feature fusion techniques following the
visual encoder. Our method achieves competitive performance on established benchmarks in various
zero-shot settings while requiring significantly fewer trainable parameters.

As illustrated in Fig. 1, we compare our method with two existing paradigms: (a) aligning HOI
features to a fixed VLM and (b) adapting a VLM for HOI tasks. Unlike the existing approaches, our
method facilitates VLM adaptation to HOI tasks and demonstrates effective generalization to unseen
classes. Fig. 1(d) highlights that our method is competitive in terms of performance, model parameter
efficiency, and training duration.

In summary, our contributions are as follows:
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• We introduce EZ-HOI, a novel framework for zero-shot HOI detection that adapts a VLM to
HOI tasks via guided prompt learning with foundation model information, enhancing the
adapted VLM’s generalizability in zero-shot HOI detection.

• We propose the UTPL module, which extracts information from related seen classes for
the unseen learnable prompts. This module mitigates overfitting to seen classes, a common
issue in task-specific VLM adaptations, improving performance on unseen classes.

• Our EZ-HOI method achieves state-of-the-art performance in various zero-shot settings
while significantly reducing trainable parameters and mitigating training challenges. It low-
ers trainable model parameters by 66% to 78% compared to existing methods, demonstrating
enhanced efficiency and effectiveness in zero-shot HOI detection.

2 Related Work

Human-Object Interaction Detection Human-Object Interaction (HOI) detection involves identi-
fying human-object pairs and recognizing their interactions, serving as a fundamental component
for various downstream tasks in computer vision [53, 6]. HOI detection methods are typically
categorized into two classes: one-stage and two-stage. One-stage methods simultaneously generate
all outputs, including human bounding boxes, object bounding boxes and categories, and interaction
classes. Recent advancements in one-stage detectors leverage transformer architectures, delivering
promising performance [8, 46, 48, 63, 55, 52, 24]. An example is HOITrans [63], which utilizes
the transformer’s encoder and decoder to extract interaction features. The output features are then
processed through multi-layer perceptrons to produce all output predictions at once. On the other
hand, two-stage approaches divide HOI detection into two tasks: object detection and HOI classifi-
cation [10, 14, 58]. Since separation allows each module to specialize, two-stage HOI detection is
more memory-efficient [59]. Recent developments have seen the integration of transformer-based
architectures into two-stage designs, which have shown promising results [59, 60, 45, 27]. Our
method also falls into the two-stage design category.

Zero-Shot HOI Detection Prior zero-shot HOI detection efforts primarily address unseen composi-
tion settings, where models encounter action and object classes separately but not as combinations.
To address this, several methods employ compositional learning strategies aimed at tackling the
unseen-composition problem [14, 16, 15, 27]. However, compositional learning falls short in ad-
dressing unseen verb zero-shot HOI detection scenarios. Given the substantial image understanding
capabilities of VLMs, they offer promising potential for enhancing HOI detection in zero-shot set-
tings [2, 29, 30, 47, 37, 36], where labels for unseen HOI classes are absent from the training dataset.
Recent studies have explored aligning HOI visual features with VLM [33, 44, 4, 41]. However,
this approach requires training transformer-based models, which are computationally expensive.
Consequently, aligning HOI models with VLMs is demanding, resulting in extended training times
and significant training challenges.

Prompt Learning Prompt learning has gained popularity for adapting VLMs to downstream tasks [61,
62, 7, 9, 19, 23, 25, 40]. Context Optimization (CoOp) [62] refines the prompt input of the text
encoder by combining learnable domain-shared prompt tokens with class prompt tokens. MaPLe [22]
integrates learnable domain-shared text tokens with visual learnable tokens. This combination
leverages the highly connected text and visual encoders in VLMs, facilitating the sharing of cross-
domain information and benefiting both text and visual domains. However, fine-tuning VLM relies on
training datasets with only seen class labels, which causes adapted VLMs to excel with seen classes
but encounter difficulties with unseen ones in zero-shot scenarios. Consequently, this limitation
results in suboptimal performance for unseen classes in zero-shot HOI detection.

3 Methodology

We start with adapting a pre-trained CLIP model [47] to zero-shot HOI tasks using an innovative
prompt learning approach. We design two sets of learnable prompts: text and visual. The visual
prompts are derived from the text prompts by using projection layers. We denote learnable text
prompts as hT and learnable visual prompts as hV :

hT = Proj(hV ), (1)
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Figure 2: Overview of our EZ-HOI framework. Learnable text prompts capture detailed HOI class
information from the LLM. To enhance their generalization ability, we introduce the Unseen Text
Prompt Learning (UTPL) module. Meanwhile, visual learnable prompts are guided by a frozen VLM
visual encoder. These learnable text and visual prompts are then separately input into the text and
visual encoder. Finally, HOI predictions are made by calculating the cosine similarity between the
text encoder output and the HOI image features. MHCA denotes multi-head cross-attention.

where hT ∈ Rp∗dt , and hV ∈ Rp∗dv . dt is the dimension of the text feature, and dv is the dimension
of the visual feature. p represents the number of tokens we design for each learnable prompt.

Let V = {v1, v2, · · · , vNv} as the verb set and O = {o1, o2, · · · , oNo} as the object set. Then the
HOI set include all feasible verb-object pairs C = {hoii = (vi, oi)|vi ∈ V; oi ∈ O}. We set C as the
total number of HOI classes. Since it is impractical for any datasets to include comprehensive HOI
classes, researchers propose zero-shot HOI detection settings to encourage the generalization of HOI
detectors to unseen classes Cunseen in inference [33]. Denote the seen HOI class set as S and the
unseen HOI class set as U = {hoii | hoii /∈ S,hoii ∈ C}. Please refer to Appendix 7.9 for detailed
definitions of the different zero-shot setting unseen set splits.

