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ABSTRACT

To protect user privacy and meet legal regulations, federated learning (FL) is attracting
significant attention. Training neural machine translation (NMT) models with traditional
FL algorithms (e.g., FedAvg) typically relies on multi-round model-based interactions.
However, it is impractical and inefficient for translation tasks due to the vast communication
overheads and heavy synchronization. In this paper, we propose a novel Federated Nearest
Neighbor (FedNN) machine translation framework that, instead of multi-round model-based
interactions, leverages one-round memorization-based interaction to share knowledge across
different clients and build low-overhead privacy-preserving systems. The whole approach
equips the public NMT model trained on large-scale accessible data with a k-nearest-
neighbor (kNN) classifier and integrates the external datastore constructed by private text
data from all clients to form the final FL model. A two-phase datastore encryption strategy
is introduced to achieve privacy-preserving during this process. Extensive experiments
show that FedNN significantly reduces computational and communication costs compared
with FedAvg, while maintaining promising translation performance in different FL settings.

1 INTRODUCTION

In recent years, neural machine translation (NMT) has significantly improved translation quality (Bahdanau
et al., 2015; Vaswani et al., 2017; Hassan et al., 2018) and has been widely adopted in many commercial
systems. The current mainstream system is first built on a large-scale corpus collected by the service provider
and then directly applied to translation tasks for different users and enterprises. However, this application
paradigm faces two critical challenges in practice. On the one hand, previous works have shown that NMT
models perform poorly in specific scenarios, especially when they are trained on the corpora from very
distinct domains (Koehn & Knowles, 2017; Chu & Wang, 2018). The fine-tuning method is a popular way
to mitigate the effect of domain drift, but it brings additional model deployment overhead and particularly
requires high-quality in-domain data provided by users or enterprises. On the other hand, some users and
enterprises pose high data security requirements due to business concerns or regulations from the government
(e.g., GDPR and CCPA), meaning that we cannot directly access private data from users for model training.
Thus, a conventional centralized-training manner is infeasible in these scenarios.

In response to this dilemma, a natural way is to leverage federated learning (FL) (Li et al., 2019) that enables
different data owners to train a global model in a distributed manner while leaving raw private data isolated to
preserve data privacy. Generally, a standard FL workflow, such as FedAvg (McMahan et al., 2017), contains
multi-round model-based interactions between server and clients. At each round, the client first performs
training on the local sensitive data and sends the model update to the server. The server aggregates these
local updates to build an improved global model. This straightforward idea has been implemented by prior
works (Roosta et al., 2021; Passban et al., 2022) that directly apply FedAvg for machine translation tasks
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and introduce some parameter pruning strategies during node communication. Despite this, multi-round
model-based interactions are impractical and inefficient for NMT applications. Current models heavily rely
on deep neural networks as the backbone and their parameters can reach tens of millions or even hundreds of
millions, bringing vast computation and communication overhead. In real-world scenarios, different clients
(i.e., users and enterprises) usually have limited computation and communication capabilities, making it
difficult to meet frequent model training and node communication requirements in the standard FL workflow.
Further, due to the capability differences between clients, heavy synchronization also hinders the efficacy of
FL workflow. Fewer interactions may ease this problem but suffer from significant performance loss.

Inspired by the recent remarkable performance of memorization-augmented techniques (e.g., the k-nearest-
neighbor, kNN) in natural language processing (Khandelwal et al., 2020; 2021; Zheng et al., 2021a;b) and
computer vision (Papernot & Mcdaniel, 2018; Orhan, 2018), we take a new perspective to deal with above
federated NMT training problem. In this paper, we propose a novel Federated Nearest Neighbor (FedNN)
machine translation framework, which equips the public NMT model trained on large-scale accessible data
with a kNN classifier and integrates the external datastore constructed by private data from all clients to form
the final FL model. In this way, we replace the multi-round model-based interactions in the conventional FL
paradigm with the one-round encrypted memorization-based interaction to share knowledge among different
clients and drastically reduce computation and communication overhead.

Specifically, FedNN follows a similar server-client architecture. The server holds large-scale accessible data
to construct the public NMT model for all clients, while the client leverages their local private data to yield
an external datastore that is collected to augment the public NMT model via kNN retrieval. Based on this
architecture, the key is to merge and broadcast all datastores built from different clients, while avoiding
privacy leakage. We design a two-phase datastore encryption strategy that adopts an adversarial mode between
server and clients to achieve privacy-preserving during the memorization-based interaction process. On the
one hand, the server builds (K,V)-encryption model for clients to increase the difficulty of reconstructing the
private text from the datastores constructed by other clients. The K-encryption model is coupled with the
public NMT model to ensure the correctness of kNN retrieval. On the other hand, all clients use a shared
content-encryption model for a local datastore during the collecting process so that the server can not directly
access the original datastore. During inference, the client leverages the corresponding content-decryption
model to obtain the final integrated datastore.

We set up several FL scenarios (i.e., Non-IID and IID settings) with multi-domain English-German (En-De)
translation dataset, and demonstrate that FedNN not only drastically decreases computation and commu-
nication costs compared with FedAvg, but also achieves the state-of-the-art translation performance in the
Non-IID setting. Additional experiments verify that FedNN easily scales to large-scale clients with sparse
data scenarios thanks to the memorization-based interaction across different clients. Our code is open-sourced
on https://github.com/duyichao/FedNN-MT.

2 FEDNMT: FEDERATED NEURAL MACHINE TRANSLATION

Current commercial NMT systems are built on a large-scale corpus collected by the service provider and
directly applied to different users and enterprises. However, this mode is difficult to flexibly satisfy the model
customization and privacy protection requirements of users and enterprises. In this work, we focus on a more
general application scenario, where users and enterprises participate in collaboratively training NMT models
with the service provider, but the service provider cannot directly access the private data.

Formally, this application scenario consists of |C| clients (i.e., user or enterprise) and a central server (i.e.,
service provider). The central server holds vast accessible translation data Ds = {(xis,yis)}

|Ds|
i=1 , where

xi = (xi1, x
i
2, ..., x

i
|xi|) and yi = (yi1, y

i
2, ..., x

i
|yi|) (for brevity, we omit the subscript s here) are text

sequences in the source and target languages, respectively. The central server can easily train a public NMT
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model fθ based on this corpus, where θ denotes model parameters. For each client c, it contains private data
Dc = {(xic,yic)}

|Dc|
i=1 , which is usually sparse in practice (i.e., |Dc| � |Ds|) and only accessible to itself.

