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Abstract

Conformal prediction is a distribution-free
method that wraps a given machine learning
model and returns a set of plausible labels that
contain the true label with a prescribed coverage
rate. In practice, the empirical coverage achieved
highly relies on fully observed label information
from data both in the training phase for model
fitting and the calibration phase for quantile esti-
mation. This dependency poses a challenge in the
context of online learning with bandit feedback,
where a learner only has access to the correctness
of actions (i.e., pulled an arm) but not the full
information of the true label. In particular, when
the pulled arm is incorrect, the learner only knows
that the pulled one is not the true class label, but
does not know which label is true. Additionally,
bandit feedback further results in a smaller labeled
dataset for calibration, limited to instances with
correct actions, thereby affecting the accuracy of
quantile estimation. To address these limitations,
we propose Bandit Class-specific Conformal Pre-
diction (BCCP), offering coverage guarantees on
a class-specific granularity. Using an unbiased
estimation of an estimand involving the true label,
BCCP trains the model and makes set-valued in-
ferences through stochastic gradient descent. Our
approach overcomes the challenges of sparsely
labeled data in each iteration and generalizes the
reliability and applicability of conformal predic-
tion to online decision-making environments.

1. Introduction

Machine learning models, while highly effective, can fail
in complicated scenarios due to inherent uncertainties and
hence lead to irreversible consequences, particularly in high-
stake applications. For instance, in autonomous vehicle
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systems, misidentifying real obstacles as harmless shadows
on the road potentially causes abrupt braking or even dan-
gerous maneuvers. In medical diagnostics, the challenge
of differentiating between benign and malignant tumors
in ambiguous cases can result in critical misdiagnoses, in-
fluencing treatment decisions. Such scenarios underscore
the need for models capable of cautiously handling those
observations with high uncertainty.

Quantifying the uncertainty associated with each observa-
tion can be addressed by reporting a prediction set, which
can be realized by some set-valued classification paradigms
such as Classification with the Reject Option (Herbei &
Wegkamp, 2006; Bartlett & Wegkamp, 2008; Charoen-
phakdee et al., 2021; Zhang et al., 2018) and Conformal
Prediction (Vovk et al., 2005; Shafer & Vovk, 2008; Balasub-
ramanian et al., 2014). Intuitively speaking, an observation
with a large prediction set indicates its intrinsic difficulty
and it is hard to be correctly classified. Unlike Classification
with the Reject Option, the Conformal Prediction method
particularly yields a set with valid prediction coverage, i.e.,
a prediction set includes the true label with a user-prescribed
coverage rate 1 — a, @ € [0, 1].

The literature on Conformal Prediction (and other set-valued
classification methods) covers various aspects. For instance,
Lei et al. (2013); Lei (2014); Lei et al. (2015; 2018); Sadinle
et al. (2019); Wang & Qiao (2018; 2022) consider the cov-
erage guarantees conditional on each class instead of the
standard marginal coverage (Vovk et al., 2005). Romano
et al. (2020); Angelopoulos et al. (2021) explore different
(un)conformity scores to output informative conformal pre-
diction sets. Tibshirani et al. (2019) introduces weighted
conformal prediction in the situation of covariate distribu-
tion shift, while Hechtlinger et al. (2018); Guan & Tibshirani
(2022); Wang & Qiao (2023; 2024) generalize set-valued
predictions to the realm of out-of-distribution detection due
to the semantic distribution shift by admitting an empty pre-
diction set. However, these studies predominantly focus on
the setting with access to full-label information and offline
training, limiting their applicability in real-world scenarios.

Recent extensions of Conformal Prediction to online learn-
ing settings, (1) address arbitrary distribution shifts (Gibbs
& Candes, 2021; Gibbs & Candes, 2022; Zaffran et al.,
2022; Bhatnagar et al., 2023), and (2) apply the principles
on the off-policy evaluation problem (Taufiq et al., 2022;



Efficient Online Set-valued Classification with Bandit Feedback

Zhang et al., 2023; Stanton et al., 2023) in reinforcement
learning. Yet, these works require significantly more label
information than what bandit feedback affords: in the dis-
tribution shift problem with full feedback, a learner knows
the true label regardless of its decision’s correctness; in the
policy evaluation problem, the learner receives a reward that
reflects the optimality of the pulled arm. In contrast, in the
bandit feedback setting (Langford & Zhang, 2007; Kakade
et al., 2008; Wang et al., 2010) a learner only receives feed-
back about the correctness of predictions rather than the
ground truth of label information. For instance, a learner in
TikTok can correctly capture a positive attitude toward the
video recommendation through a user’s click, whereas the
user’s preferences remain uncertain if the presented recom-
mendation is disliked by the user (it does not know what the
user likes). Similarly, in personalized medicine, a medical
system adjusts chemotherapy treatments based on partial
feedback, such as tumor response, without full knowledge
of how other treatments might have worked for that patient.

Motivated by the limited literature on Conformal Prediction
within the context of online bandit feedback, we introduce
the Bandit Class-specific Conformal Prediction (BCCP)
framework for the multi-class classification problem. To
the best of our knowledge, this is the first effort in apply-
ing conformal prediction to this particular context. Our
key contributions are as follows: (1) BCCP leverages an
unbiased estimator for accurate ground truth inference of
label information, allowing the use of those data instances
for which the wrong arm was pulled in both model fitting
and quantile estimation; (2) Our method capitalizes on the
efficiency of stochastic gradient descent for dynamically
updating the quantile estimation, which differentiates itself
from the traditional split conformal method in which sample
quantiles based on a sufficiently large calibration dataset are
used; (3) We theoretically prove that both the class-specific
coverage and the excess risk with respect to the check loss
converge at a rate of O(7~'/2) under certain conditions; (4)
Recognizing the practical challenge of selecting an optimal
learning rate for updating the quantile estimation, we use an
ensemble approach to update the estimation with a range of
learning rates; (5) The effectiveness of BCCP is empirically
validated using three different score functions and two poli-
cies (for pulling arm) across three datasets, demonstrating
the versatility and efficacy of our proposed framework.

