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Abstract

For reinforcement learning systems to be widely
adopted, their users must understand and trust
them. We present a theoretical analysis of explain-
ing reinforcement learning using Shapley values,
following a principled approach from game theory
for identifying the contribution of individual play-
ers to the outcome of a cooperative game. We call
this general framework Shapley Values for Ex-
plaining Reinforcement Learning (SVERL). Our
analysis exposes the limitations of earlier uses
of Shapley values in reinforcement learning. We
then develop an approach that uses Shapley values
to explain agent performance. In a variety of do-
mains, SVERL produces meaningful explanations
that match and supplement human intuition.

1. Introduction
Reinforcement learning systems have potential for signif-
icant impact in real-world applications. To be widely
adopted, it is useful for these systems to not only perform
well but also be explainable.

Methods for explaining reinforcement learning can be cate-
gorised as intrinsically interpretable or post-hoc. Intrinsi-
cally interpretable approaches improve the transparency of
models by substituting an opaque model with a more under-
standable one, such as a decision tree. This approach often
leads to a reduction in representational power. In contrast,
post-hoc methods hold no constraints on the complexity
of the model, treating it as a black box. Reinforcement
learning systems with the largest potential to positively ben-
efit society depend on function approximators with large
representational power, such as deep neural networks. We
therefore focus on post-hoc explanation methods.

An established, post-hoc explanation method for supervised
learning uses Shapley values (Shapley, 1953), a principled
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approach from game theory for identifying the contribution
of individual players to the outcome of a cooperative game.
Shapley values are the result of a rigorous mathematical for-
mulation that satisfies four axioms of fairness. In supervised
learning, Shapley values explain a model by expressing the
contribution of individual features to the predictions of the
model.

We analyse, from first principles, how Shapley values can be
used to explain reinforcement learning. We make three main
contributions. First, we develop a theoretical framework for
using Shapley values in the context of reinforcement learn-
ing, showing that earlier uses of Shapley values in reinforce-
ment learning are incorrect or incomplete. Secondly, we
consider which aspects of reinforcement learning are impor-
tant to explain, arguing that explaining agent performance is
an important and overlooked element. Thirdly, we develop a
principled approach that identifies the contributions of state
features to the performance of an agent.

We call this general framework Shapley Values for Ex-
plaining Reinforcement Learning (SVERL). In a variety
of domains, SVERL produces meaningful explanations that
match and supplement human intuition.

2. Background
We model the interaction of an agent with its environment
as a Markov Decision Process (MDP), defined by the tu-
ple (S,A, p, r, γ, p0), where S denotes the set of states, A
the set of actions, p : S × A × S → [0, 1] the transition
dynamics, r : S × A → R the reward function, γ ∈ [0, 1]
the discount factor, and p0 : S → [0, 1] the initial state
distribution. At decision stage t, t ≥ 0, the agent observes
the current state of the environment, st ∈ S, and executes
action at ∈ A(st). Consequently, the environment transi-
tions to a new state, st+1 ∼ p(·|st, at), and returns reward
rt+1 whose expected value is r(st, at). The objective is to
learn a policy π that maximises the expected return Eπ[Gt],
where Gt =

∑∞
k=t γ

krk+1. The policy can be stochastic,
π : S × A → [0, 1], or deterministic, π : S → A. A state-
value function, V π(s), gives the expected return from state s
when following policy π, V π(s) = Eπ[Gt|st = s]. A state-
action value function, Qπ(s, a), gives the expected return
from state s if the agent executes action a and follows policy
π thereafter, Qπ(s, a) = Eπ[Gt|st = s, at = a]. The opti-
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mal state value function is denoted by V ∗ and the optimal
state-action value function by Q∗.

We assume that an environment has a set of n state features,
F = {0, . . . , n − 1}, where we can decompose the state
space according to the state features, S = S0 × . . .× Sn−1,
and each state can be represented as an ordered set: s =
{si|si ∈ Si}n−1

i=0 . For example, in a classic gridworld do-
main, a state could be the agent’s location, with x and y
coordinates as state features. Let C ⊂ F be a set of observ-
able state features. Then a partial observation of a state is
the ordered set sC = {si|i ∈ C}.

Shapley values assign the contributions of individual players
to the outcome of a cooperative game (Shapley, 1953). They
are the unique solution to a set of mathematical axioms
that specify fair distribution of credit across players. A
cooperative game is defined by a set F of players and a
characteristic value function v : 2|F| → R, where v (C)
returns the outcome of the game when played by some
coalition of players C ⊆ F, with v(∅) = 0. The Shapley
value of player i in the game (F, v) is:

ϕi (v) =
∑

C⊆F\{i}

|C|! (|F| − |C| − 1)!

|F|! · δ (i,C) , (1)

where δ (i,C) = v (C ∪ {i}) − v (C) is the marginal gain
in characteristic value when player i joins coalition C. As
an example, the employees of a company can be modelled
as players in a game where profit is the characteristic value
function.