This setting actually falls into the federated learning framework. The straightforward idea is to apply the
vanilla FL method (i.e., FedAvg) or its variants (Roosta et al., 2021; Passban et al., 2022). Generally, FedAvg
contains multi-round model-based interaction updates between server and clients. At each round r, each
client c downloads a global model fθr from the server and optimizes it using Dc. Then the local updates
θrc are uploaded to the server, while the server aggregates these updates to form a new model fθr+1 via a
simple parameter averaging technique: θr+1 =

∑C
m=1

nm

n θrm, where nm denotes the number of data points
in the m-th client’s private data, and n is the total number of all training data. However, such FL workflow is
inefficient for the above application scenario because the parameter of NMT models typically reaches tens of
millions or even hundreds of millions, bringing vast computation and communication overhead. The system
heterogeneity between server and clients, i.e., mismatch of bandwidth, computation resources, etc., also
makes it difficult to satisfy frequent updates and communication requirements in the standard FL workflow.

3 FEDNN: FEDERATED NEAREST NEIGHBOR MACHINE TRANSLATION

Inspired by the advanced memorization-augmented techniques, e.g., kNN-MT (Khandelwal et al., 2021)
that has shown the promising capability of directly incorporating the pre-trained NMT model with external
knowledge via kNN retrieval, we explore to leverage one-round memorization-based interaction rather than
multi-round model-based interactions to achieve knowledge sharing across different clients. In this work, we
design a novel Federated Nearest Neighbour (FedNN) machine translation framework, which extends the
promising capability of kNN-MT in the federated scenario and introduces two-phase datastore encryption
strategy to avoid data privacy leakage. The whole approach complements the public NMT model built by
the central server with a kNN classifier and safely collects the local datastore constructed by private text
data from all clients to form the global FL model. The entire workflow of FedNN is illustrated in Figure 1,
consisting of initialization, one-round memorization-based interaction and model inference on clients.

3.1 INITIALIZATION

FedNN starts with the public NMT model and encryption models. The central server is responsible for opti-
mizing the public NMT model fθ with Ds. Following kNN-MT (Khandelwal et al., 2021), the memorization
(also called as datastore) is a set of key-value pairs. Given a sentence pair (xs,ys) ∈ Ds, we gain the context
representation fθ(xs, ys,<t) in the last decoder layer at each timestep t. The whole datastoreMs = (Ks,Vs)
is constructed by taking the representation fθ(xs, ys,<t) as key and ground-truth yt as value:

Ms = (Ks,Vs) =
⋃

(xs,ys)∈Ds

{(fθ(xs, ys,<t), ys,t),∀ys,t ∈ ys}. (1)

Based onMs, the central server further builds K-Encryption model fKE(.) that is coupled with the public
NMT model. This design is for clients, which aims to increase the difficulty of reconstructing the private text
from datastores constructed by other clients. The fKE(.) should also satisfy the correctness of kNN retrieval
during inference and the detailed K-Encryption algorithm selection is described in Section 3.4. All clients
prepare the shared content-encryption model fCE(.) and corresponding content-decryption model fDE(.),
which are applied to the local datastore so that the server cannot directly access the original datastore. The
content-encryption algorithm selection is relatively loose, which is detailed in Section 3.4.

3.2 MEMORIZATION-BASED INTERACTION

The entire memorization-based interaction is decomposed into two steps: private memorization construction
and global memorization aggregation. The central server broadcasts fθ and fKE(.) for all clients to build the
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Figure 1: The overall workflow of our proposed federated framework (FedNN).

local encrypted datastore. Specifically, for each client c, we adopt a similar construction way as Equation 1 to
yield the local datastoreMfKE

c via Dc, with the difference that fKE(.) is used to preserve private information:

MfKE
c = (KfKE

c ,Vc) =
⋃

(xc,yc)∈Dc

{(fKE(fθ(xc, yc,<t)), yc,t),∀yc,t ∈ yc}. (2)

In order to ensure that above datastore is not explicitly available to the server, we encrypt key-value pairs by
fCE(.) before uploading them to the server, formalized as:

MfKE, CE
c = (KfKE, CE

c ,VfCE
c ) =

⋃
(xc,yc)∈Dc

{fCE(fKE(fθ(xc, yc,<t)), yc,t),∀yc,t ∈ yc}. (3)

Once the central server has received the private memorization from all clients, it directly aggregates all
datastores via simple key-value pair concatenation and performs V-encryption operation (i.e., shuffling
on key-value pair to avoid clients identifying the source of datastore) to obtain the global memorization
MfKE,VE, CE

g , which is sent to all clients for model inference. Then each client c decrypts the contents of the
receivedMfKE,VE, CE

g to gain an accessible integrated datastoreMfKE,VE
g .

3.3 MODEL INFERENCE ON CLIENTS

For model inference on clients, we follow the adaptive kNN-MT (AK-MT) (Zheng et al., 2021a) to incorporate
fθ with MfKE,VE

g via adaptive kNN retrieval. AK-MT introduces a lightweight Meta-k Network fMeta-k
to dynamically determine the number of retrieved tokens to consider at each step, and has promising
generalization ability. Thanks to this, we could train fMeta-k with a small data in any vertical scenario and then
directly apply it to other scenarios. Since the parameters in fMeta-k are negligible, we ignore the additional
training and communication costs of AK-MT in FedNN.
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Concretely, given the already generated words ŷ<t and source input x, AK-MT augments the probability
distribution of t-th target token yt via kNN retrieval based on the context representation fθ(x, ŷ<t). It
considers a set of possible ks that are smaller than pre-defined K, i.e., k ∈ S where S = {0} ∪ {ki ∈ N |
log2 ki ∈ N, ki ≤ K} (k = 0 indicates ignoring kNN retrieval and only utilizing the public NMT model).
Then K nearest neighbors of the current representation fθ(x, ŷ<t) are retrieved fromMfKE,VE

g according
to the squared L2 distance d(·, ·). The L2 distances from fθ(x, ŷ<t) to each neighbor (hi, vi) is denoted as
di = d(hi, fθ(x, ŷ<t)) and the count of distinct values in top-i is denoted as ci. The normalized weights of
applying different kNN retrieval results are computed as:

pMeta(k) = softmax(fMeta([d1, ..., dK ; c1, ..., cK ])).

The final prediction probability p (yt|x, ŷ<t) is a weighted ensemble over differnt kNN retrieval distributions:

pkiNN (yt|x, ŷ<t) ∝
∑

(hi,vi)

1yt=vi exp

(
−d2 (hi, fθ (x, ŷ<t))

T

)
,

p (yt|x, ŷ<t) =
∑
ki∈S

pMeta (ki) · pkiNN (yt|x, ŷ<t) ,
(4)

where T is the temperature to control the sharpness of softmax function.

3.4 ENCRYPTION AND PRIVACY DISCUSSIONS

• K-Encryption. In this work, we adopt the Product Quantizer (Jégou et al., 2011) algorithm to build K-
encryption model, which decomposes the space into a Cartesian product of low-dimensional subspaces and
quantifies each subspace separately into segment code representations. Further, we map the representation
to the above shortcode representation, which cannot be reversed to the original one, further reducing the
possibility of reverse-constructing private data. This way also satisfies the correctness of kNN retrieval after
encryption. Note that any algorithm that makes representation distorted and irreducible could be adopted in
FedNN, such as PCA.