3.1 LLM and VLM Guidance for Learnable Prompts

Prompt learning techniques for VLMs are characterized by their ability to adapt large, pre-trained
models to specific tasks using relatively small amounts of task-specific data. This often leads
to a diminished generalization ability of the fine-tuned models for unseen classes [62, 7, 9, 22].
Given that foundation models, such as LLMs and VLMs, have demonstrated substantial knowledge
capacity [29, 47], leveraging guidance from these models can improve performance on unseen HOI
classes that are absent in the training data.

Text Prompt Design As shown in Fig. 2, we design input prompts, “Describe a person <acting>
<object> and focus on the action” related to each HOI class, for an LLM. The output from LLM
contains richer semantic information with specific HOI class descriptions. Please refer to Appendix
Section 7.2 for a detailed explanation with examples.

Then, we use a CLIP text encoder to obtain the text embedding for this HOI class description. We
process text embeddings for all HOI classes including both seen and unseen in parallel, so the
whole text embeddings are denoted as Ftxt ∈ RC∗dt and Ftxt = [ftxt1 , ftxt2 , · · · , ftxtC ]. Then, the
learnable text prompts ĥT can be obtained by:

ĥT = Wup ·MHCA(Q = Wdown · hT ; K,V = Wdown · Ftxt) + hT . (2)
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Figure 3: Detailed architecture of Unseen Text Prompt Learning (UTPL). In the figure, we take the
“hose a dog” unseen HOI class in the unseen-verb zero-shot setting as an example. We first utilize
the HOI class text embeddings to identify the most connected seen HOI class to “hose a dog”. After
selecting the seen class, we generate an input prompt to obtain disparity information from LLM.
Finally, the unseen learnable prompt learns from the selected seen class prompt and the disparity
information through MHCA.

where ĥT = [ ˆhT1
, ˆhT2

, · · · , ˆhTC
], and ĥTi

∈ Rp∗dt . Each class has its specific learnable text prompts
after the process of Eq. 2. Wup and Wdown indicate the up-projection and down-projection layers.
MHCA means the multi-head cross attention [50]. In Eq. 2, we only aggregate the useful information
from Ftxt using learnable attention, as the information provided by LLM may not all be relevant for
our task. Moreover, to keep trainable parameters small, we apply a down-projection layer Wdown

before MHCA to reduce the feature dimension, and an up-projection layer Wup afterward. The same
design strategy is used in Eq. 3 and Eq. 5. Later, the prompts corresponding to unseen classes are
further refined, as detailed in Section 3.2.

Visual Prompt Design Visual prompt learning in our method is facilitated by a pre-trained Visual
Language Model (VLM) visual encoder, specifically the CLIP visual encoder [47]. The pre-trained
CLIP model inherently possesses knowledge of unseen HOI classes, offering richer visual semantics
compared to models trained solely on task-specific datasets. The CLIP visual feature is denoted as
fI
vis for an image I, and we enhance the visual learnable prompts hV by:

ĥV = Wup ·MHCA(Q = Wdown · hV ; K,V = Wdown · fI
vis) + hV . (3)

Since the frozen VLM visual encoder can extract features for unseen HOIs, ĥV aggregates information
from these visual features, improving performance on unseen HOIs.

3.2 Unseen-Class Text Prompt Learning (UTPL)

Since the training data has no labeled image for unseen HOI classes, learnable text prompts for seen
classes are inevitably optimized better than unseen classes. Therefore, we refine the unseen-class
text prompts by learning from closely related seen-class prompts. Specifically, we denote one unseen
HOI class as u, and the learnable text prompt tokens as ˆhTu , and denote one seen HOI class as s and
the related seen text prompt token as ˆhTs

To identify the related seen class, we use text embeddings
of the HOI class descriptions generated by the LLM, as explained in Text Prompt Design of Section
3.1. The related seen class is formulated as follows:

s = argmax
s∈S

(ftxtu)
T · ftxts (4)

Directly refining prompts for unseen classes based solely on selected seen classes may be insufficient
due to inherent differences between the seen and unseen classes. Thus, we propose utilizing disparity
information, defined as the differences between unseen class u and seen class s, as provided by the
LLM. The architecture of UTPL is shown in Fig. 3. Please refer to Appendix Section 7.3 for detailed
explanation with examples.

Since the description can be too long to be encoded at once, we process each sentence separately by
using the CLIP text encoder. Thus, set the text embedding of disparity descriptions for an unseen
HOI class u as fdisp

txtu ∈ Rm∗dt , where m is the number of sentences in the text description. Then we
can compute the refined learnable text prompts ˜hTu

for unseen class u as:
˜hTu

= Wup ·MHCA(Q : Wdown · ˆhTu
; K,V : Wdown · concat(fdisp

txtu ,
ˆhTs
, ˆhTu

)) + ˆhTu
, (5)
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where concat indicates concatenation. For seen classes, ˜hTs = ˆhTs . Although ground-truth labels
for the unseen classes are not available during training, we propose two strategies to update ˜hTu

in
Eq. 5. First, we design a class-relation loss (refer to Eq. 16 in the Appendix) to keep the relationship
between seen and unseen classes, measured by cosine similarity between text features. As a result,
unseen prompts can be refined based on their relation to seen classes. Second, the annotated training
data serves as negative samples for unseen HOIs. If the prediction score for an unseen class is too
high, the model is penalized (Eq. 17 in the Appendix).

