Under review as a conference paper at ICLR 2026

GAS: IMPROVING DISCRETIZATION OF DIFFUSION
ODES VIA GENERALIZED ADVERSARIAL SOLVER

Anonymous authors
Paper under double-blind review

ABSTRACT

While diffusion models achieve state-of-the-art generation quality, they still suffer
from computationally expensive sampling. Recent works address this issue with
gradient-based optimization methods that distill a few-step ODE diffusion solver
from the full sampling process, reducing the number of function evaluations from
dozens to just a few. However, these approaches often rely on intricate training
techniques and do not explicitly focus on preserving fine-grained details. In this
paper, we introduce the Generalized Solver: a simple parameterization of the
ODE sampler that does not require additional training tricks and improves quality
over existing approaches. We further combine the original distillation loss with
adversarial training, which mitigates artifacts and enhances detail fidelity. We
call the resulting method the Generalized Adversarial Solver and demonstrate its
superior performance compared to existing solver training methods under similar
resource constraints.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015} Ho et al.}|[2020; |Song et al.,[2020b) offer state-of-the-art
generation quality in diverse vision problems, including unconditional and conditional (Dhariwal &
Nichol, [2021; Ho & Salimans, [2022) generation, text-to-image (Nichol et al.|[2021; Ramesh et al.,
2022; Saharia et al., 2022; Rombach et al., [2022; |[Esser et al., [2024), text-to-video (Blattmann et al.,
2023} |Brooks et al.| 2024; [Zheng et al.| [2024; |Chen et al.,[2024b) and even text-to-3D (Poole et al.,
2022;|Wang et al., 2023)) generation. One of the reasons for their success consists in satisfying both
high sample quality (Dhariwal & Nicholl 2021} |Karras et al.,|2022)) and mode coverage from the
generative trilemma (Xiao et al.;[2021)). In theory, this allows diffusion models to produce desirable
samples from the target distribution given unlimited computation time.

Besides, many improvements were made to satisfy the third requirement on generation speed. One
way to tackle high inference time is to train a new model that utilizes the pre-trained diffusion and
requires fewer inference steps. This may be achieved by straightening the generation trajectories (Liu
et al.| |2022b; 2023} |Wang et al.| [2024)) or by directly performing diffusion distillation (Salimans
& Ho| [2022; Song et al.| 2023} |Sauer et al., 2023} [Yin et al.| 2023)) into a few-step student. These
training-based methods are capable of fast generation with superior quality on large-scale scenarios.
Their training procedures, however, are computation and memory-heavy and may be infeasible for
users with resource constraints on cutting-edge problems, such as video generation.

Due to the mentioned resource requirements, the lightweight approach of directly accelerating
generation is preferable most of the time. Such inference-time methods as designing specific
solvers (Song et al.,|2020a} [Lu et al., [2022a}; [Zhang & Chenl [2022), caching intermediate steps (Ma
et al.| |2024; [Wimbauer et al.,2024), or performing quantization (Gu et al.,[2022; Badri & Shaji, 2023),
push the boundaries of the pre-trained model by utilizing its knowledge as much as possible given
a fixed computational budget. Among them, specifically designed solvers are mostly theoretically
sound and are capable of producing high-quality samples similar to the full-inference model. However,
they require significant hyperparameter search (Zhou et al.l 2024bj Zhao et al.2024)) for each model
and may be suboptimal depending on the particular setting.

A natural improvement of the idea consists in training (hyper-)parameters of the inference-time
"student" sampler to match the full-inference "teacher" model. The approach is free-form and allows
for optimizing timestep schedule (Sabour et al., 2024} [Tong et al., [2024) as well as the sampler

Under review as a conference paper at ICLR 2026

Teacher NFE=10 UniPC NFE=4

GAS NFE=4

GAS NFE=4 Teacher NFE=10 UniPC NFE=4

Figure 1: Illustration of the Generalized Adversarial Solver image generation in comparison with
the training-free UniPC 2024) solver with equal number of function evaluations (NFEs).
Our method shows superior results that are almost identical to teacher images in terms of generation
quality.

coefficients (Kim et al 2024} [Frankel et al [2025) for each prediction step. Currently existing
methods for training the sampler succeed in improving test-time efficiency of the model compared
to the standard solvers. At the same time, they do not realize the full potential of the paradigm and
tend to have inefficiencies that lead to nuanced and complicated training schemes. Among these
are the unstable loss scale (Sabour et all, [2024)), limited parameter space and
disentanglement of the parameter subsets (Frankel et al.|, [2025) which we find to be harmful for
training. Besides, straightforward sampler distillation into a student with limited parameters may be
ineffective for preserving the fine-grained details and may interfere with the generation quality.

In this paper, we aim to tackle the aforementioned issues by introducing a simple yet effective
sampler parameterization and modifying the distillation loss. Specifically, we construct a sampler
that performs each sampling step by calculating a weighted sum of the current velocity direction
with all of the points and directions from previous steps. We propose to utilize a pre-defined solver
as a time-dependent guidance and learn correction to its theoretically derived weights to facilitate
and accelerate training. On top of that, we endow the sampler distillation with the adversarial

loss (Goodfellow et al.,[2014)) to further boost the sampler quality. Most importantly, we

1. Introduce a novel sampler parameterization that we call the Generalized Solver and demon-
strate its significant impact on training acceleration;

2. Combine it with the adversarial training and validate its postitive impact on the fine-grained
generation details;

3. Show that the resulting Generalized Adversarial Solver achieves superior results compared
to the existing methods of solver/timestep training on several pixel-space and latent-space
data sets.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015}, [Ho et al., 2020} [Song et all,[2020b)) simulate the data
distribution by defining the forward process of gradual data noising and constructing its time reversal.
The forward process is commonly defined by a sequence {pyo}+c[o,r] Of transition probabilities
pejo(xex0) = N (x¢ | ayx, 071). It perturbs the initial data distribution pgua(x0) = po(xo) by
destroying part of its signal and replacing it with the independent Gaussian noise. Here, o and o2
are positive differentiable functions that define the corresponding noise schedule. Typically, their
choice ensures that the sequence of the corresponding marginal distributions p;(x;) converges to a

simple and tractable prior distribution pr(xr) (e.g. standard normal). For each noise schedule one
can construct the equivalent Probability Flow ODE (PF-ODE) (Song et al., 2020b)

1
dx; = | f(t)x = 59°(6) Vi, log pe(xe) | i, M
where setting
dlog dlog
O L PP L @

dt

Under review as a conference paper at ICLR 2026

and sampling the endpoint x7 from the prior distribution pr ensures (Lu et al.|[2022a) that x; ~ p;
for all time steps. Essentially, ODE formulation allows one to obtain a backward process of data
generation by reversing the velocity of the particle given access to the score function Vx, log p(x:)
of the perturbed data distribution. In practice, diffusion models approximate the score function by
optimizing the Denoising Score Matching (Vincent, [2011)) objective

T
mmin [By e300) — Vi log (o1 o), 3)
0

where the score functions V, log py|o(x¢|xo) of the conditional Gaussian distributions are tractable
and equal to —(x; — a;Xg)/o?. Besides the score networks, one can directly approximate the ODE
velocity function by setting vg(x;,t) = f(t)x; — (1/2)g%(t)sg(xs,).

