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ABSTRACT

Adversarial attacks can mislead automatic speech recognition (ASR) systems into
producing an arbitrary desired output. This is easily achieved by adding impercep-
tible noise to the audio signal, thus posing a clear security threat. To prevent such
attacks, we propose a simple but efficient adversarial example detection strategy
applicable to any ASR system that predicts a probability distribution over output
tokens in each time step. We measure a set of characteristics of this distribution:
the median, maximum, and minimum over the output probabilities, the entropy
of the distribution, as well as the Kullback-Leibler and the Jensen-Shannon di-
vergence with respect to the distributions of the subsequent time step. Then, by
leveraging the characteristics observed for both benign and adversarial data, we
apply binary classifiers, including simple threshold-based classification, ensem-
bles of these simple classifiers, and neural networks. In an extensive analysis of
different state-of-the-art ASR systems and language data sets, we demonstrate the
supreme performance of this approach, receiving a mean area under the receiving
operator characteristic (AUROC) for distinguishing adversarial examples against
clean and noisy data higher than 99% and 98%, respectively. To assess the ro-
bustness of our method, we propose adaptive attacks that are constructed with an
awareness of the defense mechanism in place. This results in a decrease in the
AUROC, but at the same time, the adversarial clips become noisier, which makes
them easier to detect through filtering and creates another avenue for preserving
the system’s robustness.

1 INTRODUCTION

Voice recognition technologies are widely used in the devices that we interact with daily—in smart-
phones or virtual assistants—and are also being adapted for more safety-critical tasks like self-
driving cars (Wu et al., 2022) and healthcare applications. Safeguarding these systems from mali-
cious attacks thus plays a more and more critical role, e.g., manipulated erroneous transcriptions can
potentially lead to breaches in customer security. Another example involves the targeting of com-
mercial speech recognition devices like Google Assistant, Google Home, Microsoft Cortana, and
Amazon Echo using over-the-air attacks. They use substitute models to mimic the unknown target
model, aiming to make the system recognize their desired inputs (Chen et al., 2020). By modifying
an audio signal for the Kaldi ASR system, for example, the system could output a false transcription
containing the command to purchase a product (Schönherr et al., 2019).

State-of-the-art ASR systems are based on deep learning (Kahn et al., 2020; Chung et al., 2021).
Unfortunately, deep neural networks (NN) are highly vulnerable to adversarial attacks, since the
inherent properties of the model make it easy to generate an input that is necessarily mislabeled,
simply by incorporating a low-level additive perturbation (Szegedy et al., 2014; Goodfellow et al.,
2015; Ilyas et al., 2019; Du et al., 2020). A well-established method to generate adversarial ex-
amples (AE), which is also applicable to ASR systems, is the Carlini & Wagner (C&W) attack
(Carlini & Wagner, 2018). It aims to minimize a perturbation δ that—when added to a benign au-
dio signal x—induces the system to recognize a phrase chosen by the attacker. The psychoacoustic
attack (Schönherr et al., 2019; Qin et al., 2019) specifically developed for ASR systems goes one
step further than the C&W attack. By considering principles of acoustic perception, it creates an
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Figure 1: Proposed workflow to identify AEs: (1) compute output probability distribution character-
istics per time step, (2) use a detector to tell benign and AEs apart. c1 to cT and ċ1 to ċT represent
benign and adversarial input characteristics, while sc and ṡc denote final scores.

inconspicuous disturbance δ utilizing time-frequency masking, i.e., it shapes the perturbations to
fall below the estimated time-frequency masking threshold of human listeners, rendering δ hardly
perceptible, and sometimes even inaudible to humans.

Motivated by the security gap of ASR in the presence of adversarial attacks, in this work, we in-
troduce a novel detection technique to distinguish benign from adversarial data by analyzing the
distribution of tokens generated by an ASR system at each output step. Our method relies on the ob-
served statistical characteristics of attacked samples and trains Gaussian classifiers (GC), ensemble
models, and NN using these as features. To assess the generality of our findings, we evaluate our
method’s performance across diverse state-of-the-art ASR models and datasets that cover a range
of languages. Empirical results confirm that the proposed detection technique effectively differen-
tiates between benign and targeted adversarial data, achieving an AUROC exceeding 99% in all
tested end-to-end (E2E) models. To assess the effectiveness of our defense in more challenging
scenarios, we test our classifiers when faced with noisy audio data, untargeted attacks, and create
adaptive adversarial samples, assuming the attacker to have complete knowledge about the defense
mechanism. While the classifiers demonstrate robustness w.r.t. noise, they are vulnerable to adap-
tive attacks. However, as the resulting adversarial audio files are more distorted, they are easier to
spot for human ears and identifiable using filtering techniques. We demonstrate that our approach
surpasses the leading temporal dependency technique and the noise flooding method by achieving
an improvement in all test data. Moreover, our method is suitable for use with any ASR system that
forecasts a probability distribution over output tokens at each time step, and it eliminates the need
for supplementary data preprocessing, adversarial training augmentation, or model fine-tuning.

2 RELATED WORK

When it comes to mitigating the impact of adversarial attacks, there are two main research directions.
On the one hand, there is a strand of research dedicated to enhancing the robustness of models. On
the other hand, there is a separate research direction that focuses on designing detection mechanisms
to recognize the presence of adversarial attacks.

Concerning the robustness of models, there are diverse strategies, one of which involves modify-
ing the input data within the ASR system. This concept has been adapted from the visual to the
auditory domain. Examples of input data modifications include quantization, temporal smoothing,
down-sampling, low-pass filtering, slow feature analysis, and auto-encoder reformation (Meng &
Chen, 2017; Guo et al., 2018; Pizarro et al., 2021). However, these techniques become less effective
once integrated into the attacker’s deep learning framework (Yang et al., 2019). Another strategy
to mitigate adversarial attacks is to accept their existence and force them to be perceivable by hu-
mans (Eisenhofer et al., 2021), with the drawback that the AEs can continue misleading the system.
Adversarial training (Madry et al., 2018), in contrast, involves employing AEs during training to
enhance the NN’s resiliency against adversarial attacks. Due to the impracticality of covering all
potential attack classes through training, adversarial training has major limitations when applied
to large and complex data sets, such as those commonly used in speech research (Zhang et al.,
2019). Additionally, this approach demands high computational costs and can result in reducing the
accuracy on benign data. A recent method borrowed from the field of image recognition is adversar-
ial purification, where generative models are employed to cleanse the input data prior to inference
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(Yoon et al., 2021; Nie et al., 2022). However, only a few studies have investigated this strategy
within the realm of audio. Presently, its ASR applications are confined to smaller vocabularies, and
it necessitates substantial computational resources, while also resulting in decreased accuracy when
applied to benign data (Wu et al., 2023).

In the context of improving the discriminative power against adversarial attacks, Rajaratnam &
Kalita (2018) introduced a noise flooding (NF) method that quantifies the random noise needed
to change the model’s prediction, with smaller levels observed for AEs. However, NF was only
tested against a specific untargeted attack on a 10-word speech classification system. A prominent
non-differentiable approach uses the inherent temporal dependency (TD) in raw audio signals (Yang
et al., 2019). This strategy requires a minimal length of the audio stream for optimal performance.
Unfortunately, Zhang et al. (2020) successfully evaded the detection mechanism of TD by preserving
the necessary temporal correlations, leading to the generation of robust AEs once again. Däubener
et al. (2020) proposed AEs detection for hybrid ASR systems based on uncertainty measures. They
applied their method to a limited vocabulary tailored for digit recognition. Two of these uncertainty
metrics—the mean Kullback-Leibler divergence (KLD) and mean entropy—are also among those
characteristics of the output distribution that we investigate, next to many others, for constructing
defenses against AEs in this paper. It’s worth noting that Meyer et al. (2016) also utilized the
averaged KLD between the output distributions of consecutive time-steps (which they referred to as
mean temporal distance), but to assess the reliability of an ASR output over time.

3 BACKGROUND

Adversarial attacks In order to keep things convenient, we assume that the label transcript y and
the input audio signal x are related by y = f(x), where f(·) refers to the ASR system’s function,
which maps an audio input to the sequence of words it most likely contains. To create a targeted AE,
we need to find a small perturbation δ of the input that causes the ASR system to predict the desired
transcript ŷ given x+ δ, i.e., f(x+ δ) = ŷ ̸= y = f(x). This perturbation δ is usually constructed
by gradient descent-based minimization of the following function

l(x, δ, ŷ) = lt(f(x+ δ), ŷ) + c · la(x, δ) , (1)

which includes two loss functions: (1) a task-specific loss, lt(·), to find a distortion that induces
the model to output the desired transcription target ŷ, and (2) an acoustic loss, la(·), that is used
to make the noise δ smaller in energy and/or imperceptible to human listeners. In the initial steps
of the iterative optimization procedure, the weighting parameter c is usually set to small values to
first find a viable AE. Later, c is often increased, in order to minimize the distortion, to render it as
inconspicuous as possible.

The most common targeted attacks for audio are the C&W Attack and Qin’s Imperceptible Attack,
two well-established optimization-based adversarial algorithms. These techniques have proven suc-
cessful in targeted attacks and offer a publicly available PyTorch implementation. In the C&W
attack (Carlini & Wagner, 2018), lt is the negative log-likelihood of the target phrase and la = |δ|22.
Moreover, |δ| is constrained to be smaller than a predefined value ϵ, which is decreased step-wise in
an iterative process. The Imperceptible Attack (Qin et al., 2019) is divided into two stages. The first
stage of the attack follows the approach outlined by C&W. The second stage of the algorithm aims to
decrease the perceptibility of the noise by using frequency masking, following psychoacoustic prin-
ciples. Moreover, several untargeted attacks have been proposed. These include the projected gradi-
ent descent (PGD) (Madry et al., 2018), a well-known optimization-constrained method, as well as
two model-independent attacks—the Kenansville attack (Abdullah et al., 2020; 2021) utilizing sig-
nal processing methods, and the genetic attack (Alzantot et al., 2018), a gradient-free optimization
algorithm.

End-to-end ASR systems An E2E ASR system (Prabhavalkar et al., 2023) can be described as a
unified ASR model that directly transcribes a speech waveform into text, as opposed to orchestrating
a pipeline of separate ASR components. Here, the system directly converts a sequence of acoustic
input features into a sequence of tokens (e.g., phonemes, characters, or words). Ideally, E2E ASR
models are fully differentiable and thus can be trained end-to-end by maximizing the conditional
log-likelihood with respect to the desired output. Various E2E ASR models follow an encoder-only
or an encoder-decoder architecture and typically are built using recurrent neural network (RNN) or
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(a) Benign test-clean data vs.
C&W AEs.

(b) Noisy benign data vs. C&W
AEs.

(c) Benign test-clean data vs.
adaptive C&W AEs.

Figure 2: Mean entropy histograms of 100 data samples vs. 100 C&W AEs.

transformer layers. Special care is taken of the unknown temporal alignments between the input
waveform and output text, where the alignment can be modeled explicitly (e.g., CTC (Graves et al.,
2006), RNN-T (Graves, 2012)), or implicitly using attention (Watanabe et al., 2017). Furthermore,
language models can be integrated in order to improve prediction accuracy by considering the most
probable sequences (Toshniwal et al., 2018).

4 OUTPUT DISTRIBUTION-BASED DEFENSE APPROACH

We propose to leverage the probability distribution over the tokens from the output vocabulary in
order to identify adversarial attacks. A schematic of our approach is displayed in Fig. 1. An audio
clip–either benign or malicious–is fed to the ASR system. The system then generates probability
distributions over the output tokens in each time step. The third step is to compute pertinent char-
acteristics of these output distributions, as detailed below. Then, we use a function (i.e., the mean,
median, maximum, or minimum) to aggregate the values of the characteristics to a single score per
utterance. Lastly, we employ a binary classifier for differentiating adversarial instances from test
data samples.

Characteristics of the output distribution For each time step t, the ASR system produces a prob-
ability distribution p(t) over the tokens i ∈ V of the output vocabulary V . For an output utterance
of length T we compute the following quantities of this distribution for every t ∈ {1, . . . , T}:
the median of p(t)(i), i = 1, 2, . . . , |V |, the minimum mini∈{1,...,|V |} p

(t)(i), the maximum
maxi∈{1,...,|V |} p

(t)(i), the Shannon entropy H(p(t)) = −
∑|V|

i=1 p
(t)(i) · log p(t)(i), the Kull-

back–Leibler divergence (KLD) between the output distributions in two successive time steps

DKL(p
(t)∥p(t+1)) =

|V|∑
i=1

p(t)(i) · log p(t)(i)

p(t+1)(i)
, and the Jensen-Shannon divergence (JSD) be-

tween the output distributions in two successive time steps, which is obtained as a symmetrized
alternative of the Kullback-Leibler divergence

DJSD(p
(t), p(t+1)) =

1

2
DKL(p

(t)∥M) +
1

2
DKL(p

(t+1)∥M), where M =
1

2
(p(t) + p(t+1)) .

We aggregated the step-wise median, minimum, maximum, and entropy over all steps t = 1, . . . T
of the output sequence into a single score by taking the mean, median, minimum, or maximum
w.r.t. the respective values for different time steps t.

Binary classifier The extracted characteristics of the output distribution can then be used as fea-
tures for a binary classifier. An option to obtain simple classifiers is to fit a Gaussian distribution to
each score computed for the utterances from a held-out set of benign data. If the probability of a new
audio sample is below a chosen threshold, this example is classified as adversarial. For illustration,
Fig. 2 displays histograms of the mean entropy values for the LSTM-LAS-CTC model’s predictive
distribution over benign and adversarial data using LibriSpeech. A more sophisticated approach is
to employ ensemble models (EM), in which multiple Gaussian distributions, fitted to a single score
each, produce a unified decision by a majority vote. Another option is to construct an NN that takes
all the characteristics described above as input.
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Adaptive attack An adversary with complete knowledge of the defense strategy can implement
so-called adaptive attacks. In order to show the advantage of our proposed defense, we analyze the
options for adaptive AEs. For this, we construct a new loss lk by adding a penalty ls to the loss
function in equation 1, weighted with some factor α:

lk(x, δ, ŷ) = (1− α) · l(x, δ, ŷ) + α · lcs(x) . (2)

When attacking a Gaussian classifier that is based on characteristic c, ls corresponds to the L1 norm
of the difference between the mean sc of the Gaussian fitted to the respective scores of benign data
(resulting from aggregating c over each utterance) and the score of x. When attacking an EM, ls is
set to

ls(x) =

T∑
i=1

|sci − sci(x)| ,

where c1 . . . cT corresponds to the characteristics used by the Gaussian classifiers of the ensemble is
composed of. In the case of NNs, ls(x) is simply the L1 norm, quantifying the difference between
the NN’s predicted outcome (a probability value) and one (indicating the highest probability for the
benign category).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets We use the LibriSpeech dataset (Panayotov et al., 2015) comprises approximately 1,000
hours of English speech, sampled at a rate of 16KHz, extracted from audiobooks. We further use
Aishell (Bu et al., 2017), an open-source speech corpus for Mandarin Chinese. Since Chinese is
a tonal language, the speech of this corpus exhibits significant and meaningful variations in pitch.
Additionally, we consider the Common Voice (CV) corpus (Ardila et al., 2020), one of the largest
multilingual open-source audio collections available in the public domain. Created through crowd-
sourcing, CV includes additional complexities within the recordings, such as background noise and
reverberation.