3.3 Deep Visual-Text Prompt Learning

We denote a set of learnable text prompts as HT = [h̃1
T , h̃

2
T , · · · , h̃N

T ] and learnable visual prompts
as HV = [ĥ1

V , ĥ
2
V , · · · , ĥN

V ]. h̃i
T ∈ RC∗p∗dt , ĥi

V ∈ Rp∗dv , i = 1, 2, · · · , N . N means we intend to
introduce new learnable prompts from the first layer to layer N .

Deep Text Prompt Learning The text encoder is composed of K transformer layers {Ti}Ki=1.The
CLIP text encoder generates text features by tokenizing the words and converting them into word
embeddings W0 = [w1

0, w
2
0, · · · , wP

0 ] ∈ RP∗dt . Text features Wi will be processed by ith layer of
the text transformer:

[Wi+1, _] = Ti(Wi, h̃i
T ), i = 1, 2, · · · , N,

[Wi+1,
˜hi+1
T ] = Ti(Wi, h̃i

T ), i = N + 1, N + 2, · · · ,K.
(6)

The final text representation Wt can be obtained by:
Wt = TextProj(WK), (7)

where Wt ∈ R1∗da and da is the feature dimension of the final aligned text and visual features in
CLIP. Since our learnable text prompt h̃i

T is specific for each HOI class, the whole text representation
can be obtained Wt = [Wt1 ,Wt2 , · · · ,WtC ].

Deep Visual Prompt Learning The visual encoder is also composed of K transformer layers {Vi}Ki=1.
After each layer Vi, there is an adapter Ai to inject object position and category information [27].
CLIP visual encoder splits image I into D = dp ∗dp fixed-size patches, which are projected to obtain
visual features E1 ∈ RD∗dv . Visual features Ei are processed by ith layer of the visual transformer:

[ci+1, Ei+1, _] = Ai(Vi(ci, Ei, ĥi
V )), i = 1, 2, · · · , N,

[ci+1, Ei+1,
ˆhi+1
V ] = Ai(Vi(ci, Ei, ĥi

V )), i = N + 1, N + 2, · · · ,K,
(8)

where ci is the class token for the ith layer.

The final visual representation Ev ∈ R1∗da can be computed as follows:
Ev = VisualProj(EK). (9)

Ev ∈ RD∗dv can be re-sized to Ev ∈ Rdp∗dp∗dv . Since off-the-shelf detectors can provide object
detection results, we select bounding boxes with confidence score sc > θ and apply RoI-Align [13]
to obtain features for each detected human and object Ehum, Eobj. Then, the intra-HOI feature fusion
extracts HOI feature Ehoi ∈ R1∗da from Ehum, Eobj:

Ehoi = MLP (Ehum, Eobj), (10)
where MLP represents multi-layer perception. In any given image I, multiple humans and objects
may be present, leading to the detection of several potential human-object pairs. Assume there are q
human-object (H-O) pairs in image I and denote all HOI features as EI

hoi = [E1
hoi, E

2
hoi, · · · , E

q
hoi].

Incorporating surrounding HOI features enriches context information for each HOI visual feature by
capturing additional human-object relational details and interactions, thereby enhancing HOI features.
We name this process inter-HOI feature fusion. Thus, final visual representation ẼI

hoi is obtained by:

ẼI
hoi = Wup ·MHSA(Wdown · EI

hoi) + EI
hoi, (11)

where MHSA means multi-head self-attention [50] and ẼI
hoi = [Ẽ1

hoi, Ẽ
2
hoi, · · · , Ẽ

q
hoi]. Then, we can

calculate the prediction for each H-O pair hoii.

phoi(c|hoii) =
exp(Ẽi

hoi · (Wtc)
T )∑C

k=1 exp(Ẽ
i
hoi · (Wtk)

T )
, c = 1, 2, · · · , C. (12)

Please refer to Appendix Section 7.5 for more details for training and inference.
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4 Experiments

Table 1: Unseen-verb (UV) comparison on HICO-DET with state-of-the-art methods. * indicates the
model size is estimated according to papers [41, 4]. “TP” denotes the trainable parameters.

Method Setting Backbone TP
mAP

Full Unseen Seen
GEN-VLKT (CVPR’22) [33] UV Resnet50+ViT-B 42.05M 28.74 20.96 30.23
EoID (AAAI’23) [51] UV Resnet50 41.45M 29.61 22.71 30.73
HOICLIP (CVPR’23) [44] UV Resnet50+ViT-B 66.18M 31.09 24.30 32.19
CLIP4HOI (NeurIPS’23) [41] UV Resnet50+ViT-B 56.7M* 30.42 26.02 31.14
Ours UV Resnet50+ViT-B 6.85M 32.32 25.10 33.49
UniHOI (NeurIPS’23) [4] UV Resnet50+ViT-L 52.3M* 34.68 26.05 36.78
Ours UV Resnet50+ViT-L 14.07M 36.84 28.82 38.15

Table 2: Rare-first unseen-composition (RF-UC) and Nonrare-first unseen composition (NF-UC)
comparison on HICO-DET with state-of-the-art methods.