Shapley values have been adopted in machine learning to
determine the contribution of features to the predictions of
supervised learning models (Lipovetsky & Conklin, 2001).
Let fF : X → Y be a supervised learning model defined over
a set of n features, F = {0, . . . , n−1}, such that X = X0×
. . .×Xn−1 and each x ∈ X can be represented as an ordered
set, x = {xi|xi ∈ Xi}n−1

i=0 . Then Shapley values show the
contribution of feature xi ∈ x to the target y = fF(x)
for the single point x. As an example, when predicting
the quality of wine using features such as acidity, pH, and
alcohol (Cortez et al., 2009), the Shapley values show how
much each feature contributes to the predicted quality of
a specific wine. This is done by modelling the prediction
at x as a game, where the features {x0, . . . , xn−1} are the
players and the target prediction y = fF(x) is the outcome
of the game. Then the Shapley values ϕi(f,x), specifying
the contribution of feature xi to the prediction y = f(x),
are computed using the characteristic value function:

vf (C) := fC(x),

where C ⊆ F and fC(x) is the model’s prediction for the
ordered set xC = {xi|i ∈ C}. The resulting Shapley values
satisfy fF(x) = vf (∅) +∑

i∈F ϕi(f,x).

Shapley values show each feature’s contribution to the
change in prediction when all features are known, fF(x),
compared to when no features are known, f∅(x) = vf (∅).
In game theory, the value of a game with no players is zero.
Hence v(∅) = 0. In supervised learning, the prediction
when no features are known is the expected model predic-
tion over the data distribution. Hence vf (∅) = Ep(x)[f(x)],
where p(x) is the data distribution, the probability that a
randomly sampled point from X equals x.

Computing Shapley values requires predictions, fC(x), to
be made for all subsets of features, C ⊆ F. The original
approach to approximating such predictions was to retrain
the model for all C ⊆ F (Štrumbelj et al., 2009). With a
large number of features, this is infeasible. An alternative
method defines the prediction at x with subset of features C
as:

fC(x) = Ep(x′)

[
fF(xC ∪ x′

C̄)
]
, (2)

where p(x′) is the data distribution (Štrumbelj &
Kononenko, 2010; 2014). Equation (2) can be approximated
by marginalising over possible values for the unobserved
features C̄ = F \ C. Assuming independent features and
sampling n data points,

fC(x) = lim
n→∞

1

n

∑
x′∼p(x′)

fF(xC ∪ x′
C̄). (3)

Using Equation (3), an unbiased approximation algorithm
for calculating Shapley values samples a marginal gain:

δ̂(i,C) = fF(xC∪{i} ∪ x′
C∪{i})− fF(xC ∪ x′

C̄), (4)

where the coalition C ⊆ F \ {i} is sampled proportional
to the multinomial term in Equation (1) and x′ ∼ p(x′).
The mean of these samples is the Shapley value in the limit
(Štrumbelj & Kononenko, 2010). This algorithm does not
require retraining the models. It is one of the approximations
used in the popular python package SHAP (Lundberg &
Lee, 2017), which calculates Shapley values for an arbitrary
machine learning model. There are other approximations
included in SHAP; they all approximate Equation (2) in
some way.

Equation (2) is referred to as off-manifold. It makes the sim-
plifying assumption that the features are independent. When
features are correlated, this assumption samples points
xC ∪ x′

C̄
that may not lie on the data manifold. Without this

simplifying assumption, the prediction at x with subset of
features C becomes:

fC(x) = Ep(x′|xC) [fF(x
′)] , (5)

where the conditional data distribution p(x′|xC) takes into
account the feature correlations (Frye et al., 2020). An on-
manifold sampling method that uses Equation (4) but now
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samples x′ ∼ p(x′|xC) can then be used to approximate
Shapley values for models with correlated features.

Shapley values ϕi(f,x) provide the local contribution of
features to a prediction. The local contributions can be
combined to identify the global Shapley value for a feature,
producing the mean contribution of a feature to a model’s
predictions: Φi(f) = Ep(x) [ϕi(f,x)]. If we consider a new
characteristic value function, defined using a model’s loss ℓ,
vℓ(C) := ℓ (f∅(x), y) − ℓ (fC(x), y), then global Shapley
values can be interpreted as the contribution of feature i to
the model’s prediction accuracy (Covert et al., 2020):

Φi(f) = Ep(x)

[
ϕi(v

ℓ,x)
]
.

In reinforcement learning, earlier work has directly applied
the SHAP package to an agent’s policy (Rizzo et al., 2019;
Wang et al., 2020; He et al., 2021; Remman et al., 2022;
Løver et al., 2021; Liessner et al., 2021) or state-value func-
tion (Zhang et al., 2020; 2021) in an effort to explain re-
inforcement learning in specific applications. This earlier
work implicitly assumes that the state features are inde-
pendent because SHAP implements only off-manifold ap-
proximations. More importantly, this earlier work has not
explored the theoretical basis for what the resulting Shapley
values mean in the context of reinforcement learning.

In the following sections, we present a theoretical and empir-
ical analysis of how Shapley values can be used to explain
reinforcement learning, starting from first principles. We
refer to this general framework as Shapley Values for Ex-
plaining Reinforcement Learning (SVERL).

3. Using Shapley Values to Explain
Reinforcement Learning

We start by exploring the use of Shapley values to explain
the value function and the policy of an agent. Our analysis
shows that (1) applying Shapley values to a value function
produces explanations that have no relation to the perfor-
mance or behaviour of an agent, and (2) applying Shapley
values to policies explains the contribution of state features
to an agent’s decisions but not to its performance.

Shapley values applied to value functions. In order to
use Shapley values to explain an agent’s value function, we
follow the theory of on-manifold Shapley values in super-
vised learning to propose the following characteristic value
functions for V and Q:

vV̂ (C) := V̂ π
C (s) =

∑
s′∈S

pπ(s′|sC)V̂ π(s′) (6)

vQ̂ (C) := Q̂π
C(s, a) =

∑
s′∈S

pπ(s′|sC)Q̂π(s′, a) (7)

Equations (6) and (7) account for feature correlations by
using the conditional limiting state occupancy distribution

pπ(s′|sC), the probability of being in state s′ given that sC
is observed and the agent is following policy π.