ASR systems We analyzed fully integrated Pytorch-based deep learning end-to-end speech en-
gines. In order to assess the versatility of our method, which relies on identifying specific charac-
teristics in the system response to attacked samples, we trained various ASR models on different
datasets and languages such as English, German, Italian, and Mandarin. These models generate
diverse output formats, depending on their tokenizer selection, which can encode either characters
or subwords. Specifically, the models we use produce output structures with neuron counts of 32,
500, 1,000, 5,000, or 21,128.

We investigate three different models. The first employs a wav2vec2 encoder (Baevski et al., 2020)
and a CTC decoder. The second integrates an encoder, a decoder, and an attention mechanism
between them, as initially proposed with the Listen, Attend, and Spell (LAS) system (Chan et al.,
2016), employing a CRDNN encoder and a LSTMs decoding (Chorowski et al., 2015). The third
model implements a transformer architecture relying on attention mechanisms for both encoding and
decoding (Vaswani et al., 2017; Wolf et al., 2020). The models are shortly referred to as wav2vec,
LSTM, and Trf, respectively, in our tables. To improve generalization, we applied standard data
augmentation techniques provided in SpeechBrain: corruption with random samples from a noise
collection, removing portions of the audio, dropping frequency bands, and resampling the audio
signal at a slightly different rate.

Adversarial attacks To generate the AEs, we utilized a repository that contains a PyTorch im-
plementation of all considered attacks (Olivier & Raj, 2022). We randomly selected 200 samples
from the test set, with 100 of them designated for testing purposes. For targeted attacks, each
of these samples was assigned a new adversarial target transcript sourced from the same dataset.
Our selection process adhered to four guiding principles: (1) the audio file’s original transcription
cannot be used as the new target description, (2) there should be an equal number of tokens in
both the original and target transcriptions, (3) each audio file should receive a unique target tran-
scription, and (4) audio clips must be no longer than five seconds. We reduced the audio clip
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Table 1: Comparison of the performance of ASR systems on benign and noisy data, in terms of word
and sentence error rate on 100 utterances. LM denotes the language model.

Benign data Noisy data
Model Language LM WER SER WER SER SNRSeg SNR

LSTM Italian (It) ✗ 15.65% 52% 31.74% 72% -3.65 6.52
LSTM English (En) ✗ 5.37% 31% 8.46% 45% 2.75 6.67
LSTM English (En-LM) ✓ 4.23% 24% 5.68% 30% 2.75 6.67
wav2vec Mandarin (Ma) ✓ 4.37% 28% 8.49% 43% 5.25 4.50
wav2vec German (Ge) ✗ 8.65% 33% 16.08% 51% -2.66 7.85
Trf Mandarin (Ma) ✗ 4.79% 29% 7.40% 40% 5.25 4.50
Trf English (En) ✓ 3.10% 20% 11.87% 44% 2.75 6.67

Table 2: Quality of 100 generated C&W, Psychoacoustic, and adaptive attacks, measured by the
average performance of the ASR systems across all models w.r.t the target utterances as well as the
SNRs. Adaptive attack customized to target a GC optimized for the most effective characteristic.

C&W attack Psychoacoustic attack Adaptive attack
Model WER SER SNRSeg SNR WER SER SNRSeg SNR WER SER SNRSeg SNR

LSTM (It) 0.84% 3.00% 17.79 44.51 0.84% 3.00% 18.17 38.52 0.84% 3.00% -1.47 18.36
LSTM (En) 1.09% 2.00% 14.91 33.29 1.09% 2.00% 15.14 31.92 0.30% 1.00% 0.23 14.01
LSTM (En-LM) 1.19% 2.00% 17.50 36.46 1.19% 2.00% 17.82 33.93 0.40% 1.00% 3.18 16.82
wav2vec (Ma) 0.08% 1.00% 22.22 31.35 0.08% 1.00% 22.73 30.66 0.08% 1.00% -4.30 4.09
wav2vec (Ge) 0.00% 0.00% 20.58 50.86 0.00% 0.00% 21.08 41.46 0.00% 0.00% -12.96 10.88
Trf (Ma) 0.00% 0.00% 31.93 49.35 0.00% 0.00% 29.47 32.69 0.00% 0.00% -1.09 8.01
Trf (En) 0.00% 0.00% 27.85 53.54 0.00% 0.00% 25.70 37.68 0.00% 0.00% -0.19 14.69

length to save time and resources, as generating AEs for longer clips can take up to an hour, de-
pending on the computer and model complexity (Carlini & Wagner, 2018). A 5-sec length was
a favorable trade-off between time/resources, and the number of AEs created per model. A se-
lection of benign, adversarial, and noisy data employed in our experiments are available online at
https://confunknown.github.io/characteristics_demo_AEs/.

We initialize the adaptive attack with inputs that are already misleading the system. Then, to gen-
erate adaptive AEs, we follow the approach of minimizing the loss function described in equation 2
and execute 1,000 additional iterations on 100 randomly chosen AEs. We evaluate the adaptive
attacks by keeping the α value constant at a value of 0.3, while the δ factor, which is gradually
reduced in an iterative manner to reduce noise, remains unchanged during the initial 500 iterations.
This approach noticeably diminishes the discriminative capability of our defense across all models.
However, this reduction in discriminative power comes at the expense of generating noisy data that,
as evidenced by our experimental results in Subsection 5.3, can be easily detected through filtering.
Further experiments were carried out using different configurations; these changes resulted in data
with lower noise levels but also led to weaker attacks. Detailed outcomes of these experiments are
available in the App. A.1.

Adversarial example detectors We construct three kinds of binary classifiers: Based on the 24
single scores, we obtain 24 simple Gaussian classifiers (GC) per model. To construct an ensemble
model, we implement a majority voting technique, utilizing a total of T ∈ {3, 5, 7, 9} GCs. The
choice of which GCs to incorporate is determined by evaluating the performance of each character-
istic across all models and ranking them in descending order based on the results of the validation
set. The outcome of the ranking can be found in App. A.2. The neural network architecture consists
of three fully connected layers, each with 72 hidden nodes, followed by an output layer. We employ
a sigmoid activation function to generate a probability output in the range of 0 to 1 that can be con-
verted to class values. The network is trained using ADAM optimization (Kingma & Ba, 2015) with
a learning rate of 0.0001 for 250 epochs. Running the assessment with our detectors took approx.
an extra 18.74 ms per sample, utilizing an NVIDIA A40 with a memory capacity of 48 GB, see
App. A.3 for more details.

5.2 QUALITY OF ASR SYSTEMS AND ADVERSARIAL ATTACKS

To assess the quality of the trained models as well as the performance of the AEs, we measured the
word error rate (WER), the character error rate (CER), the sentence error rate (SER), the Signal-
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Table 3: Quality of 100 generated PGD, Genetic, and Kenansville attacks, measured by the average
performance of the ASR systems across all models w.r.t the true labels as well as the SNRs.

PGD attack Genetic attack Kenansville attack
Model WER SER SNRSeg SNR WER SER SNRSeg SNR WER SER SNRSeg SNR

LSTM (It) 121% 100% 7.39 25.76 41.6% 83.0% 3.04 35.13 73.2% 95.0% -6.1 6.32
LSTM (En) 95% 100% 15.13 25.91 24.5% 85.0% 6.49 33.59 49.8% 85.0% 1.32 7.4
LSTM (En-LM) 100% 100% 15.19 26.21 23.8% 83.0% 6.63 33.59 49.3% 78.0% 1.32 7.4
wav2vec (Ma) 90% 100% 20.09 23.68 36.2% 94.0% 6.24 23.74 62.4% 99.0% 6.18 6.33
wav2vec (Ge) 102% 100% 6.88 26.79 30.7% 78.0% 1.72 33.39 49.3% 86.0% -5.73 6.89
Trf (Ma) 126% 100% 19.49 26.41 44.1% 96.0% 4.36 23.74 73.8% 98.0% 6.18 6.33
Trf (En) 102% 100% 14.88 26.58 17.8% 77.0% 8.79 33.59 40.7% 72.0% 1.32 7.4

to-Noise Ratio (SNR), and the Segmental Signal-to-Noise Ratio (SNRSeg). The latter measures the
adversarial noise energy in Decibels and considers the entire audio signal. Thus, a higher SNRSeg

indicates less additional noise. Specific information about each of these formulas is available in the
App. A.4.

Quality of ASR systems Tab. 16 in the App. reports the results achieved with different Speech-
Brain recipes on all datasets. The performance is consistent with those documented by Ravanelli
et al. (2021), where you can also find detailed hyperparameter information for all these models. To
determine the classifier’s effectiveness in a situation that better mimics reality, 100 benign audio
clips are contaminated with background noise. This involves introducing random samples from a
noise dataset into the speech signal. The noise instances are randomly sampled from the Freesound
section of the MUSAN corpus (Snyder et al., 2015; Ko et al., 2017), which includes room impulse
responses, as well as 929 background noise recordings. We utilize SpeechBrain’s environmental
corruption function to add noise to the input signal. Tab. 1 presents the performance of the ASR
systems for noisy data, utilizing a total of 100 utterances. The impact on system performance is
evident, resulting in a significant rise in WER due to the low SNR ratio.

Quality of adversarial attacks To estimate the effectiveness of the targeted adversarial attacks we
measured the error w.r.t. the target utterances, reported in Tab. 2. We achieved nearly 100% success
in generating targeted adversarial data for all attack types across all models. The model with the
lowest average SNR distortion registered at 31.35 dB, while the highest—i.e., the least distorted—
was 53.54 dB. In a related study by Carlini & Wagner (2018), they reported a mean distortion of 31
dB. In contrast, for untargeted attacks, we measured the error relative to the true label, the higher
the WER the stronger the attack. We consider it a genuine threat as one where the attack produces
a WER of at least 50%, surpassing the impact influence of background noise. Diverse settings were
explored in our experiments, and these are detailed in the App. A.6. Both PGD and Kenansville
regulate the distortion of the attack using an SNR factor to limit the perturbations, but in different
ways, with PGD achieving optimal results at a factor of 25, while Kenansville performed best at a
factor of 10. In the case of a genetic attack, we found a minimal effect on the WER, failing to reach
50% across all models, these results are presented in Tab. 3. In general, our findings are in line with
the results discussed by Olivier & Raj (2022). When generating AEs with the proposed adaptive
adversarial attack, we also managed to achieve an almost 100% success rate, see Tab. 2. However,
the AEs turned out to be much noisier, as displayed by a maximum average SNR value of 18.36 dB
when comparing all models. This makes the perturbations more easily perceptible to humans.

5.3 PERFORMANCE OF ADVERSARIAL EXAMPLE DETECTORS

Detecting C&W and Psychoacoustic attacks To distinguish benign audio clips from malicious
inputs, we calculate the characteristic scores and use them to train binary classifiers as described in
Sec. 4. The detection performance of our classifiers w.r.t C&W and Psychoacoustic attacks are quite
similar. Therefore, we present the C&W results in Tab. 4 and include the Psychoacoustic results in
the App. A.7. We contrast our binary classifiers with NF and TD. For the GC, we report for each
model the performance for the characteristic best-performing on the validation set (detailed results
for all other characteristics can be found in the App. A.8). Our findings show that the proposed
binary classifiers consistently outperform NF and TD across all models when distinguishing between
benign and adversarial data, achieving an impressive discrimination accuracy of over 99% in every
case, regardless of the deep learning architecture used by the ASR system, the data it was trained on,
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Table 4: Comparing classifiers on clean and noisy data, evaluating AUROC for all models using 100
samples from the clean test set and 100 C&W AEs. (∗) denotes best-performing score-characteristic.

Noisy vs. C&W adversarial data Benign vs. C&W adversarial data
Model Score-Characteristic(∗) NF TD GC NN NF TD GC NN

LSTM (It) Mean-Median 0.9218 0.8377 0.9686 0.9557 0.8762 0.8923 0.9980 0.9962
LSTM (En) Mean-Median 0.9289 0.9695 0.9966 0.9996 0.8868 0.9697 0.9993 0.9992
LSTM (En-LM) Max-Max 0.9680 0.9022 0.9835 0.9875 0.9345 0.9293 0.9828 0.9903
wav2vec (Ma) Mean-Entropy 0.9406 0.9817 0.9578 0.9680 0.8993 0.9937 0.9947 0.9937
wav2vec (Ge) Max-Min 0.9372 0.9557 0.9652 0.9992 0.8725 0.9836 0.9941 0.9910
Trf (Ma) Median-Max 0.9572 0.9790 0.9864 0.9803 0.9243 0.9828 0.9978 0.9969
Trf (En) Max-Median 0.9702 0.9448 0.9287 0.9844 0.8998 0.9828 1.0000 1.0000

Average AUROC across all models 0.9462 0.9386 0.9695 0.9821 0.8990 0.9620 0.9952 0.9953

Table 5: Classification accuracies for classifiers, based on a threshold for a maximum 1% FPR (if
possible) and a minimum 50% TPR, using 100 benign data and 100 C&W AEs.

Model TD GC EM=3 EM=5 EM=7 EM=9 NN

LSTM (It) 72.50% / 0.05 98.00% / 0.01 94.00% / 0.01 92.50% / 0.01 90.50% / 0.01 91.50% / 0.01 95.00% / 0.01
LSTM (En) 85.00% / 0.01 98.50% / 0.01 99.50% / 0.00 99.50% / 0.00 99.50% / 0.00 99.50% / 0.00 98.50% / 0.00
LSTM (En-LM) 74.00% / 0.02 90.50% / 0.01 91.00% / 0.01 92.50% / 0.01 97.00% / 0.01 92.50% / 0.01 95.00% / 0.01
wav2vec (Ma) 97.00% / 0.01 97.50% / 0.01 97.50% / 0.01 96.00% / 0.00 91.50% / 0.00 93.50% / 0.00 98.50% / 0.01
wav2vec (Ge) 94.00% / 0.03 98.00% / 0.01 97.00% / 0.00 98.00% / 0.00 96.50% / 0.00 98.00% / 0.00 97.00% / 0.01
Trf (Ma) 96.50% / 0.01 98.00% / 0.01 96.00% / 0.01 96.50% / 0.00 96.00% / 0.00 96.00% / 0.00 95.50% / 0.01
Trf (En) 93.00% / 0.01 99.50% / 0.01 100.0% / 0.00 100.0% / 0.00 100.0% / 0.00 100.0% / 0.00 100.0% / 0.00

Avg. accuracy / FPR 87.43% / 0.02 97.14% / 0.01 96.43% / 0.01 96.43% / 0.00 95.86% / 0.00 95.86% / 0.00 97.07% / 0.01

and whether it employs a language model during decoding or not. In a more challenging context,
where distinguishing between noisy and adversarial data, our proposed defense still surpasses NF
and TD for all models except for one. We observe that among all classifiers, the NN stands out as
the most robust when comparing noisy and benign data scenarios, showing only a minimal decrease
of 1.42% in the average AUROC across all models. It’s worth noting that the performance of TD
on noisy data hasn’t been analyzed before, and former investigations were limited to the English
language (Yang et al., 2019). Similarly, NF was solely tested against the untargeted genetic attack
in a 10-word classification system. Some characteristics perform consistently well, independently
of the adversarial data, and only benign data is needed for choosing the threshold. This is displayed
by the results for GCs based on the mean-median for both targeted attacks in the first two columns
of Tab. 6. Moreover, even the neural network solely trained on C&W attacks performs equally well
against Psychoacoustic AEs. These results indicate a good transferability to other kinds of targeted
attacks.