2.2 ODE SOLVERS

Sampling from a diffusion model amounts to numerically approximating the solution of the
corresponding PF-ODE (Eq. [T). Standard numerical methods for solving a general-form ODE
dx; = v(xy, t)dt are mainly based on approximating the direction x;,, — x; via Taylor expansion.

The first-order Euler scheme makes a step h - v(xy, t), which is simple, yet has a large discretization
error. Its higher-order modifications generally approximate the derivatives with finite differences.
This correction allows Runge-Kutta methods to produce high-quality results (Lu et al., [2022aj [Zhang
& Chenl, [2022; [Karras et al.| 2022). However, these methods require mid-point evaluations, which
harms performance in low-NFE regimes (see e.g. (Zhang & Chenl |[2022| Table 2)). In contrast, Linear
Multistep solvers (Liu et al., [2022a; |Zhang & Chen, 2022) use only previously calculated points and
directions for the same approximation, thus remain useful in this setting.

Recently designed solvers such as DDIM (Song et al., [2020a), DPM-Solver(++) (Lu et al., 2022ab),
DEIS (Zhang & Chen, [2022)), and UniPC (Zhao et al) 2024), exploit the semi-linear nature of
the PF-ODE (Hochbruck & Ostermann, 2010). They approximate the integral in the "variation of

constants" formula .)
Xy = ﬂxu f/ o g (T)S(XT,T)dT, 4
u

Oy, o 2

allowing more accurate steps thanks to the non-unit coefficient of x,,, and enabling computationally
efficient multistep solvers.

Several previous works highlight the importance of choosing the timestep schedule (the set of time
points at which function evaluations are performed), which has a significant impact on the image
generation quality (see (Karras et al.| |2022, Appendix D.1) and (Frankel et al., 2025, Appendix H.3)).

2.3 SOLVER AND SCHEDULE DISTILLATION

Several recently introduced acceleration methods outsource the choice of solver coefficients and
the timestep schedule to the gradient-based optimization. Specifically, LD3 (Tong et al.,[2024) and
S4S (Frankel et al.,2025)) formulate this as an instance of knowledge distillation (Hinton et al., 2015].
Given the pre-trained diffusion model and the corresponding ODE dx; = v(x;, t)dt, one can define
the complete "teacher" sampler to be the output of a multi-step high-quality approximation of the
PF-ODE, which we denote by

@7 (x7) = ODESolve (x7,v(-,-), T — 0 | Schedule, Solver; Params) . 5)

Here, x is the initial value, v(-, -) is the corresponding velocity field and 7" — 0 shows the interval,
where we solve the ODE. "Solver" and "Schedule" define the sampling scheme and "Params" account
for the additional parameters of the scheme. Then, one could take any parameterization of the
lightweight "student"

®°(xr | 0, $,€) = ODESolve (x7,v(-,-), T — 0| Schedule(f), Solver(¢); Params(€)) (6)

with a bounded computational requirements and optimize its parameters by minimizing a distance d
between the corresponding outputs

én(;l% Laisin (0, ¢, &) = énéfé Eprxpyd (2° (x| 0,6,€); @7 (x7)). (7N

Under review as a conference paper at ICLR 2026

@ Teacher

[x an—2,ﬂ(m)] [x anfl,n(m)] [X an,n(67’7)] [v(-,tﬂ +§,,,,)] [x Cn-1(0, n)] [x Cnan(0, 0)]

X Can(6, D)

% "’(xmtz +&n)

Figure 2: Illustration of the Generalized Adversarial Solver. Our student makes each sampling
step by calculating the weighted average of all previous points and velocity directions. We train the
corresponding weights and timestep schedule via distillation and adversarial loss.

e

Y

&

+

= i ¥ i
g

5

In addition, LD3 and S4S account for the limited parameterization of the student and simplify its
objective by allowing to slightly adapt the input and facilitate replication of the teacher output

. . . v
i Con 8,9, = i By ey guin 4 (@507 6,6,85 @7 (xr)), B

where B(x7,ror) = {x : || x—xr|* < ror} is the ball centered in x7 with a radius ro controlled

by the additional hyperparameter . We thoroughly discuss parameterizations of the methods and
compare them with our Generalized Solver in Section [3.1]

2.4 ADVERSARIAL TRAINING

Adversarial training (Goodfellow et al.,[2014) is a powerful way to guide a free-form generator G (z)
towards realistic outputs via optimizing the minimax objective (Nowozin et al, 2016)

min max By) f (Dy(Go(2))) + Epyu0) f (= Dy (x)) - ©)

Here, f(t) is commonly equal to —log(1 + e~ "), the discriminator D, is trained to distinguish real
samples from the fake ones, while the generator aims to trick him. Family of the GAN losses with
the form of Equation 0] (Nowozin et al | 2016; [2017; [Cim & Ye, [2017) suffers from mode
collapse (Arjovsky et al., 2017;|Gulrajani et alL[2017). One of the alternatives is the relativistic GAN
loss (Jolicoeur-Martineau, [2018)

min max By s, 0 f (Dw(Ge (z) — Dw(x)) (10)

that is specifically designed to discourage mode dropping 2020). Together with the
gradient penalty

Laraa(0,1) = ME 0 |V Dy (%) 17 + AEpy () |V Dy (Go (2)) || (1D

on discriminator outputs and architecture improvements, relativistic loss allows [Huang et al.| (2024)
to build a novel high-quality GAN baseline R3GAN which we use throughout the paper.

3 METHOD

In this section, we construct Generalized Adversarial Solver (GAS): an automatic sampler learning
method that combines a simple yet effective parameterization with distillation and adversarial training.