Shapley values resulting from Equation (6) satisfy vV̂ (F) =

vV̂ (∅) +∑
i∈F ϕi(v

V̂ , s). They show each feature’s contri-
bution to the change in characteristic value when all state
features are observed, V̂ π(s), compared to when no state
features are observed, V̂ π

∅ (s). This observation also holds
for Equation (7) and all other characteristic value functions
for reinforcement learning presented in this paper.

One might expect the Shapley values resulting from Equa-
tions (6) and (7) to relate to performance in some way, given
that a value function represents an agent’s prediction of
how well its policy performs. However, these characteristic
value functions refer to the expected return of the agent’s
original policy π. Not observing a state feature is likely
to change an agent’s policy, which in turn changes the ex-
pected return. By never evaluating any change in policy, the
full consequences of removing state features are not being
considered. Consequently, the resulting explanations do not
meaningfully relate to performance or behaviour.

Instead, Shapley values applied to the value function ex-
plain the contribution of each feature to the predictions of
the value function—but only under the assumption that all
features will be observed by the agent when acting in the
environment. This is a subtle but important point. Shap-
ley values applied to the value function do not explain the
agent’s performance; they explain the value function as a
predictor—but without considering the impact of features
on behaviour.

We use two examples to illustrate the difference between
explaining the value function as a predictor and explaining
agent performance. We use Equation (7) to apply Shap-
ley values to Q∗ in Gridworld-A, shown in Figure 1a, and
Equation (6) to apply Shapley values to V ∗ in Tic-Tac-Toe.

In Gridworld-A, the optimal action is North (N) in each
state. Intuitively, if the optimal action is the same in all
states, then the contribution of each state feature to perfor-
mance should be zero. However, Shapley values applied to
Q∗(s,N), shown in Figure 2 (top panel), produce non-zero
contributions for the y state feature.

To explore why, consider the contribution of y in state 1.
If neither x nor y is known, the agent is equally likely to
be in states 1, 2, 3, or 4 (we are ignoring terminal states),
with Q∗(s,N) values of 8, 8, 9, and 9, respectively. Con-
sequently, the predicted return is 8.5. Now consider the
marginal gain from observing y. If y is known to be 1 and
x remains unknown, the agent is equally likely to be in
states 1 and 2, with Q∗(s,N) = 8 for both states, yielding
a predicted return of 8. Hence, the marginal gain in pre-
diction from observing y is 8 − 8.5 = −0.5. Similarly, if
x is known to be 1 and y is unknown, the agent is equally
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Figure 1. Deterministic gridworlds, with actions North, South,
East, and West. The numbers in each grid square show the state
identifier. The initial state is either state 1 or state 2, with equal
probability. The reward is −1 for each action and an additional
+10 for transitions into a terminal state (G). The discount factor
γ is 1. State features are the x and y coordinates. The red arrows
show the optimal action in each state.

likely to be in states 1 and 3, with Q∗(s,N) values of 8 and
9, respectively, yielding a predicted return of 8.5. If y is
also known, then predicted return is Q∗(1, N) = 8. Hence,
the marginal gain in prediction when observing y is again
8− 8.5 = −0.5. Both marginal gains are −0.5, resulting in
a Shapley value of −0.5 for y in state 1.

In contrast, the actual return from state 1 is 8, whatever
combination of features is observed, because the optimal
policy selects North in every state. Human intuition there-
fore assigns a contribution of 0 because observing y does
not change the agent’s behaviour or expected return. Shap-
ley values applied to the value function is not capable of
capturing this relationship.

In Tic-Tac-Toe, there are 9 features, corresponding to each
board position, with possible values X, O or empty. Con-
sider an agent (X) that uses V ∗ to play optimally against an
opponent (O) that follows a Minimax policy (Polak, 1989).
The reward is −1 for losing and 0 for drawing, the only pos-
sible outcomes when playing against Minimax. In the state
shown in Figure 3, the two squares marked by the opponent
inform the agent that it needs to make a blocking move.
Intuitively, we would expect the corresponding two state
features to impact the performance of the agent. However,
the feature contributions identified by applying Shapley val-
ues to V ∗ are zero for every state feature. The reason is
that an optimal agent always draws, hence the optimal value
function always predicts a return of zero, independently of
which state features are observed. These Shapley values
explain the value function as a static predictor. They do
not consider that the value function depends on the policy,
which would change in the absence of some state features.
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Shapley Values Applied to Q∗(s,North)
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Figure 2. Top panel: Shapley values applied to a state-action value
function in Gridworld-A (Figure 1a). Bottom panel: SVERL-P,
presented in Section 4, for the same domain. The optimal action is
always North so we intuitively expect contributions to performance
to be zero for all state features in all states. This is accurately
captured by SVERL-P but not by Shapley values applied to the
value function.

Shapley values applied to policies. We follow the theory
of on-manifold Shapley values in supervised learning to
propose the following characteristic value function for a
policy π̃ : S → A that outputs actions:

vπ̃ (C) := π̃C(s) =
∑
s′∈S

pπ̃(s′|sC)π̃(s′), (8)

and the following characteristic value function for a policy
π : S×A → [0, 1] that outputs action probabilities:

vπ (C) := πC(a|s) =
∑
s′∈S

pπ(s′|sC)π(a|s′). (9)

Equations (8) and (9) account for feature correlations by
using the conditional limiting state occupancy distribution
pπ(s′|sC), as in Equations (6) and (7). We note that Equa-
tion (8) is not valid in discrete action spaces because it is
not meaningful to sum discrete actions.