The rest of the paper is organized as follows. In Section 2,
we begin with a review of the related work. This is followed
by Section 3, where we introduce our methodology comple-
mented by a series of associated theorems. In Section 4, we
present experiments to demonstrate the effectiveness of our
method. The conclusions to our work are given in Section 5
and proofs are attached in Appendix A.

2. Preliminary

In this section, we review some key concepts of Conformal
Prediction and the Multi-armed Bandit Problem.

2.1. Conformal Prediction

Conformal prediction (Vovk et al., 2005; Lei et al., 2015) is a
distribution-free methodology that can complement various
machine learning models, such as neural networks, support
vector machines (SVMs), and random forests. It is utilized
to produce set-valued predictions with a theoretically guar-
anteed coverage rate prescribed by users.

Consider a labeled training dataset D = {(X;,Y;) }iez (T
denotes the index set) and a test instance X with unknown
label Y, where both are assumed to be i.i.d. from an un-
known distribution over the domain X x ). In the classifica-
tion problem, the Standard Conformal Prediction employs
a mapping (depending on the dataset D) C : X' — 2V and
returns a prediction set C(X) for the test point X, ensuring
the marginal coverage rate

P(Y €C(X)) >1-a, 8))
where « € [0, 1] represents the pre-specified nominal non-
coverage rate by practitioners. Notice that the probability is
taken over the training dataset D and the test point (X,Y).

Considering that the marginal coverage guarantee in Stan-
dard Conformal Prediction may not be adequate for certain
specific classes, Lei et al. (2013; 2015; 2018); Sadinle et al.
(2019) explored Class-conditional Conformal Prediction,
which offers class-specific coverage

PYeC(X)|Y=k>1-a Vke). (@2

The same paradigm is also considered in Wang & Qiao
(2018; 2022; 2023). It is crucial to understand that while
(2) implies (1), the converse is not necessarily true. On the
other hand, compared to the marginal coverage, the class-
specific coverage may yield larger prediction sets when
practitioners have limited data for each class. Motivated
by this limitation, Ding et al. (2024) proposed Clustered
Conformal Prediction to navigate this trade-off between
marginal and class-specific coverage in the low-data regime,
while Romano et al. (2020); Angelopoulos et al. (2021)
proposed different score functions to improve the prediction
set size especially when there are many classes.

In general, Conformal Prediction starts with a (conformity)
score function s : X x ) — R. It is employed to gauge
the proximity of an observation X to any class k € ). In-
tuitively speaking, the larger the conformity score s(X, k),
the higher the likelihood that the observation X belongs
to the class k. This score function can manifest in various
forms, such as the softmax probability in neural networks,
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the functional margin in SVMs, or the average predicted
class probabilities of trees in random forests.

In the split conformal method (Papadopoulos et al., 2002;
Lei et al., 2013), the index set Z associated with the original
dataset D is partitioned into two disjoint subsets: the train-
ing part Z;, and the calibration part Z.,;. The former is used
to fit a model f in the training phase, such as training a neu-
ral network to minimize cross-entropy loss (Romano et al.,
2020; Angelopoulos et al., 2021), training an SVM to min-
imize hinge loss (Wang & Qiao, 2018; 2022), or growing
a random forest based on Gini-impurity (Guan & Tibshi-
rani, 2022). This model f is then utilized to customize the
aforementioned conformity score function s. For example,
s could be directly taken as f, or a monotonic function of
f, e.g., softmax score. With the conformity score estab-
lished, the next step involves identifying score thresholds
Tk, k € ) within the calibration part Z.,;, thereby enabling
decision-making for the upcoming test points. In summary,
a prediction set for a query X with the class-specific cover-
age guarantee (2) is defined as

C(X):={keY:s(X,k) >}

where the threshold 7y, is determined as the 100 x «% sample
quantile of the conformity scores for the calibration set, i.e.,
the (||Zcai|ee] + 1)-th smallest value in {s(X;, k) }iez..,
(Romano et al., 2019). Throughout this article, | - | being
applied on a set denotes the size or cardinality of the set.

2.2. Multi-armed Bandit and Multi-class Classification

The Multi-armed Bandit Problem (Lai & Robbins, 1985;
Auer et al., 2002) is a fundamental concept in reinforcement
learning. It presents a scenario where a learner aims to op-
timize rewards or minimize regrets (cumulatively assessed
from feedback) by pulling an “arm” (or taking an action), A,
from a set of available arms denoted as {1, --- , K'}, where
K represents the total number of arms. The selection of
an arm is guided by a policy 7, tailored to maximize ex-
pected gains over time. The policy 7 could be a probability
distribution to generate an arm to pull, or deterministic.

When extended to multi-class classification with bandit feed-
back, this concept incorporates contextual information or
features, X, effectively transforming it into a contextual
bandit problem. Particularly in online learning settings, at
time point ¢, the learner selects an arm A; ~ 7 for a given
query context X, and subsequently receives binary feed-
back 1{A; = Y;}. This feedback, indicating whether the
pulled arm (class) matches the true label Y, introduces un-
certainty regarding the true label, complicating the learner’s
updating process. For example, different from the full feed-
back setting (Gibbs & Candes, 2021; Gibbs & Candes, 2022;
Bhatnagar et al., 2023), the learner here has no idea upon
the true label for the query X if the value of feedback is 0.

Several studies have explored the domain of contextual ban-
dits, where the hypothesis space comprises linear predictors
(Kakade et al., 2008; Wang et al., 2010; Crammer & Gentile,
2013; Abbasi-Yadkori et al., 2011; Gollapudi et al., 2021;
van der Hoeven et al., 2021). These works focus on the effi-
cacy of linear models in capturing the relationship between
context and action rewards. However, the linear representa-
tion has its limitations in capturing complex relationships.