Method Backbone Setting
mAP

Setting
mAP

Full Unseen Seen Full Unseen Seen
GEN-VLKT [33] Resnet50+ViT-B RF 30.56 21.36 32.91 NF 23.71 25.05 23.38
EoID [51] Resnet50 RF 29.52 22.04 31.39 NF 26.69 26.77 26.66
HOICLIP [44] Resnet50+ViT-B RF 32.99 25.53 28.47 NF 27.75 26.39 28.10
ADA-CM [27] Resnet50+ViT-B RF 33.01 27.63 34.35 NF 31.39 32.41 31.13
CLIP4HOI [41] Resnet50+ViT-B RF 34.08 28.47 35.48 NF 28.90 31.44 28.26
Ours Resnet50+ViT-B RF 33.13 29.02 34.15 NF 31.17 33.66 30.55
UniHOI [4] Resnet50+ViT-L RF 32.27 28.68 33.16 NF 31.79 28.45 32.63
Ours Resnet50+ViT-L RF 36.73 34.24 37.35 NF 34.84 36.33 34.47

4.1 Zero-Shot HOI Setting Definition

Our method follows the existing zero-shot HOI setting, which involves predicting unseen HOI classes
and typically includes using unseen class names during training [14, 15, 16, 44, 51]. In particular,
VCL, FCL and ATL [14, 16, 15] “compose novel HOI samples” during training with the unseen
(novel) HOI class names. EoID [51] distills CLIP “with predefined HOI prompts” including both
seen and unseen class names. HOICLIP [44] introduces “verb class representation” during training,
including both seen and unseen classes.

4.2 Implementation Details

We evaluate our method on HICO-DET by following the established protocol of zero-shot two-stage
HOI detection methods [14, 3, 27]. Our object detector utilizes a pre-trained DETR model [5]
with a ResNet50 backbone [12]. As for our learnable prompts design, we set p = 2, N = 9. The
LLaVA-v1.5-7b model [37] is used to provide text description, as explained in Section 3.1 and 3.2.
For all experiments, our batch size is set as 16 on 4 Nvidia A5000 GPUs. We use AdamW [39] as
the optimizer and the initial learning rate is 1e-3. For more implementation details, please refer to
Appendix Section 7.1.

4.3 Comparison with State-of-the-Art Zero-Shot HOI Methods

Unseen-Verb Setting In Table 1, we compare our method to existing zero-shot HOI detection
approaches under the unseen-verb zero-shot setting. The results demonstrate that our method not
only achieves competitive performance but also requires only 10.35% to 33.95% of the trainable
parameters compared to existing zero-shot HOI detection methods thanks to our novel prompt
learning design. While our method shows a minor drop in performance compared to CLIP4HOI
under the unseen verb setting, it is important to consider the significant reduction in trainable
parameters that our method achieves—87.9% fewer than CLIP4HOI. In contrast, the existing HOI
methods [33, 44, 41, 4] that align with VLMs unanimously require significantly more trainable
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Table 3: Unseen-object (UO) comparison on HICO-DET with state-of-the-art methods. * indicates
the model size is estimated according to papers [41, 4]. † denotes methods that use a DETR object
detection model pretrained on HICO-DET. Results without † indicate the use of a DETR object
detection model pretrained on MS-COCO. “TP” denotes the trainable parameters.

Method Setting Backbone TP
mAP

Full Unseen Seen
FCL† (CVPR’21) [16] UO Resnet50 - 19.87 15.54 20.74
ATL† (CVPR’21) [15] UO Resnet50 - 20.47 15.11 21.54
GEN-VLKT (CVPR’22) [33] UO Resnet50 42.05M 25.63 10.51 28.92
HOICLIP (CVPR’23) [44] UO Resnet50+ViT-B 66.18M 28.53 16.20 30.99
CLIP4HOI† (NeurIPS’23) [41] UO Resnet50+ViT-B 56.7M* 32.58 31.79 32.73
Ours UO Resnet50+ViT-B 6.85M 27.90 31.63 27.16
Ours† UO Resnet50+ViT-B 6.85M 32.27 33.28 32.06
UniHOI (NeurIPS’23) [4] UO Resnet50+ViT-L 52.3M* 31.56 19.72 34.76
Ours UO Resnet50+ViT-L 14.07M 31.42 33.08 31.09
Ours† UO Resnet50+ViT-L 14.07M 36.38 38.17 36.02

model parameters (e.g., 42.05M ∼ 66.18M with ViT-B visual encoder), whereas our method operates
efficiently with only 6.85M trainable parameters.

UniHOI [4] is the state-of-the-art method in the unseen verb (UV) setting. Compared to UniHOI
which aligns HOI features to BLIP [29] text embeddings, our method achieves improved performance,
especially in the unseen category with a 2.77 increase in mAP. At the same time, our model requires
only 26.9% of the trainable parameters compared to UniHOI. This demonstrates the effectiveness and
efficiency of our proposed prompt learning framework in adapting the VLM for zero-shot HOI tasks.

Unseen-Composition Setting In Table 2, we provide the zero-shot performance comparison in
rare-first unseen-composition (RF-UC) and nonrare-first unseen-composition (NF-UC) settings. With
the ViT-B visual encoder, our method establishes a new standard for unseen-class performance
across both RF and NF settings, outperforming the previous state-of-the-art method, CLIP4HOI [41],
while requiring only 12.08% of its trainable parameters. Compared to UniHOI with ViT-L visual
encoder [4], our method surpasses it by 5.56 mAP in unseen performance of the RF-UC setting and
by 7.88 mAP in the NF-UC setting with only 26.9% of the trainable parameters of UniHOI.