To evaluate the goodness-of-fit performance of our classifiers, we adopted a conservative threshold
selection criterion: the highest false positive rate (FPR) below 1% (if available) while maintaining
a minimum true positive rate (TPR) of 50%. This evaluation considers EMs with different total
voting values T ∈ {3, 5, 7, 9}. Hence, our classifiers consistently achieve a high average accuracy
exceeding 95%, surpassing the performance of TD, as indicated in Tab. 5. We suggest opting for
an EM approach, which tends to minimize variance, or an NN that apart from minimizing variance
has the potential for enhanced generalization with further refinements. Additional goodness-of-fit
measurements across all models are available in the App. A.9.

Detecting untargeted attacks To assess the transferability of our detectors to untargeted attacks,
we investigated the defense performance of GCs based on the mean-median characteristic and NNs
trained on C&W AEs when exposed to PGD, Geneticc, or Kenansville attacks. Results are reported
in Tab. 6. While the detection performance decreases in comparison to targeted attacks, our methods
are still way more efficient than TD, with AUROCs even exceeding 90% for the Kenansville attack.
In general, the Genetic attack proves challenging to detect, which may be attributed to its limited
impact on the WER (compare Tab. 3). Advantageously, limited research addresses untargeted at-
tacks in large-vocabulary ASR systems, in general, they are less threatening and all instances we
investigated are characterized by noise, making them easily noticeable by human hearing.
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Table 6: AUROC assessment to detect AEs using GCs and NNs across various attacks.

C&W Psychoacoustic PGD Genetic Kenansville
Model TD GC NN TD GC NN TD GC NN TD GC NN TD GC NN

LSTM (It) 0.89 1.00 1.00 0.89 1.00 1.00 0.71 0.94 0.94 0.54 0.58 0.68 0.68 0.82 0.92
LSTM (En) 0.97 1.00 1.00 0.97 1.00 1.00 0.69 0.96 0.98 0.53 0.50 0.68 0.76 0.89 0.89
LSTM (En-LM) 0.93 0.95 0.99 0.94 0.96 0.99 0.83 1.00 0.78 0.55 0.64 0.69 0.76 0.79 0.89
wav2vec (Ma) 0.99 0.99 0.99 0.99 0.99 0.99 0.77 0.84 0.84 0.65 0.67 0.73 0.89 0.97 0.97
wav2vec (Ge) 0.98 1.00 0.99 0.98 1.00 0.99 0.82 0.78 0.40 0.55 0.65 0.58 0.77 0.93 0.85
Trf (Ma) 0.98 0.99 1.00 0.99 0.99 0.99 0.86 0.76 0.91 0.59 0.65 0.84 0.90 1.00 1.00
Trf (En) 0.98 1.00 1.00 0.99 1.00 1.00 0.75 0.75 0.59 0.53 0.46 0.64 0.73 0.89 0.94

Avg. 0.96 0.99 1.00 0.97 0.99 0.99 0.78 0.86 0.78 0.56 0.59 0.69 0.79 0.90 0.92

Table 7: Evaluating filtering to preserve system robustness in accuracy with 100 clean test set sam-
ples and 100 adaptive C&W AEs, using a threshold aiming for a maximum 1% FPR when feasible.

Adaptive AE attack Filtering AEs aiming a GC Filtering AEs aiming an EM=9 Filtering AEs aiming a NN
performance pre-filtering LPF: SG: LPF: SG: LPF: SG:

Model GC EM=9 NN WER / CER WER / CER WER / CER WER / CER WER / CER WER / CER

LSTM (It) 33.50 50.50 53.50 76.00 / 78.50 82.00 / 94.00 74.00 / 79.00 74.50 / 88.00 79.50 / 86.00 88.50 / 97.50
LSTM (En) 29.50 50.50 73.50 86.00 / 88.00 98.00 / 100.0 98.00 / 97.50 96.00 / 99.00 86.50 / 89.00 99.00 / 100.0
LSTM (En-LM) 42.50 44.50 67.50 80.50 / 86.50 99.00 / 99.50 76.00 / 80.50 94.50 / 95.00 81.00 / 85.50 99.50 / 99.50
wav2vec (Ma) 37.50 58.00 49.50 99.50 / 99.50 96.00 / 96.00 100.0 / 100.0 96.00 / 96.00 100.0 / 100.0 99.50 / 99.50
wav2vec (Ge) 25.50 71.00 60.50 96.00 / 98.00 97.50 / 96.00 96.50 / 98.50 98.00 / 98.00 97.50 / 98.00 98.00 / 97.50
Trf (Ma) 28.50 40.00 26.00 74.00 / 74.00 79.50 / 79.50 71.50 / 71.50 74.50 / 74.50 82.00 / 82.00 89.50 / 89.50
Trf (En) 25.00 25.00 25.50 75.00 / 75.00 91.00 / 93.50 50.00 / 50.00 84.00 / 91.00 96.50 / 97.50 100.0 / 100.0

Avg. accuracy 31.71 48.50 50.86 83.86 / 85.64 91.86 / 94.07 80.86 / 82.43 88.21 / 91.64 89.00 / 91.14 96.29 / 97.64

Detecting adaptive adversarial attacks The accuracy of our classifiers experiences a substantial
decline across all models due to adaptive attacks when evaluated with a threshold aiming for a
maximum FPR of 1% (where feasible). That means, that the defense provided gets ineffective if
its usage is known to the attacker. However, one can leverage the fact, that the adaptive attack
results in much noisier examples. To do so, we compare the predicted transcription of an input
signal with the transcription of its filtered version using metrics like WER and CER. We employed
two filtering methods: a low-pass filter (LPF) with a 7 kHz cutoff frequency, eliminating high-
frequency components (Monson et al., 2014) and a PyTorch-based Spectral Gating (SG) (Sainburg,
2019; Sainburg et al., 2020), an audio-denoising algorithm that calculates noise thresholds for each
frequency band and generates masks to suppress noise below these thresholds. We then tried to
distinguish attacks from benign data based on the resulting WER and CER values. When contrasting
the accuracy results in Tab. 5 for AEs that have not been tailored to the classifier type with those
in Tab. 7 for adaptive AEs, SG proves highly effective in distinguishing between adversarial and
benign data across most models. This is especially evident with the NN classifier, which consistently
matches or even surpasses the accuracy achieved by the non-tailored AEs, leading to an average
accuracy boost from 97.07% to 97.64%, a gain of 0.57%.

6 DISCUSSION & CONCLUSION

We have demonstrated that characteristics of the distribution over the output tokens can serve as
features of binary classifiers, turning them into an effective tool for identifying targeted adversarial
attacks against ASR systems. As an example of such characteristics, the mean (w.r.t. the distribu-
tions from different time steps) of the median of the probabilities holds the greatest discriminative
power across different models. Even on challenging data, these characteristics allow us to distin-
guish adversarial examples from benign data with high reliability. Our empirical findings strongly
support employing a combination of these characteristics either in an ensemble of simple Gaussian
classifiers or as input to a neural network to yield the best performance. This approach showcases
exceptional discriminative power across a variety of modern ASR systems trained on different lan-
guage corpora. It will be interesting to evaluate if the use of these characteristics of output distribu-
tions can also serve as indicators of other pertinent aspects, such as speech quality and intelligibility,
which is a target for future work.
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A APPENDIX

A.1 ADAPTIVE ATTACK—ADDITIONAL SETTINGS

For an adaptive attack, we construct a new loss, lk explained in detail in Section 4.
lk(x, δ, ŷ) = (1− α) · l(x, δ, ŷ) + α · lcs(x) .

We perform 1,000 iterations on 100 randomly selected examples from the adversarial dataset, begin-
ning with inputs that already mislead the system. We evaluated the adaptive attacks resulting from
different settings for the minimization procedure of the loss:

1. We kept α constant at 0.3, while δ remained only unchanged during the initial 500 it-
erations. Afterward, δ is gradually reduced each time the perturbed signal successfully
deceives the system, as defined by the C&W attack.

2. We experimented with three fixed α values: 0.3, 0.6, and 0.9, while δ is gradually reduced
each time the perturbed signal successfully deceives the system, as defined by the C&W
attack.

3. We increased the α value by 20% after each successful attack, while the δ factor remains
unchanged during the initial 30 iterations.

4. We kept α constant at 0.3 and set the ls for attacking an EM, as defined in Section 4. We
employed an EM-based on two characteristics: the median mean and the mean KLD.

5. We kept α constant at 0.3, and we redefined the ls term from the loss lk as follows:

ls(x, x̂) =

T−1∑
t=1

|DKL(p
(t)
x ∥p(t+1)

x )−DKL(p
(t)
x̂ ∥p(t+1)

x̂ )| . (3)

where T represents the length of the output utterance, x the benign example, and x̂ its
adversarial counterpart.

6. We kept α constant at 0.3, and to minimize the statistical distance from the benign data
distribution, we calculated for the same time step the KLD between the output distribution
given the benign data x and its adversarial counterpart x̂, then we set the ls term to:

ls(x, x̂) =

T∑
t=1

|DKL(p
(t)
x ∥p(t)x̂ )| . (4)

Results for the second setting are reported in Tab. 8. Regardless of the chosen α value, the second
setting is unable to produce robust adversarial samples and has only a minimal effect on our proposed
defense. This is due to the faster reduction of δ, making it harder to generate an adaptive AE
with smaller perturbations. Similar outcomes are evident in the fifth and sixth settings, where the
modified loss ls does not yield improvement, as illustrated in Tab. 11, and Tab. 12. In the third
configuration, some models exhibit enhanced outcomes by diminishing the discriminative capability
of our defense. Nevertheless, the adaptive AEs generated in this scenario are characterized by noise,
as indicated in Tab. 9, with a low SNRSeg. The fourth setting presents a noise improvement with
higher SNRSeg values compared to prior settings, as shown in Tab. 10. However, detectors are still
able to discriminate many AEs from benign data. We opt for the first setting in the main paper, as
it substantially diminishes our defense’s discriminative power across all models. But, this comes at
the expense of generating noisy data, results are presented in Tab. 13. We observed that using an α
value above 0.3 increases the difficulty of generating adaptive adversarial examples.

Table 8: Quality of 100 generated adaptive adversarial samples with different α values. Evaluating
AUROC for all models with 100 samples from the clean test set and 100 adaptive C&W AEs.

α = 0.3 α = 0.6 α = 0.9
Model Score-Characteristic SNRSeg GC AUROC SNRSeg GC AUROC SNRSeg GC AUROC

LSTM (It) Mean-Median 17.5 0.9635 17.13 0.8882 17.4 0.964
LSTM (En) Mean-Median 14.78 0.9875 14.78 0.9741 14.75 0.9735
LSTM (En-LM) Max-Max 17.42 0.9869 17.39 0.9762 17.37 0.9567
wav2vec (Ma) Mean-Entropy 22.18 0.9912 22.16 0.9849 22.13 0.9779
wav2vec (Ge) Max-Min 20.27 0.9774 19.82 0.8516 20.55 0.9803
Trf (Ma) Median-Max 31.69 0.9893 31.74 0.9891 31.8 0.977
Trf (En) Max-Median 27.54 1.000 27.61 1.000 27.65 1.000
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Table 9: Quality of 100 generated adaptive C&W attacks using an adapted α value. Evaluating
AUROC for all models with 100 samples from the clean test set and 100 adaptive C&W AEs.

Model Score-Characteristic WER/CER SER SNRSeg SNR GC AUROC

LSTM (It) Mean-Median 0.84% 3.00% 6.64 27.29 0.4656
LSTM (En) Mean-Median 0.20% 1.00% 9.51 24.2 0.5333
LSTM (En-LM) Max-Max 0.40% 1.00% 12.91 29.77 0.7437
wav2vec (Ma) Mean-Entropy 0.08% 1.00% 13.76 21.34 0.9146
wav2vec (Ge) Max-Min 0.00% 0.00% 12.21 33.7 0.6666
Trf (Ma) Median-Max 0.00% 0.00% 14.48 24.71 0.7857
Trf (En) Max-Median 0.00% 0.00% 15.91 35.49 0.9835

Table 10: Quality of 100 generated adaptive C&W attacks, keeping α constant at 0.3 and setting the
ls loss for attacking an EM using mean median and mean KLD characteristics. Evaluating AUROC
for all models with 100 samples from the clean test set and 100 adaptive C&W AEs.

Model WER/CER SER SNRSeg SNR GC AUROC

LSTM (It) 0.84% 3.00% 16 38.77 0.8014
LSTM (En) 1.09% 2.00% 14.08 30.29 0.8509
LSTM (En-LM) 1.19% 2.00% 17.25 35.37 0.8701
wav2vec (Ma) 0.08% 1.00% 21.91 29.83 0.523
wav2vec (Ge) 0.00% 0.00% 17.61 41.65 0.4437
Trf (Ma) 0.00% 0.00% 27.58 35.52 0.5286
Trf (En) 0.00% 0.00% 22.84 39.82 0.7631

Table 11: Quality of 100 generated adaptive C&W attacks keeping α constant at 0.3, and using the
ls defined in equation 3. Evaluating AUROC for all models with 100 samples from the clean test set
and 100 adaptive C&W AEs.

Model WER/CER SER SNRSeg SNR GC AUROC

LSTM (It) 0.84% 3.00% 17.73 44.37 0.9976
LSTM (En) 1.09% 2.00% 14.91 33.29 0.9993
LSTM (En-LM) 1.19% 2.00% 17.5 36.45 0.957
wav2vec (Ma) 0.08% 1.00% 22.22 31.35 0.9904
wav2vec (Ge) 0.00% 0.00% 20.58 50.86 0.9982
Trf (Ma) 0.00% 0.00% 30.41 42.81 0.9921

Table 12: Quality of 100 generated adaptive C&W attacks keeping α constant at 0.3, and using
the ls defined in equation 4 to minimize the statistical distance from the benign data distribution.
Evaluating AUROC for all models with 100 samples from the clean test set and 100 adaptive C&W
AEs.