In response to these limitations, recent studies have delved
into neural contextual bandits (Zhou et al., 2020; Jin et al.,
2021; Zhang et al., 2021; Xu et al., 2022). These approaches
leverage the expressive power of deep neural networks
to model the context-action relationship more effectively.
There are various policies proposed, including Thompson
sampling and Upper Confidence Bound algorithms, to nav-
igate the bandit problem in more complex and non-linear
environments.

Despite these advancements in reinforcement learning, the
existing literature primarily focuses on point prediction and
lacks mechanisms for set-valued prediction and coverage
control. This gap is particularly concerning in critical do-
mains, as discussed in Section 1. The issue is partially
addressed by recent works (Taufiq et al., 2022; Zhang et al.,
2023; Stanton et al., 2023), which apply Conformal Predic-
tion to off-policy evaluation problems, thereby returning
prediction sets. However, these researches diverge from
our work, which specifically addresses the bandit problem
setting. Our focus lies in integrating set-valued predictions
with the bandit feedback framework, an area that has not
been extensively explored, presenting both novel challenges
and opportunities for advancing the field.

2.3. Set-valued Classification with Bandit Feedback

The proposed BCCP method (summarized in Algorithm 1)
aims to make set-valued decisions with a coverage guarantee
for instances from the same distribution as the training data
in the bandit feedback setting. Particularly, given a query
X, the learner pulls an arm A; and receives the feedback
1{A; = Y;}. With this feedback, the learner updates the
model and thresholds in conformal prediction (lines 4-5 in
Algorithm 1). During the test phase, the learner returns the
prediction set based on the trained model and thresholds
(line 3 in Algorithm 1).

Take healthcare as an example. Due to cost and safety con-
cerns, insurance companies may only allow the healthcare
provider to prescribe one diagnostic test (e.g., X-ray, fol-
lowed by CT, followed by cancer biomarker blood test, etc.)
at a time to the patient (this may be viewed as pulling a
single arm). When a diagnostic test turns out negative for
a suspect cause, it is still unknown what the cause really is
(this is consistent with our setting in which the learner only
receives a bandit feedback that confirms the correctness of
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the pulled arm but does not necessarily reveal the true label).
After a series of training over a large number of patients
has been conducted, we have a diagnostic system that can
make predictions for a new patient based on the patient’s
profile. Unless for clear-cut cases, often it is much safer
for the provider to consider a set of most plausible causes
and design the treatment plan that considers all plausible
diseases, as opposed to treating the patient based on one
single predicted disease.

3. Towards the Bandit Conformal

In this section, we introduce our method: Bandit Class-
specific Conformal Prediction, specifically designed for
set-valued multi-class classification problems in an online
bandit feedback setting: let {( Xy, Y;)}7_, be a sequence of
i.i.d. points from the domain X x ), where a leaner cannot
observe the label Y; and receives the non-zero feedback only
when an arm is correctly pulled. We aim to report a predic-
tion set C*~!(X;) (the learner only uses the information up
to time ¢t — 1) with a class-specific coverage guarantee.

Our methodology entails three pivotal steps: (1) estimating a
ground truth based on a policy and feedback, (2) training the
model with this estimation, and (3) estimating the 100 x a%
quantile 7, for each class k € ).

3.1. Estimating 1{Y; = k}

In the bandit feedback context, for each query instance
X, the learner pulls an arm A; € ) based on a given
policy m; := m (- | X;), effectively making an educated
guess about the potential true label. The environment then
provides binary feedback indicating the correctness of the
chosen arm, i.e., 1{A; = Y;}. As a direct observation of
Y; is not available, we rely on the following estimation to
1{Y; =k}, ie,

1{A, =k}

Ay =
PR (k] X))

1{A, = Y},

Proposition 3.1. A, ;; serves as an unbiased estimator of
1{Y; = k}. This is substantiated by the equation

Enr, [At,k] = En, [At,k | Ay = k] ~m(k | Xy)
+ En, [At,k | A # k] [ = me(k | X))
1{k = Y3}

:W.m(mxt)w:n{l@:k},

where the expectation is taken with respect to policy m, con-
ditioning on all previous information and the point (X, Y:).

This estimation framework lays the groundwork for subse-
quent tasks in our study. It allows us to effectively utilize the
policy’s capability to learn the real data-generating process
without explicit knowledge about the true label Y;.

Policy design can be a flexible process, influenced by spe-
cific preferences such as the pursuit of simplicity or the
goal of minimizing estimation variance. In our research,
we theoretically analyze the performance of certain policies
characterized by the associated properties, as detailed in
Corollaries 3.3 and 3.5. Additionally, we conduct empirical
evaluations and compare the performances of two distinct
policies: the softmax policy (softmax probability output
from a neural network as defined in (4)) and the uniform
policy (uniform distribution). See Section 4.

3.2. The Cross-entropy Loss with Bandit Feedback

Throughout this article, we train a neural network model
(X)) = (fiy(X), -+, AYNX))T € RIYI, which is pa-
rameterized by a set of matrices collectively represented by
W. Our primary objective in the training phase, particularly
within the bandit feedback context, is to minimize a modi-
fied version of the cross-entropy loss for each input query
X, formulated as follows:

== Auy-log(p

key

‘C Xta k ‘ Xt)) (3)

By substituting A, j, for the ground-truth label indicator
1{Y; = k}, the loss function becomes an unbiased esti-
mator of the traditional cross-entropy loss with full feed-
back — log (p(Y; | X)) by following a similar derivation
in Proposition 3.1. This allows using information in those
instances where the true label Y; is not explicitly available.