The characteristic value functions in Equations (8) and (9)
produce Shapley values that show the contribution of state
features, respectively, to the action selected by an agent
and to the probability of selecting action a. Both values
provide information on the contributions of state features to
the decision made by the agent. This insight is valuable but
we argue that there is more to be understood and explained
about the decision. Specifically, these Shapley values reveal
no insight into the importance of state features for an agent’s
performance.

4



Explaining Reinforcement Learning with Shapley Values
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O O

Shapley Values
Applied to V ∗

X

O O

SVERL-P

0.0 0.1 0.2 0.3

Figure 3. On the left: Shapley values applied to a state-value func-
tion in a Tic-Tac-Toe state. On the right: SVERL-P, presented in
Section 4, for the same state. Shapley values are represented using
a color scale projected onto each cell. There are 9 state features,
corresponding to each position on the board, with possible values
X, O or empty. The agent plays as X against opponent O.

As an illustrative example, imagine an agent planning the
shortest route through a city. The agent arrives at a junc-
tion where turning left and turning right both result in an
optimal route. Assume that the agent’s policy is to turn
left if it observes a road sign (a state feature), and to turn
right otherwise. Shapley values applied to the agent’s policy
would assign a large contribution to the road sign, which
is justified and improves our understanding of the agent’s
behaviour. The sign was indeed instrumental in the agent’s
decision to turn left. However, one would be incorrect to
then conclude that the sign is important for the agent to
perform well. On the contrary, because turning left and
turning right are both optimal, the sign contributes nothing
to the agent’s performance. This insight can be gained only
by considering the effect of removing state features on the
agent’s performance. Therefore, we make a distinction be-
tween explaining why the agent acted in a specific way and
explaining how features impact agent performance.

The contributions of state features to the value function or
to the policy do not reveal insight into contributions to agent
performance. These two approaches consider either the
contributions to predicting expected return independent of
behaviour or the contributions to behaviour independent of
expected return. We have highlighted the limitations of both
approaches. Next we propose an approach to explaining
reinforcement learning by identifying contributions of state
features to agent performance.

4. Explaining Agent Performance
Here we provide a formulation of Shapley values to ex-
plain the performance of a reinforcement learning agent.
We present two methods that explain either the local or the
global contributions of state features to performance. Each
approach reveals unique insight that improves understand-
ing. In both approaches, state features are removed from an

agent’s observation for certain states, then the performance
of the resulting policy is evaluated using expected return.
We call this approach SVERL-Performance (SVERL-P).

Local explanations. Local SVERL-P explains the contri-
butions of state features to performance from state s by
considering removing state features from an agent’s obser-
vation of state s. For some policy π : S×A → [0, 1] to be
explained, the local SVERL-P characteristic value function
is given by:

vlocal(C) := Eπ̂

[ ∞∑
t=0

γtrt+1|s0 = s

]
, (10)

where π̂(at|st) =
{
πC (at|st) if st = s,

π(at|st) otherwise.

Shapley values resulting from Equation (10) show the con-
tribution of each feature to the change in performance when
all state features are observed in state s, vlocal(F), compared
to when no state features are observed in state s, vlocal(∅).
In most problems, state features are not independent, so we
use the theory for on-manifold Shapley values to propose
sampling a from the agent’s policy given that it observes
sC:

πC(a|s) = Epπ(s′|sC) [π(a|s′)] , (11)

where we suggest the conditional data distribution in Equa-
tion (5) becomes the conditional limiting state occupancy
distribution pπ(s′|sC).
The resulting explanations are specific to the policy used,
which can be any possible policy, including a suboptimal
policy. One can interpret πC as the policy that best tries
to match the behaviour of the original policy π given that
features are missing. Policy πC will not usually be able
to perfectly mimic the behaviour of policy π. It is exactly
this difference in behaviour that causes the change in perfor-
mance.

Global explanations. Local SVERL-P considers the contri-
butions of state features to performance from a single state.
In addition to such local contributions, one may wish to un-
derstand the contributions of state features to performance
globally. For example, in autonomous driving, a user may
wish to understand which parts of an autonomous vehicle’s
observations are most important for driving performance,
to focus resources on improving those parts of the road
system. Some state features might contribute substantially
to performance in certain states, such as breaking when
observing a human or pulling over when an ambulance ap-
proaches, while road markings may be globally important
by contributing to agent performance in many states.
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To quantify the global impact of state features on agent per-
formance, we consider the effect of removing state features
from every state in an environment. The corresponding
(global) SVERL-P characteristic value function is as fol-
lows:

vglobal(C) := EπC

[ ∞∑
t=0

γtrt+1|s0 = s

]
. (12)

Equation (12) produces Shapley values that show the con-
tribution of state features to performance in state s and all
future states that follow. These Shapley values are still
conditioned on state and therefore not a truly global expla-
nation method. To produce a fully global explanation, one
can marginalise over the state space using the limiting state
occupancy distribution, producing global SVERL-P:

Φi(v
global) = Epπ(s)

[
ϕi

(
vglobal, s

)]
. (13)

Equation (13) gives the contribution of a state feature to the
performance of the agent in its environment. An alterna-
tive is to marginalise over the initial state distribution p0,
which would place undue attention on the initial states and
is therefore less useful in infinite-horizon problems.

5. Experiments
We present experimental results in a variety of domains. We
contrast SVERL-P with applying Shapley values to policies
and to value functions, demonstrating the limitations of
the latter approaches. All Shapley values are calculated
exactly, as described in Appendix C. The domains are fully
described in Appendix A.