• Content-Encryption. We require to generate the ciphertext by content-encryption model and ensure that it
is indistinguishable from the chosen plaintext attacks (Oded, 2004). Since each record of the memorization
can be regarded as a string, it can be encrypted and decrypted using any asymmetric encryption algorithm,
such as Paillier, Elgamal (Gamal, 1984) and RSA (Rivest et al., 1978), etc.

• Threat Models and Leakage Quantifying. We consider that all clients involved in the training process
are semi-honest following prior works (Zhang et al., 2021; Bonawitz et al., 2016). In this semi-honest
setting, each client adheres to the designed protocol but it may attempt to infer information about other
participant’s input (i.e., memorization). Under this setting, our method has achieved different protection
levels for the client and server side. Specifically, for the server side, our mechanism achieves the same
protection level to the conventional Public-key cryptography system (e.g., RSA). Thus, the server cannot
obtain any useful information from the encrypted data. For the client side, since the client gets shared
information generated by Product Quantizer (i.e.,fKE(fθ(xc, yc,<t)), yc,t)) from other clients, the aim of
this paper is to prevent the shared information from reconstruction attacks (i.e., recovering private text data
from the datastore). To this end, we introduce some metrics to quantify the privacy leakage of the shared
datastore information (see more details in Section 4.5).

4 EXPERIMENTS

4.1 SETUP

We adopt WMT14 En-De data (Bojar et al., 2014) and multi-domain En-De dataset (Koehn & Knowles, 2017)
to simulate two typical FL scenarios for model evaluation: 1) the non-independently identically distribution
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(Non-IID setting) where each client distributes data from different domains; 2) the independently identically
distribution (IID setting) where each client contains the same data distribution from all domains. In our
experiments, WMT14 and multi-domain En-De dataset are viewed as the server’s data and clients’ private
data, respectively. The multi-domain data provides a natural division for exploring the Non-IID setting, of
which we assign IT, Medical, and Law domain data to each of the three clients. For the IID setting, we mix
the above domain data and randomly sample the same number of sentence pairs from it for each client. More
dataset and implementation details can be found in Appendix A.

We compare our method FedNN with several baselines: (i) Centralized Model (C-NMT): A standard
centralized-training method uses all clients and server data to obtain a global NMT model. (ii) Public Model
(P-NMT): A generic NMT model is trained on only server data and used for initializing the client-side model.
(iii) FedAvg: A vanilla FL approach (McMahan et al., 2017) that iteratively optimizes a global model through
multi-round model-based interactions. (iv) FT-Ensemble: We use the client’s private data to fine-tune P-NMT
and ensemble the output probability distributions of all fine-tuned models during inference.

Table 1: BLEU score [%] of different methods on clients and server test sets. “4” refers to the improvement
of methods compared with P-NMT. The subscript “1/∞” indicate that the server perform model aggregation
after one or infinite epochs (i.e., client model convergence) of client model updates, respectively. The
superscript “s” indicates that the server data is also involved in model training of FedAvg. “Comm.” and
“Comp.” refer to communication and computational overhead in “GB” and “FLOPs” respectively.

Methods Client Test Server Test Overall Performance Cost Inference
IT Law Medical WMT14 Client 4 Global 4 Comm. Comp. Speed

C-NMT 37.30 49.72 47.40 26.58 44.81 — 40.25 — — — 1.00×
P-NMT 26.62 35.91 30.27 26.63 30.93 — 29.86 — — — 1.00×

N
on

-I
ID

FedAvgs
1 26.99 37.65 32.36 26.63 32.33 +1.40 30.91 +1.05 388.12 1.72 × 1019

1.00×FedAvg1 28.26 53.00 45.90 13.45 42.39 +11.45 35.15 +5.30 3.23 × 1018

FedAvgs
∞ 27.04 38.37 32.32 26.33 32.66 +1.72 31.08 +1.22 4.85 7.02 × 1017

1.00×FedAvg∞ 17.03 47.06 30.61 13.33 31.57 +0.63 27.01 - 2.85 7.02 × 1017

FT-Ensemble 30.11 38.14 39.15 17.13 35.80 +4.87 31.13 +1.28 4.85 7.02 × 1017 0.39×

FedNN 35.62 55.57 49.21 22.29 46.80 +15.87 40.67 +10.82 5.08 6.72 × 1015 0.75×

II
D

FedAvgs
1 30.83 43.47 39.22 26.36 37.84 +6.91 34.97 +5.11 388.12 1.72 × 1019

1.00×FedAvg1 37.99 54.53 50.23 14.80 47.58 +16.65 39.39 +9.53 3.23 × 1018

FedAvgs
∞ 29.23 39.67 34.49 26.28 34.46 +3.53 32.42 +2.56 4.85 7.02 × 1017

1.00×FedAvg∞ 34.71 48.68 44.79 16.23 42.73 +11.79 36.10 +6.25 7.02 × 1017

FT-Ensemble 36.74 51.34 47.49 16.42 45.19 +14.26 38.00 +8.14 4.85 7.02 × 1017 0.39×

FedNN 34.64 54.45 47.98 23.15 45.69 +14.76 40.06 +10.20 5.08 6.72 × 1015 0.75×

4.2 MAIN RESULTS

Table 1 illustrates the performance of all methods. We observe an average 13.88 BLEU gap on the client test
set between P-NMT and C-NMT. Restricted by privacy protection, it is not always possible to access private
data for centralized training, so we attempt to build high-performance global models using FL techniques.
Specifically, we evaluate the performance of different FL methods in both Non-IID and IID settings.

For the Non-IID setting, we have the following findings: (i) All FL methods outperform P-NMT on the client
test set, but show degradation on the server test set. This indicates that FL fuses helpful information from
multiple parties, but suffers from a varying degree of knowledge conflict and catastrophic forgetting. (ii)
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FedAvg is heavily affected by whether the server data is used in training and model aggregation frequency.
When server data is exploited during the training of FedAvg, the overall performance of FedAvg is similar to
P-NMT, but FedAvg significantly improves performance on client test set without involving the server data. In
addition, the performance gain has a positive correlation with the size of the client dataset (Law>Medical>IT),
since FedAvg utilizes the size of different datasets as weights to aggregate client models. For the aggregation
frequency, FedAvg1 is much better than FedAvg∞ and more details can be found in Appendix C.2. We
find that frequent aggregation significantly reduces the parameter conflicts between different models, but it
brings high communication cost. (iii) FT-Ensemble is better than FedAvg∞, indicating that the fusion of
output probabilities leads to less knowledge conflict compared with model aggregation. (iv) FedNN achieves
an average 4.41/1.99 BLEU score improvement on the client test set compared to FedAvg1 and C-NMT
respectively, and maintains a competitive performance on the server test set. It demonstrates the effectiveness
of FedNN in capturing client-side knowledge by memorization and integrating it with P-NMT. (v) Although
FedNN slightly increases inference time, it not only improves translation quality, but also significantly reduces
communication and computation overhead compared with other FL baselines, which is tolerable for clients.