Under review as a conference paper at ICLR 2026

3.1 GENERALIZED SOLVER (GS)

In Section[2.2]we have discussed that linear multi-step solvers and their specifically designed diffusion
counterparts are the preferable families under strict requirements on computations. Given a timestep
schedule T'=ty > t; > ... >ty = § > 0 and order K they all have the same signature
n
Xntl = nXn + Z cinV(Xj,t5), (12)
j=max(n—K+1,0)

where the coefficients a, = an(tn,tn41) and ¢; n = ¢; 5 (t;,t;41) typically depend on the current
and the next timesteps. We propose several modifications to this basic signature. First, we stress
that the less restriction on NFE is, the less parameters the method has. Second, one can see that
depending on the parameterization of the diffusion model the formula may also contain the weighted
sum of previous points (if e.g. one substitutes v(x;,t;) = f(t;)x; — (1/2)g*(t;)s(x;,t;)) along
with the network predictions. We thus propose to increase the capacity of the signature by adding the
weighted sum of all previous points [H and get rid of the restriction on the order of the solver:

Xn+1 = Z ajnXj + Z cj,nv(xj, tj). (13)
7=0 7=0

Given this signature, we next define our parameterization that has three sets of parameters: (6, ¢, £).
The first set ¢ of parameters defines the timestep schedule via the camprod transformation: the logits
0,, are transformed into "stick breaking" portions o (0,,) € [0, 1]. The time steps are then defined as

th=(T—20)[[o(0;)+5. (14)
j=1

The second set ¢ defines the solver coefficients. However, we do not straightforwardly set
ajn = Gjn(0) and ¢;, = ¢j,(¢). Instead, we use a powerful base multi-step solver (e.g.
DPM-Solver++(3M) (Lu et al., 2022b)) as a source of theoretical guidance for the trained coefficients.
This base solver offers time-dependent theoretical coefficients a,, (5., 41) and ¢; 5, (£5,,, 1), which
we can use as a strong backbone for our solver. We then train additive corrections to these coefficients
in the following way. We set
0 - .)
ajn(0,0) = {an,n(tn:"-&-l) Fann(0), J=mn;

15
a;n(0), else, (1)

thus adding a trainable scalar d,, (o) to the current point coefficient ay, ,(t%.,,) and training
scalars G , () for all the previous point coefficients.

Next, since the "old" velocities (computed more then K steps before) do not have theoretical
coefficients, we train one scalar ¢; ,(¢) per time step j < n — K and set

Cj_’n(ﬁ, o) = éj’n(()). (16)
Finally, we define the coefficients before the "recent” velocities (computed less then K steps before).

Here, theoretical base coefficients are typically constructed via weighted sum of the approximations
'i;gl]) of the higher-order derivatives v/) (x,,, t?) via finite differences (which are themselves weighted
sums of previously computed velocities). This leads to the sum of the form Zf:_ol 5j,n(t?:n 11)- 'bgf),

n Wi (%,),

Combined with the finite-difference approximation of the derivatives @ﬁ;") = Yo j

we obtain
K-1 n
Z E]'ﬂ’b(t?:n-&-l)) Z Wim * ’U(Xivtg)' (17)
7=0 i=n—j

Her.e, we train additiv§ corrections éjyn.(()) for the coefficients Ej,n(t?:n 41) corresponding to the
derivatives approximation. We thus obtain sum

K-1 n
> (G) + G0 (0)] - D win - vxi,), (18)
§=0 i=n—j

!Theoretically, one could represent previous points as a linear combination of the previous velocity vectors.
However, this "over-parameterization" may simplify training.

Under review as a conference paper at ICLR 2026

Table 1: Comparison of solver parameterizations between our GS, LD3 (Tong et al., 2024) and
S4S (Frankel et al., 2025)). We propose to add additive guidance to several velocity coefficients with
a theoretical term from a pre-defined solver instead of just two multiplicative terms a,, and b,,. The
guidance is marked by the dependence of coefficients on . We add a weighted sum of the previous
points to the prediction.

Method Parameterization
n
LD3 Xp41 = an(t, 10 1) - xp + > cj,n(tf»,...,tle) ~'v(xj,t?+§,-)
j=max(n—K+1,0)
n
S48 Xn+1 = An (tn’ tn+1) Xn + by, (tfm tn—&-l) > Cj;n(”) (XJ7 t() + 5/)
j=max(n—K+1,0)
n—1 n
GS Xng1 = Gnn(0,0) X + D ajn(0) X+ Y ¢n(0,0) -v(xj,tg +&5)
j=0 =0

which produces recent velocity coefficients
K—1

Ci,n(ea “) = Win Z [5j,n(tg;n+1) + éj,’n(“ﬂ . (19)

j=n—1

We initialize the corrections with zeros to obtain an efficient initialization. By doing this, we ensure
that even sudden change of the time steps does not completely ruin the solver performance due to the
meaningful dependence of its coefficients on time. We show the positive impact of the theoretical
guidance in Section[4.2]

The last set ¢ of parameters acts as a correction to the time steps that we evaluate the pre-trained

model on. Analogous to Tong et al.|(2024)) and Frankel et al.| (2025 we define the decoupled time

steps té’- + &; and use them for making predictions with the diffusion model. Combining the signature

from Equation |13| with the introduced parameterization, we obtain the Generalized Solver (GS)
n—1

Xn41 = Gnn(0,0) - Xy + Z ajn(0) - X; Zc] n(0,0) - xj,tj +&5). (20)

=0

and extensively compare it with the parameterizations of LD3 and S4S in Table[T]

3.2 GENERALIZED ADVERSARIAL SOLVER (GAS)

We train the Generalized Solver on the previously established distillation loss from Equation [7]
Specifically, we take d from the distillation loss (Equation [7)) to be LPIPS in pixel-space and L
in latent-space experiments. We do not use the soft version from Equation 8] It is important to
examine the "solver distillation" problem from another perspective. Essentially, it is an instance of the
paired translation problem/learning a mapping from its input/output samples. Several works (Isola
et al.,[2017; [Ledig et al.,|2017)) have shown that the standard regression loss could greatly benefit
from adding the adversarial loss on the outputs. Recently, adversarial loss has been established as a
powerful tool to boost performance of the diffusion distillation (Kim et al., [2023} Sauer et al., [2023;
2024;[Y1n et al., [2024)) methods.