Gridworld-B. We first consider Gridworld-B, shown in
Figure 1b. Imagine an agent acting optimally: choosing
East (E) in state 1 and North (N) in every other state.

Consider local explanations for specific states. Whatever the
state, if neither x nor y is known, the agent cannot know the
optimal action with certainty but it knows that the optimal
action is either N or E and that N is more likely than E.

In states 3 and 4, either the x or the y feature is sufficient for
the agent to take the optimal action N; in other words, x and
y features make an equal contribution to agent performance.
Furthermore, this contribution is rather small because, if
neither feature is known, N is still the likely optimal action.

In state 1, the x feature is sufficient for the agent to take the
optimal action E (because an optimal agent is never in state
5). The y feature also improves the agent’s performance,
but by a smaller amount, because it increases the probability
of the agent selecting the optimal action E. In sum, the x
and y features contribute positively to agent performance,
with the x feature contributing more.
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Shapley Values Applied to V ∗

Figure 4. Shapley values of x and y state features in Gridworld-B.
Top panel: SVERL-P. Bottom panel: Shapley values applied to a
value function.

In state 2, the x feature is sufficient for the agent to take the
optimal action N while the y feature actually decreases the
probability of selecting the optimal action N (it increases
the probability of selecting the suboptimal action E). The x
feature therefore makes a positive contribution to agent per-
formance while the y feature makes a negative contribution.

Local SVERL-P contributions are shown in the top panel in
Figure 4. SVERL-P values align with our intuitive analysis
of the domain. As expected, in states 3 and 4, both x and
y contribute a small, equal amount to agent performance.
Also as expected, in state 1, x contributes more to perfor-
mance than y. And we can now quantify the difference
precisely: x contributes exactly twice as much as y. In state
2, Shapley values once again mirror our expectations, with
x contributing positively to performance and y contributing
negatively—a reminder that a little bit of knowledge can be
a dangerous thing.

Next, consider the global contribution of the two features.
Based on the discussion above, the x feature positively
contributes larger amounts, more often, to the agent’s perfor-
mance than the y feature. Therefore, we expect the global
contribution of the x feature to be larger than that of the
y feature. These expectations align with global SVERL-P
contributions: 1.43 for x and 0.64 for y.

SVERL-P has correctly and precisely expressed the local
and global contribution of the features x and y to perfor-
mance. It has done so in more detail and precision than our
intuitive expectations, demonstrating the value of SVERL-P
even in such a simple domain.
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Figure 5. Shapley value contributions for two successive states (top
to bottom) of Minesweeper, represented as the color of each cell.
On the left: SVERL-P. On the right: Shapley values applied to a
value function. The domain contains two mines, hidden from the
agent. In the top state, the state features reveal the exact location of
one mine and two potential locations for the second mine, marked
for reference as “M1” and “M2?” respectively. The exact location
of the second mine is then revealed in the second state, marked as
“M2” for reference.

Minesweeper. This is a relatively large domain, with ap-
proximately 175,000 states, where it can be difficult to iden-
tify how individual state features contribute to performance
by reasoning alone. By using SVERL-P, we find local ex-
planations of performance that reveal novel insight into the
two successive Minesweeper states shown in Figure 5.

The features in this domain are the 16 grid squares, with
possible values 0, 1, 2, or unopened. Figure 5 shows that
one feature in particular (x = 4, y = 2) contributes substan-
tially to performance in both states, with all other features
contributing relatively little in comparison. On further in-
spection, we see that the feature (4, 2) is the only feature
that can exactly determine the location of M2. On the other
hand, many features reveal the exact location of M1. To
act optimally, the agent must determine the exact location
of M2 so the feature (4, 2) is the most important one for
completing the episode successfully.

Notice the negative SVERL-P contributions for the squares
with possible mines. These are discussed in detail in Ap-
pendix B.

Taxi. In the taxi domain (Dietterich, 1998), the agent picks
up a passenger and drops them off at their destination. Re-
wards are −1 for all actions, an additional +20 for dropping
a passenger at the correct destination, and an additional −10
for attempting to pick up or drop off the passenger at an

inappropriate location. We examine the two states shown in
Figure 6.

In the state shown on the top panel, to successfully com-
plete the episode, the agent must first pick up the passenger.
Knowledge of the passenger location is therefore vital and
we expect this feature to contribute a large amount to perfor-
mance. This is captured by SVERL-P, as shown in Figure 6.
Conversely, until the passenger has been collected, we do
not expect the destination location to contribute positively
to performance. Surprisingly, SVERL-P shows that ob-
serving the destination location actually reduces the agent
performance. Upon closer review, we see that, in this state,
observing the destination location without the passenger
location increases the probability of navigating towards the
destination, which is a suboptimal action.

SVERL-P also shows that the x feature has a relatively low
contribution to performance compared to the y feature. Con-
sider an agent that observes x = 4 but cannot observe its
y coordinate. There are five possibilities for the value of y.
One of them, y = 1, would result in executing the pick-up
action. Not being able to observe y increases the probability
of choosing this action and earning a large negative reward,
reducing the agent’s expected return. By observing y along
with x, the agent eliminates the possibility of inappropriate
execution of the pick-up action, leading to a large marginal
contribution to performance by y. Inappropriately execut-
ing the pick-up or drop-off action is highly detrimental to
performance. Features that decrease this probability are the
largest positive contributors to performance.