The estimated probability mass function p(k | X;) for each
class k is derived from the outputs of the neural network.
Specifically, it is modeled by applying the softmax function
to the logits f{fv(X +) produced by the neural network:

exp(f{fv(Xt))
Zkey eXp(fW(Xt))

By integrating the estimator A, ;, with the softmax output,
our model can update efficiently by optimizing the tailored
loss function (3) with stochastic gradient descent. It is
important to note that one may employ other loss functions,
such as the hinge loss in SVMs (Kakade et al., 2008).

bk | Xy) = s key. @

Figure 1 presents a clear visualization of the cross-entropy
loss across three real datasets in the bandit feedback setting.
It shows the model fitting performance with the softmax and
uniform policies. The plots illustrate that during the model
training phase, the softmax policy consistently achieves a
more rapid reduction in loss compared to the uniform policy.
This superior performance can be attributed to the context-
aware nature of the softmax policy, which strategically pulls
arms based on the specific context of each query. This
approach not only leads to a higher frequency of accurate
predictions but also ensures better utilization of data points,
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Figure 1. Accumulative cross-entropy loss under softmax policy and uniform policy.

thereby enhancing the overall efficiency and effectiveness
of the model training process.

3.3. The Quantile of the Conformity Score

To control the class-specific coverage, our approach lever-
ages thresholds/quantiles associated with a given conformity
score function s(X, k), such as softmax, APS (Romano
et al., 2020), or RAPS (Angelopoulos et al., 2021) score
(see the definitions in Appendix A). Particularly, the primary
goal in this phase is to determine a 100 x a% quantile 75 of
the distribution of s(X, k). To this end, the traditional split
conformal method (Papadopoulos et al., 2002; Lei et al.,
2013) involves partitioning available labeled data into train-
ing and calibration sets. However, in the online setting, since
we only have access to a limited dataset at each iteration,
split conformal may lead to two primary issues: (1) reduced
data for model training, and (2) large prediction sets due to
limited labeled calibration data (Ding et al., 2024). These
two issues are further aggravated in the bandit feedback set-
ting because only those data whose correct arms are pulled
are considered labeled.

To overcome these challenges, we adaptively update a
quantile estimate 75 by utilizing the check loss function
(Takeuchi et al., 2006; Koenker & Bassett Jr, 1978; Romano
et al., 2019; Gibbs & Candes, 2021) for quantile estimation:
pa(s,7)=(s—7) (a—1{s < T}).

More concretely, a class-specific 100 x a% quantile 7, k €
Y is obtained by solving the below optimization problem:

arg:nin[[ﬂ[pa(s(X7 k), 7)| Y = k]
— aremin IE[]I{Y =k} pa(S(X,k‘),T)}
- E[1{Y = k}]
= argmin E[1{Y =k} - pa(s(X, k), 7)], 5)

where the second equality holds due to the fact that
E[1{Y = k}] = P(Y = k) does not rely on the quan-
tile estimation. Given that the true joint density function

p(x,y) is unknown, we instead employ a data-driven ap-
proach for quantile estimation: for each data point consider
the loss

At,k 'pa(s(Xtvk)aT)a (6)

which is an empirical counterpart of the population loss
(5). Consequently, 74 can be dynamically updated through
stochastic gradient descent by computing the gradient,
—A¢ - (= 1{s(Xy, k) < 7}), of the weighted loss (6).
The updated quantiles 75,k € ) are then applied as the
thresholds for the upcoming data in the next iteration only.
The complete process, including the model training and
quantile estimation in an online learning context, is outlined
in Algorithm 1 and Figure 2.

Algorithm 1 Bandit Conformal

Require: Initialize weight matrices W and class-specific
quantiles T,S = 0,k € Y. Provide a score function
st(-,-)!, apolicy m; and learning rates 7y, 2.

1: fort=1,2,3,--- ,T do
Learner receives a query X
Generates a prediction set for the query:

CAt*l(Xt) = {k ey: stfl(Xt,k) > 'r]i_l}
4:  Learner pulls an arm A; ~ 74, receives the feedback

1{A; = Y;}, and computes A;
5:  Update the network weight matrices and quantiles:

WE= WL Vi L( X W)
=1 A (o — 1{s (X k) <77

6: end for

When comparing with Gibbs & Candes (2021); Gibbs &
Candes (2022); Zaffran et al. (2022); Bhatnagar et al. (2023),

'We add the superscript ¢ on the score function to explicitly
impress that it depends on the neural network updated up to ¢-th
iteration. The same argument is applied to other notations.
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Figure 2. Flowchart of the online learning with bandit feedback.
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a critical aspect differentiating our method lies in the quan-
tile updating process in addition to the model training in
the bandit feedback context as elucidated in Section 3.2. In
particular, the aforementioned studies predominantly work
with the unweighted quantile estimation and require veri-
fication of whether the true label Y; falls in its prediction
set C'~1(X,) in their updating rules. This verification is
typically achieved either by directly utilizing explicit label
information or through multiple arm pulls until the true label
is ascertained with absolute certainty. Such methodologies
are not feasible in our setting for two primary reasons: (1)
we lack direct access to the true label information, and (2)
our framework does not permit multiple arm pulls for a
single decision instance. In contrast, our approach (see the
updating rule in Algorithm 1) involves computing the gra-
dient of the weighted check loss (6) in the bandit feedback
setting, which is an unbiased estimator of the gradient of
unweighted check loss in the full feedback. This process is
tailored to bandit feedback environments where each query
allows only a single arm pull.

The below theorem implies the empirical coverage con-
verges to the prescribed coverage.

Theorem 3.2. Define the filtration Fy = (0(X,Y;) %
o(m)) U Feeq. Assume mi(k | Xi) > ¢ > 0 for all
t € [T] and E[i;{éﬁl}’i}; | Fi—1] = bk. With probability
at least 1 — § taken over all the randomness, for all class

k € Y, Algorithm 1 yields the empirical coverage gap

T
1
CvgGap,, = |a — T Z {Y, =k} 1{Y, ¢ @_1(Xt)}‘
t=1
L Gl
n2Tk Ty

where Gi(T,8) = 3% log? + \/2log %> b}, and

Ty =Y, WY, =k}

Theorem 3.2 implies the convergence rate of the class-
specific coverage guarantee mainly depends on the learning
rate 7)o and the sample size T}, of class k. Besides the pol-
icy should be bounded strictly below by 0, the additional

assumption on ]E[frf(yé‘}% | F;—1] further suggests that the

policy should not overly underestimate the proportion of a
class; otherwise the empirical coverage gap may increase.