For the IID setting, we have some different findings: (i) Some FL methods that do not leverage server data in
their training process (i.e., FedAvg1, FT-Ensemble and FedNN) outperform C-NMT on the client test set. The
reason is that there is no statistical data heterogeneity among clients, resulting in fewer parameter conflicts
and less conflict of probability outputs. (ii) The performance of FedNN is slightly weaker than that in the
Non-IID setting. It demonstrates that the benefit of the memorization-based interaction is more significant
when the data distribution is more heterogeneous.

Overall, FedNN shows stable performance with less communication and computational overhead in Non-IID
and IID settings, which verifies the practicality of memorization-based interaction mechanisms. More results
and analysis are shown in Appendix B.

4.3 THE IMPACT OF CLIENT’S NUMBER

We further verify the effectiveness of FedNN on a larger number of clients. We adopt the number of clients
ranging from (3, 6, 12, 18) for quick experiments.1 The detailed results are shown in Figure 2.

• Comparisons with FL Methods. As the number of clients increases, we observe that: (i) Both FedAvg1

and FT-Ensemble show varying degrees of performance degradation on the client test sets, especially for
FT-Ensemble. We conjecture that the limited local data cannot support the training of local models and
retain most of the knowledge of P-NMT. (ii) FedNN outperforms FL baselines on both private and global
test sets for the Non-IID setting, while for the IID setting it maintains a similar performance to FedAvg1 on
private test sets and keeps a higher global performance. These results show that FedNN, benefiting from the
memorization-based interaction, could quickly scale to large-scale client scenarios and avoid performance
loss due to insufficient local private data. The more analysis of FL methods is described in Appendix E.

• Comparisons with Personalized Methods. We also compare FedNN with the personalized methods,
including FT (fine-tuning P-NMT with only local client-side data) and AK-MT (constructing a datastore
with only local client-side data and decoding with assisted Meta-k network). AK-MT and FT perform
similarly, as AK-MT is able to capture the personalized knowledge by local memorization. The performance
of both AK-MT and FT tends to decrease in the Non-IID setting as the number of clients increase, while
FedNN hardly decreases. For the IID setting, although the performance of all methods degrades, FedNN
still achieves the best performance on all clients test sets. It is because that the global memorization capture
more similar patterns than the local memorization to assist in inference.

1Due to the limited resources in our experiments, there are no more domains to ensure the Non-IID setting when
the number of clients increases. Thus, we directly separate the Non-IID and IID data distributions with the ratio of
(1, 1

2
, 1
4
, 1
6
). Note that the Non-IID setting here is not the strictly one, but it is worth exploring.
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Figure 2: The translation performance of FL and personalized methods when the number of clients increases.
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Figure 3: The impact of data distribution heterogeneity for different FL and personalized methods.

4.4 THE IMPACT OF DATA HETEROGENEITY

To further investigate the effect of data heterogeneity between three clients on FL performance, we adopt
a mixed ratio α ∈ {0, 0.2, 0.4, 0.6, 0.8} to construct the data distribution that we want: we randomly take
a proportion of α from each domain to construct the IID dataset, and then remain domain data is mixed
with one-third of this IID dataset to form the final data distribution. As α → 0, partitions tend to be more
heterogeneous (Non-IID), and conversely, the data distribution is more uniform. As shown in Figure 3, the
performance of personalized methods (FT and AK-MT) is degraded as data heterogeneity decrease, which is
caused by the reduction of available domain-specific data in the client. FT-Ensemble also decreases across all
client test sets and is worse than FT, while FedAvg1 shows opposite performance trends between Law and
IT, Medical. This is because when FedAvg aggregates, the model weight of each client is proportional to
the data size, and as α increases, the data size between clients tends from |DLaw| � |DMedical| � |DIT |
to equally to 1

3 (|DLaw|+ |DMedical|+ |DIT |). Our FedNN maintains stable and remarkable performance
across all client test sets and significantly outperforms other methods in the server test set. It indicates that the
memorization-based interaction mechanism could capture and retain the knowledge of all clients, avoiding
the knowledge conflict based on traditional model-based interaction.

4.5 QUANTITATIVE ANALYSIS OF PRIVACY

We quantify the potential privacy-leaking risks of global memorization. Since all clients obtain the public NMT
model, they could utilize their own datastore to train a reverse attack model to reconstruct the private data in
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global memorization. In this experiment, we task one client (e.g., IT) as the attacker and others as the defenders
(e.g., Medical and Law). The reconstruction BLEU (Papineni et al., 2002)/Precision(P)/Recall(R)/F1 scores
are used to evaluate the degree of privacy leakage. The more experimental details are shown in Appendix D.
As illustrated in Table 2, whether the input is an unencrypted key or a key encrypted by fKE, the threat model
has very low scores in all defenders, especially for the recall score, meaning that it is difficult to recover and
identify valuable information from global memorization. Furthermore, the fKE increases the difficulty of
reconstructing the private text from the memorization constructed by other clients. We also provide some
case studies in Appendix D.4, which better help qualitatively assess the safety of FedNN.

Table 2: The reconstruction BLEU/Precision(P)/Recall(R)/F1 score [%] of the attack model.
Metric Datastore IT→Medical IT→Law Medical→IT Medical→Law Law→IT Law→Medical

BLEU (K,V) 8.21 5.09 9.90 6.16 7.33 8.30
(KfKE ,V) 6.52 4.27 7.88 5.58 6.35 6.86

P/R/F1 (K,V) 14.55/2.90/4.84 35.78/7.43/12.3 12.18/7.53/9.31 23.18/11.65/15.51 11.15/7.04/8.63 9.75/4.85/6.48
(KfKE ,V) 14.73/2.30/3.98 41.26/5.28/9.36 11.88/7.43/9.14 12.18/7.53/9.31 11.81/6.35/8.26 9.62/4.04/5.69

5 RELATED WORK

The FL algorithm for deep learning (McMahan et al., 2017) is first proposed for language modeling and image
classification tasks. Then theory and framework of FL are widely applied to many fields, including computer
vision (Lim et al., 2020), data mining (Chai et al., 2021), and edge computing (Ye et al., 2020). Recently,
researchers explore applications of FL in privacy-preserving NLP, such as next word prediction (Hard et al.,
2018; Chen et al., 2019), aspect sentiment classification (Qin et al., 2021), relation extraction (Sui et al.,
2021), and machine translation (Roosta et al., 2021; Passban et al., 2022). For machine translation, previous
works directly apply FedAvg for this task and introduce some parameter pruning strategies during node
communication. However, multi-round model-based interactions are impractical and inefficient for NMT
because of the huge computational and communication costs associated with large NNT models. Different
from them, we design an efficient federated nearest neighbor machine translation framework that requires
only one-round memorization interaction to obtain a high-quality global translation system.