In the state shown on the lower panel in Figure 6, the pas-
senger is in the taxi, to be dropped off at location B. The
optimal policy navigates to the drop-off location with the
passenger in taxi. Intuitively, both the passenger and the
destination location are important, as shown by the SVERL-
P contributions. The x and y state feature contributions
are similar to those in the state discussed previously, for
similar reasons—observing x often increases the probability
of inappropriately executing the drop-off action, whereas
observing y decreases it.

SVERL-P compared with Shapley values applied to
value functions. The domains Gridworld-A and Tic-Tac-
Toe were used in Section 3 to demonstrate that applying
Shapley values to an agent’s value function does not explain
agent performance. In contrast, local SVERL-P contribu-
tions in these domains, shown in Figures 2 and 3, match our
intuitive understanding of the contribution of state features
to performance.

As a result of purposely choosing simple, illustrative ex-
amples, the examples in these two domains used either a
constant policy or a constant value function. MDPs with
these particular properties are uncommon. Our arguments,
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Figure 6. SVERL-P contributions contrasted with Shapley values
applied to a value function for two states in the Taxi domain. State
features are the x and y coordinates of the taxi, passenger location
(P), and destination location (D). The taxi location is marked with
a rectangle, the passenger location is marked with a p and the
destination location is circled. In the top state, the passenger is at
location B and the destination is location G. In the bottom state,
the passenger is in the taxi and the destination is location B.

however, are valid for any MDP. As an example, Figures 4
to 6 show that, in all domains tested, SVERL-P gives dif-
ferent results than applying Shapley values to the value
function. They include domains with varying policies and
value functions. In Figure 7, we compare SVERL-P and
Shapley values applied to V ∗ in every state of a randomly-
constructed gridworld with 80 states (Gridworld-D). The
results show a persistent difference between these two ap-
proaches.

SVERL-P compared with Shapley values applied to
policies. In Section 3, we introduced Shapley values ap-
plied to an agent’s policy. We argued that they provided
insight which improved understanding of a decision but that
further insight could be drawn by also considering the effect
of state features on performance. We now illustrate our
viewpoint by comparing local SVERL-P to Shapley values
applied to a policy.

Consider Gridworld-C, shown in Figure 1c. In this domain,
if no state feature is known, the agent cannot know the
optimal action with certainty but it knows that (1) it is either
North, East or West, and (2) North is more likely than East
or West. In states 2 and 5, neither observing x nor observing
y reveals the optimal action. We have no natural intuition
on the importance of state features and must rely on Shapley
values.

Shapley values applied to the optimal policy in every state
are shown in Figure 8. For each state, the Shapley values are

−1 0 1

Shapley Values Applied to V ∗

−1

0

1

S
V
E
R
L
-P

x y

Figure 7. SVERL-P for every state of Gridworld-D compared to
Shapley values applied to a value function. Shapley values were
normalised to fall between −1 and 1. Each blue cross denotes the
x feature for a particular state and each orange cross the y feature.

presented for the optimal action, a∗. In state 5, x contributes
more than y to the probability of choosing the optimal action
(N). One might assume that x is therefore more important
than y for an agent to act optimally. However, this would
be incorrect. The local SVERL-P contributions, shown in
the top panel of Figure 8, reveal that in fact the x and y
features contribute equally to performance. The reason for
this difference is that, in state 5, x also contributes towards
the likelihood of selecting the worst action (E). Similarly, in
state 2, Shapley values applied to the policy show that both
x and y contribute equally to the probability of selecting
the optimal action (N). However, local SVERL-P contri-
butions reveal that y actually contributes more than x to
performance. In this state, observing x but not y increases
the probability of selecting the worst action (W).

By applying Shapley values to policies without considering
the consequence on performance, one would draw incorrect
or incomplete conclusions about the importance of state
features. By considering the contribution of state features
towards performance, SVERL-P provides additional insight
into agent behaviour.

6. Discussion
We presented a theoretical and empirical analysis of us-
ing Shapley values for explaining reinforcement learning
(SVERL), starting from first principles, and demonstrated
the limitations of existing work. We then developed SVERL-
P, a method that uses Shapley values to explain agent perfor-
mance. SVERL-P considers the consequences of removing
features by explicitly deriving an agent’s policy and quan-
tifying the change in performance. Our results show that
SVERL-P produces meaningful explanations in a variety of
reinforcement learning problems, matching and supplement-
ing human intuition.
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In most real-world applications, it is computationally expen-
sive to calculate the SVERL-P characteristic value functions
exactly. So the characteristic value functions, and hence the
Shapley values, must be approximated. Here we outline an
approximation algorithm for local SVERL-P based on the
on-manifold sampling approach from Shapley values in su-
pervised learning, which has been proven to converge to the
Shapley value in the limit (Štrumbelj & Kononenko, 2010;
Frye et al., 2020). Analogous to the sample in Equation 4,
each sample in the algorithm is a marginal gain:

Eπ1

[ ∞∑
t=0

γtrt+1|s0 = s

]
− Eπ2

[ ∞∑
t=0

γtrt+1|s0 = s

]
,

where π1(at|st) =
{
π(at|s′) if st = s,

π(at|st) otherwise,

and π2(at|st) =
{
π(at|s′′) if st = s,

π(at|st) otherwise.

A new s′ is sampled from pπ(·|sC∪{i}), and a new s′′ is
sampled from pπ(·|sC), whenever st = s. Each coalition
C ⊆ F \ {i} is sampled proportional to the multinomial
term in the Shapley value calculation. The expected re-
turns can be evaluated using a standard reinforcement learn-
ing method, such as Monte Carlo rollouts. This sampling
method requires the learning of state occupancy distribu-
tions pπ(·|sC) for all C ⊆ F, which is not trivial. We
suggest taking inspiration from one of the on-manifold sam-

pling methods proposed by Frye et al. (2020). Importantly,
it is likely that these distributions do not need to be learnt
exactly because optimal policies usually visit only a small
subset of states in large domains.