Given this, we augment distillation-based training of the GS via distillation loss and obtain the
Generalized Adversarial Solver (GAS). We denote our solver’s output as

®° (x10, ¢,€) = ODESolve(xr, v(-,-), T = 0| GS(6, ¢, €)), 21)

where GS(0, ¢, £) defines the Generalized Solver signature and parameterization, defined in Sec-
tion 3.1 and Equation [20|specifically. We denote the discriminator by D, and train GAS on the sum
of distillation and adversarial losses

0 i (22)

{mné mj.X»CGAS(Q L 0,E,0) = (gn;r% mfxﬁd,mu(,0,8) + Laav(0, 0, 6,);
adV(1 0,8, d)) PT(XT)PT(YT)f (Dw ((I)S (XT|9’¢’ 5)) - DUJ ((I)T(yT))) :

Under review as a conference paper at ICLR 2026

We exploit R3GAN (Huang et al., 2024) relativistic loss with f(t) = —log(1 + e~*) and add the
discriminator gradient penalties from Equation [TT]to facilitate its training dynamics.

The incorporation of the adversarial loss is also effective in terms of removing generation artifacts
in low NFE regimes, where regression task becomes harder. We will further demonstrate this in
Section [l

4 EXPERIMENTS

We demonstrate efficiency of the proposed method by conducting experiments on several pixel and
latent space experiments. We perform evaluation on pixel-space CIFAR10 (32x32) (Krizhevsky
et al.,2009), FFHQ (64 x64) (Karras et al.l 2019), and AFHQv2 (64 x64) (Choi et al., 2020). Among
latent diffusion models (Rombach et al.| 2022)) we cover LSUN Bedroom (256 x256) (Yu et al.,[2015)
and the class-conditional ImageNet (256 x256) (Russakovsky et al.| 2015). Additionally, we assess
the Stable Diffusion (Rombach et al.| [2022) model on the MSCOCO (512x512) (Lin et al., 2015)
text-to-image dataset. We use [Karras et al.|(2022) and [Rombach et al.| (2022) pretrained models for
pixel and latent space experiments respectfully.

We choose distance d (Equation [7)) in distillation loss to be LPIPS (Zhang et al.l 2018) in pixel-space
and L; in latent-space experiments. We initialize timesteps using a time-uniform schedule and utilize
the DPM-Solver++(3M) (Lu et al., [2022b) coefficients as the guiding theoretical parameters. For
pixel-space models we use a pretrained R3GAN discriminator. For latent experiments we adapt the
same discriminator architecture, but train it from scratch. We calculate FID (Heusel et al.,[2017)) using
50000 samples, unless stated otherwise. The additional training details can be found in Appendix D]

4.1 MAIN RESULTS

In Table 2] we illustrate that the proposed methods, GS and GAS, systematically enhance image
sampling quality across different solvers, especially in low NFE setups. As an example, the S4S
Alt (Frankel et al., 2025)) algorithm reports a FID score of 10.63 with NFE=4 on the FFHQ dataset,
whereas GAS achieves a significantly better FID score of 7.86 under the same conditions. Our
approach outperform all previously proposed methods across all evaluated datasets. Specifically,
GAS achieves a FID score of 4.48 with NFE=4 on the AFHQV2 dataset and 3.79 on the FFHQ dataset
using NFE=6. Additionally, we achieve the FID score of 5.38 on the conditional ImageNet dataset
with NFE=4, 4.60 on the LSUN Bedrooms dataset with NFE=5, and 14.71 on the MS-COCO dataset
with NFE = 4.

4.2 ABLATION STUDY

Coefficients parametrization First, we demonstrate significant impact of solver parameterization
on training efficiency. Specifically, we show the difference between our parameterization, that
represents coefficients as sum of fixed theoretical guidance and explicitly trained additive corrections,
and the parameterization from another high-quality method S4S (Frankel et al., [2025). For a fair
comparison, we implemented LMS + PC S4S solver type removing a constraint on the solver order.
This guarantees Generalized Solver and S4S to have the same number of trainable parameters.

In Table 3| we demonstrate our parameterization’s superior performance on different datasets and
NFEs. Our results are consistent with the training issue reported in (Frankel et al., 2025)). Fi gureE]
represents the dynamics of LPIPS loss on the evaluation dataset in different training iterations of the
experiment. Our parametrization shows a more efficient training process, faster convergence and
more stable training behavior.

Adversarial training Addition of the adversarial training is a crucial part of our contribution,
because it significantly improves the image generation quality as seen in Tables[2a] [2b] It is crucial
for low NFE setups because teacher image can be too difficult for the student to replicate it, therefore
smaller values of the regression loss (LPIPS or L; for pixel and latent models respectfully) does
not always correlate with smaller FID scores (as can be seen in Table [d) and occasionally results
in visible artifacts. Examples of such behavior are presented in Figure 4] Adding adversarial loss
makes the student’s generation closer to teacher’s distribution and thus removes appearing artifacts
and makes generation more realistic, in spite of occasionally resulting in bigger LPIPS or L1 losses.

7

Under review as a conference paper at ICLR 2026

Table 2: We evaluate FID score comparison of the proposed GS and GAS methods against existing
solvers like UniPC and iPNDM, and alongside training-based approaches such as GITS, DMN, LD3,
and S4S. We report the FIDs of the teacher models as those utilized during our training process. The
baseline scores were taken from the corresponding papers, unless otherwise noted.} report utilizing
teacher model having significantly different FID score, thus it cannot be fairly compared to other
methods.

(a) Pixel-space datasets include CIFAR10 (32x32), (b) Latent diffusion models are tested on the LSUN-

AFHQV2 (64x64), and FFHQ (64 x64) Bedroom and ImageNet datasets (256 x256).
Method NFE=4 NFE=6 NFE=8 NFE=10 Method NFE=4 NFE=5 NFE=6 NFE=7
CIFAR10 LSUN-Bedroom-256 (latent space)