Model WER/CER SER SNRSeg SNR GC AUROC

LSTM (It) 0.84% 3.00% 17.76 44.5 0.9978
LSTM (En) 1.09% 2.00% 14.91 33.29 0.9993
LSTM (En-LM) 1.19% 2.00% 17.5 36.46 0.9551
wav2vec (Ma) 0.08% 1.00% 22.22 31.35 0.9902
wav2vec (Ge) 0.00% 0.00% 20.58 50.86 0.9982
Trf (Ma) 0.00% 0.00% 28.29 35.09 0.7562
Trf (En) 0.00% 0.00% 24.78 43.55 0.995

Table 13: Quality of 100 generated adaptive C&W attacks keeping α constant at 0.3, while δ factor
remains unchanged during the initial 500 iterations. Evaluating AUROC for all models with 100
samples from the clean test set and 100 adaptive C&W AEs.

Model Score-Characteristic WER/CER SER SNRSeg SNR GC AUROC

LSTM (It) Mean-Median 0.84% 3.00% -1.47 18.36 0.335
LSTM (En) Mean-Median 0.30% 1.00% 0.23 14.01 0.295
LSTM (En-LM) Max-Max 0.40% 1.00% 3.18 16.82 0.425
wav2vec (Ma) Mean-Entropy 0.08% 1.00% -4.30 4.09 0.375
wav2vec (Ge) Max-Min 0.00% 0.00% -12.96 10.88 0.255
Trf (Ma) Median-Max 0.00% 0.00% -1.09 8.01 0.285
Trf (En) Max-Median 0.00% 0.00% -0.19 14.69 0.25
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A.2 CHARACTERISTIC RANKING

For the GCs, we determine the best-performing characteristics by ranking them according to the
average AUROC on a validation set across all models. This ranking, which is shown in Tab. 14,
determines the choice of characteristics to utilize for the EMs, where we implement a majority
voting technique, using a total of T ∈ 3, 5, 7, 9 GCs.

Table 14: Ranking GCs based on the mean AUROC across all models on a validation set, using 100
benign data and 100 C&W AEs. () indicates the characteristic employed within a specific EM.

Score-Characteristic Benign vs. C&W adversarial data

Mean-Median(3,5,7,9) 0.9872
Mean-Entropy(3,5,7,9) 0.9871
Max-Entropy(3,5,7,9) 0.9808
Median-Entropy(5,7,9) 0.9796
Max-Median(5,7,9) 0.9759
Median-Max(7,9) 0.9733
Mean-Max(7,9) 0.9617
Mean-Min(9) 0.9541
Min-Max(9) 0.9523
Median-Median 0.9488
Max-Min 0.9365
Median-Min 0.9339

Score-Characteristic Benign vs. C&W adversarial data

Mean-KLD(0) 0.9162
Max-JSD(0) 0.8480
Max-KLD(0) 0.8319
Min-Median(0) 0.8242
Max-Max(0) 0.7764
Min-Min(0) 0.7751
Min-Entropy(0) 0.7703
Min-KLD(0) 0.7066
Mean-JSD(0) 0.6717
Median-KLD 0.6706
Min-JSD 0.6669
Median-JSD 0.6368

A.3 COMPUTATIONAL OVERHEAD

The assessment involves measuring the overall duration the system requires to predict 100 audio
clips, utilizing an NVIDIA A40 with a memory capacity of 48 GB, results are reported in Tab. 15.

Table 15: Computational overhead to predict 100 audio clips measured in seconds.

GC NN
Model Elapsed time With detector Overhead Avg. time per sample With detector Overhead Avg. time per sample

LSTM (It) 53.005 66.964 13.959 0.140 53.452 0.447 0.004
LSTM (En) 55.742 69.224 13.482 0.135 58.038 2.295 0.023
LSTM (En-LM) 46.358 59.604 13.246 0.132 48.252 1.894 0.019
wav2vec (Ma) 13.339 22.799 9.460 0.095 14.772 1.432 0.014
wav2vec (Ge) 13.736 14.426 0.689 0.007 14.992 1.255 0.013
Trf (Ma) 32.070 39.675 7.605 0.076 34.656 2.586 0.026
Trf (En) 63.460 79.182 15.723 0.157 66.671 3.211 0.032

Avg. 39.67 50.27 10.59 0.11 41.55 1.87 0.02

It is worth noting that GCs take more time than NNs due to the utilization of a NumPy function that
operates on the CPU.

A.4 PERFORMANCE INDICATORS OF ASR SYSTEMS

We used the following, standard performance indicators:

WER The word error rate, is given by

WER = 100 · S +D + I

N
,

where S, D, and I are the number of words that were substituted, deleted, and inserted, respectively.
The reference text’s total word count, or N is set to the number of ground-truth labels of the original
test sample, or to those of the malicious target transcription for the adversarial attack, depending on
which method is being evaluated. We aim for a model that has a low WER on the original data,
i.e., it recognizes the ground-truth transcript with the highest possible accuracy. From the attacker’s
standpoint, the aim is to minimize the WER as well, but relative to the target transcription.
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SER The sentence error rate, derives from calculating the unsuccessful ratio related to the ground-
truth label of the original test sample or the malicious target transcription for the adversarial attack,
respectively.

SER = 100 · NE

N
,

where NE is the number of audio clips that have at least one transcription error, and N is the total
number of examples.

SNR As reported in Carlini & Wagner (2018), the degree of distortion introduced by a perturbation
δ in decibels (dB) is described as follows:

dB(x) = max
i

20 · log10(xi),

SNR = dB(x)− dB(δ),

where x represents the clean audio signal, a higher SNR indicates a lower level of added noise.

SNRSeg The Segmental Signal-to-Noise Ratio measures the adversarial noise energy in Decibels
and considers the entire audio signal. To obtain it, the energy ratios are computed segment by seg-
ment, which better reflects human perception than the non-segmental version (Mermelstein, 1979).
The results are then averaged:

SNRSeg =
10

M
·
M−1∑
m=0

log10

∑mN+N−1
t=mN x(t)2∑mN+N−1
t=mN δ(t)2

,

where M is the number of frames in a signal and N is the frame length, x represents the clean audio
signal and δ the adversarial perturbation. Thus, a higher SNRSeg indicates less additional noise.

A.5 SPEECHBRAIN RECIPES PERFORMANCE

Tab. 16 presents the outcomes obtained using various SpeechBrain recipes across all datasets. The
results align with those reported by Ravanelli et al. (2021), where detailed hyperparameter informa-
tion for these models can be found.

Table 16: Performance of the ASR systems on benign data, in terms of word and sentence error rate,
on the full test sets. LM denotes the language model.

Model Data Language LM # Utterances Tokenizer WER/ CER SER

LSTM CV-Corpus Italian ✗ 12,444 BPE 17.78% 69.68%
LSTM Librispeech English ✗ 2,620 BPE 4.24% 42.44%
LSTM Librispeech English ✓ 2,620 BPE 2.91% 32.06%
wav2vec Aishell Mandarin ✓ 7,176 Bert-Char 5.05% 39.30%
wav2vec CV-Corpus German ✗ 15,415 Char 10.31% 46.56%
Trf Aishell Mandarin ✗ 7,176 BPE 6.23% 42.35%
Trf Librispeech English ✓ 2,620 BPE 2.21% 26.03%

A.6 UNTARGETED ATTACKS

To expand the range of adversarial attacks, we explore three untargeted attacks: PGD, Genetic, and
Kenansville. The primary objective is to achieve a high WER, in contrast to C&W and psychoa-
coustic attacks where the aim is to minimize WER. Each adversarial attack type is evaluated under
distinct settings. Regarding PGD, the perturbation δ is limited to a predefined value ϵ, calculated as
ϵ = ||x||2/10

SNR
20 . We experimented with SNR values of 10 and 25. For Kenansville, the pertur-

bation δ is controlled by removing frequencies that have a magnitude below a certain threshold θ,
determined by scaling the power of a signal with an SNR factor given by 10

−SNR
10 . Subsequently,

all frequencies that have a cumulative power spectral density smaller than θ are set to zero, and the
reconstructed signal is formed using the remaining frequencies. Our experiments involve an SNR
value of 10, 15, and 25. Similar to PGD and Kenansville, the smaller perturbation is associated
with higher SNR values. In Genetic attacks, the settings vary based on the number of iterations, we
experimented with 1,000 and 2,000 iterations. The outcomes are detailed in Tab. 17 and Tab. 18.
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In the case of PGD, we choose an SNR value of 25, as it induces a WER exceeding 50% across all
models and maintains a higher segmental SNR compared to using an SNR of 10. As for Kenansville,
we opt for an SNR value of 10. It is the only setting that demonstrates a genuine threat to the system
by yielding a higher WER, but at the cost of generating noisy data. Using, for example, an SNR of 25
does not lead to a substantial change in the WER compared to the model’s performance with benign
data, or by adding background noise, as indicated in Tab. 16. In the context of Genetic attacks,
adjusting the number of iterations doesn’t result in a significant difference, failing to substantially
degrade the system’s performance, as the attack could not achieve a WER exceeding 50% across all
models.

Table 17: Quality of 100 generated PGD using an SNR of 10 and 25, and Genetic attacks with a
total number of iterations of 1,000 and 2,000. Results are measured by the average performance of
the ASR systems across all models w.r.t the true labels as well as the SNRs.

PGD: 10 – 25 Genetic: 1,000 - 2,000
Model WER SER SNRSeg SNR WER SER SNRSeg SNR

LSTM (It) 119% - 121% 100% - 100% -7.64 - 7.39 11.38 - 25.76 39.9% - 41.6% 81% - 83% 3.67 - 3.04 35.13 - 35.13
LSTM (En) 107% - 95% 100% - 100% -0.12 - 15.13 12.62 - 25.91 22.9% - 24.5% 86% - 85% 6.58 - 6.49 33.59 - 33.59
LSTM (En-LM) 108% - 100% 100% - 100% 0.01 - 15.19 12.59 - 26.21 20.7% - 23.8% 79% - 83% 7.00 - 6.63 33.59 - 33.59
wav2vec (Ma) 120% - 90% 100% - 100% 4.56 - 20.09 10.38 - 23.68 36.6% - 36.2% 94% - 94% 6.21 - 6.24 23.74 - 23.74
wav2vec (Ge) 118% - 102% 100% - 100% -8.28 - 6.88 12.45 - 26.79 28.4% - 30.7% 76% - 78% 2.44 - 1.72 33.39 - 33.39
Trf (Ma) 128% - 126% 100% - 100% 4.35 - 19.49 12.15 - 26.41 44.1% - 44.1% 96% - 96% 4.36 - 4.36 23.74 - 23.74
Trf (En) 109% - 102% 100% - 100% -0.49 - 14.88 13.10 - 26.58 15.9% - 17.8% 74% - 77% 9.16 - 8.79 33.59 - 33.59

Table 18: Quality of 100 generated Kenansville attacks with an SNR of 10, 15, and 25, measured
by the average performance of the ASR systems across all models w.r.t the true labels as well as the
SNRs.

Kenansville 10 – 15 – 25
Model WER SER SNRSeg SNR

LSTM (It) 73.19% - 46.38% - 21.01% 95.00% - 83.00% - 63.00% -6.10 - -1.37 - 7.94 6.32 - 10.58 - 20.48
LSTM (En) 49.85% - 20.95% - 7.33% 85.00% - 65.00% - 42.00% 1.32 - 6.06 - 15.38 7.40 - 12.42 - 23.28
LSTM (En-LM) 49.33% - 19.92% - 5.26% 78.00% - 56.00% - 29.00% 1.32 - 6.06 - 15.38 7.40 - 12.42 - 23.28
wav2vec (Ma) 62.41% - 22.04% - 5.13% 99.00% - 69.00% - 35.00% 6.18 - 11.12 - 20.43 6.33 - 10.80 - 21.28
wav2vec (Ge) 49.32% - 26.71% - 10.62% 86.00% - 67.00% - 35.00% -5.73 - -1.22 - 7.83 6.89 - 11.93 - 22.83
Trf (Ma) 73.84% - 43.99% - 8.49% 98.00% - 88.00% - 38.00% 6.18 - 11.12 - 20.43 6.33 - 10.80 - 21.28
Trf (En) 40.66% - 13.73% - 4.02% 72.00% - 46.00% - 24.00% 1.32 - 6.06 - 15.38 7.40 - 12.42 - 23.28

To assess the performance of our detectors, we performed tests on GCs constructed based on either
the mean-entropy or mean-median characteristic score. Following this, we measured the AUROC
across all types of attacks. For NNs, we employed the NN model trained on the C&W attack to
evaluate its performance across several attacks. The presenting findings are reported in Tab. 19,
Tab. 20, and Tab. 21.

The GC trained on the mean-median characteristic demonstrates superior performance across a
range of attacks compared to the mean-entropy characteristic, particularly in instances of C&W,
psychoacoustic, PGD, and Kenansville. In the Kenansville attack, our detectors reduced effective-
ness when using an SNR of 15 and 25. However, in these cases, the WER impact is minimal and
even approaches the performance observed with benign examples. Our detectors generally struggle
against the Genetic attack, likely due to its limited impact on the WER.

Table 19: AUROC assessment to detect AEs using GCs and NNs across targeted attacks. Evaluation
of GCs based on mean entropy and mean median.

C&W Psychoacoustic
Model TD GC: Entropy-Median NN TD GC: Entropy-Median NN

LSTM (It) 0.8923 0.987 - 0.998 0.9962 0.893 0.986 - 0.997 0.9963
LSTM (En) 0.9697 1.000 - 0.999 0.9992 0.970 1.000 - 0.999 0.9992
LSTM (En-LM) 0.9293 0.991 - 0.951 0.9903 0.942 0.992 - 0.956 0.9912
wav2vec (Ma) 0.9937 0.995 - 0.990 0.9937 0.994 0.992 - 0.990 0.9947
wav2vec (Ge) 0.9836 0.948 - 0.998 0.991 0.984 0.929 - 0.997 0.9889
Trf (Ma) 0.9828 0.990 - 0.989 0.9969 0.991 0.987 - 0.993 0.9941
Trf (En) 0.9828 1.000 - 1.000 1.000 0.990 0.999 - 1.000 0.9999
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Table 20: AUROC assessment to detect AEs using GCs and NNs across PGD and Genetic attacks.
Evaluation of GCs based on mean entropy and mean median characteristics. PGD using an SNR of
10 and 25. Genetic using 1,000 and 2,000 iterations.