SVERL is a direct application of Shapley values using spe-
cific characteristic value functions suitable for reinforcement
learning. All the theoretical guarantees of Shapley values
apply to SVERL. Similarly, any advancements in applying
Shapley values to supervised learning will apply directly to
SVERL. For example, SVERL might be difficult to interpret
in domains with thousands of features, such as robotics or
vision. However, a method such as groupShapley (Jullum
et al., 2021), which finds the contribution of groups of fea-
tures and was developed for supervised learning, could be
applied to SVERL, offering computational advantages and
simplifying interpretation.

As with any feature-based explanation method, there is fur-
ther work, often psychological and sociological, to derive
useful explanations which improve a user’s understanding.
It is naturally human to interpret Shapley values subjectively,
often developing beliefs and understanding that extend be-
yond the quantitative information that they provide. These
interpretations will likely become more challenging and
subjective as the number of features increases. When one
proceeds to develop this extended understanding, before act-
ing on it, they must first evaluate whether it is well founded.
For example, SVERL-P values allow us to say “this feature
contributed x amount to an agent’s performance”. One can
hypothesise on why that feature contributed x but such hy-
potheses must be tested. These tests depend on the task, ex-
planation and hypothesis. We suggest that future research fo-
cuses on (1) the presentation, interpretation and explanatory
use of feature attribution techniques such as Shapley values,
and (2) methods for evaluating the conclusions drawn from
such interpretations. We provide an example in Appendix B.

Acknowledgements
This work was supported by the UKRI Centre for Doctoral
Training in Accountable, Responsible and Transparent AI
(ART-AI) [EP/S023437/1], the EPSRC Centre for Doctoral
Training in Digital Entertainment (CDE) [EP/L016540/1]
and the University of Bath. This research made use of
Hex, the GPU Cloud in the Department of Computer Sci-
ence at the University of Bath. We thank our reviewers
for a constructive process and the members of the Bath Re-
inforcement Learning Laboratory for their feedback. We
thank Scarllette Ellis for her Minesweeper implementation.

References
Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

Schulman, J., Tang, J., and Zaremba, W. OpenAI Gym,

9



Explaining Reinforcement Learning with Shapley Values

2016.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J.
Modeling wine preferences by data mining from physic-
ochemical properties. Decision Support Systems, 47(4):
547–553, 2009.

Covert, I., Lundberg, S. M., and Lee, S.-I. Understand-
ing global feature contributions with additive importance
measures. Advances in Neural Information Processing
Systems, 33:17212–17223, 2020.

Dietterich, T. G. The MAXQ method for hierarchical rein-
forcement learning. In ICML, volume 98, pp. 118–126,
1998.

Frye, C., de Mijolla, D., Begley, T., Cowton, L., Stanley, M.,
and Feige, I. Shapley explainability on the data manifold.
In International Conference on Learning Representations,
2020.

He, L., Aouf, N., and Song, B. Explainable deep rein-
forcement learning for UAV autonomous path planning.
Aerospace Science and Technology, 118:107052, 2021.

Jullum, M., Redelmeier, A., and Aas, K. groupShapley:
Efficient prediction explanation with Shapley values for
feature groups. arXiv preprint arXiv:2106.12228, 2021.

Liessner, R., Dohmen, J., and Wiering, M. A. Explain-
able reinforcement learning for longitudinal control. In
ICAART (2), pp. 874–881, 2021.

Lipovetsky, S. and Conklin, M. Analysis of regression in
game theory approach. Applied Stochastic Models in
Business and Industry, 17(4):319–330, 2001.

Løver, J., Gjærum, V. B., and Lekkas, A. M. Explainable
AI methods on a deep reinforcement learning agent for
automatic docking. IFAC-PapersOnLine, 54(16):146–
152, 2021.

Lundberg, S. M. and Lee, S.-I. A unified approach to inter-
preting model predictions. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Polak, E. Basics of Minimax algorithms. In Nonsmooth
Optimization and Related Topics, pp. 343–369. Springer,
1989.
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A. Domains
Gridworld-A, shown in Figure 1a, is a deterministic gridworld. The MDP state represents the grid square occupied
by the agent and is described by two features, (x, y), the x and y coordinates of the agent on the grid. There are six
states, S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}, two of which are goal states, G = {(1, 3), (2, 3)}. The initial state is
sampled randomly from the southernmost squares, {(1, 1), (2, 1)}. The actions are North, East, South, and West. Reward
is −1 for every action taken and an additional +10 for transitioning into a goal state, producing a shortest path problem.
Actions that attempt to transition an agent out of the grid do not change the state. Gridworld-B, shown in Figure 1b, and
Gridworld-C, shown in Figure 1c, are identical to Gridworld-A in all aspects other than the grid layout and the identity of
the goal states.

Gridworld-D is a deterministic 10 × 10 gridworld, containing 20 grid positions that are impassable blocks, selected
uniformly randomly from among all grid positions. There is a single goal state, selected randomly, and fixed across episodes.
The initial state is selected randomly from among grid squares that are not impassable blocks or the goal. The domain is
identical to Gridworld-A in all other aspects.