Unseen-Object Setting We provide the unseen-object setting comparison in Table 3. Following
previous methods [44, 33], we employ a DETR object detector pre-trained on MS-COCO [34] for
object detection. To keep consistent with CLIP4HOI [41] and FCL [16], we also provide the results by
using the DETR model pre-trained on HICO-DET [27] (marked with † in Table 3). CLIP4HOI [41]
is the state-of-the-art method in unseen performance. With the same object detector pre-trained on
HICO-DET, our method shows improved performance for unseen class prediction, outperforming
CLIP4HOI by 1.49 mAP, with only 12.08% of its trainable model parameters. UniHOI [4] is the
state-of-the-art method in seen performance. With the same object detector as UniHOI, our method
outperforms UniHOI in unseen category by 13.36 mAP.

4.4 Ablation Studies

We conduct the ablation study for our text and visual prompt learning design in Table 4. The first row
shows the performance of our baseline, MaPLe [22]. Our intra-HOI fusion module improves the seen
HOI performance by 7.41 mAP, as shown in the second row. In the third row, the inclusion of the
visual adapter [27] enhances performance for seen classes while negatively affecting unseen HOI
performance.

Comparing the third row and fourth row, LLM guidance, shown in Fig. 2, notably enhances unseen-
class learning, resulting in a 1.52 mAP improvement. LLM guidance, by integrating learnable
text prompts with detailed HOI class descriptions, improves the model’s understanding of unseen
classes, providing richer information compared to simple class names. Additionally, the inclusion
of the UTPL module significantly boosts unseen class performance, with a 2.42 mAP improvement.
Later, the inter-HOI fusion benefits both the seen and unseen learning by providing more context
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Table 4: Ablation study of our method in zero-shot unseen verb setting on HICO-DET.

Intra-HOI
fusion

visual
adapter [27] LLM Guide UTPL Inter-HOI

fusion VLM Guide
mAP

Full Unseen Seen
× × × × × × 26.26 17.19 27.73
✓ × × × × × 33.52 23.54 35.14
✓ ✓ × × × × 35.40 22.91 37.44
✓ ✓ ✓ × × × 35.62 24.43 37.44
✓ ✓ ✓ ✓ × × 36.23 26.85 37.76
✓ ✓ ✓ ✓ ✓ × 36.70 27.49 38.10
✓ ✓ ✓ ✓ ✓ ✓ 36.84 28.82 38.15

Table 5: Prompt learning evaluation in zero-shot unseen verb setting on HICO-DET.

Method
mAP

Full Unseen Seen
CLIP [47] 13.18 13.96 13.05

MaPLe [22] 26.26 17.19 27.73
MaPLe [22] + visual adapter [27] 32.70 22.89 34.29

Ours 36.84 28.82 38.15

information for visual HOI features. Finally, the VLM guidance effectiveness is evaluated, which
enhances the unseen performance by 1.33 mAP.

We also provide the experimental comparison with CLIP [47] and MaPLe [22] in Table 5. Since
they are designed for general image classification, directly applying it to HOI tasks for comparison
is unfair as they may not focus on the human-object region features. Therefore, we crop the union
region from the original visual features for each human-object pair to obtain the HOI feature. HOI
prediction is obtained by using cosine similarity between HOI and text features for each class.

As shown in Table 5, although with learnable prompts, MaPLe [22] outperforms CLIP on seen
classes, its performance on unseen classes is far behind that of the seen classes, showing reduced
generalization capability. Compared to our method, MaPLe lags significantly behind on unseen
performance, with an 11.63 decrease in mAP. Additionally, the third row introduces another baseline
that incorporates MaPLe with visual adapter (i.e., Ai) [27], which is also used in our framework,
ensuring a fair comparison. The performance improvement from the third row to the fourth row,
with gains of 5.93 mAP for unseen classes and 3.86 mAP for seen classes, clearly demonstrates the
effectiveness of our method in zero-shot HOI detection.

4.5 Qualitative Results

Fig. 4 shows the qualitative results of MaPLe [22] and our method in the unseen-verb zero-shot
setting. In particular, MaPLe struggles to detect unseen classes, either missing unseen HOI classes or
predicting the wrong unseen HOI classes. For example, if an image only contains unseen classes,
MaPLe tends to predict wrong seen classes and miss the correct ones. As shown in the bottom right
of Fig. 4, this image contains unseen class only ("wear tie"), MaPLe predicts related wrong seen
classes such as "pulling tie" and "adjusting tie", but fails to predict the ground-truth unseen HOI
("wear tie"). This shows the limited generalization ability of MaPLe to unseen classes. In contrast to
MaPLe, our method can predict both seen and unseen classes more accurately.

4.6 Fully Supervised Setting for HOI Detection

We conducted the fully-supervised experiments on both the HICO-DET and V-COCO benchmarks [6,
34]. Our method achieves a competitive 38.61 mAP on the HICO-DET dataset, with a smaller
performance drop between rare and non-rare classes (1.19 mAP) compared to AGER [49] (4.18 mAP),
the current state-of-the-art one-stage method. Our method also outperforms the best-performing
zero-shot HOI method, CLIP4HOI [41], by 3.28 mAP on HICO-DET. On the V-COCO benchmark,
our method achieves state-of-the-art performance with 66.2 AP in Scenario 2. Detailed discussions
and comparisons are provided in the Appendix 7.6.
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Figure 4: Qualitative comparison with MaPLe [22] for unseen-verb zero-shot HOI detection.The
orange bar represents the unseen class prediction and the blue bar means the seen class prediction.