Memorization-augmented methods have attracted much attention from the community and achieved remark-
able performance on many NLP tasks, including language modeling (Khandelwal et al., 2020; He et al.,
2021), named entity recognition (Wang et al., 2022), few-shot learning with pre-trained language model (Bari
et al., 2021; Nie et al., 2022), and machine translation (Khandelwal et al., 2021; Zheng et al., 2021a;b; Wang
et al., 2021; Du et al., 2022). For the NMT system, Khandelwal et al. (2021) first propose kNN-MT, a
simple and efficient non-parametric approach that plugs kNN classifier over a large datastore with traditional
NMT models (Vaswani et al., 2017; Zhang et al., 2018a;b; Guo et al., 2020; Wei et al., 2020) to achieve
significant improvement. Our work extends the promising capability of kNN-MT in the federated scenario
and introduces two-phase datastore encryption strategy to avoid data privacy leakage.

6 CONCLUSION

In this paper, we present a novel federated nearest neighbor machine translation framework to handle the
federated NMT training problem. This FL framework equips the public NMT model trained on large-scale
accessible data with a kNN classifier and safely collects all local datastores via a two-phase datastore
encryption strategy to form the global FL model. Extensive experimental results demonstrate that our
proposed approach significantly reduces computational and communication costs compared with FedAvg,
while achieving promising performance in different FL settings. In the future, we would like to explore this
approach on other sequence-to-sequence tasks. Another interesting direction is to further investigate the
effectiveness of our method on a larger number of clients, such as hundreds of clients with more domains.
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A IMPLEMENTATION DETAILS AND EVALUATION

The statistics of the dataset and datastore used by the server/clients are listed in Table 3 and Table 4,
respectively. We follow the recipe 2 to perform data pre-processing. The Moses toolkit 3 is used to tokenize
all sentences and learn bpe-code in the publicly available corpus WMT14. Based on this, we split all the
words of the above datasets into subword units (Sennrich et al., 2016). All experiments are implemented
based on the FAIRSEQ toolkit (Ott et al., 2019). We train the public model on the WMT14 En-De dataset
and use it as the initialization model for all methods. We adopt Transformer (Vaswani et al., 2017) as model
structure of all baselines, in which it consists of 6 transformer encoder layers, and 6 transformer decoder
layers. The input embedding size of the transformer layer is 512, the FFN layer dimension is 2048, and the
number of self-attention heads is 8. During training, we deploy the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 5e-4 and 4K warm-up updates to optimize model parameters. Both label smoothing
coefficient and dropout rate are set to 0.1. The batch size is set to 16K tokens. We train all models with 4
Tesla-V100 GPU and set patience to 5 to select the best checkpoint on the validation set. The FAISS (Johnson
et al., 2021) is leveraged to construct the datastore and we use its IndexIVFPQ strategy to implement Product
Quantizer K-encryption and fast nearest neighbor search. We utilize the FAISS to learn 4096 cluster centroids
on public datastore, and apply it to client’s datastore. During inference, the beam size and length penalty
are set to 5 and 1 for all methods and we search 64 clusters for each target token when using FAISS. In all
experiments, we report the case-sensitive BLEU score (Papineni et al., 2002) using sacreBLEU4. We estimate
the number of floating-point operations (FLOPs) used to train the model by multiplying the training time, the
number of GPUs used, and an estimation of the sustained single-precision floating-point capacity of each
GPU5.

Table 3: The statistics of datasets for server and clients.
Server Client

WMT14 IT Medical Law
Train 4,475,414 222,927 248,009 467,309
Dev 45,206 2,000 2,000 2,000
Test 3,003 2,000 2,000 2,000

Table 4: The statistics of datastores for server and clients.
Server Client

Global
WMT14 IT Medical Law

(K,V) size 117,427,034 3,085,523 5,858,648 16,868,065 25,812,236
Hard Disk Space (Datastore) 114 GB 3,938 MB 6,890 MB 17,717 MB 28,545 MB
Hard Disk Space (Faiss Index) 8,988 MB 244 MB 451 MB 1,266 MB 1,978 MB

2https://github.com/facebookresearch/fairseq/blob/main/examples/translation/prepare-wmt14en2de.sh
3https://github.com/moses-smt/mosesdecoder
4https://github.com/mjpost/sacrebleu, with a configuration of 13a tokenizer, case-sensitiveness, and full punctuation
5The single-precision floating-point capacity for Tesla-V100 GPU is 14 TFLOPs.
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B MORE RESULTS FOR THE NON-IID SETTING

B.1 PERFORMANCE COMPARISONS WITH CONTROLLER

We compare the performance (BLEU) and overhead of FedNN, FedAvg, and Controller in the Non-IID
setting of the En2De translation task. For the Controller model, as shown in Roosta et al. (2021)’s study,
6E-6D/C-C(0-3) model achieves the best trade-off of performance and efficiency among all FL methods.
Thus, we follow their setup and adopt layers 0 and 3 (both for the encoder and decoder) as controllers to
participate in the parameter interaction of FedAvg training. The experimental results are shown in the Table 5.
We find that the Controller has a significant performance improvement compared to P-NMT, but is still
worse than FedAvg1 and FedNN. In addition, since the Controller falls into the multi-round model-based FL
interaction paradigm, its communication overhead is still much higher than FedNN.

Table 5: The performance and overhead comparison with Controller. . “Comm.” and “Comp.” refer to
communication and computational cost in “GB” and “FLOPs” respectively

Methods Client Test Server Test Overall Performance Cost
IT Law Medical WMT14 Client 4 Global 4 Comm. Comp.

P-NMT 26.62 35.91 30.27 26.63 30.93 – 29.86 – – –

Controller 27.78 46.30 35.62 18.72 36.57 +5.63 32.11 +2.25 10.86 6.77 × 1017

FedAvg1 28.26 53.00 45.90 13.45 42.39 +11.45 35.15 +5.30 388.12 3.23 × 1018

FedNN 35.62 55.57 49.21 22.29 46.80 +15.87 40.67 +10.82 5.08 6.72 × 1015

B.2 EVALUATION WITH BLEURT

We evaluate the two settings in Table 1 using the neural metric - BLEURT (Sellam et al., 2020). The detailed
results are shown in Table 6. We can get similar conclusions when using the BLEU score as an evaluation
metric, i.e., for the Non-IID setting, our FedNN significantly outperforms all other FL methods; for the IID
setting, our FedNN also achieves comparable performance to the FedAvg1 and FT-Ensemble.