PGD: 10 & 25 Genetic: 1,000 & 2,000
Model TD GC: Entropy-Median NN TD GC: Entropy-Median NN

LSTM (It) 0.724 - 0.715 0.917-0.916 & 0.934-0.939 0.935 - 0.939 0.525 - 0.544 0.577-0.592 & 0.560-0.579 0.689 - 0.681
LSTM (En) 0.735 - 0.687 0.990-0.973 & 0.942-0.960 0.992 - 0.980 0.525 - 0.529 0.587-0.510 & 0.606-0.497 0.676 - 0.685
LSTM (En-LM) 0.785 - 0.825 0.807-1.000 & 0.703-0.998 0.640 - 0.782 0.560 - 0.549 0.662-0.614 & 0.684-0.638 0.680 - 0.694
wav2vec (Ma) 0.854 - 0.774 0.864-0.903 & 0.819-0.837 0.908 - 0.838 0.667 - 0.648 0.648-0.713 & 0.569-0.666 0.757 - 0.725
wav2vec (Ge) 0.749 - 0.818 0.751-0.895 & 0.710-0.779 0.239 - 0.395 0.532 - 0.553 0.523-0.640 & 0.563-0.648 0.575 - 0.580
Trf (Ma) 0.858 - 0.859 0.998-0.869 & 0.996-0.762 0.943 - 0.907 0.585 - 0.585 0.748-0.648 & 0.748-0.648 0.841 - 0.841
Trf (En) 0.735 - 0.754 0.400-0.907 & 0.527-0.750 0.357 - 0.586 0.549 - 0.527 0.477-0.440 & 0.483-0.456 0.631 - 0.640

Table 21: AUROC assessment to detect Kenansville AEs using GCs and NNs. Evaluation of GCs
based on mean entropy and mean median. Evaluating the attack with an SNR of 10, 15, and 25.

Kenansville: 10 & 15 & 25
Model TD GC: Entropy-Median NN

LSTM (It) 0.684 - 0.598 - 0.525 0.885-0.825 & 0.761-0.724 & 0.537-0.561 0.921 - 0.856 - 0.600
LSTM (En) 0.762 - 0.633 - 0.512 0.867-0.888 & 0.714-0.722 & 0.522-0.495 0.894 - 0.783 - 0.560
LSTM (En-LM) 0.762 - 0.647 - 0.508 0.866-0.788 & 0.700-0.620 & 0.525-0.511 0.887 - 0.710 - 0.514
wav2vec (Ma) 0.895 - 0.612 - 0.454 0.966-0.967 & 0.708-0.697 & 0.523-0.506 0.970 - 0.764 - 0.569
wav2vec (Ge) 0.774 - 0.690 - 0.538 0.750-0.927 & 0.564-0.794 & 0.473-0.591 0.851 - 0.683 - 0.554
Trf (Ma) 0.896 - 0.835 - 0.533 0.998-0.999 & 0.947-0.923 & 0.584-0.554 0.998 - 0.970 - 0.665
Trf (En) 0.731 - 0.619 - 0.496 0.851-0.894 & 0.628-0.654 & 0.512-0.493 0.943 - 0.772 - 0.542

A.7 DETECTING PSYCHOACOUSTIC ATTACK

As described in Section 5.3, Tab. 22 present our classifiers’ performance w.r.t. adversarial exam-
ples from the Psychoacoustic attack, and Tab. 23 reports the goodness-of-fit performance of our
classifiers to Psychoacoustic AEs, aimed at maintaining an FPR below 1% (when applicable) and
achieving a minimum TPR of 50%.

Table 22: Comparing classifiers on clean and noisy data, evaluating AUROC for all models using
100 samples from the clean test set and 100 Psychoacoustic AEs. (∗) denotes best-performing score-
characteristic.

Noisy vs. Psychoacoustic data Benign vs. Psychoacoustic data
Model Score-Characteristic(∗) TD GC NN TD GC NN

LSTM (It) Mean-Median 0.8411 0.9655 0.9537 0.8930 0.9972 0.9962
LSTM (En) Mean-Median 0.9596 0.9969 0.9980 0.9699 0.9993 0.9990
LSTM (En-LM) Max-Max 0.9172 0.9857 0.9849 0.9416 0.9851 0.9856
wav2vec (Ma) Mean-Entropy 0.9812 0.9556 0.9668 0.9935 0.9915 0.9949
wav2vec (Ge) Max-Min 0.9555 0.9464 0.9922 0.9835 0.9884 0.9959
Trf (Ma) Median-Max 0.9868 0.9882 0.9743 0.9910 0.9980 0.9955
Trf (En) Max-Median 0.9542 0.9245 0.9750 0.9903 0.9998 0.9999

Average AUROC across all models 0.9422 0.9661 0.9778 0.9661 0.9942 0.9953

Table 23: Classification accuracies for classifiers, based on a threshold for a maximum 1% FPR (if
possible) and a minimum 50% TPR, using 100 benign data and 100 Psychoacoustic AEs.

Model TD GC EM=3 EM=5 EM=7 EM=9 NN

LSTM-LAS-CTC-It 72.50% / 0.05 98.00% / 0.01 94.50% / 0.01 92.50% / 0.01 90.00% / 0.01 91.50% / 0.00 95.00% / 0.01
LSTM-LAS-CTC-En 85.00% / 0.01 98.50% / 0.01 99.50% / 0.00 99.50% / 0.00 99.50% / 0.00 99.50% / 0.00 98.00% / 0.01
LSTM-LAS-CTC-En-lm 75.00% / 0.02 88.00% / 0.01 91.50% / 0.01 93.00% / 0.01 97.00% / 0.01 93.00% / 0.01 93.50% / 0.01
wav2vec2-CTC-Ma 96.50% / 0.01 97.50% / 0.01 97.50% / 0.01 96.00% / 0.00 90.50% / 0.00 92.50% / 0.00 97.00% / 0.00
wav2vec2-CTC-Ge 94.00% / 0.03 94.50% / 0.01 85.50% / 0.03 92.00% / 0.00 83.50% / 0.01 90.00% / 0.00 97.00% / 0.00
Trf-LAS-CTC-Ma 96.00% / 0.01 98.00% / 0.01 95.00% / 0.01 96.50% / 0.00 96.00% / 0.00 95.50% / 0.00 95.50% / 0.00
Trf-LAS-CTC-En 93.00% / 0.01 99.00% / 0.01 99.00% / 0.01 99.50% / 0.01 99.50% / 0.01 99.50% / 0.01 99.00% / 0.01

Avg. accuracy / FPR 87.43% / 0.02 96.21% / 0.01 94.64% / 0.01 95.57% / 0.00 93.71% / 0.01 94.50% / 0.00 96.43% / 0.01
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A.8 PERFORMANCE OF GAUSSIAN CLASSIFIERS

We build 24 Gaussian classifiers for each model based on 24 single scores. We then compare these
GCs using both clean and noisy data, assessing AUROC and the area under the precision-recall curve
(AUPRC) on a validation set; with 100 samples from the clean test dataset, 100 from C&W AEs,
and 100 from Psychoacoustic AEs. The results are presented in the following sequence: Tab. 24 cor-
responds to the LSTM-LAS-CTC-It model, Tab. 25 corresponds to the LSTM-LAS-CTC-En model,
Tab. 26 corresponds to the LSTM-LAS-CTC-En-lm model, Tab. 27 corresponds to the wav2vec2-
CTC-Ma model, Tab. 28 corresponds to the wav2vec2-CTC-Ge model, Tab. 29 corresponds to the
Trf-LAS-CTC-Ma model, Tab. 30 corresponds to the Trf-LAS-CTC-En model. The best AUROC
value are shown in bold, as well as the top-performing score characteristic corresponding to the
C&W attack.

Table 24: Comparing GCs on clean and noisy data for the LSTM-LAS-CTC-It model, assessing
AUROC/AUPRC with 100 samples each from clean test data, C&W AEs, and Psychoacoustic AEs.

GC C&W attack Psychoacoustic attack
Score-Characteristic Noisy vs. adversarial data Benign vs. adversarial data Noisy vs. adversarial data Benign vs. adversarial data

Mean-Entropy 93.60% / 95.42% 98.12% / 98.50% 93.01% / 94.61% 97.69% / 98.00%
Max-Entropy 81.22% / 85.77% 95.71% / 95.80% 80.72% / 85.07% 95.13% / 94.90%
Min-Entropy 64.96% / 54.46% 66.02% / 54.76% 72.40% / 61.08% 73.72% / 62.16%
Median-Entropy 90.92% / 87.70% 92.76% / 88.47% 90.11% / 87.69% 91.96% / 87.62%
Mean-Max 92.88% / 94.14% 96.28% / 97.09% 92.14% / 92.44% 95.56% / 95.35%
Max-Max 73.95% / 65.94% 74.26% / 66.06% 74.36% / 66.37% 74.82% / 66.59%
Min-Max 80.64% / 83.77% 90.81% / 90.77% 79.98% / 82.85% 89.84% / 89.24%
Median-Max 89.30% / 84.59% 90.27% / 82.59% 88.03% / 82.54% 89.11% / 81.68%
Mean-Min 94.57% / 96.02% 98.79% / 98.95% 94.60% / 96.11% 98.87% / 99.03%
Max-Min 80.90% / 86.15% 97.06% / 97.22% 80.84% / 86.29% 97.20% / 97.36%
Min-Min 75.82% / 72.01% 74.92% / 69.92% 76.75% / 72.28% 75.65% / 70.16%
Median-Min 92.85% / 95.22% 98.55% / 98.83% 92.92% / 95.33% 98.60% / 98.88%
Mean-Median 95.91% / 96.81% 98.87% / 99.00% 95.92% / 96.87% 98.87% / 99.02%
Max-Median 84.01% / 88.29% 96.21% / 96.98% 83.32% / 87.82% 96.02% / 96.87%
Min-Median 82.40% / 78.14% 80.03% / 74.35% 80.50% / 73.84% 78.83% / 71.63%
Median-Median 93.87% / 95.73% 98.05% / 98.51% 93.95% / 95.85% 98.15% / 98.60%
Mean-JSD 44.35% / 48.13% 49.17% / 53.87% 43.34% / 46.66% 48.06% / 53.75%
Max-JSD 85.56% / 86.74% 94.79% / 92.38% 84.33% / 82.18% 93.37% / 87.59%
Min-JSD 57.27% / 48.97% 55.89% / 49.16% 55.54% / 48.03% 54.05% / 48.18%
Median-JSD 46.51% / 44.71% 43.16% / 42.21% 46.30% / 43.99% 43.05% / 42.29%
Mean-KLD 64.44% / 69.14% 75.38% / 78.60% 64.72% / 69.94% 75.50% / 78.86%
Max-KLD 69.96% / 69.59% 79.28% / 78.90% 70.62% / 72.10% 79.67% / 79.53%
Min-KLD 65.73% / 54.20% 64.87% / 54.39% 64.19% / 53.16% 63.02% / 53.06%
Median-KLD 40.87% / 41.23% 40.29% / 41.31% 41.52% / 41.45% 40.65% / 41.47%

Table 25: Comparing GCs on clean and noisy data for the LSTM-LAS-CTC-En model, assessing
AUROC/AUPRC with 100 samples each from clean test data, C&W AEs, and Psychoacoustic AEs.

GC C&W attack Psychoacoustic attack
Score-Characteristic Noisy vs. adversarial data Benign vs. adversarial data Noisy vs. adversarial data Benign vs. adversarial data

Mean-Entropy 99.46% / 99.43% 99.79% / 99.79% 99.51% / 99.49% 99.81% / 99.81%
Max-Entropy 98.32% / 98.33% 99.45% / 99.39% 98.47% / 98.55% 99.60% / 99.59%
Min-Entropy 69.62% / 61.50% 67.92% / 61.43% 68.84% / 61.19% 66.86% / 60.79%
Median-Entropy 99.28% / 99.38% 99.09% / 99.46% 99.45% / 99.54% 99.13% / 99.50%
Mean-Max 98.19% / 95.59% 98.54% / 96.25% 98.24% / 97.06% 98.63% / 97.44%
Max-Max 68.23% / 61.31% 68.55% / 61.75% 68.47% / 61.43% 68.81% / 61.84%
Min-Max 96.18% / 95.51% 98.05% / 96.56% 96.23% / 94.97% 98.08% / 95.77%
Median-Max 99.20% / 99.30% 99.00% / 99.37% 99.33% / 99.43% 99.07% / 99.43%
Mean-Min 97.43% / 97.83% 98.97% / 99.02% 97.58% / 97.90% 98.97% / 98.99%
Max-Min 92.52% / 93.11% 94.71% / 95.08% 92.55% / 93.04% 94.88% / 95.21%
Min-Min 55.12% / 53.24% 58.95% / 56.46% 56.52% / 54.70% 59.94% / 57.26%
Median-Min 97.37% / 97.90% 99.10% / 99.19% 97.78% / 98.25% 99.35% / 99.40%
Mean-Median 99.81% / 99.82% 99.98% / 99.98% 99.82% / 99.83% 99.96% / 99.96%
Max-Median 98.83% / 99.03% 99.94% / 99.94% 98.79% / 98.99% 99.92% / 99.92%
Min-Median 69.64% / 70.68% 71.00% / 71.43% 67.19% / 68.84% 68.54% / 69.41%
Median-Median 99.28% / 99.37% 99.81% / 99.80% 99.20% / 99.29% 99.74% / 99.71%
Mean-JSD 93.06% / 94.07% 93.12% / 94.35% 93.05% / 94.08% 93.14% / 94.40%
Max-JSD 97.92% / 97.84% 98.72% / 98.08% 97.93% / 97.84% 98.71% / 98.07%
Min-JSD 88.13% / 78.33% 88.55% / 80.71% 87.15% / 78.47% 87.75% / 81.33%
Median-JSD 24.99% / 44.39% 24.07% / 42.58% 25.11% / 44.72% 24.14% / 43.02%
Mean-KLD 99.25% / 99.43% 98.03% / 98.87% 99.26% / 99.43% 98.03% / 98.87%
Max-KLD 80.43% / 78.57% 78.32% / 78.30% 77.90% / 72.12% 75.80% / 72.18%
Min-KLD 86.51% / 79.26% 85.98% / 78.56% 86.19% / 77.83% 85.37% / 76.93%
Median-KLD 29.70% / 48.02% 25.91% / 46.39% 29.60% / 48.06% 25.71% / 46.43%

20



Under review as a conference paper at ICLR 2024

Table 26: Comparing GCs on clean and noisy data for the LSTM-LAS-CTC-En-lm model, assessing
AUROC/AUPRC with 100 samples each from clean test data, C&W AEs, and Psychoacoustic AEs.