4.7 Discussion of Descriptors from LLMs

Descriptors, developed to leverage the LLMs for downstream tasks [42, 20], involve attribute de-
composition to benefit category recognition. We adopt the attribute decomposition concept from
DVDet [20] and tailor it to our EZ-HOI framework. Following DVDet, we generate action descriptors
for each class and integrate them into HOI class text features, thus enhancing the detail and distinc-
tiveness of class representations. Descriptors with low cosine similarity to the class text features are
discarded to avoid noise. With our straightforward adoption of action descriptors, the result shows
0.31 mAP improvement compared to our EZ-HOI, achieving 32.63 mAP under the unseen-verb
setting. This indicates that LLM-generated descriptions, such as action descriptors, hold potential to
enhance HOI detection and are worth further exploration.

4.8 Limitations

Our method has some limitations. First, while our method significantly reduces the number of
trainable parameters compared to existing approaches, it still requires fine-tuning on HOI-specific
datasets such as HICO-DET. A training-free design, which could be used directly for HOI detection
without the need for fine-tuning, would be more desirable. Second, zero-shot HOI detection requires
the pre-definition of all HOI classes, both seen and unseen, following the current zero-shot HOI
detection setting. This requirement restricts the generalizability to truly unseen classes. Consequently,
our future work will aim to develop a robust open-category HOI detector that operates effectively
without the need for predefined classes.

5 Conclusion

In this paper, we introduced the Efficient Zero-shot HOI Detection (EZ-HOI) approach, utilizing
prompt learning to adapt visual-language models for zero-shot HOI detection. This method not
only maintains competitive performance for unseen classes but also innovatively integrates learnable
visual and text prompts. These prompts leverage foundation model information, thereby enriching
prompt knowledge and enhancing the adaptability of VLMs. A significant challenge we addressed
is the compromised performance on unseen classes, resulting from the training dataset containing
only seen-class labels. To counter this, we developed a text prompt learning strategy that utilizes
information from related seen classes to support the detection of unseen classes. We also employed
an LLM to provide the nuanced differences between related seen and unseen classes, improving our
method for unseen class prompt learning. Our method has demonstrated state-of-the-art performance
across various zero-shot HOI detection settings while requiring only a third of the trainable parameters
compared to existing methods.
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7 Appendix

7.1 Implementation Details

Here we provide detailed implementation information. For the pre-trained CLIP model with the ViT-B
visual encoder, the visual feature dimension dv = 768, while the text feature dimension dt = 512 and
the final feature dimension for aligned visual and text features da = 512. For the CLIP model with the
ViT-L visual encoder, dv = 1024, dt = 768, da = 768. We use an off-the-shelf object detector and
add a threshold θ to filter out some low-confident predictions and we set θ = 0.2. Since UniHOI [4]
and CLIP4HOI [41] have not released their code, we estimate the trainable model parameters by
modifying the HOICLIP [44] code according to the description in UniHOI and CLIP4HOI, which
means that if some details are not mentioned in the UniHOI and CLIP4HOI papers, we use the
HOICLIP design by default. In addition, we initialize the weights of all Wup to 0, which stabilizes
training by gradually fine-tuning the attention outputs in Eq. 2, Eq. 3, Eq. 5 and Eq. 11.

Dataset and Evaluation Metrics

We conducted extensive experiments using the widely-recognized HICO-DET [6] dataset for zero-
shot HOI detection. HICO-DET comprises a total of 47,776 images, divided into 38,118 training
images and 9,658 test images. This dataset features 600 Human-Object Interaction (HOI) classes,
which are combinations derived from 117 action categories and 80 object categories. Our model’s
performance was evaluated in four distinct zero-shot HOI detection settings, categorized by the
criterion for selecting the unseen HOI classes: rare-first unseen composition (RFUC), nonrare-first
unseen composition (NFUC), unseen object (UO), and unseen verb (UV). These settings align with
methodologies from previous research [33, 44, 41, 4].

Additionally, we also evaluate our model in the fully supervised setting on both the HICO-DET
dataset and the V-COCO [34] dataset. V-COCO is a subset of COCO, with 10,396 images—split
into 5,400 train-val images and 4,946 test images, and it encompasses 24 action classes and 80
object classes. Following standard evaluation protocols, we assessed our model using mean average
precision (mAP) on the HICO-DET benchmark, while Average Precision (AP) in both Scenario 1
and Scenario 2 is used on the V-COCO benchmark [63, 44]. A prediction was deemed a true positive
if the HOI classification was accurate and the Intersection over Union (IoU) between the predicted
human and object bounding boxes and the ground-truth bounding boxes exceeded 0.5 [33, 27].

7.2 HOI Class Description

We utilize the LLM to provide detailed HOI class descriptions to guide the text prompt learning and
we provide an example for detailed illustration. We take the HOI class “Swing a baseball bat” as
an example, which is one unseen HOI class in the unseen-verb zero-shot setting on the HICO-DET
benchmark. The generated HOI class description is

“Swinging a baseball bat” describes a person using a baseball bat to hit a ball. This action typically
involves the person holding the bat with both hands, standing in a stance with their feet shoulder-width
apart, and using their body rotation to contact the ball.