Table 6: BLEURT score [%] of different methods in Table 1.

Methods Client Test Server Test Overall Performance
IT Law Medical WMT14 Client 4 Global 4

C-NMT 70.46 78.49 74.97 71.62 74.64 - 73.89 -
P-NMT 62.00 72.65 65.64 71.93 66.76 - 68.06 -

Non-IID

FedAvgs1 63.02 73.71 67.06 72.19 67.93 +1.17 69.00 +0.94
FedAvg1 64.09 78.05 72.74 53.61 71.63 +4.86 67.12 -0.93
FedAvgs∞ 62.87 74.11 67.50 72.20 68.16 +1.40 69.17 +1.11
FedAvg∞ 52.63 77.37 65.02 56.26 65.01 -1.76 62.82 -5.24
FT-Ensemble 64.08 72.47 70.01 59.17 68.85 +2.09 66.43 -1.62
FedNN 68.86 78.12 72.74 67.38 73.24 +6.48 71.78 +3.72

IID

FedAvgs1 66.38 76.31 71.65 72.46 71.45 +4.68 71.70 +3.65
FedAvg1 69.93 78.67 75.68 55.78 74.76 +8.00 70.02 +1.96
FedAvgs∞ 64.92 74.32 68.68 72.15 69.31 +2.54 70.02 +1.96
FedAvg∞ 68.96 78.08 74.39 59.44 73.81 +7.05 70.22 +2.16
FT-Ensemble 70.28 78.80 75.04 58.78 74.71 +7.94 70.73 +2.67
FedNN 67.69 77.74 72.31 68.16 72.58 +5.82 71.48 +3.42
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B.3 SIGNIFICANT TEST FOR TABLE 1

We use the bootstrap re-sampling method to test the significant difference between FedNN and other methods.
Table 7 shows the significance test results of English-German direction under the Non-IID setting. The ”-”
means that FedNN is not significantly better than the method. We can find that FedNN significant outperforms
all FL methods, including FedAvg and FT-Ensemble.

Table 7: The significant test between FedNN and other methods for the Non-IID setting in Table 1.

Methods Client Test Server Test
IT Law Medical WMT14

C-NMT - ≤0.01 ≤0.05 -
P-NMT ≤0.01 ≤0.01 ≤0.01 ≤0.01
FedAvg1 ≤0.01 ≤0.01 ≤0.05 ≤0.01
FT-Ensemble ≤0.01 ≤0.01 ≤0.01 ≤0.05

B.4 PERFORMANCE COMPARISONS ON GERMAN-ENGLISH DIRECTION

As illustrated in Table 8, we report the performance of different FL methods in the Non-IID setting of
German-English Direction. We observe that the findings in the German-English direction remain consistent
with the English-German direction (shown in Table 1), in which FedNN outperforms other methods in terms
of overall performance both client-side and globally.

Table 8: Performance of different methods in the German-English direction for the Non-IID setting.

Methods Client Test Server Test Overall Performance
IT Law Medical WMT14 Client 4 Global 4

P-NMT 31.70 39.86 34.37 31.64 35.31 - 34.39 -

FedAvg1 32.22 58.32 48.56 16.83 46.37 +11.06 38.98 +4.59
FT-Ensemble 35.76 44.07 43.20 21.48 41.01 +5.70 36.13 +1.74
FedNN 41.11 60.18 53.44 27.12 51.58 +16.27 45.46 +11.07

C ABLATION STUDY ON THE NON-IID SETTING

C.1 THE IMPACT OF CLIENT DATA SIZE ON DIFFERENT FL METHODS

We carry out an ablation study to verify the impact of client data size on different FL methods, including
FedAvg1, FT-Ensemble and FedNN. For each domain, we adopt a ratio range of β ∈ {0.0, 0.2, 0.4, 0.6, 0.8}
to randomly sample from its complete data to constitute the client data of different scales. The detailed
results are shown in the Table 9. We can observe that the performance and cost of all methods increase as the
size of the client data increases. Moreover, FedNN significantly outperforms other FL methods in terms of
performance, communication and computational overhead.

C.2 THE IMPACT OF INTERACTION FREQUENCY ON FEDAVG

We conduct experiments to analyze the impact of model interaction frequency on the FedAvg performance.
We set the frequency to k ∈ {1, 2, 5, 10, 20,∞}, i.e., the client interacts the model with the server after k
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Table 9: The impact of client data size on the performance and cost of different methods. “4” refers to
the improvement of methods compared with P-NMT. “Comm.” and “Comp.” refer to communication and
computational cost in “GB” and “FLOPs” respectively.

β Methods Client Test Server Test Overall Performance Cost
IT Law Medical WMT14 Client 4 Global 4 Comm. Comp.

0.2 P-NMT 26.62 35.91 30.27 26.63 30.93 – 29.86 – – –

0.2
FedAvg1 20.27 47.42 33.92 15.73 33.87 +2.94 29.34 -0.52 111.59 9.27 × 1017

FT-Ensemble 29.95 40.25 37.41 20.81 35.87 +4.94 32.11 +2.25 4.85 1.40 × 1017

FedNN 29.65 46.89 41.46 22.72 39.33 +8.40 35.18 +5.32 2.00 1.34 × 1015

0.4
FedAvg1 20.99 48.98 35.58 16.58 35.18 +4.25 30.53 +0.67 116.44 9.68 × 1017

FT-Ensemble 29.60 39.50 38.45 21.43 35.85 +4.92 32.25 +2.39 4.85 2.81 × 1017

FedNN 30.41 50.30 43.89 23.32 41.53 +10.60 36.98 +7.12 2.77 2.69 × 1015

0.6
FedAvg1 22.36 52.38 42.04 12.83 38.93 +7.99 32.40 +2.55 245.00 2.04 × 1018

FT-Ensemble 28.32 40.55 40.19 18.61 36.35 +2.48 31.92 +2.06 4.85 4.21 × 1017

FedNN 31.65 52.29 45.65 23.68 43.20 +12.26 38.32 +8.46 3.54 4.03 × 1015

0.8
FedAvg1 24.11 52.71 43.72 12.76 40.18 +9.25 33.33 +3.47 354.74 2.92 × 1017

FT-Ensemble 29.01 38.16 39.30 16.87 35.49 +4.56 30.84 +0.98 4.85 5.62 × 1017

FedNN 32.15 54.11 46.62 22.22 44.29 +13.36 38.78 +8.92 4.31 5.38 × 1015

rounds of local updates. We set the total computation overhead to be the same for a fair comparison of
translation performance and communication overhead. The detailed results are shown in the Table 10. We
find that the performance decreases significantly as k increases, especially when k =∞ (i.e., a copy of the
server model is trained locally until convergence), and the average performance drops to a level similar to that
of P-NMT. The reason is that too many local updates suffer from catastrophic forgetting of knowledge from
the previous aggregated models, resulting in strong knowledge conflicts in the new round of interactions. The
optimal performance is presented at k = 1, which means that frequent interactions are essential to alleviate
the knowledge conflicts for FedAvg.