GC C&W attack Psychoacoustic attack
Score-Characteristic Noisy vs. adversarial data Benign vs. adversarial data Noisy vs. adversarial data Benign vs. adversarial data

Mean-Entropy 98.89% / 99.23% 98.95% / 99.31% 98.99% / 99.27% 99.06% / 99.36%
Max-Entropy 96.04% / 95.74% 97.75% / 97.27% 95.87% / 95.45% 97.45% / 96.82%
Min-Entropy 99.22% / 99.35% 99.13% / 99.25% 99.08% / 99.23% 98.95% / 99.08%
Median-Entropy 98.46% / 99.03% 99.35% / 99.50% 98.58% / 99.08% 99.43% / 99.55%
Mean-Max 97.60% / 98.38% 98.50% / 99.14% 97.75% / 98.46% 98.58% / 99.17%
Max-Max 99.49% / 99.54% 99.46% / 99.50% 99.39% / 99.46% 99.36% / 99.41%
Min-Max 93.61% / 90.53% 96.06% / 92.45% 93.16% / 88.20% 95.43% / 89.89%
Median-Max 98.29% / 98.91% 98.67% / 99.21% 98.43% / 98.99% 98.77% / 99.25%
Mean-Min 73.03% / 74.13% 73.14% / 74.06% 74.05% / 74.86% 74.05% / 74.80%
Max-Min 65.05% / 63.48% 67.34% / 66.45% 64.44% / 60.30% 66.39% / 64.77%
Min-Min 72.77% / 72.42% 71.40% / 68.60% 72.93% / 72.33% 71.40% / 68.17%
Median-Min 60.71% / 59.09% 60.65% / 57.99% 61.52% / 59.08% 61.37% / 57.98%
Mean-Median 96.03% / 96.48% 95.57% / 95.98% 96.31% / 96.69% 96.01% / 96.29%
Max-Median 92.94% / 92.10% 95.19% / 94.81% 93.11% / 92.65% 95.37% / 95.24%
Min-Median 88.21% / 88.76% 86.50% / 86.93% 87.26% / 86.57% 85.38% / 84.77%
Median-Median 74.48% / 73.29% 74.55% / 73.65% 76.36% / 76.68% 76.51% / 76.86%
Mean-JSD 98.08% / 98.66% 98.45% / 99.03% 98.18% / 98.74% 98.53% / 99.09%
Max-JSD 97.06% / 97.27% 97.56% / 97.42% 96.68% / 96.43% 97.17% / 96.68%
Min-JSD 61.86% / 58.69% 64.81% / 57.07% 63.04% / 58.82% 65.87% / 57.35%
Median-JSD 98.48% / 99.01% 98.75% / 99.20% 98.55% / 99.04% 98.73% / 99.20%
Mean-KLD 98.36% / 99.09% 98.66% / 99.22% 98.40% / 99.10% 98.70% / 99.24%
Max-KLD 80.95% / 77.12% 81.65% / 75.15% 81.02% / 77.34% 81.83% / 76.04%
Min-KLD 83.43% / 85.42% 88.07% / 88.05% 83.16% / 85.20% 87.87% / 87.53%
Median-KLD 98.08% / 98.75% 98.73% / 99.19% 98.26% / 98.92% 98.87% / 99.32%

Table 27: Comparing GCs on clean and noisy data for the wav2vec2-CTC-Ma model, assessing
AUROC/AUPRC with 100 samples each from clean test data, C&W AEs, and Psychoacoustic AEs.

GC C&W attack Psychoacoustic attack
Score-Characteristic Noisy vs. adversarial data Benign vs. adversarial data Noisy vs. adversarial data Benign vs. adversarial data

Mean-Entropy 93.04% / 95.16% 98.47% / 98.61% 93.59% / 95.63% 98.77% / 98.90%
Max-Entropy 91.91% / 94.64% 96.56% / 97.57% 91.68% / 94.49% 96.51% / 97.51%
Min-Entropy 47.55% / 49.91% 48.01% / 49.81% 47.38% / 49.91% 47.86% / 49.84%
Median-Entropy 86.18% / 81.51% 87.42% / 80.76% 86.02% / 82.84% 87.25% / 82.93%
Mean-Max 80.18% / 74.73% 85.62% / 77.48% 82.05% / 76.15% 87.77% / 79.78%
Max-Max 46.55% / 49.28% 47.10% / 50.65% 48.81% / 49.87% 49.35% / 51.46%
Min-Max 94.13% / 94.88% 97.52% / 97.00% 93.41% / 94.04% 96.86% / 96.23%
Median-Max 69.32% / 63.98% 70.52% / 61.90% 67.79% / 64.09% 69.10% / 61.98%
Mean-Min 80.56% / 76.94% 86.24% / 81.21% 80.98% / 78.34% 86.65% / 83.25%
Max-Min 89.44% / 90.26% 95.87% / 94.33% 90.44% / 92.36% 96.88% / 96.71%
Min-Min 44.87% / 47.62% 44.48% / 48.22% 46.93% / 49.43% 46.34% / 49.11%
Median-Min 88.04% / 87.10% 91.44% / 89.60% 88.89% / 89.11% 92.15% / 91.85%
Mean-Median 93.83% / 95.26% 98.14% / 98.20% 94.31% / 95.75% 98.59% / 98.66%
Max-Median 87.83% / 87.95% 91.19% / 89.54% 89.33% / 91.80% 92.72% / 93.85%
Min-Median 73.22% / 67.11% 75.58% / 70.82% 72.64% / 67.31% 75.04% / 70.58%
Median-Median 87.05% / 84.71% 89.81% / 86.85% 88.70% / 87.70% 91.42% / 89.31%
Mean-JSD 80.66% / 76.71% 81.21% / 76.49% 78.88% / 71.28% 79.04% / 70.22%
Max-JSD 92.95% / 87.95% 94.22% / 89.17% 93.57% / 90.23% 94.97% / 91.10%
Min-JSD 57.26% / 55.91% 62.05% / 59.30% 59.66% / 56.52% 64.35% / 60.42%
Median-JSD 80.90% / 79.42% 77.87% / 77.49% 80.08% / 78.89% 76.91% / 76.89%
Mean-KLD 92.26% / 89.71% 95.05% / 91.98% 92.40% / 90.90% 95.33% / 93.27%
Max-KLD 69.09% / 64.16% 76.39% / 71.98% 70.57% / 65.66% 77.48% / 73.35%
Min-KLD 57.10% / 55.29% 61.31% / 57.78% 59.26% / 57.74% 63.30% / 59.76%
Median-KLD 87.11% / 86.61% 86.85% / 87.33% 87.59% / 88.24% 87.35% / 88.85%

21



Under review as a conference paper at ICLR 2024

Table 28: Comparing GCs on clean and noisy data for the wav2vec2-CTC-Ge model, assessing
AUROC/AUPRC with 100 samples each from clean test data, C&W AEs, and Psychoacoustic AEs.

GC C&W attack Psychoacoustic attack
Score-Characteristic Noisy vs. adversarial data Benign vs. adversarial data Noisy vs. adversarial data Benign vs. adversarial data

Mean-Entropy 96.59% / 96.09% 97.82% / 97.55% 93.94% / 93.13% 95.77% / 95.06%
Max-Entropy 95.87% / 96.82% 98.32% / 98.67% 93.14% / 91.81% 96.12% / 93.33%
Min-Entropy 65.23% / 58.29% 66.77% / 60.20% 68.85% / 63.13% 70.70% / 64.21%
Median-Entropy 97.07% / 96.74% 97.82% / 97.20% 95.92% / 94.82% 97.13% / 95.34%
Mean-Max 90.00% / 89.61% 91.76% / 91.78% 87.29% / 86.50% 89.58% / 89.15%
Max-Max 64.18% / 58.44% 65.21% / 59.04% 65.18% / 59.15% 66.21% / 59.75%
Min-Max 92.77% / 94.22% 93.13% / 95.28% 89.33% / 87.56% 90.03% / 88.66%
Median-Max 96.52% / 94.83% 97.22% / 95.22% 95.71% / 94.13% 96.97% / 94.93%
Mean-Min 98.42% / 98.78% 99.16% / 99.51% 96.61% / 96.73% 98.49% / 98.74%
Max-Min 96.53% / 97.25% 99.55% / 99.68% 94.30% / 95.15% 98.71% / 98.86%
Min-Min 67.02% / 61.91% 77.55% / 75.27% 65.30% / 60.29% 76.52% / 73.77%
Median-Min 98.20% / 98.67% 99.07% / 99.49% 96.32% / 96.68% 98.63% / 99.02%
Mean-Median 98.82% / 99.16% 99.25% / 99.57% 97.62% / 97.96% 99.04% / 99.36%
Max-Median 97.22% / 97.86% 99.45% / 99.63% 95.12% / 95.87% 98.86% / 99.09%
Min-Median 70.49% / 69.20% 78.55% / 74.29% 69.07% / 63.69% 75.94% / 67.67%
Median-Median 98.71% / 99.06% 99.20% / 99.54% 97.39% / 97.77% 99.01% / 99.37%
Mean-JSD 58.86% / 56.90% 59.26% / 59.52% 59.25% / 58.03% 59.55% / 59.80%
Max-JSD 64.57% / 54.88% 65.00% / 54.70% 58.96% / 51.52% 59.40% / 51.39%
Min-JSD 40.62% / 42.72% 42.76% / 43.14% 37.17% / 40.86% 39.20% / 41.35%
Median-JSD 46.32% / 48.11% 44.63% / 46.90% 48.33% / 48.44% 47.14% / 47.42%
Mean-KLD 98.48% / 98.81% 98.42% / 98.82% 97.69% / 98.05% 97.58% / 98.02%
Max-KLD 86.47% / 81.46% 89.45% / 83.32% 89.66% / 89.50% 92.99% / 92.18%
Min-KLD 41.15% / 42.52% 45.35% / 46.92% 38.02% / 41.01% 41.60% / 43.86%
Median-KLD 71.56% / 78.53% 58.32% / 70.04% 70.28% / 72.22% 57.87% / 64.48%

Table 29: Comparing GCs on clean and noisy data for the Trf-LAS-CTC-Ma model, assessing
AUROC/AUPRC with 100 samples each from clean test data, C&W AEs, and Psychoacoustic AEs.

GC C&W attack Psychoacoustic attack
Score-Characteristic Noisy vs. adversarial data Benign vs. adversarial data Noisy vs. adversarial data Benign vs. adversarial data

Mean-Entropy 96.40% / 96.43% 98.45% / 98.06% 96.52% / 97.23% 99.02% / 99.13%
Max-Entropy 94.49% / 94.62% 97.14% / 96.86% 94.05% / 94.70% 97.10% / 97.04%
Min-Entropy 72.69% / 67.68% 76.23% / 67.65% 76.59% / 73.99% 80.11% / 74.27%
Median-Entropy 97.58% / 95.16% 98.88% / 96.51% 97.68% / 96.72% 99.00% / 97.56%
Mean-Max 93.70% / 93.83% 96.40% / 95.96% 93.50% / 94.59% 96.58% / 96.97%
Max-Max 69.42% / 63.29% 74.44% / 66.72% 68.95% / 62.58% 73.62% / 65.87%
Min-Max 93.92% / 92.87% 96.16% / 94.56% 92.79% / 92.54% 95.32% / 94.20%
Median-Max 97.54% / 96.86% 99.02% / 98.00% 97.49% / 96.30% 98.98% / 97.20%
Mean-Min 95.74% / 96.04% 98.77% / 98.46% 96.17% / 96.70% 98.98% / 98.95%
Max-Min 93.12% / 93.81% 97.34% / 96.94% 92.72% / 94.15% 97.72% / 97.82%
Min-Min 85.24% / 82.71% 88.82% / 85.63% 86.86% / 84.86% 90.13% / 86.73%
Median-Min 93.04% / 94.14% 97.44% / 97.55% 93.09% / 94.20% 97.43% / 97.66%
Mean-Median 95.01% / 95.26% 98.13% / 97.78% 95.52% / 95.94% 98.38% / 98.26%
Max-Median 91.35% / 90.84% 92.88% / 91.94% 90.56% / 91.23% 92.21% / 92.43%
Min-Median 82.69% / 80.71% 86.73% / 83.25% 85.16% / 82.30% 89.08% / 85.54%
Median-Median 91.26% / 92.40% 95.82% / 95.87% 91.55% / 92.59% 96.00% / 96.10%
Mean-JSD 52.98% / 52.20% 54.71% / 53.46% 53.21% / 52.81% 54.48% / 54.20%
Max-JSD 73.53% / 66.82% 74.15% / 65.70% 83.01% / 76.46% 84.50% / 76.49%
Min-JSD 90.71% / 83.49% 90.96% / 83.14% 82.17% / 74.58% 82.22% / 72.62%
Median-JSD 94.45% / 94.53% 96.53% / 95.51% 94.07% / 93.05% 96.01% / 93.55%
Mean-KLD 80.82% / 79.41% 84.47% / 84.13% 80.27% / 76.63% 84.15% / 81.26%
Max-KLD 73.86% / 66.19% 75.07% / 68.79% 73.29% / 65.43% 74.50% / 68.51%
Min-KLD 88.20% / 86.28% 89.43% / 87.20% 79.20% / 76.64% 80.91% / 77.29%
Median-KLD 94.43% / 94.82% 96.89% / 95.78% 93.64% / 91.61% 96.37% / 93.15%
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Table 30: Comparing GCs on clean and noisy data for the Trf-LAS-CTC-En model, assessing AU-
ROC/AUPRC with 100 samples each from clean test data, C&W AEs, and Psychoacoustic AEs.

GC C&W attack Psychoacoustic attack
Score-Characteristic Noisy vs. adversarial data Benign vs. adversarial data Noisy vs. adversarial data Benign vs. adversarial data

Mean-Entropy 98.97% / 99.11% 99.99% / 99.99% 97.94% / 97.96% 99.59% / 99.51%
Max-Entropy 95.09% / 96.63% 99.89% / 99.89% 93.97% / 93.80% 98.95% / 97.00%
Min-Entropy 93.52% / 91.42% 96.35% / 92.72% 92.71% / 91.84% 96.29% / 94.21%
Median-Entropy 98.46% / 98.85% 99.97% / 99.97% 97.89% / 98.36% 99.84% / 99.85%
Mean-Max 98.61% / 98.80% 99.94% / 99.94% 96.72% / 96.35% 98.84% / 98.44%
Max-Max 92.48% / 90.88% 96.33% / 94.28% 91.38% / 89.91% 96.19% / 93.95%
Min-Max 92.52% / 90.97% 96.82% / 94.17% 90.32% / 88.30% 94.86% / 91.34%
Median-Max 98.35% / 98.78% 99.92% / 99.92% 97.87% / 98.34% 99.83% / 99.84%
Mean-Min 97.33% / 98.08% 99.85% / 99.87% 96.66% / 97.61% 99.79% / 99.83%
Max-Min 90.05% / 94.25% 99.99% / 99.99% 90.09% / 94.22% 99.99% / 99.99%
Min-Min 90.54% / 89.08% 93.38% / 91.83% 89.48% / 86.17% 92.48% / 89.41%
Median-Min 97.17% / 97.87% 99.84% / 99.86% 96.18% / 97.09% 99.75% / 99.80%
Mean-Median 98.64% / 99.00% 99.98% / 99.98% 98.21% / 98.67% 99.93% / 99.93%
Max-Median 92.99% / 95.66% 100.00% / 100.00% 92.69% / 95.41% 100.00% / 100.00%
Min-Median 93.07% / 92.56% 95.60% / 95.16% 92.30% / 91.37% 94.98% / 94.35%
Median-Median 98.97% / 99.19% 99.99% / 99.99% 98.60% / 98.92% 99.96% / 99.96%
Mean-JSD 57.15% / 58.76% 56.21% / 56.74% 59.34% / 59.40% 58.64% / 58.36%
Max-JSD 96.64% / 96.57% 98.40% / 97.56% 96.60% / 96.55% 98.51% / 97.61%
Min-JSD 81.69% / 75.06% 81.12% / 73.62% 79.60% / 70.53% 78.99% / 68.75%
Median-JSD 91.80% / 87.57% 94.00% / 87.69% 88.28% / 80.01% 90.39% / 80.93%
Mean-KLD 86.12% / 90.11% 87.97% / 91.04% 86.83% / 90.56% 88.68% / 91.65%
Max-KLD 87.34% / 88.25% 89.12% / 89.82% 88.33% / 88.08% 89.86% / 89.47%
Min-KLD 71.15% / 66.31% 75.57% / 67.19% 69.37% / 67.44% 74.63% / 69.02%
Median-KLD 88.82% / 80.65% 90.94% / 80.30% 86.70% / 79.41% 88.63% / 77.89%

A.9 GOODNESS OF FIT IN BINARY CLASSIFICATION

To evaluate the performance of our classifiers, we compute various goodness-of-fit metrics, includ-
ing accuracy, false positive rate (FPR), true positive rate (TPR), precision, recall, and F1 score.
These metrics are derived from the analysis of two types of errors: false positives (FP) and true
negatives (TN) across all models. To calculate these metrics, we employ a conservative threshold to
achieve a maximum 1% FPR (if applicable) while maintaining a minimum 50% TPR.