7.3 Disparity Information for UTPL Module

The disparity information mentioned in Section 3.2 aims to explore the difference between the unseen
class and the related seen class. Here we demonstrate it with a specific example. We take the unseen
class “ hose a dog” as an example and its selected seen class is “wash a dog”.The input text prompt
for LLM to acquire the disparity description between the two classes is designed as “ Describe the
definition of the phrase: hosing a dog and please focus on the attributes different from another phrase:
washing a dog. ” Then we can obtain the detailed disparity description from LLM as

The phrase "a person hosing a dog" refers to the action of washing a dog using a hose. This action is
different from "a person washing a dog" as the person is using a hose to clean the dog, rather than
simply using their hands to wash the dog. The use of a hose adds an additional element of water
pressure and flow, which can make the cleaning process more efficient and effective.
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Figure 5: Detailed architecture for HOI feature fusion design. Intra-HOI feature fusion aims to extract
HOI features from possible human region and object region features. Inter-HOI feature fusion aims
to enhance the HOI features by incorporating the surrounding HOI feature context. “MHSA” refers
to multi-head self-attention.

7.4 HOI Feature Fusion

As shown in Fig. 5, we also provide the detailed architecture of the intra- and inter-HOI feature fusion
design. The intra-HOI feature fusion integrates human and object features for each human-object pair.
To enrich context information, all HOI features are processed together using multi-head self-attention
(MHSA), allowing each feature to become aware of its surroundings. This enhancement improves
the context and overall performance of each HOI feature.

7.5 Training and Inference

Since Wt ∈ RC∗dt related to the number of total HOI classes, if the number is too large, the learnable
prompts can be computationally expensive. Thus, we only select part of HOI classes and do action
classification. Later, by combining action prediction with object detection results, we can obtain HOI
prediction finally. Specifically, we select two HOI classes for each action with the following equation:

hoii,hoij = argmin
0<i,j≤C

ftxti · (ftxtj )T , (13)

which means we select two HOI classes containing the same action with the most different semantic
meanings. Since some actions can have multiple interpretations in different contexts (e.g., "hold
apple" vs. "hold sheep"), randomly choosing two HOI classes with the same action does not cover
the comprehensive meanings of the action. By selecting the most different HOI classes, we aim to
capture a richer range of information for the action. Then, We calculate the HOI prediction score for
ith H-O pair by:

phoi(c|hoii) =
exp(Ẽi

hoi · (Wtc)
T )∑C

k=1 exp(Ẽ
i
hoi · (Wtk)

T )
, c = 1, 2, · · · , C. (14)

The action scores can be obtained by:

sa = phoi ∗ l̃align, (15)

where l̃align ∈ RC∗da means the action label for each selected HOI class. We adopt focal loss [35]
lfocal to train the action prediction. We also design a class-relation loss shown in the following
equation:

lrelation = DKL[sim(Wt,Wt)||sim(Ftxt,Ftxt)],

sim(X,Y ) = XT · Y
(16)

to keep the relation between adapted text class embeddings Wt close to the original text embeddings
of the HOI class description ftxt. DKL[·||·] denotes the KL divergence. Therefore, the training loss
Ltrain is computed by:

Ltrain = lfocal + αlrelation, (17)
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and α is a hyperparameter. In the inference stage, we can obtain the HOI score for each human-object
pair by:

sah,o = (sh ∗ so)τ ∗ σ(sa), (18)

where sh, so are the object detection confidence scores for humans and objects. τ is a hyperparameter.
In Eq. 17, α = 150, and in Eq. 18, τ = 1 during training and τ = 2.8 during inference [58, 59].

7.6 Quantitative Results

Fully Supervised HOI Detection Setting We conduct experiments under the fully supervised HOI
detection setting on both the HICO-DET [6] and V-COCO [34] dataset, as shown in Table 6. In the
UTPL module, we utilize common class prompts as inputs. This approach enables common HOIs to
learn from rare ones, fostering a better differentiation between them. This strategy helps to alleviate
overfitting to common HOI classes, thereby improving performance for both seen and unseen classes.
As shown in Table 6, the performance drop between rare and non-rare classes ( 1.19 mAP) is much
smaller than AGER (4.18 mAP), the best performance among the one-stage method. Additionally,
our method achieves the best performance among the two-stage methods on the HICO-DET [6]
dataset, outperforming CLIP4HOI [41] by 3.28 mAP.

As for the V-COCO benchmark, we achieve competitive performance among the two-stage methods
with 66.2 AP performance under Scenario 2 evaluation. However, the smaller number of verb
classes in V-COCO (24 classes), which have weaker connections (i.e., jumping vs. skateboarding
skateboard), compared to HICO-DET (117 verb categories), which exhibits stronger connections
(i.e., jumping vs. flipping skateboard), limits the potential of our method. Our UTPL design requires
the learnable prompts to extract information from prompts of other classes, which also aids in better
differentiation between similar classes. Due to the weakly connected classes in V-COCO, our UTPL
design cannot work effectively. Despite this, we achieve performance comparable to CLIP4HOI [41],
further demonstrating the effectiveness of our method.

Table 6: State-of-the-art Comparison on HICO-DET and V-COCO in the fully-
supervised setting. Bold highlights the best-performing method within each of
the two groups: one-stage and two-stage methods.

Method
HICO-DET V-COCO

Full Rare Nonrare APS1

role APS2

role
One-stage Methods
GEN-VLKT (CVPR’22) [33] 33.75 29.25 35.10 62.4 64.5
HOICLIP (CVPR’23) [44] 34.69 31.12 35.74 63.5 64.8
RLIPv2 (ICCV’23) [56] 35.38 29.61 37.10 65.9 68.0
AGER (ICCV’23) [49] 36.75 33.53 37.71 65.7 69.7
LogicHOI (NeurIPS’23) [31] 35.47 32.03 36.22 64.4 65.6
Two-stage Methods
UPT (CVPR’22) [59] 32.62 28.62 33.81 59.0 64.5
ADA-CM (ICCV’23) [27] 38.40 37.52 38.66 58.6 64.0
CLIP4HOI (NeurIPS’23) [41] 35.33 33.95 35.75 - 66.3
Ours 38.61 37.70 38.89 60.5 66.2

7.7 Ablation Studies

Table 7 shows the ablation study for the hyperparameter N , where N means we introduce learnable
prompts from the first layer until layer N in both visual and text encoders. We use N=9 in our main
paper because it shows the best unseen performance.