To some extent, Theorem 3.2 ensures that the algorithm
yields prediction sets with small sizes. This is because an
algorithm with a large prediction set size often comes with
inflated coverage, yet the theorem states that the empirical
non-coverage must not deviate much away from the desired
non-coverage of c. In particular, Theorem 3.2 precludes the
trivial case C'~1(X;) = Y forall t € [T].

The below corollary highlights the impact of different poli-
cies on the convergence rate.

Corollary 3.3. Assume the learning rate has the order
no = O(T~Y/?). (1) If the policy m; aligns with the Bayes
posterior probability, i.e., m(k | X;) = P(Y; = k | X4),

then we have E[}rt{(itl}% | Fio1] = b, < 1, and hence

CvgGap,, = O(‘é—?) (2) If the policy is the uniform distri-
bution, i.e., m(k | X;) = Wll’ then bl, < |Y|pi (here
pi denotes the prior probability of class k), and hence

CvgGap,, = O(~ Toles ).

T

Corollary 3.3 implies a convergence rate of CvgGap, =
O(T~'/?) when the learning rate 7, = O(T~'/?) and
sample size T, = O(T), k € Y under both Bayes pos-
terior probability and uniform probability policies. In
our experiments, due to the lack of access to the precise
data distribution, we instead use the softmax policy, i.e.,
me(k | Xt) = p(k | X¢) as defined in (4), to estimate the
Bayes posterior probability. As noted by Tibshirani et al.
(2019), there are alternative methods for probability estima-
tion, such as moment matching and Kullback-Leibler Diver-
gence minimization. We refer to related work (Sugiyama
et al., 2012) for a comprehensive review.

Theorem 3.4. Let p, be the prior probability of
class k € Y, and 177 = argminT%Zthl Yy, =
kYpa(st=Y(Xy),T) be the quantile estimate using all
the data instances. Define the empirical regret associ-
ated with the check loss in the bandit feedback setting
as Regy ,. (T) := %Zle At,kpa(stfl(Xt),T,i_l) —
% Zthl {Y; = k}pa(s'=1(Xy), 7). By choosing ne =

* t=K -1/2 . .
Tkpllc/2 (Zle E[i?{él;ﬂ) / , Algorithm 1 yields an ex-

pected regret

* T o
E[Regy, , (T)] < %’“ Dk ZE[W}

The above expectation is taken over over all the randomness,
including the data and algorithm. Note that 7;' is bounded,
and hence the upper bound converges to 0.

Corollary 3.5. For the uniform policy and an appropriately
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chosen s as specified in Theorem 3.4, the expected regret
“ VP
E[Reg,, ,, (T)] < =,

Corollary 3.5 indicates that the expected regret adheres to
a theoretical convergence rate of O(7~'/2), under the con-
dition that the learning rate 17, = O(T~/2) (it can be
achieved when the policy is bounded strictly below by 0).
This condition aligns with the findings in Corollary 3.3.

Both Theorem 3.4 and Corollary 3.5 provide theoretical
guarantees for the convergence behavior of Algorithm 1 in
a parametric rate, indicating its potential effectiveness. This
result shows that there exists such a learning rate 7, leading
to an optimal convergence rate. How to practically obtain
such a precise learning rate is a challenging problem. In
practice, as discussed in the work of Gibbs & Candes (2021),
the chosen value of 7, leads to two distinct scenarios. A
larger value of 7y may lead to unstable quantile estimations,
causing oscillations in prediction set sizes. Over time, this
could result in increasingly larger prediction sets in the
online learning process. Conversely, a smaller value of 7
slows the convergence rate of the coverage, necessitating
more iterations to achieve desired coverage levels.

Algorithm 2 Bandit Conformal with Experts

Require: Initialize weight matrices W9, class-specific
quantiles 7]07 x = 0, and experts weights w?’ =1 J€
[J],k € V. A score function s'(-,-), a policy m; and
learning rates 11,12 ;,j € [J].

1: fort=1,2,3,--- ,T do
2:  Learner receives a query X,
3:  Generates a prediction set for the query:

CUXy) = {keY: s X k) > 71,

—t—1 t—1_t—1 t—1
where 7, = Zj Wik Tik /> Wik
4:  Learner pulls an arm A; ~ 74, receives the feedback
1{A; = Y;}, and computes A,
5:  Update all weights and quantiles:
W= Wit — mVwL(Xy; Wtil)
T;,k: = T;,;l + n2,jAt,k (a — H{Stil(xt, ]C) < T;;l )

Wi = D=ty X Avkpals T (X BTl )
/<t

6: end for

To mitigate the above limitation due to the choice of 7,
we draw inspiration from the adaptive control method in its
full feedback setting (Zaffran et al., 2022). We introduce
an alternative algorithm, Bandit Conformal with Experts
(outlined in Algorithm 2), which eliminates the need for
manual tuning of 75. Specifically, given a grid of learning
rate values 7)2 ;, j € [J], it employs an ensemble methodol-
ogy to aggregate estimated quantiles associated with 7 ;’s

based on past performance. The guiding principle is that as
the accumulated check loss decreases, the attention placed
on the corresponding estimated quantile grows.

Theorem 3.6 below shows that the aggregated quantile
through the experts converges to the optimal quantile es-
timate among the experts. Specifically, an increase in the
number of experts, while maintaining the order J = O(1),
can enhance the chance of achieving an improved learning
rate, along with more accurate quantile estimations. This
finding underscores the importance of expert integration in
improving algorithmic performance if one has no prior idea
of the optimal learning rate.

Theorem 3.6. Consider ﬂi_l as the aggregated quantile
across J(> 2) experts as defined in Algorithm 2, and the
same cy, defined in Theorem 3.2. Then, Algorithm 2 yields

Here the assumption for ¢, is reasonably flexible as it can
be achieved through the policy design.