Solvers Solvers
DPM++ (3M) 46.59 12.16 4.62 3.08 DPM++ (3M) 48.82 18.64 8.50 5.16
UniPC (3M) 43.92 13.12 4.41 3.16 UniPC (3M) 39.78 13.88 6.57 4.56
iPNDM (3M) 35.04 11.80 5.67 3.69 iPNDM (3M) 11.93 6.38 5.08 4.39
Solver optimization methods Solver optimization methods
UniPC [GITS] 25.32 11.19 5.67 3.70 UniPC [GITS] 70.93 47.37 22.33 17.27
UniPC [DMN] 26.35 8.09 5.90 2.45 UniPC [DMN] 29.22 8.21 4.40 4.55
iPNDM [GITS] 15.63 6.82 4.29 2.78 iPNDM [GITS] 76.86 59.17 28.09 19.54
iPNDM [DMN] 28.09 9.24 7.68 3.31 iPNDM [DMN] 11.82 6.15 4.71 5.16
Best LD3 9.31 3.35 2.81 2.38 Best LD3 8.48 5.93 4.52 4.16
S4S Alt 6.35 2.67 2.39 2.18 S4s Altt 20.89 13.03 10.49 10.03
GS (Ours) 4.41 2.55 2.25 2.18 GS (Ours) 9.83 5.32 3.77 3.34
GAS (Ours) 4.05 2.49 2.24 2.17 GAS (Ours) 6.68 4.60 3.77 3.36
Teacher 2.03 Teacher 3.06
FFHQ Imagenet-256 (latent space)
Solvers Solvers
DPM++ (3M) 46.14 14.01 6.18 4.18 DPM++ (3M) 26.07 11.91 7.51 5.95
UniPC (3M) 53.25 11.24 5.59 3.90 UniPC (3M) 20.01 8.51 5.92 5.20
iPNDM (3M) 36.54 16.44 8.11 5.39 iPNDM (3M) 13.86 7.80 6.03 5.35
Solver optimization methods Solver optimization methods
UniPC [GITS] 21.38 12.21 7.84 4.46 UniPC [GITS] 54.88 3491 14.62 9.04
UniPC [DMN] 25.82 9.47 6.85 3.54 UniPC [DMN] 16.72 7.96 7.54 7.81
iPNDM [GITS] 18.05 9.38 5.72 3.96 iPNDM [GITS] 56.00 43.56 19.33 10.33
iPNDM [DMN] 31.30 12.12 11.00 5.24 iPNDM [DMN] 10.15 7.33 7.25 7.40
Best LD3 17.96 597 3.50 3.25 Best LD3 9.19 5.03 4.46 432
S48 Alt 10.63 4.62 3.15 2.91 S4s Altt 5.13 4.30 4.09 4.06
GS (Ours) 1070 449 2.96 2.67 GS (Ours) 7.87 4.93 4.30 4.17
GAS (Ours) 7.86 3.79 2.87 2.66 GAS (Ours) 5.38 4.87 4.32 4.17
Teacher 2.60 Teacher 4.10
AFHQv2

(c) Traning dataset for SD consists of 1000 MS-

COCO samples, while FID is computed across
DPM++ (3M) 27.82 10.72 4.28 3.19 30.000 . ith ial
UniPC (3M) 378 857 460 381 ;000 prompts to generate images with spatial reso-
iPNDM (3M) 2320 9.55 4.49 3.19 lution of 512x512.

Solver optimization methods

UniPC [GITS] 12.20 7.26 3.86 2.88
UniPC [DMN] 30.32 14.46 6.85 2.94

Solvers

Method NFE=4 NFE=5 NFE=6 NFE=7
MS-COCO (Stable Diffusion v1.5)

iPNDM [GITS] 12.89 6.10 4.03 3.26 iPNDM (2M) 1776 14.41 13.86 13.76
iPNDM [DMN] 33.15 16.01 1012 322 iPNDM [GITS] 18.05 14.11 12.10 11.80
Best LD3 9.96 3.63 2.63 227 Best LD3 1732 13.07 1240 11.83
S4S Alt 6.52 2.70 2.29 2.18 s4st 16.05 1326 11.17 10.83
GS (Ours) 592 2.87 2.33 225 GS (Ours) 1494 1197 1171 11.32
GAS (Ours) 4.48 2.66 2.29 2.31 GAS (Ours) 1471 1191 1173 11.36
Teacher 2.16 Teacher 14.10 12.08 11.80 11.48

4.3 METHOD EFFICIENCY

Dataset size We next show that GAS is efficient in terms of dataset size and training time. To this
end, we measure method’s performance on the "full" dataset scenario with 49000 samples and find
the smaller dataset size that demonstrates equivalent results. First, we observe that the dataset size of
1400 is enough for training GS without adversarial loss. However, the solver’s optimization problem
becomes more challenging in low-NFE scenarios with adversarial loss. Here, we expand the dataset

Under review as a conference paper at ICLR 2026

Table 3: We compare our parametrization with S48 variant oo FFHQ Generalized
on CIFAR and FFHQ datasets in terms of FID and LPIPS : — Ours NFE=6
scores. Both setups use batch size of 24, while training 0.201 Nl advii!
dataset consists of 49k samples. Teacher dataset has FID [hviing
score of 2.03 and 2.60 for CIFAR10 and FFHQ datasets ¢ %] [\ == S45 NFE-10
respectfully. S 0104

NFE=4 NFE=6 NFE=8 NFE=10 0031

FID LPIPS FID LPIPS FID LPIPS FID LPIPS 0.001 : : : :

0 10000 20000 30000 40000
CIFAR10 Training iteration

S4S 3144 0273 293 0.073 287 0.072 226 0.027

Our 439 0116 251 0.046 221 0017 215 0.010 . .
o Figure 3: LPIPS evaluation loss for
FFHQ training iterations comparing S4S and

S4S 2424 0.175 1108 0.117 776 0.098 3.97 0.045 ot _
Our 1079 0.116 440 0.046 297 0.016 2.70 0.005 our pgrametrlzatlon. Our method re
sults in more stable training process.

Table 4: Results of 10k train-
ing iterations calculated on
1000 validation samples.

w/ Adv

w/o Adv

FID Lgistin
FFHQ

GS 10.70 0.116
GAS 786 0.127

Figure 4: Incorporating an adversarial loss into the training process ~ LSUN

enhances generation quality reducing occurring image artifacts in low GS 064 0172
NFEs regimes. In this setup, the teacher model uses UniPC (3M) solver GAS 7' 54 0'17 4
with NFE=10, while the student models operate with a reduced NFE=4. : ’

Teacher

from 1400 samples to 5000 and obtain results indistinguishable from the full-dataset scenario in all
datasets and settings. Additional information provided in Appendix [C.1]

Performance Without adversarial training, GS converges within 1-2.5 hours depending on the
dataset, which is comparable to the most relevant baselines LD3 and S4S. In case of GAS, training
time increases to 2-9 hours, which is larger, but still requires similar order. We refer the reader to the
Appendix [C.2] for the exact comparison of metrics depending on training time and Appendix [C.3|for
peak-memory usage in for backward pass.