Tic-Tac-Toe is a classic game played on a 3× 3 grid, where two players take turns to place noughts (O) and crosses (X).
When a player places three noughts or three crosses such that a straight line can be drawn through them, the game ends with
a win for the corresponding player. If the grid is full with no winner, the game is a draw. The state has nine features, with
each feature representing a specific grid position, taking on values X, O, or empty. The agent plays as X and the opponent
as O. The players have equal probability of playing first. The opponent’s policy is the Minimax algorithm (Polak, 1989).
Optimal play against this opponent ends in a draw.

Taxi is a classic reinforcement learning domain by Dietterich (1998). We used the implementation by OpenAI Gym (Brock-
man et al., 2016). The domain has a grid with four locations, marked R(ed), G(reen), B(lue) and Y(ellow). There are four state
features: x ∈ {1, 2, 3, 4, 5}, y ∈ {1, 2, 3, 4, 5}, passenger-location ∈ {R,G,B,Y, in-taxi}, and destination ∈ {R,G,B,Y}.
State features x and y represent the taxi’s location. Initial taxi location and destination are selected uniformly randomly. For
an episode to terminate successfully, the taxi must navigate to the passenger location, pick-up the passenger, navigate to the
destination, and drop-off the passenger. At the beginning of an episode, the passenger location is randomly selected among
R, G, B, and Y. Once the passenger has been collected, passenger location becomes in-taxi. The actions are north, south,
east, west, pick-up, and drop-off. Pick-up action successfully picks up the passenger only when the taxi and the passenger is
at the same grid location. Similarly, drop-off action successfully drops off the passenger when the passenger is in the taxi
and the taxi is at the destination. The reward is −1 for each action, an additional +20 for delivering the passenger at the
destination, and −10 for unsuccessful execution of the pickup or the drop-off action.

Minesweeper is an implementation of the classic game on a 4× 4 grid. Each episode resets a grid that contains two hidden
mines, each placed randomly. The state has 16 features, with each feature respresenting a specific grid square, taking on
values 0, 1, 2 or unopened. Initially, all grid squares are unopened. At each decision stage, the agent selects an unopened
square to reveal what is underneath. If it happens to be a number, that number represents the total number of mines in the
(up to eight) squares directly surrounding the newly opened square. If the number is zero, all surrounding grid squares are
recursively revealed to reveal an area of zeros bordered by strictly positive numbers. The game ends when the agent opens a
square with a mine or all squares that do not contain a mine are opened. There is only one reward signal: −20 whenever the
agent reveals a mine. Therefore the highest return possible is 0. There is no incentive for the agent to complete a game in
minimal time.

B. Extended Analysis in Minesweeper
In the minesweeper example of Figure 5, SVERL-P contributions are negative for two unopened squares (M1 and M2) in the
second state. The implication is that observing either state feature makes a negative contribution to the expected return. We
hypothesise that, by becoming observable, these features increase the probability that the agent clicks on the corresponding
squares. Such an action would reveal the underlying mine and terminate the game with a large negative reward.

In Section 6, we suggested that humans are likely to naturally over-interpret SVERL-P contributions, developing hypotheses
that must be tested. This is one such example. The validity of our hypothesis can be tested by examining Shapley values
applied to a policy that outputs action probabilities, introduced in Section 3. Figure 9 shows that the Shapley values for the
probability of selecting each unopened feature are positive, showing that, on average, observing that a square is unopened
positively contributes towards the probability of selecting it.
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Figure 9. Shapley values applied to a policy in two states of Minesweeper. Action axy denotes the action that opens grid square (x, y).
The plots show, for each available action, the Shapley values of the state features that correspond to unopened squares.

Note the non-negative SVERL-P contribution of M1 in state 1 even though observing that a square is unopened increases
the probability of opening it. On closer inspection, Figure 9 reveals that observing that square (3, 2) is unopened increases
the probability of opening square (4, 2) (the optimal action) much more than it increases the probability of opening (3, 2).

SVERL-P contributions revealed insight into how features contributed to performance but further analysis was required to
investigate why features contributed to performance.

C. Computing Shapley Values
This work presented four applications of Shapley values in reinforcement learning, under the SVERL framework: Shapley
values applied to value functions, Shapley values applied to policies, local SVERL-P and global SVERL-P. Each of the
different Shapley values are computed using Equation (1), with their respective characteristic value functions computed using
Equations (6) to (10) and (12). All of these characteristic value functions require the conditional limiting state occupancy
distributions, pπ(s′|sC), for every C ⊂ F. We calculate each pπ(s′|sC) using Bayes’s rule:

pπ(s′|sC) =
p(sC|s′)pπ(s′)

pπ(sC)
=

p(sC|s′)pπ(s′)∑
s′∈S p(sC|s′)pπ(s′)

, (14)

where the limiting state occupancy distribution pπ(s′) is approximated through interaction with the environment. Addition-
ally, if sC is a possible observation of s′, then p(sC|s′) = 1, else p(sC|s′) = 0. For example, in Gridworld-B, sC = {x = 1}
is a possible observation of s′ = {x = 1, y = 3}, whereas sC = {x = 2} is not.

After computing the conditional limiting state occupancy distributions using Equation (14), the characteristic value functions
for Shapley values applied to policies and Shapley values applied to value functions can be calculated directly using
Equations (6) to (9). For the local and global SVERL-P characteristic values in Equations (10) and (12), first πC(a|s) must
be computed using Equation (11). Then the characteristic values, which are expected returns, can be computed using any
standard reinforcement learning algorithm. We used Monte Carlo roll outs.

D. Code
Code is available at https://github.com/bath-reinforcement-learning-lab/SVERL_icml_2023.
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