Notice that, theoretically, the optimal choice of learning rate
should vary depending on the class as indicated in Theo-
rem 3.4. However, for the ease of practical implementation,
the same value of 73 (or 72 ;) is applied across all classes.

4. Experiments

Set-up: To assess the effectiveness of our proposed ap-
proach, we employ the ResNet50 architecture (He et al.,
2016) for model fitting. Our experimental setup includes
the CIFAR10, CIFAR100 (with 20 coarser labels), and
SVHN datasets, each undergoing 5 replications. Consis-
tently throughout the study, we maintain a non-coverage
rate « = 0.05. For computational efficiency, the model
training is performed on data batches of size 256, utilizing
the ADAM optimizer with a learning rate of 7; = 10~ in
the model training phase. The entire online learning process
spans T' = 6000 iterations around. We evaluate online clas-
sification performance using three score functions: softmax,
APS, and RAPS (see their definition in Appendix A) for
both the softmax policy and the uniform policy.

Metrics: To examine the performance during online pre-
diction for ¢ € [T, we report both the minimum and maxi-
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mum accumulative coverage, defined as:
Acum_cvg_min(t) = I]gu%;l Acum_cvg(t, k),
c

Acum_cvg_max(t) = max Acum_cvg(t, k),
€

where Acum_cvg(t, k) is defined as
et Yox,en, HYi=k&Y; € C* (X))}
i1 Xxien, HYi = K}

with B, representing the batch of the dataset at time point s.
We include the accumulative prediction set size,

22:1 d_XeB, CAt_l(XiN
oy 1Bl

to assess the informativeness of the set-valued classification.

3

Acum_size(t) =

)
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Figure 3. Performances under Algorithm 1 with softmax policy.
The black dotted lines in the bottom panel denote the oracle per-
formance of the model with access to the full labels.
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Figure 4. Performances under Algorithm 1 with uniform policy.
The black dotted lines in the bottom panel denote the oracle per-
formance of the model with access to the full labels.

Results: Figures 3 and 4 present the set-valued classifica-
tion with BCCP in the bandit feedback setting under softmax
and uniform policies, respectively. The black dotted lines in
the bottom panel for each figure denote the final result of a
network after sufficiently many iterations with access to the
full labels and the usage of the RAPS score function. As the

number of iterations increases, the top panels in Figures 3
and 4 reveal that Algorithm 1 effectively approaches the
prescribed class-specific coverage of 95%. Additionally,
the bottom panels in these figures indicate a trend towards
smaller prediction sets.

The choice of learning rate 7; indeed affects the perfor-
mance of the model training phase and hence the subse-
quent quantile estimation. However, in our study, we mainly
focus on the role of 7, instead of particularly optimizing
for n;. For example, the CIFAR100 experiments utilizing
the softmax policy and softmax score are presented with
a fine-tuned 75 = 5 x 10~* (see the tuning strategy and
sensitivity studies about 72 in Appendix B). As discussed
below Corollary 3.5, an inappropriate selection of the hyper-
parameter 72 can result in enlarged prediction set sizes or
prolonged convergence times, which hinders the practical
applicability of Algorithm 1 in more dynamic settings.
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Figure 5. Performances under Algorithm 2 with softmax policy.
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Figure 6. Performances under Algorithm 2 with uniform policy.

To address this limitation, in this study, we employed a
range of learning rate values, i.e., [0.1, 0.01, 0.001, 0.0001],
through an expert-based approach in Algorithm 2. The re-
sults are shown in Figures 5 and 6. Notably, while using the
softmax policy, the results from Figure 5 indicate that the
prediction set sizes from Algorithm 2 are only marginally
larger compared to those from Algorithm 1 with carefully
tuned 7,. With the uniform policy, Algorithm 2 demon-
strates more efficient performance, yielding smaller predic-
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tion sets for the CIFAR10 and SVHN datasets. Notably,
the RAPS score function outperforms the other scores in
producing smaller prediction sets on the dataset when there
are many classes, i.e., CIFAR100.

5. Conclusion

In this article, we extend Conformal Prediction to the frame-
work of online bandit feedback, where a learner is only told
whether or not a pulled arm is correct in a dynamic multi-
class classification problem. We make use of an unbiased
indicator function estimation of the ground truth to over-
come the incomplete information in the feedback, allowing
the proposed Bandit Class-specific Conformal Prediction
(BCCP) to effectively make set-valued inferences and adap-
tively fit the model accordingly. Particularly, the indicator
function estimation allows us to utilize stochastic gradi-
ent descent to efficiently achieve the quantile estimation
instead of the traditional split conformal, which requires
sufficient labeled calibration data and might not be realistic
in the setting of bandit feedback. Theoretically, we show the
O(T~1/?) convergence rate for both the coverage guarantee
and the regret of the check loss under certain conditions.
Empirically, the experiments conducted on three datasets
with three score functions and two policies demonstrated
the effectiveness of BCCP.

Our research opens several promising avenues for future
exploration. One potential direction is the investigation of
alternative indicator function estimations or policy designs
that could offer improved theoretical or empirical perfor-
mance. Additionally, refining the coverage guarantee within
specific fixed-size time windows (Bhatnagar et al., 2023)
instead of the full-time horizon in our work could further
bolster the reliability of BCCP over different time scales.
Moreover, expanding the scope of BCCP to address chal-
lenges such as covariate shift (Tibshirani et al., 2019) and
semantic shift (Wang & Qiao, 2023) could significantly
broaden its applicability.

In conclusion, our work not only contributes a novel and
provable solution to the problem of online multi-class clas-
sification with bandit feedback but also sets another new
direction in conformal prediction. It opens up possibilities
for real-world applications and lays a foundation for further
research domains.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Conformity Scores

Let p(k | X), k € ) as defined in (4) be the estimated posterior probability based on the neural network fy,(X'). Thus, for
the test point (X, Y"), the softmax score is defined as

s(X, k) = p(k | X).