LSTM-LAS-CTC-It model performance Tab. 31: C&W AEs vs. benign data, Tab. 32: C&W
AEs vs. noisy data, Tab. 33: Psychoacoustic AEs vs. benign data, Tab. 34: Psychoacoustic AEs vs.
noisy data.

Table 31: LSTM-LAS-CTC-It binary classifiers’ goodness-of-fit metrics, using a threshold of max-
imum 1% FPR (if available) and a minimum 50% TPR, with 100 benign data and 100 C&W AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 72.50% 50 5 95 50 0.05 0.50 0.91 0.50 0.65
GC 98.00% 97 1 99 3 0.01 0.97 0.99 0.97 0.98
EM=3 94.00% 89 1 99 11 0.01 0.89 0.99 0.89 0.94
EM=5 92.50% 86 1 99 14 0.01 0.86 0.99 0.86 0.92
EM=7 90.50% 82 1 99 18 0.01 0.82 0.99 0.82 0.90
EM=9 91.50% 84 1 99 16 0.01 0.84 0.99 0.84 0.91
NN 95.00% 91 1 99 9 0.01 0.91 0.99 0.91 0.95

Table 32: LSTM-LAS-CTC-It binary classifiers’ goodness-of-fit metrics, using a threshold of max-
imum 1% FPR (if applicable) and a minimum 50% TPR, with 100 noisy data and 100 C&W AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 69.50% 50 11 89 50 0.11 0.50 0.82 0.50 0.62
GC 92.00% 85 1 99 15 0.01 0.85 0.99 0.85 0.91
EM=3 84.50% 70 1 99 30 0.01 0.70 0.99 0.70 0.82
EM=5 82.00% 65 1 99 35 0.01 0.65 0.98 0.65 0.78
EM=7 81.00% 63 1 99 37 0.01 0.63 0.98 0.63 0.77
EM=9 82.00% 65 1 99 35 0.01 0.65 0.98 0.65 0.78
NN 84.50% 70 1 99 30 0.01 0.70 0.99 0.70 0.82
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Table 33: LSTM-LAS-CTC-It binary classifiers’ goodness-of-fit metrics, with a threshold of maxi-
mum 1% FPR (if exist) and a minimum 50% TPR, with 100 benign and 100 Psychoacoustic AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 72.50% 50 5 95 50 0.05 0.50 0.91 0.50 0.65
GC 98.00% 97 1 99 3 0.01 0.97 0.99 0.97 0.98
EM=3 94.50% 90 1 99 10 0.01 0.90 0.99 0.90 0.94
EM=5 92.50% 86 1 99 14 0.01 0.86 0.99 0.86 0.92
EM=7 90.00% 81 1 99 19 0.01 0.81 0.99 0.81 0.89
EM=9 91.50% 83 0 100 17 0.00 0.83 1.00 0.83 0.91
NN 95.00% 91 1 99 9 0.01 0.91 0.99 0.91 0.95

Table 34: LSTM-LAS-CTC-It binary classifiers’ goodness-of-fit metrics, with a threshold of max-
imum 1% FPR (if exist) and a minimum 50% TPR, with 100 noisy data and 100 Psychoacoustic
AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 69.50% 50 11 89 50 0.11 0.50 0.82 0.50 0.62
GC 92.00% 85 1 99 15 0.01 0.85 0.99 0.85 0.91
EM=3 85.00% 71 1 99 29 0.01 0.71 0.99 0.71 0.83
EM=5 82.50% 66 1 99 34 0.01 0.66 0.99 0.66 0.79
EM=7 81.50% 64 1 99 36 0.01 0.64 0.98 0.64 0.78
EM=9 81.50% 64 1 99 36 0.01 0.64 0.98 0.64 0.78
NN 85.00% 71 1 99 29 0.01 0.71 0.99 0.71 0.83

LSTM-LAS-CTC-En model performance Tab. 35: C&W AEs vs. benign data, Tab. 36: C&W
AEs vs. noisy data, Tab. 37: Psychoacoustic AEs vs. benign data, Tab. 38: Psychoacoustic AEs vs.
noisy data.

Table 35: LSTM-LAS-CTC-En binary classifiers’ goodness-of-fit metrics, using a threshold of max-
imum 1% FPR (if available) and a minimum 50% TPR, with 100 benign data and 100 C&W AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 85.00% 70 1 100 29 0.01 0.71 0.99 0.71 0.82
GC 98.50% 98 1 99 2 0.01 0.98 0.99 0.98 0.98
EM=3 99.50% 99 0 100 1 0.00 0.99 1.00 0.99 0.99
EM=5 99.50% 99 0 100 1 0.00 0.99 1.00 0.99 0.99
EM=7 99.50% 99 0 100 1 0.00 0.99 1.00 0.99 0.99
EM=9 99.50% 99 0 100 1 0.00 0.99 1.00 0.99 0.99
NN 98.50% 97 0 100 3 0.00 0.97 1.00 0.97 0.98

Table 36: LSTM-LAS-CTC-En binary classifiers’ goodness-of-fit metrics, using a threshold of max-
imum 1% FPR (if applicable) and a minimum 50% TPR, with 100 noisy data and 100 C&W AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 80.00% 60 1 100 39 0.01 0.61 0.98 0.61 0.75
GC 97.00% 95 1 99 5 0.01 0.95 0.99 0.95 0.97
EM=3 96.50% 93 0 100 7 0.00 0.93 1.00 0.93 0.96
EM=5 97.00% 94 0 100 6 0.00 0.94 1.00 0.94 0.97
EM=7 97.50% 95 0 100 5 0.00 0.95 1.00 0.95 0.97
EM=9 97.50% 95 0 100 5 0.00 0.95 1.00 0.95 0.97
NN 99.00% 99 1 99 1 0.01 0.99 0.99 0.99 0.99
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Table 37: LSTM-LAS-CTC-En binary classifiers’ goodness-of-fit metrics, with a threshold of max-
imum 1% FPR (if exist) and a minimum 50% TPR, with 100 benign and 100 Psychoacoustic AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 85.00% 70 1 100 29 0.01 0.71 0.99 0.71 0.82
GC 98.50% 98 1 99 2 0.01 0.98 0.99 0.98 0.98
EM=3 99.50% 99 0 100 1 0.00 0.99 1.00 0.99 0.99
EM=5 99.50% 99 0 100 1 0.00 0.99 1.00 0.99 0.99
EM=7 99.50% 99 0 100 1 0.00 0.99 1.00 0.99 0.99
EM=9 99.50% 99 0 100 1 0.00 0.99 1.00 0.99 0.99
NN 98.00% 97 1 99 3 0.01 0.97 0.99 0.97 0.98

Table 38: LSTM-LAS-CTC-En binary classifiers’ goodness-of-fit metrics, with a threshold of max-
imum 1% FPR (if exist) and a minimum 50% TPR, with 100 noisy data and 100 Psychoacoustic
AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 80.00% 60 1 100 39 0.01 0.61 0.98 0.61 0.75
GC 98.50% 98 1 99 2 0.01 0.98 0.99 0.98 0.98
EM=3 96.50% 93 0 100 7 0.00 0.93 1.00 0.93 0.96
EM=5 97.00% 94 0 100 6 0.00 0.94 1.00 0.94 0.97
EM=7 97.50% 95 0 100 5 0.00 0.95 1.00 0.95 0.97
EM=9 97.50% 95 0 100 5 0.00 0.95 1.00 0.95 0.97
NN 97.00% 95 1 99 5 0.01 0.95 0.99 0.95 0.97

LSTM-LAS-CTC-En-lm model performance Tab. 39: C&W AEs vs. benign data, Tab. 40:
C&W AEs vs. noisy data, Tab. 41: Psychoacoustic AEs vs. benign data, Tab. 42: Psychoacoustic
AEs vs. noisy data.

Table 39: LSTM-LAS-CTC-En-lm binary classifiers’ goodness-of-fit metrics, using a threshold of
maximum 1% FPR (if available) and a minimum 50% TPR, with 100 benign data and 100 C&W
AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 74.00% 50 2 98 50 0.02 0.50 0.96 0.50 0.66
GC 90.50% 82 1 99 18 0.01 0.82 0.99 0.82 0.90
EM=3 91.00% 83 1 99 17 0.01 0.83 0.99 0.83 0.90
EM=5 92.50% 86 1 99 14 0.01 0.86 0.99 0.86 0.92
EM=7 97.00% 95 1 99 5 0.01 0.95 0.99 0.95 0.97
EM=9 92.50% 86 1 99 14 0.01 0.86 0.99 0.86 0.92
NN 95.00% 91 1 99 9 0.01 0.91 0.99 0.91 0.95

Table 40: LSTM-LAS-CTC-En-lm binary classifiers’ goodness-of-fit metrics, using a threshold of
maximum 1% FPR (if applicable) and a minimum 50% TPR, with 100 noisy data and 100 C&W
AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 73.00% 50 4 96 50 0.04 0.50 0.93 0.50 0.65
GC 90.00% 81 1 99 19 0.01 0.81 0.99 0.81 0.89
EM=3 87.00% 75 1 99 25 0.01 0.75 0.99 0.75 0.85
EM=5 88.50% 78 1 99 22 0.01 0.78 0.99 0.78 0.87
EM=7 93.00% 87 1 99 13 0.01 0.87 0.99 0.87 0.93
EM=9 89.50% 80 1 99 20 0.01 0.80 0.99 0.80 0.88
NN 92.50% 86 1 99 14 0.01 0.86 0.99 0.86 0.92
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Table 41: LSTM-LAS-CTC-En-lm binary classifiers’ goodness-of-fit metrics, with a threshold of
maximum 1% FPR (if exist) and a minimum 50% TPR, with 100 benign and 100 Psychoacoustic
AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 75.00% 52 2 98 48 0.02 0.52 0.96 0.52 0.68
GC 88.00% 77 1 99 23 0.01 0.77 0.99 0.77 0.87
EM=3 91.50% 84 1 99 16 0.01 0.84 0.99 0.84 0.91
EM=5 93.00% 87 1 99 13 0.01 0.87 0.99 0.87 0.93
EM=7 97.00% 95 1 99 5 0.01 0.95 0.99 0.95 0.97
EM=9 93.00% 87 1 99 13 0.01 0.87 0.99 0.87 0.93
NN 93.50% 88 1 99 12 0.01 0.88 0.99 0.88 0.93

Table 42: LSTM-LAS-CTC-En-lm binary classifiers’ goodness-of-fit metrics, with a threshold of
maximum 1% FPR (if exist) and a minimum 50% TPR, with 100 noisy data and 100 Psychoacoustic
AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 74.50% 52 3 97 48 0.03 0.52 0.95 0.52 0.67
GC 88.00% 77 1 99 23 0.01 0.77 0.99 0.77 0.87
EM=3 87.00% 75 1 99 25 0.01 0.75 0.99 0.75 0.85
EM=5 88.50% 78 1 99 22 0.01 0.78 0.99 0.78 0.87
EM=7 93.00% 87 1 99 13 0.01 0.87 0.99 0.87 0.93
EM=9 89.50% 80 1 99 20 0.01 0.80 0.99 0.80 0.88
NN 94.00% 89 1 99 11 0.01 0.89 0.99 0.89 0.94

wav2vec2-CTC-Ma model performance Tab. 43: C&W AEs vs. benign data, Tab. 44: C&W
AEs vs. noisy data, Tab. 45: Psychoacoustic AEs vs. benign data, Tab. 46: Psychoacoustic AEs vs.
noisy data.