Table 8 shows the ablation study for the different positions of learnable prompts. Position i − j
means we insert learnable prompts from layer i to layer j in both the text encoder and visual encoder.
Here we always insert learnable prompts into 9 layers and only change the position. We find that
the position of learnable prompts does not affect the outcome too much. Thus, we follow [22] and
fine-tune layers 1-9, which show slightly better unseen performance.
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Table 7: Ablation study for hyperparameter N under the unseen-verb setting.

N
mAP

Full Unseen Seen
4 32.60 24.10 33.99
9 32.32 25.10 33.49
12 32.76 23.98 34.19

Table 8: Ablation study for hyperparameter N under the unseen-verb setting.

Position
mAP

Full Unseen Seen
1-9 32.32 25.10 33.49

3-11 32.24 24.83 33.45
4-12 32.40 24.82 33.64

7.8 Qualitative Results

As shown in Fig. 6, we provide more qualitative results in three zero-shot HOI settings: unseen-
verb, rare-first unseen-composition, and nonrare-first unseen-composition settings. Compared to
MaPLe [22], our method obtains better generalization capability to unseen HOI classes owing to our
efficient prompt learning design.

In Fig. 7, we show more qualitative comparisons to illustrate the effectiveness of the LLM guidance
and UTPL design. The baseline here refers to the method in the main paper’s third row of Table 4.
LLM guidance design utilizes the general description from LLM for each HOI class and the UTPL
module integrates the distinctive description from LLM. As shown in Fig. 7, the LLM guidance
provides detailed class information, improving the performance over the baseline. Distinctive
descriptions from UTPL design help to distinguish unseen classes from related seen HOIs, enhancing
unseen performance and challenging case predictions.

7.9 Discussion for Zero-Shot HOI Detection Definition

Our method follows the standard zero-shot HOI setting, where unseen class names are used during
training [14, 15, 16, 51, 44], as discussed in Section 4.1. Specifically, before training, the whole verb
set V = {Vseen,Vunseen} and the whole object set O = {Oseen,Ounseen} are all pre-defined. The
four settings of zero-shot HOI detection include : 1) Rare-First Unseen Composition (RF-UC), where
for all hoii = (vi, oi) ∈ U, we have vi ∈ Vseen, oi ∈ Oseen and hoii appears less than 10 times in
the training set, belonging to rare HOI classes. 2) Nonrare-First Unseen Composition, where for all
hoii = (vi, oi) ∈ U, we have vi ∈ Vseen, oi ∈ Oseen and hoii appears more than 10 times in the
training set, belonging to nonrare HOI classes. 3) Unseen Verb (UV), where hoii = (vi, oi) ∈ U,
we have vi ∈ Vunseen, oi ∈ Oseen. 4) unseen Object (UO), where hoii = (vi, oi) ∈ U, we have
vi ∈ Vseen, oi ∈ Ounseen.

Beyond the zero-shot HOI setting, there are HOI unknown concept discovery [17] and open-
vocabulary HOI detection [28], where unseen class names cannot be used in training. The open-
vocabulary setting differs from HOI unknown concept discovery, with a much wider range of unseen
HOI classes during testing.

7.10 Discussion of Broader Impacts

Our approach to zero-shot HOI detection reduces reliance on extensive annotated datasets, enhanc-
ing accessibility for organizations with limited resources and promoting inclusivity in technology
adoption. This technology could notably improve assistive devices, offering more intuitive aids for
individuals with disabilities by enabling better understanding of new environments.

However, these advancements also pose risks. The capability to interpret human-object interactions
could be used for surveillance, potentially infringing on privacy. Additionally, reliance on existing
visual-language models may maintain embedded biases, leading to discriminatory outcomes. To
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(a) UV setting (b) UV setting (c) UV setting

(d) UV setting (e) UV setting (f) UV setting

(g) RF-UC setting (h) RF-UC setting (i) RF-UC setting

(j) NF-UC setting (k) NF-UC setting (l) NF-UC setting

Figure 6: Qualitative comparison of zero-shot HOI detection between our method and MaPLe [22].
We use orange color to represent unseen HOI classes and use blue color for seen ones. For images
containing multiple HOI results, we only present one prediction for clearer demonstration and
comparison.

address these concerns, we recommend developing rigorous ethical guidelines and governance
frameworks to regulate the deployment of HOI detection technologies, alongside efforts to identify
and mitigate biases in foundational models.
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Figure 7: Qualitative results to show the effectiveness of the LLM guidance and UTPL design. We
conduct the comparison under the unseen-verb zero-shot HOI setting.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We emphasize our contributions in the Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We included the Limitation section in the main paper.
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• The answer NA means that the paper has no limitation while the answer No means that
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We don’t include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide comprehensive implementation details both in main paper and in
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We included them in the implementation details in both main paper and the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[No]
Justification: We follow the default evaluations in the HOI detection field, which doesn’t
require error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide them in implementation details.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conducted in the paper conform, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the positive and negative societal impact in the supplementary
material.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the original paper that produced the code package or dataset.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
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asset is used.
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• We recognize that the procedures for this may vary significantly between institutions
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