Sort the estimated posterior probabilities p(k | X), k € ) with the ascending order such that p(ky | X) < p(ks | X) <
- < p(kjy| | X). Additionally, denote r as the index such that k. = Y. Thus, the APS score is defined as

r—1
s(X,k)=1=> plki | X)=U-p(k, | X),
1

where U is a random variable sampled from the uniform distribution on the interval [0, 1].

Let k.4 be the number above which the prediction set size will be penalized with the penalty A. Thus, the RAPS is defined

as
r—1

S(X7k):1_ ﬁ(k"l|X)_U'ﬁ(k7'|X)_>\'[T_k7'eg]+7
=1

where [-]+ = max(0, -). By following the similar routine in Ding et al. (2024), in our experiments, we pick A = 0.01 and
kreg = 5 for CIFAR100 while k.., = 1 for the remaining two less difficult datasets.

B. Extra Studies on 7,

In our study, we adopt the learning rate tuning approach as described by Gibbs & Candes (2021), selecting a value that
ensures a stable learning trajectory characterized by a balance between smaller prediction set sizes and satisfactory coverage
convergence. However, this tuning strategy presents challenges in practical applications. Specifically, different datasets
require distinct optimal learning rate values, and identifying these values through manual tuning is both time-consuming and
less adaptive. To illustrate these challenges, we conducted sensitivity analyses on the impact of varying 7, in Algorithm 1.
These studies underscore the limitations of manually tuning a single 72 value.
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Figure 7. Performances under Algorithm 1 with softmax policy and softmax score.
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Our findings, presented in Figures 7 to 10, explore the sensitivity of the learning rate 7. We observed that a higher 7, value
accelerates coverage control, as indicated by the darker lines in the top panels of each figure. However, this generally comes
at the cost of enlarged prediction set sizes, evident from the darker lines in the bottom panels of the figures. Moreover, the
prediction set size shows considerable sensitivity to variations in 7. This highlights the practical limitations of Algorithm 1
and underscores the necessity of implementing Algorithm 2, which utilizes an expert-based method to aggregate results
across multiple learning rates 712 ;,j € [J]. This approach not only addresses the challenges of manual tuning but also
enhances the algorithm’s adaptability and effectiveness across diverse datasets.
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Figure 10. Performances under Algorithm 1 with uniform policy and RAPS score.

C. Discussion of Policy T,

In this section, for each class, we show the effectiveness of different policies on the correctness of arm pulling, i.e.,
P(A; =Y; | Y: = k), k € Y. In Figure 11, under the softmax policy (top panel) and the uniform policy (bottom panel), we
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Figure 11. Proportion of correctly pulled arm with RAPS score under softmax (top) and uniform (bottom) policy.
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report the accumulative performance of arm pulling for each class, i.e.,

22:1 ZXieBS H{Ai - k’}
Yt Lxien, HYi =k}

ke).

Due to the usage of context X, in each batch B, s < ¢, softmax policy leads to higher accuracy for arm pulling. In contrast,
the uniform policy’s correctness is close to ﬁ These behaviors align with the one in cross-entropy loss minimization in
Figure 1, where the softmax policy quickly decreases the loss compared to the uniform policy. On the other hand, when it
comes to the performance of set-valued classification in Figures 3 and 5, the uniform policy both converges faster to the
desired coverage rate and gets slightly smaller prediction sets on average than the softmax policy.

The above interesting phenomenon may mirror the exploration-exploitation dilemma in reinforcement learning. Specifically,
the softmax policy capitalizes on more known information characterized by p(k | X;) as defined in (4) and hence “guesses”
labels with higher frequent success. Such a policy can greedily and quickly decrease the cross-entropy loss but sacrifices the
performance of the set-valued prediction. In contrast, the uniform policy has a higher capability of exploration, possibly
leading to the fast empirical convergence of coverage rate and smaller prediction sets, even though it has an inferior capability
to reduce the cross-entropy loss in each iteration.
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D. Proofs
Proof of Theorem 3.2. Define M, . := [Ay — 1{Y; = k}] - [o — 1{s'"}(X;, k) < 7.7 '}] and

WA =k} -1{A =Y}

VM | Fior] == Ex, vy [IE [ [ — L{s" (X, k) < 7732 | Foon, (X Yt)H

(k| X¢)
=Ex,.v,) {W[a —1{s" (X k) <71 ft_l}
Additionally, we have
M| < i and E[M, 1, | Fo_1] = Eox,.v [ElMe i | Frors (X0, Y2)]] = 0. )

Then, by utilizing the Chernoff bound, for any £ > 0, we have

T - T
P{Z My > 5] < exp(—¢¢) -E -eXp(fz Mt,k)]

t=1 t=1

r T—1
= exp(—¢e) - E E[exp(ﬁ Z M+ EMr) | -FTI]]
= exp(—¢€e) - E |exp(§ Y Myx) - Elexp(§EMry) | le]]
S
< exp(—&e) - E|exp(€ Y M) - exp (V [Mry | Froa] ¢ (exp(&/cx) — cf — Ckﬁ))} ®)

- t=1

T—1
< oxp(—€¢) - exp (O] - 2 (exp(E/ex) — & — ex6)) - E [exp@ 3 Mt,w]

t=1

T
<exp <Ci(exp(§/6k) —ci — k) Y bl — §6>

t=1

T
2 t e’:‘/Ck E/Ck &‘/Ck
=exp | —¢c; E by, - [— T + (=7 +1) - log( =7 +1)
( =1 2=V 2Ximi b 2 =1 bk

> ) ©))

where (8) holds due to

E [exp(fMth) | ft—l] =1+E [EMt,k | ft—l] +E

o0 g/’l»Mn
2 P

n=2

& §n|M 7k|n72
v 3 S

n=2

<1+E

CTAVM | Frr] Y = ,
n—>o C. N

=1+ V[Myy | Fe1lci(exp(&/cr) — i — i)
< exp (V[My | Fra]ci(exp(§/cx) — ¢ — k)

and (9) holds since we set & = ¢, log( ZET/ L+ 1).
t=1"k
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2