Table 43: wav2vec2-CTC-Ma binary classifiers’ goodness-of-fit metrics, using a threshold of maxi-
mum 1% FPR (if available) and a minimum 50% TPR, with 100 benign data and 100 C&W AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 97.00% 95 1 99 5 0.01 0.95 0.99 0.95 0.97
GC 97.50% 96 1 99 4 0.01 0.96 0.99 0.96 0.97
EM=3 97.50% 96 1 99 4 0.01 0.96 0.99 0.96 0.97
EM=5 96.00% 92 0 100 8 0.00 0.92 1.00 0.92 0.96
EM=7 91.50% 83 0 100 17 0.00 0.83 1.00 0.83 0.91
EM=9 93.50% 87 0 100 13 0.00 0.87 1.00 0.87 0.93
NN 98.50% 98 1 99 2 0.01 0.98 0.99 0.98 0.98

Table 44: wav2vec2-CTC-Ma binary classifiers’ goodness-of-fit metrics, using a threshold of maxi-
mum 1% FPR (if applicable) and a minimum 50% TPR, with 100 noisy data and 100 C&W AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 69.50% 50 11 89 50 0.11 0.50 0.82 0.50 0.62
GC 92.00% 85 1 99 15 0.01 0.85 0.99 0.85 0.91
EM=3 84.50% 70 1 99 30 0.01 0.70 0.99 0.70 0.82
EM=5 82.00% 65 1 99 35 0.01 0.65 0.98 0.65 0.78
EM=7 81.00% 63 1 99 37 0.01 0.63 0.98 0.63 0.77
EM=9 82.00% 65 1 99 35 0.01 0.65 0.98 0.65 0.78
NN 84.50% 70 1 99 30 0.01 0.70 0.99 0.70 0.82
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Table 45: wav2vec2-CTC-Ma binary classifiers’ goodness-of-fit metrics, with a threshold of maxi-
mum 1% FPR (if exist) and a minimum 50% TPR, with 100 benign and 100 Psychoacoustic AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 72.50% 50 5 95 50 0.05 0.50 0.91 0.50 0.65
GC 98.00% 97 1 99 3 0.01 0.97 0.99 0.97 0.98
EM=3 94.50% 90 1 99 10 0.01 0.90 0.99 0.90 0.94
EM=5 92.50% 86 1 99 14 0.01 0.86 0.99 0.86 0.92
EM=7 90.00% 81 1 99 19 0.01 0.81 0.99 0.81 0.89
EM=9 91.50% 83 0 100 17 0.00 0.83 1.00 0.83 0.91
NN 95.00% 91 1 99 9 0.01 0.91 0.99 0.91 0.95

Table 46: wav2vec2-CTC-Ma binary classifiers’ goodness-of-fit metrics, with a threshold of max-
imum 1% FPR (if exist) and a minimum 50% TPR, with 100 noisy data and 100 Psychoacoustic
AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 69.50% 50 11 89 50 0.11 0.50 0.82 0.50 0.62
GC 92.00% 85 1 99 15 0.01 0.85 0.99 0.85 0.91
EM=3 85.00% 71 1 99 29 0.01 0.71 0.99 0.71 0.83
EM=5 82.50% 66 1 99 34 0.01 0.66 0.99 0.66 0.79
EM=7 81.50% 64 1 99 36 0.01 0.64 0.98 0.64 0.78
EM=9 81.50% 64 1 99 36 0.01 0.64 0.98 0.64 0.78
NN 85.00% 71 1 99 29 0.01 0.71 0.99 0.71 0.83

wav2vec2-CTC-Ge model performance Tab. 47: C&W AEs vs. benign data, Tab. 48: C&W
AEs vs. noisy data, Tab. 49: Psychoacoustic AEs vs. benign data, Tab. 50: Psychoacoustic AEs vs.
noisy data.

Table 47: wav2vec2-CTC-Ge binary classifiers’ goodness-of-fit metrics, using a threshold of maxi-
mum 1% FPR (if available) and a minimum 50% TPR, with 100 benign data and 100 C&W AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 94.00% 91 3 97 9 0.03 0.91 0.97 0.91 0.94
GC 98.00% 97 1 99 3 0.01 0.97 0.99 0.97 0.98
EM=3 97.00% 94 0 100 6 0.00 0.94 1.00 0.94 0.97
EM=5 98.00% 96 0 100 4 0.00 0.96 1.00 0.96 0.98
EM=7 96.50% 93 0 100 7 0.00 0.93 1.00 0.93 0.96
EM=9 98.00% 96 0 100 4 0.00 0.96 1.00 0.96 0.98
NN 97.00% 95 1 99 5 0.01 0.95 0.99 0.95 0.97

Table 48: wav2vec2-CTC-Ge binary classifiers’ goodness-of-fit metrics, using a threshold of maxi-
mum 1% FPR (if applicable) and a minimum 50% TPR, with 100 noisy data and 100 C&W AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 91.50% 91 8 92 9 0.08 0.91 0.92 0.91 0.91
GC 92.50% 86 1 99 14 0.01 0.86 0.99 0.86 0.92
EM=3 92.50% 85 0 100 15 0.00 0.85 1.00 0.85 0.92
EM=5 92.00% 84 0 100 16 0.00 0.84 1.00 0.84 0.91
EM=7 90.00% 81 1 99 19 0.01 0.81 0.99 0.81 0.89
EM=9 92.00% 84 0 100 16 0.00 0.84 1.00 0.84 0.91
NN 98.50% 97 0 100 3 0.00 0.97 1.00 0.97 0.98
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Table 49: wav2vec2-CTC-Ge binary classifiers’ goodness-of-fit metrics, with a threshold of maxi-
mum 1% FPR (if exist) and a minimum 50% TPR, with 100 benign and 100 Psychoacoustic AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 94.00% 91 3 97 9 0.03 0.91 0.97 0.91 0.94
GC 94.50% 90 1 99 10 0.01 0.90 0.99 0.90 0.94
EM=3 85.50% 74 3 97 26 0.03 0.74 0.96 0.74 0.84
EM=5 92.00% 84 0 100 16 0.00 0.84 1.00 0.84 0.91
EM=7 83.50% 68 1 99 32 0.01 0.68 0.99 0.68 0.80
EM=9 90.00% 80 0 100 20 0.00 0.80 1.00 0.80 0.89
NN 97.00% 94 0 100 6 0.00 0.94 1.00 0.94 0.97

Table 50: wav2vec2-CTC-Ge binary classifiers’ goodness-of-fit metrics, with a threshold of max-
imum 1% FPR (if exist) and a minimum 50% TPR, with 100 noisy data and 100 Psychoacoustic
AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 91.50% 91 8 92 9 0.08 0.91 0.92 0.91 0.91
GC 85.50% 72 1 99 28 0.01 0.72 0.99 0.72 0.83
EM=3 83.50% 70 3 97 30 0.03 0.70 0.96 0.70 0.81
EM=5 85.50% 71 0 100 29 0.00 0.71 1.00 0.71 0.83
EM=7 80.50% 62 1 99 38 0.01 0.62 0.98 0.62 0.76
EM=9 83.50% 68 1 99 32 0.01 0.68 0.99 0.68 0.80
NN 96.50% 94 1 99 6 0.01 0.94 0.99 0.94 0.96

Trf-LAS-CTC-Ma model performance Tab. 51: C&W AEs vs. benign data, Tab. 52: C&W AEs
vs. noisy data, Tab. 53: Psychoacoustic AEs vs. benign data, Tab. 54: Psychoacoustic AEs vs. noisy
data.

Table 51: Trf-LAS-CTC-Ma binary classifiers’ goodness-of-fit metrics, using a threshold of maxi-
mum 1% FPR (if available) and a minimum 50% TPR, with 100 benign data and 100 C&W AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 96.50% 94 1 99 6 0.01 0.94 0.99 0.94 0.96
GC 98.00% 97 1 99 3 0.01 0.97 0.99 0.97 0.98
EM=3 96.00% 93 1 99 7 0.01 0.93 0.99 0.93 0.96
EM=5 96.50% 93 0 100 7 0.00 0.93 1.00 0.93 0.96
EM=7 96.00% 92 0 100 8 0.00 0.92 1.00 0.92 0.96
EM=9 96.00% 92 0 100 8 0.00 0.92 1.00 0.92 0.96
NN 95.50% 92 1 99 8 0.01 0.92 0.99 0.92 0.95

Table 52: Trf-LAS-CTC-Ma binary classifiers’ goodness-of-fit metrics, using a threshold of maxi-
mum 1% FPR (if applicable) and a minimum 50% TPR, with 100 noisy data and 100 C&W AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 89.50% 80 1 99 20 0.01 0.80 0.99 0.80 0.88
GC 95.00% 91 1 99 9 0.01 0.91 0.99 0.91 0.95
EM=3 90.50% 82 1 99 18 0.01 0.82 0.99 0.82 0.90
EM=5 92.50% 85 0 100 15 0.00 0.85 1.00 0.85 0.92
EM=7 92.00% 84 0 100 16 0.00 0.84 1.00 0.84 0.91
EM=9 91.00% 82 0 100 18 0.00 0.82 1.00 0.82 0.90
NN 90.00% 81 1 99 19 0.01 0.81 0.99 0.81 0.89
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Table 53: Trf-LAS-CTC-Ma binary classifiers’ goodness-of-fit metrics, with a threshold of maxi-
mum 1% FPR (if exist) and a minimum 50% TPR, with 100 benign and 100 Psychoacoustic AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 96.00% 93 1 99 7 0.01 0.93 0.99 0.93 0.96
GC 98.00% 97 1 99 3 0.01 0.97 0.99 0.97 0.98
EM=3 95.00% 91 1 99 9 0.01 0.91 0.99 0.91 0.95
EM=5 96.50% 93 0 100 7 0.00 0.93 1.00 0.93 0.96
EM=7 96.00% 92 0 100 8 0.00 0.92 1.00 0.92 0.96
EM=9 95.50% 91 0 100 9 0.00 0.91 1.00 0.91 0.95
NN 95.50% 91 0 100 9 0.00 0.91 1.00 0.91 0.95

Table 54: Trf-LAS-CTC-Ma binary classifiers’ goodness-of-fit metrics, with a threshold of maxi-
mum 1% FPR (if exist) and a minimum 50% TPR, with 100 noisy data and 100 Psychoacoustic
AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 88.50% 78 1 99 22 0.01 0.78 0.99 0.78 0.87
GC 95.00% 91 1 99 9 0.01 0.91 0.99 0.91 0.95
EM=3 88.00% 77 1 99 23 0.01 0.77 0.99 0.77 0.87
EM=5 90.50% 81 0 100 19 0.00 0.81 1.00 0.81 0.90
EM=7 90.00% 80 0 100 20 0.00 0.80 1.00 0.80 0.89
EM=9 88.50% 77 0 100 23 0.00 0.77 1.00 0.77 0.87
NN 91.50% 84 1 99 16 0.01 0.84 0.99 0.84 0.91

Trf-LAS-CTC-En model performance Tab. 55: C&W AEs vs. benign data, Tab. 56: C&W AEs
vs. noisy data, Tab. 57: Psychoacoustic AEs vs. benign data, Tab. 58: Psychoacoustic AEs vs. noisy
data.

Table 55: Trf-LAS-CTC-En binary classifiers’ goodness-of-fit metrics, using a threshold of maxi-
mum 1% FPR (if available) and a minimum 50% TPR, with 100 benign data and 100 C&W AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 93.00% 87 1 99 13 0.01 0.87 0.99 0.87 0.93
GC 99.50% 100 1 99 0 0.01 1.00 0.99 1.00 1.00
EM=3 100.00% 100 0 100 0 0.00 1.00 1.00 1.00 1.00
EM=5 100.00% 100 0 100 0 0.00 1.00 1.00 1.00 1.00
EM=7 100.00% 100 0 100 0 0.00 1.00 1.00 1.00 1.00
EM=9 100.00% 100 0 100 0 0.00 1.00 1.00 1.00 1.00
NN 100.00% 100 0 100 0 0.00 1.00 1.00 1.00 1.00

Table 56: Trf-LAS-CTC-En binary classifiers’ goodness-of-fit metrics, using a threshold of maxi-
mum 1% FPR (if applicable) and a minimum 50% TPR, with 100 noisy data and 100 C&W AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 83.50% 73 6 94 27 0.06 0.73 0.92 0.73 0.82
GC 93.50% 88 1 99 12 0.01 0.88 0.99 0.88 0.93
EM=3 97.00% 94 0 100 6 0.00 0.94 1.00 0.94 0.97
EM=5 97.00% 94 0 100 6 0.00 0.94 1.00 0.94 0.97
EM=7 97.00% 94 0 100 6 0.00 0.94 1.00 0.94 0.97
EM=9 97.00% 94 0 100 6 0.00 0.94 1.00 0.94 0.97
NN 96.50% 93 0 100 7 0.00 0.93 1.00 0.93 0.96
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Table 57: Trf-LAS-CTC-En binary classifiers’ goodness-of-fit metrics, with a threshold of maxi-
mum 1% FPR (if exist) and a minimum 50% TPR, with 100 benign and 100 Psychoacoustic AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 93.00% 87 1 99 13 0.01 0.87 0.99 0.87 0.93
GC 99.00% 99 1 99 1 0.01 0.99 0.99 0.99 0.99
EM=3 99.00% 99 1 99 1 0.01 0.99 0.99 0.99 0.99
EM=5 99.50% 100 1 99 0 0.01 1.00 0.99 1.00 1.00
EM=7 99.50% 100 1 99 0 0.01 1.00 0.99 1.00 1.00
EM=9 99.50% 100 1 99 0 0.01 1.00 0.99 1.00 1.00
NN 99.00% 99 1 99 1 0.01 0.99 0.99 0.99 0.99

Table 58: Trf-LAS-CTC-En binary classifiers’ goodness-of-fit metrics, with a threshold of maxi-
mum 1% FPR (if exist) and a minimum 50% TPR, with 100 noisy data and 100 Psychoacoustic
AEs.

Classifier Accuracy TP FP TN FN FPR TPR Precision Recall F1

TD 84.50% 75 6 94 25 0.06 0.75 0.93 0.75 0.83
GC 91.00% 83 1 99 17 0.01 0.83 0.99 0.83 0.90
EM=3 91.50% 84 1 99 16 0.01 0.84 0.99 0.84 0.91
EM=5 91.50% 84 1 99 16 0.01 0.84 0.99 0.84 0.91
EM=7 92.50% 86 1 99 14 0.01 0.86 0.99 0.86 0.92
EM=9 92.50% 86 1 99 14 0.01 0.86 0.99 0.86 0.92
NN 94.50% 90 1 99 10 0.01 0.90 0.99 0.90 0.94

A.10 WORD SEQUENCE LENGTH IMPACT

In nearly all instances, we noticed no substantial decrease in performance, consistently maintain-
ing an AUROC score exceeding 98% across all models, regardless of the word sequence length,
supported by the results given in Table 59.

Table 59: Comparing AUROC scores across various word sequence lengths using a combined
dataset of 100 benign samples and 100 C&W AEs.

Model 2 3 4 5 6 7 8 9 10+

LSTM (It) - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994
LSTM (En) 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 0.998
LSTM (En-LM) 1.000 0.917 1.000 1.000 1.000 1.000 1.000 0.995
wav2vec (Ma) - 1.000 1.000 0.986 1.000 0.991 1.000 1.000
wav2vec (Ge) - 1.000 1.000 1.000 0,992 1.000 1.000 1.000
Trf (Ma) - - 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Trf (En) 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 1.000

A.11 TRANSFERRED ATTACK

To assess the transferability of targeted adversarial attacks between models, we tested whether the
effectiveness of these attacks, specifically tailored to one model, remains consistent when tested on
another ASR system. The results indicate a lack of transferability, as the WER in all cases is much
closer to 100% than the expected 0%, as depicted in Tab. 60 and Tab. 61.

Table 60: WER performance of transferred attacks on chosen pairs of source and target models.

Source Model Target model C&W Psychoacoustic

wav2vec (Ma) Trf (Ma) 99.33% 99.24%
Trf (Ma) wav2vec (Ma) 99.41% 99.41%
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Table 61: WER performance of transferred attacks on chosen pairs of source and target models.

Source Model Target model C&W Psychoacoustic

LSTM (En) LSTM (En-LM) 103.58% 103.28%
LSTM (En) Trf (En) 104.48% 104.58%
LSTM (En-LM) LSTM (En) 104.98% 104.68%
LSTM (En-LM) Trf (En) 104.68% 104.68%
Trf (En) LSTM (En) 106.17% 105.37%
Trf (En) LSTM (En-LM) 104.68% 104.78%
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