Table 10: BLEU score [%] and communication cost of FedAvg with different interaction frequency. . “Comm.
Cost” refer to communication cost in “GB”.

Methods Client Test Server Test Overall Performance Comm.
IT Law Medical WMT14 Client 4 Global 4 Cost

P-NMT 26.62 35.91 30.27 26.63 30.93 – 29.86 – –

FedAvg1 28.26 53.00 45.90 13.45 42.39 +11.45 35.15 +5.30 388.12
FedAvg2 26.37 52.92 44.22 13.07 41.17 +10.24 34.15 +4.29 194.06
FedAvg5 24.93 52.23 41.08 12.85 39.41 +8.48 32.77 +2.92 77.62
FedAvg10 22.63 51.11 38.60 12.65 37.45 +6.51 31.25 +1.39 38.81
FedAvg20 21.82 49.53 36.24 12.75 35.86 +4.93 30.09 +0.23 19.41
FedAvg∞ 17.30 47.06 30.61 13.33 31.57 +0.63 27.01 -2.85 4.85

C.3 THE IMPACT OF ENSEMBLE STRATEGY ON FT-ENSEMBLE

The ensemble strategy of FT-Ensemble could be implemented in two ways: the first is to directly average the
probability distribution of each client model (as used in the Table 1), i.e., FT-Ensemble; the second, similar
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Table 11: BLEU score [%] of FT-Ensemble with different aggregation strategy.

Methods Client Test Server Test Overall Performance
IT Law Medical WMT14 Client 4 Global 4

Public Model 26.62 35.91 30.27 26.63 30.93 - 29.86 -

FT-Ensemble 30.11 38.14 39.15 17.13 35.80 4.87 31.13 1.28
FT-Ensemble-Wei 24.09 48.58 34.11 16.06 35.59 4.66 30.71 0.85
FedNN 35.62 55.57 49.21 22.29 46.80 15.87 40.67 10.82

Table 12: The impact of P-NMT’s quality. “4” refers to the improvement of the method compared with the
model mentioned in Table 1.

Methods IT Law Medical WMT14 Clients Avg. Global Avg.
BLEU 4 BLEU 4 BLEU 4 BLEU 4 BLEU 4 BLEU 4

P-NMT 30.72 +4.10 38.69 +2.78 35.90 +5.63 29.77 +3.14 35.10 +4.17 33.77 +3.91

FedAvg1 28.63 +0.37 58.32 +5.32 49.08 +3.18 16.05 +2.60 45.34 +2.95 38.02 +2.87
FedNN 38.24 +2.62 55.76 +0.19 50.65 +1.44 22.65 +0.36 48.22 +1.42 41.83 +1.16

to FedAvg, is to weight the probability distribution of each client model’s output by assigning weights to it
according to its data size, i.e., FT-Ensemble-Wei. The performance comparison of these two ways in the
Non-IID setting are shown in the Table 11. We find that FT-Ensemble outperforms FT-Ensemble-Wei in both
client-side and global overall performance. FT-Ensemble has a more balanced performance on the client side,
while FT-Ensemble-Wei is similar to FedAvg in that the performance is more biased towards the client Law’s
model, which has more local data. Our FedNN outperforms both of these methods on all clients. Note that
the two implementations of FT-Ensemble described above in the IID setting are equivalent since the data size
is the same for all client.

C.4 THE IMPACT OF PUBLIC MODEL’S QUALITY

Since FedNN performs federated learning based on the P-NMT, we investigate the impact of the P-NMT’s
quality on performance. We introduce WMT20 En-De data to train the P-NMT, which contains 40 million
parallel pairs, and conduct fast experiments in the Non-IID setting. From Table 12, we can observe that as the
quality of the P-NMT improves, all methods show better performance.

D THE DETAILS OF PRIVACY LEAKAGE ANALYSIS

D.1 DATASET CONSTRUCTION

Given a local parallel sentence pair (xc,yc) ∈ Dc of client attacker, the public NMT model generates the
context representation k = fθ(xc, yc,<t) in the last decoder layer at each timestep t, and the ground-truth
is v = yc,t. k has two forms, i.e., whether it is encrypted by K-Encryption or not. Next, we concat them to
obtain a training sample rc,t = k⊕ v⊕ <2src>⊕ xc ⊕ <2tgt>⊕ yc,<t ⊕ v, where ⊕ is the concatenation
operation. The language tag <2src> and <2tgt> are used to identify the generation of source and target
languages, respectively. By traversing the entire Dc, we obtain the whole datasetR = {r1, r2, . . . , rn} used
to train the threat model, where n =

∑|Dc|
i |yi|+ |Dc|. The detailed statistics of dataset used for threat model

are shown in Table 13.
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Table 13: The statistics of datasets for the threat model.
IT Medical Law

Train 3,085,523 5,858,648 16,868,065
Dev 34,737 55,577 51,423
Test 2,000 2,000 2,000

dogs <2tgt>hunde <2src> I like magIch

Embd Embd EmbdLinear Embd Embd Embd Embd

hunde

Embd

key value

like dogshunde <2src> I Ich<2tgt> mag

Reconstruction Transformer Decoder

Prefix Token： Text Predicted by Autoregressive Paradigm：

Figure 4: The threat model based on the autoregressive paradigm.

D.2 THE ARCHITECTURE OF THREAT MODEL

The goal of the threat model is to reconstruct the corresponding original text from the memorization (k, v) of
client defender. As shown in Figure 4, we use a transformer decoder as the architecture of the threat model,
which is similar to the left-to-right language model based on the auto-regressive paradigm. It consists of
6 transformer layers. The input embedding size is 512, the FFN layer dimension is 2048, and the number
of self-attention heads is 8. We first transform the first input token k to the same dimension as the word
embedding using a linear layer, and then auto-regressive perform left-to-right reconstruction modeling.

D.3 EVALUATION OF PRIVACY LEAKAGE

We quantify the privacy information leaked by global memorization using sentence-level and word-level
metrics, i.e., reconstruction BLEU and privacy word hitting Precision/Recall/F1. Assuming that the text
recovered by the threat model from memorization ki ⊕ vi is hi = {hi,1, hi,2, ..h|hi|} and the ground-truth is
gi = {gi,1, gi,2, ....g|gi|}, where i = {1, 2, ..., N} is test sample index. Then we calculate the reconstruction
BLEU score using sacreBLEU. Before evaluating the word-level privacy leakage, we require to extract the
privacy dictionary of the client defender. The privacy dictionary is obtained by computing the difference
between the word distribution of the defender’s private dataset and the server public dataset. Further, we filter
hi and gi according to this dictionary to obtain sentences hpi and gpi that contain only privacy words. The
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word-level metric then is computed as follows:

Precision =

∑N
i

∑|gp
i |

j Counthit(g
p
i,j ,h

p
i )∑N

i |h
p
i |

,

Recall =

∑N
i

∑|hp
i |

j Counthit(h
p
i,j , g

p
i )∑N

i |g
p
i |

,

F1 =
2× Precision× Recall

Precision + Recall
,

(5)

where Counthit(x, y) represents that x has appeared in y.