By applying the fact of (1 + u)log(l + u) — v > 379u73: w = 0 on (9), we have P Zthl My > e <
2
eXp(_m), and hence
T 2
P{ My | > a] < 2exp(———7 )
2 SRR
Thus, with the probability at least 1 — §, we have
T
S Avg o= s Xp k) <7 - MY, =k} o — s (X, k) < 'Y
t=1
T
= > M
t=1
T
1 2 1 2 2
< —log = —log=)2+2)» btlog=
< 3o, 1085 Ty (55 o8 5" F Z_: k085
o o | e
7ﬂlog5+ 2log = gk_nga (10)
Deriving from the updating rule for the quantile estimation in Algorithm 1, we have
T
=Ty A [a—1{s"N (X k) < 7]
t=1
T
= > Agcla— Us"TH(X k) <7 = (11)
t=1
Therefore, combing (10) with (11), with probability at least 1 — §, we have
£ (T, 6) < Z]l{Yt =k} Jo— {7 X k) < 7Y < Ui + Cu(T, 8)
772 P "2
T T
T G(T,0) WY, =k} i1 4 S(Z.9)
L Jla— — Y ¢ CT (X))} <
o R ; T {Yi g1 (X0)} Tk T
O

T
Proof of Theorem 3.4. Recall the definition 7 = min, + > 1{Y; = k}pa(s'"~!(X}), 7). Thus,
=1

M=

T-Regy, (T) =) Awppals' ™ (Xe), 7 ") = ) U{Ye = k}pa(s'™ (X))

~
Il
-

I
M=

\*
Il
_

Diffy

T
t=1
T

A ppa(sHXy), 771 — Z At rpa(s™HXy), )
=1
T

+ Z Aukfoa(st_l(Xt)v TI:) - Z ]I{Yt = k}pa(st_l(Xt)a T:)v

t=1

Diffy
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where E[Diff;] = 0 since A, j is an unbiased estimator of 1{Y; = k} conditional on F;_; U (X, Y;). Additionally, we
have

T
Diff; < ZAW g (=10, here (sub)gradient g; 1 1, := — A o — L{s""H(X;) < 7i7'}]
t=1
T
A
=> ) (T )
=1 2
T
A
=Y Sl = (=) = ()
t=

IA
IS
M=

=

L0 =] i’

— [ mf (k| Xe) 212
T
. 1Y, = k}} . « Dk
=75 0> E { by choosing 7, = 75 | ———
’ tz:; T%(k | Xt) y E[lz{(}/,‘:k})]
w7 (k| Xt

O

To prove Theorem 3.6, we follow a similar argument in Cesa-Bianchi & Lugosi (2006) with two introduced lemmas.
Additionally, our proof relies on the assumption that the check loss function p,, is bounded. It holds once the score function
is bounded, e.g., the softmax, APS, and RAPS scores utilized in our study. Therefore, without loss of generality, we assume
|pa('7 )| <L

Lemma D.1. Let X be a random variable with a < X < b. Then for any s € R,
2 b— 2
In E[exp(sX)] < sE[X] + %
Lemma D.2. Forall J > 2, forall > > 1 > 0, and for all d; > 0,j € [J] such that ZjG[J] exp(—pid;) > 1,

2jen) OPhd) By —p

" Zje g1 €xp(—Pad )_ e

Proof to Theorem 3.6. For the notation simplicity, let L’ , = S A gpa(st (X, k), 7' 71) be the accumulative
weighted check loss (up to time ¢) with j-th expert for class k, and j}, € argmin; e L; 1. denote an expert with the smallest
accumulative loss up to time ¢ for class k. After defining the weights

1 . 1
Wik = exp(_ﬁ%k)’ Wi = exp(_ﬁL?k) and @ = wjy/ Y wf

1€[J]
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we have the below equation

VAt | — VIR Tl = (VEFT - Vi ln i + Vil 2 4 i1

W
];cvk kak

® o)

where
O<Wit+1-vVi)lnJ

since ji, € argmin;¢; L}, and hencew e %

1 t t
. \/El E.]G[J} exp[_j/t+1 (Lj7k - ij’ )]
O S e e G (L, — L) T
geln) FPIm A WG T Mk 1

=(Wt+1-Vt)lnJ,

1
<\t \[ T g (due to Lemma D.2)

Z]G[J
71 .

and

t 1 t

Z.
®= Vil 2~ +\/%1n7t’“1
%k 2 jeln ¥
exp(— LI ) W'
— Vitln AR L i el Wik 27 =Ly~ L+ Vi

exp(— \/LJ’ k) ZJG[J] Wik ZJG[

Additionally,

2 e ol (L5 + Avkpals'™ (X, k), 7j50)]
ng[.]]eXP( \/Lékl)
e @in - exp(= B Ankpals T (X k), i)
ZJE[J] Wik 1

= \/ln Z w eXp \/EAUC,O@(S 71(Xt»k)v ;kl»

JE[J

[ Z w] k At kpa 1(Xta k)ﬂ—;;l)) +
je[J

1
t—1 t 1
S —At,kpa Xt? Z OJJ k ] k 802\/1?
J€lJ] k

= Ay pa(sTHXe k), 7Y +

@ =+t

=+t

8c2t

1
802

B

Thus, by combing (12) to (16), we have
At,k?pa(st_l(Xta k)af B ))) (Lt' Lt !

Jk7 r lk)
<Vt+1 lnwtk—\/lnwt et (Vt+1—-+vt)InJ

802 \/Z
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(due to Lemma D.1)
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15)
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By taking the sum over ¢ € [T'] for both sides of (17), we have

T
ZAtkpa Xt,k) _t— 1))7L%}k§ln.] Z% T+171)ln.]
T T
=) Avppals (X k), 7)) - IEE%ZAM pals(Xe, k), T3 < —f+2f1n,1
t=1 J
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