5 DISCUSSION

In this paper, we propose Generalized Adversarial Solver, the novel parameterization and training
algorithm for automatic gradient-based solver optimization. The main novelty is additive theoretical
guidance of solver coefficients and combination of distillation loss with adversarial training. We
establish that the introduced Generalized Solver parameterization significantly accelerates training
compared to the existing parameterizations. We show that adding the adversarial loss significantly
boosts method’s performance and allows to tackle the image artifacts present in simple solver
distillation. We extensively compare our method with other solver/timestep training approaches and
demonstrate its superior performance on 6 datasets, ranging from 32 x 32 pixel-space CIFAR10 to
256 x 256 latent-space ImageNet and 512 x 512 MS-COCO with Stable Diffusion.

Limitations Our method relies on performing backpropagation through the whole solver inference,
which may face scalability issues when applied to larger image sizes and bigger models. We explore
the generalizability of our method between different datasets in Section [B.2] However, a potential
concern remains as to whether GS/GAS requires separate training for each preferred inference NFEs.
We leave the development of lightweight modifications to our method for future work.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the clarity and reproducibility of our work, we provide excessive description of all parts
of our method. Appendix [D]provides the pseudocode of our algorithm, exactly matching the way it
appears in our implementation; configurations and hyperparameters of all "teacher" generations and
"student" training processes, including batch sizes, optimizer choice and other fine-grained details;
and expressions for commonly used timestep schedules mentioned in the paper.

Furthermore, our experiments are built upon publicly available datasets (e.g., CIFAR10, FFHQ) and
pre-trained model checkpoints to ensure our experimental setups are accessible and verifiable.

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214-223. PMLR, 2017.

Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models,
November 2023. URL https://mobiusml.github.io/hgg_blog/l

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. 2024.
URL https://openai. com/research/video-generation-models-as-world-simulators, 3:1, 2024.

Thibault Castells, Hyoung-Kyu Song, Bo-Kyeong Kim, and Shinkook Choi. Ld-pruner: Efficient
pruning of latent diffusion models using task-agnostic insights, 2024. URL https://arxivl
org/abs/2404.11936.

Defang Chen, Zhenyu Zhou, Can Wang, Chunhua Shen, and Siwei Lyu. On the trajectory regularity
of ode-based diffusion sampling. arXiv preprint arXiv:2405.11326, 2024a.

Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7310-7320, 2024b.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for
multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8188-8197, 2020.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780-8794, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. arXiv preprint arXiv:2403.03206, 2024.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models, 2023. URL
https://arxiv.org/abs/2305.10924l

Eric Frankel, Sitan Chen, Jerry Li, Pang Wei Koh, Lillian J Ratliff, and Sewoong Oh. S4s: Solving
for a diffusion model solver. arXiv preprint arXiv:2502.17423, 2025.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Joshua M Susskind. Boot: Data-free distil-
lation of denoising diffusion models with bootstrapping. In ICML 2023 Workshop on Structured
Probabilistic Inference {\ &} Generative Modeling, 2023.

10

https://mobiusml.github.io/hqq_blog/
https://arxiv.org/abs/2404.11936
https://arxiv.org/abs/2404.11936
https://arxiv.org/abs/2305.10924

Under review as a conference paper at ICLR 2026

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10696-10706, 2022.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. Advances in neural information processing systems, 30,
2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numerica, 19:209-286,
2010.

Nick Huang, Aaron Gokaslan, Volodymyr Kuleshov, and James Tompkin. The gan is dead; long
live the gan! a modern gan baseline. Advances in Neural Information Processing Systems, 37:
4417744215, 2024.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125-1134, 2017.

Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing from standard gan.
arXiv preprint arXiv:1807.00734, 2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401-4410, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565-26577,
2022.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Ue-
saka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning
probability flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Sanghwan Kim, Hao Tang, and Fisher Yu. Distilling ode solvers of diffusion models into smaller
steps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 9410-9419, 2024.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Christian Ledig, Lucas Theis, Ferenc Huszdr, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image
super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4681-4690, 2017.

Jae Hyun Lim and Jong Chul Ye. Geometric gan. arXiv preprint arXiv:1705.02894, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dolldr. Microsoft coco: Common objects
in context, 2015. URL https://arxiv.org/abs/1405.0312.

11

https://arxiv.org/abs/1405.0312

Under review as a conference paper at ICLR 2026

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
on manifolds. In International Conference on Learning Representations, 2022a. URL https:
//openreview.net/forum?id=P1KWVd2yBkY.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022b.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference on
Learning Representations, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775-5787, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15762-15772, 2024.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least
squares generative adversarial networks. In Proceedings of the IEEE international conference on
computer vision, pp. 2794-2802, 2017.

Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-step text-to-image diffusion model with
variational score distillation. arXiv preprint arXiv:2312.05239, 2023.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems, 29,
2016.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211-252, 2015.

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling
schedules in diffusion models. arXiv preprint arXiv:2404.14507, 2024.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479-36494, 2022.

12

https://openreview.net/forum?id=PlKWVd2yBkY
https://openreview.net/forum?id=PlKWVd2yBkY

Under review as a conference paper at ICLR 2026

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Tim Salimans, Thomas Mensink, Jonathan Heek, and Emiel Hoogeboom. Multistep distillation of
diffusion models via moment matching. arXiv preprint arXiv:2406.04103, 2024.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042, 2023.

Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rombach.
Fast high-resolution image synthesis with latent adversarial diffusion distillation. In SIGGRAPH
Asia 2024 Conference Papers, pp. 1-11, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,

pp- 2256-2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Ruoyu Sun, Tiantian Fang, and Alexander Schwing. Towards a better global loss landscape of gans.
Advances in Neural Information Processing Systems, 33:10186-10198, 2020.

Vinh Tong, Trung-Dung Hoang, Anji Liu, Guy Van den Broeck, and Mathias Niepert. Learning to
discretize denoising diffusion odes. arXiv preprint arXiv:2405.15506, 2024.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Compu-
tation, 23:1661-1674, 2011. URL https://api.semanticscholar.org/CorpusID:
5560643.

Fu-Yun Wang, Ling Yang, Zhaoyang Huang, Mengdi Wang, and Hongsheng Li. Rectified diffusion:
Straightness is not your need in rectified flow. arXiv preprint arXiv:2410.07303, 2024.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in Neural Information Processing Systems, 36:8406-8441, 2023.

Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. Learning fast samplers
for diffusion models by differentiating through sample quality. In International Conference on
Learning Representations, 2021.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, Christian Rupprecht, Daniel Cremers, Peter Vajda, and
Jialiang Wang. Cache me if you can: Accelerating diffusion models through block caching. 2024.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion gans. arXiv preprint arXiv:2112.07804, 2021.