D.4 QUALITATIVE ANALYSIS OF PRIVACY

Some qualitative cases are illustrated in Table 15 and we find that the style of all reconstructed texts remained
consistent with the attacker’s training data, including text length and domain style. For example, in Case1 and
Case2, the reconstructed texts from the attack model trained on the Law domain exhibit a domain style of law
client. This means that it is difficult to recover and identify valuable information, such as domain and private
words, from global memorization.

E COST ANALYSIS OF FL METHODS ON DIFFERENT CLIENT’S NUMBER

The communication and computational costs of different FL methods are illustrated in Table 14. For
communication, the cost of FedAvg is much higher than that of FedNN and FT-Ensemble. The reason is
that FedAvg requires multi-round communication based on the model, while both FedNN and FT-Ensemble
require only one-round memorization-based communication. For computation, the cost of FT-Ensemble is
linearly related to the number of nodes. It cannot be extended to practical applications because of the number
of local models that need to be integrated for inference. In contrast, the cost of FedNN is only 1/60 and N/2
of FedAvg1 and FT-Ensemble, respectively. Considering many clients’ limited communication bandwidth
and computational resources, FedNN is a promising framework selection to save a lot of communication time
and computational consumption.
Table 14: The communication cost and computation cost of different methods, where “M, N, R and D”
respectively represent the model size (414MB), number of client, rounds of communication (160) and the
total size of all encrypted datastores (1978MB).

Communication Cost (GB) Computation Cost (FLOPs)
Compl. 3 6 12 18 3 6 12 18

FedAvg M×N×R×2 388.12 776.25 1552.50 3105.00 3.23×1018 3.23×1018 3.23×1018 3.23×1018

FT-Ensemble M×N×(N+1) 4.85 16.98 63.07 138.27 7.02×1017 1.40×1018 2.11×1018 2.82×1018

FedNN (D+M)×N 5.08 12.08 26.10 40.12 6.72×1015 6.72×1015 6.72×1015 6.72×1015

F LIMITATIONS

In this paper, we utilizes one round of memorization-based interaction to share knowledge among different
clients, thus building low-overhead privacy-preserving translation systems. We discuss limitations of our
method as follows.

• Despite our proposed approach achieves strong performance when exploiting global memorization sharing,
it leads to reduced inference efficiency due to the need for kNN retrieval. As shown in Table 1, the inference
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speed of FedNN is about 0.75× that of P-NMT. In practice, these costs may be acceptable since we employ
FAISS to speed up kNN retrieval. We encourage future work to improve the efficiency of kNN retrieval.

• The communication overhead required for memorization-based interaction is positively correlated with the
client data size. Extremely large client data will make our approach inapplicable because it leads to higher
communication overhead. Our approach is more applicable to the generic scenario described in Section 2,
i.e., private data is sparse (|Dc| � |Ds|). We also encourage further exploration of how to build a smaller
and more accurate memorization further to mitigate this problem.

• This paper is still very preliminary in the privacy leakage analysis of memorization interaction. Although
the threat model on shared global memorization has a very low reconstruction scores, privacy leakage is
still a potential risk. How to better evaluate and mitigate the privacy leakage of memorization remains an
open question, which we leave for future work.

Table 15: Examples of qualitative analysis for privacy leakage. Text in green / blue represent the defender-

specific ground-truth and private words, respectively. Text in red represents the hit private words by attacker.
The bold word represents the threat model of the client-side attacker, where the superscript “fKE” represents
the input of training data k is encrypted K-Encryption, otherwise it is not.

Case Examples

Case 1: Defender is IT

<2src> cursor ; quickly moving ; to an object <2tgt> cursor ; schnell zu einem Objekt bewegen

MedicalfKE : <2src> curves , fainting, salivation, vomiting, diarrhoea, fainting, fainting, or vomiting,
or diarrhoea. <2tgt> Kleben, Fainting, Speichelfluss, Erbrechen, Durchfall, Ohnmacht oder Erbre-
chen oder Durchfall oder Erbrechen

Medical: <2src> curonium or vecuronium: <2tgt> Vecuronium oder Vecuronium:

LawfKE : <2src> palm oil falling within CN code 2710 00 90 <2tgt> Palmöl des KN-Codes 2710 00 90
Law: <2src> curbiting the use of the designation ’butter’ in Annex I to Regulation (EEC) No 3143

85 <2tgt> curbitration der Bezeichnung ’Butter’ in Anhang I der Verordnung (EWG) Nr. 3143 / 85

Case 2: Defender is Medical

<2src> Intravenous infusion after reconstitution and dilution. <2tgt> Intravenöse Infusion

nach Auflösung und Verdünnung.

ITfKE : <2src> Inserts a placeholder. <2tgt> Hiermit fügen Sie einen Platzhalter ein

IT: <2src> Inserts a new row. <2tgt> Fügt eine neue Zeile ein.
LawfKE : <2src> Appointment of the date of minimum durability shall be given. <2tgt> Die Angabe des

Law: <2src> The minimum of date durability <2tgt> Angabe des Mindesthaltbarkeitsdatums

Case 3: Defender is Law

<2src> The Commission consistently takes a favourable view of such aid . <2tgt> Derartige Bei-
hilfen werden von der Kommission stets befürwortet.

ITfKE : <2src> The & kappname; Handbook <2tgt> Das Handbuch zu & kappname;

IT: <2src> Following packages depend on the installed packages: <2tgt> Die folgenden Pakete hängen

von den installierten Pakete ab:

MedicalfKE : <2src> Most common side effects with Azarga (seen in between 1 and 10 patients in 100)
areheadache, dizziness, somnolence (sleepiness), nausea (feeling sick), diarrhoea, abdominal tummy
pain, diarrhoea, flatulence (gas), abdominal (tummy) pain, dyspepsia (indigestion), diarrhoea, nau-
sea (feeling sick), vomiting, abdominal (tummy) pain, dyspepsia (indigestion), flatulence (wind)...

Medical: <2src> European Commission granted a marketing authorisation valid throughout the

European Union for Nobilis Influenza H5N6 to Intervet International BV on 24 April 2009. <2tgt>

April 2009 erteilte die Europäische Kommission dem Unternehmen Intervet International BV eine Gene
-hmigung für das Inverkehrbringen von Nobilis Influenza H5N6 in der gesamten Europäischen Union.
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