Shuchen Xue, Zhaoqiang Liu, Fei Chen, Shifeng Zhang, Tianyang Hu, Enze Xie, and Zhenguo Li.
Accelerating diffusion sampling with optimized time steps. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8292-8301, 2024.

Tianwei Yin, Michaél Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. arXiv preprint
arXiv:2311.18828, 2023.

13

https://api.semanticscholar.org/CorpusID:5560643
https://api.semanticscholar.org/CorpusID:5560643

Under review as a conference paper at ICLR 2026

Tianwei Yin, Michaél Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
William T Freeman. Improved distribution matching distillation for fast image synthesis. arXiv
preprint arXiv:2405.14867, 2024.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586-595, 2018.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. Advances in Neural Information
Processing Systems, 36, 2024.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode
solver with empirical model statistics. Advances in Neural Information Processing Systems, 36:
55502-55542, 2023.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou,
Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all, march 2024.
URL https://github. com/hpcaitech/Open-Sora, 1(3):4, 2024.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024a.

Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion
models in around 5 steps. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Fattern Recognition, pp. 7777-7786, 2024b.

14

Under review as a conference paper at ICLR 2026

A RELATED WORK

Among many inference-time acceleration algorithms, solver-based methods treat diffusion models
as ODEs with a (partially) black-box velocity function. Specifically, PNDM (Liu et al., |2022al)
and iPNDM (Zhang & Chen, [2022)) apply the linear multistep method to the corresponding PF-
ODE. DPM-Solver (Lu et al., 2022a)), DEIS (Zhang & Chenl 2022) use the variation of constants
(Equation) and approximate the underlying integral. DPM-Solver++ (Lu et al.l 2022b) extends this
idea to the multi-step version, and UniPC (Zhao et al|2024) modifies it with the predictor-corrector
framework. Besides the solver distillation loss, introduced for optimizing the timesteps in LD3 (Tong
et al., 2024) and used for optimizing both timesteps and solver coefficients in S4S (Frankel et al.|
2025)), many automatic solver selection methods were proposed. DDSS (Watson et al.,[2021)) directly
optimizes generation quality of the solver. AYS (Sabour et al., 2024) optimizes timesteps to minimize
the KL divergence between the backward SDE and the discretization. GITS (Chen et al., 2024a)
choose the timesteps by utilizing trajectory structure of the PF-ODE and DMN (Xue et al.| [2024)
allows for the fast model-free choice of parameters via optimizing an upper-bound on the solution
error. Some approaches manipulate diffusion-specific properties and utilize redundancies in their
computations. Namely, DeepCache (Ma et al.|[2024)) and CacheMe (Wimbauer et al.,|2024) propose to
perform block or layer caching and reuse activations from the previous timesteps. The other directions
of acceleration include quantization (Gu et al., [2022; Badri & Shaji, [2023) and pruning (Fang et al.|
2023} |Castells et al., [2024).

In contrast, diffusion distillation techniques aim at compressing a pre-defined diffusion model by
training a few-step student. Several methods learn to mimic solution of the PF-ODE. This includes
optimizing the regression loss between the outputs (Salimans & Ho, [2022)) or learning the integrator
between arbitrary timesteps (Gu et al., 2023} [Song et al., 2023} |Kim et al., [2023).The other use
diffusion models as a training signal that assesses likelihood of the generated images. It is commonly
formalized as optimizing the Integrated KL divergence (Luo et al.l |2024; |Yin et al., 2023}, [2024;
Nguyen & Tran, 2023) by training an additional "fake" diffusion model on the generator’s output
distribution. Other methods consider matching scores (Zhou et al., [2024a)) or moments (Salimans
et al.| [2024) of the corresponding distributions. Many distillation methods enhance student generation
quality by adding the adversarial training (Kim et al.l 2023 Yin et al.,2024)), including discriminator
loss on detector (Sauer et al., [2023)) or teacher features (Sauer et al.l [2024).

B ADDITIONAL EXPERIMENTS

B.1 FID PROGRESSION DURING TRAINING

To better understand the training process, we visualize the dynamics of the FID score during the
training process.

When comparing the GS and GAS FID scores for FFHQ, as visualized in Figure [5al we observe that
incorporating the adversarial objective requires more training iterations for our method to converge.
However, it is more important that, as previously reported in Table 23] it achieves a significantly
lower FID score, allowing for a better trade-off between generation quality and a slight increase in
training time.

Figure [5b]demonstrates that although GAS achieves excellent FID scores after 30k iterations, it could
potentially yield even better results with further training. This is suggested by the continuing decrease
in the FID score for NFEs of 4 and 5 with each additional training iteration. Scenarios involving a
larger number of NFEs for model inference do not display this pattern, since they comprise a bigger
student’s capacity and lead to easier optimization task and earlier convergence.

B.2 GENERALIZATION ACROSS DATASETS

Regarding generalization across datasets with significantly different dimensionalities (e.g., CIFAR
vs. COCO), the optimal schedule for a smaller resolution may not be optimal for higher resolutions
due to simpler denoising tasks at equivalent noise levels (larger images have greater correlation
among nearby pixels). To further demonstrate the method’s generalization results, we tested solver

15

Under review as a conference paper at ICLR 2026

FFHQ NFE=4 LSUN-Bedrooms-256 Imagenet-256

50
— 65 .00 6.00
45 — GAS
5.751
20 8.00
5.50
35 7.00
5254 @
Q3o 2
w 6.00 5.00 4
25

4751
2 5.00 “\w\»‘«

4.50 4

15 4.00 | ———g——

4.254

0 2000 ‘?0‘?0 . 5000. 8000 10000 5000 10000 15000 20000 25000 30000 5000 10000 15000 20000 25000 30000
Training iteration Training interations Training interations

—— NFE=4 —— NFE=5 —— NFE=6 NFE=7
(a) FID values during training for the
FFHQ dataset, using 4 NFE with the (b) GAS FID training dynamics for latent space datasets for several
GS and GAS. We evaluate FID every = NFE scenarios. We generate 50k images for each of 5000, 10k, 20k
500 training iterations, computing it and 30k iterations checkpoints, and evaluate FID scores based on
based on 5000 generated samples. those datasets.

Figure 5: FID score for several checkpoints during training of GS and GAS for both pixel (FFHQ)
and latent space (LSUN, ImageNet) datasets.

transfer between closely related diffusion models (FFHQ and AFHQV2), demonstrating practical
generalizability. We thus illustrate its generalization in Table 5]

Table 5: We evaluate FID score comparison of GS and GAS trained on dataset and applied on another
against DPM-Solver++, LD3 and S4S. We use the GS and GAS checkpoints as in Table@

(a) Solvers GS, GAS, trained on FFHQ and applied (b) Solvers GS, GAS, trained on AFHQv2 and applied
on AFHQV2 (denoted as GS’ and GAS’) consistently on FFHQ (denoted as GS’ and GAS’) consistently

outperform baseline methods. outperform baseline methods.
Method NFE=4 NFE=6 NFE=8 NFE=10 Method NFE=4 NFE=6 NFE=8 NFE=10
DPM-Solver++ 27.82 10.72 4.28 3.19 DPM-Solver++ 46.14 14.01 6.18 4.18
Best LD3 9.96 3.63 2.63 2.27 Best LD3 17.96 597 3.50 3.25
S4S Alt 6.52 2.70 2.29 2.18 S4S Alt 10.63 4.62 3.15 291
GS (Ours) 5.92 2.87 2.33 2.25 GS (Ours) 10.70 4.49 2.96 2.67
GAS (Ours) 4.48 2.66 2.29 2.31 GAS (Ours) 7.86 3.79 2.87 2.66
GS’ (Ours) 6.54 3.01 2.41 2.29 GS’ (Ours) 16.01 591 3.27 2.70
GAS’ (Ours) 5.15 2.81 2.44 2.32 GAS’ (Ours) 9.39 421 2.92 2.72

B.3 ADVERSARIAL LOSS WEIGHT

One of the few hyperparameters of GAS is the GAN-weight. Starting from the resolution of 64 x 64,
the weight of the adversarial loss was fixed to 1.0 for all datasets. Figure[6]demonstrates that GAS is
insensitive to the GAN-weight selection and achieves similar FID with different weights. This shows
that our method achieves strong results without the need for hyperparameter tuning.

C EFFICIENCY OF THE METHOD

C.1 TRAINING DATASET SIZE

We conduct experiments to assess the efficiency of the proposed methods with respect to the size
of the training dataset. We examine several variations of sizes: 49000 as a baseline, 5000 and 1400
as the more lightweight alternatives. For GS, we observe that taking 1400 images and performing
10000 training iterations is sufficient for our method to converge, regardless of NFE. We note that it
reaches equivalent or better FID scores compared to a bigger training dataset (see Table [6a).

The same pattern occurs with GAS on CIFAR. The dataset of 1400 images is optimal for its training.
However, starting from the higher-dimensional FFHQ dataset, we observe the typical challenges
of adversarial training. As the discriminator used in GAS is trained simultaneously with the other
parameters of the solver, it tends to overfit and demands larger dataset size to alleviate this problem.

16

Under review as a conference paper at ICLR 2026

FFHQ NFE = 4
10.51 '\
10.0 4+
T o904 &
8.5 RN
‘\\
8.01 *-9-90- 0-¢-0--0-00---———- y — e — P (]
0 05 1 15 2 5 10 100 500
Laqv Weight

Figure 6: FID values for FFHQ dataset with 4 NFEs for different adversarial loss weights. The metric

remains stable even at large weight values. Setting £,q, = 0 for GAS results in absence of adversarial
training, thus is a GS setting.

Adversarial training has demonstrated its efficiency, especially in scenarios with smaller inference
steps. We thus illustrate its performance in Table [6bjon NFE = 4 and NFE = 6. It shows that the
training dataset size of 5000 is sufficient for matching performance of the model trained on 49000.

Table 6: Comparison of different dataset sizes with several NFEs, where N indicates the number of
samples in the training dataset. In Table [6a] the FID score is calculated after 10k and 20k training

iterations to show the early convergence of the GS method. Table [6b] presents the results of GAS
evaluation after 10k iterations of training.

(a) Generalized solver (b) Generalized Adversarial solver

NFE=4 NFE=10 N NFE=4 NFE=6

N 10k 20k 10k 20k
CIFARJo 1400 3.98 2.44
CIFAR1o 1400 435 435 214 215 49000 3.98 2.48
49000 439 439 215 215

1400 9.44 4.48
FFHQ 1400 10.70 10.72 271 271 FFHQ 5000 7.83 3.79
49000 10.79 10.82 270 271 49000 7.93 3.76

C.2 TRAINING TIME

We further investigate GS/GAS training dynamics by estimating their convergence time and comparing
their computational efficiency with other methods.

In Table We demonstrate the training time of Progressive Distillation (PD, (Salimans & Ho, [2022))
and Consistency Distillation (CD, (Song et al., |2023)). Those methods focus on training a new

generator model that can sample images in a few-NFE manner. Both require days of training time
and are computationally demanding.

We also compare our methods with several approaches that involve training certain parameters
of solvers. In pixel space GS requires less than an hour of training time on CIFAR10, which is
comparable to LD3, S4S and S4S-Alt. Notably, it achieves FID of 2.44 with NFE = 6, while S4S-Alt
results in FID score of 2.52 with NFE = 7 and equivalent training time. Adversarial loss extends the

training time to up to 2 hours, however, as we report in Table 2a] it archives superior results in terms
of FID score.

In the latent diffusion setting, we compare our method with LD3, which reports convergence within
an hour of training time. We observe that GS and GAS require up to 3 hours; however, this is still
within the same order (for more details, see Table [7b).

In Table 8 we also provide more details about training time of our methods for both pixel and latent
space models.

17

Under review as a conference paper at ICLR 2026

Table 7: Comparison of different training-based methods in terms of computational effectiveness
across both pixel and latent space selected dataset.

(a) CIFAR10 (b) Imagenet-256

Method NFE FID Time GPU Type Method NFEs FID Time GPU Type

CD 2 293 8days A100 4 9.19
PD 8 247 8days TPU LD3 g 222 <1 hour A100
S4S-Alt 7 2.52 < 1hour A100 7 432
S48 10 2.18 < 1hour A100 i
LD3 10 2.32 <1 hour A100 4 7.97 < 1.5 hours
5 494 < 2hours
Gs 6 244 <lhour HIO0 GS 6 429 <2 hours HI100
10 214 <1 hour H100 7 416 < 2.5 hours
GAS 4 398 <2hours H100 GAS 4 6.06 <3 hours H100

Table 8: Approximate training time (in minutes) for 10k iterations scenarios for GS and GAS in both
pixel and latent space. For MS-COCO we use 1k iterations scenarios. All the numbers reported are
computed using one H100 GPU.

(a) Pixel space models (b) Latent space models
NFE=4 NFE=6 NFE=8 NFE=10 NFE=4 NFE=5 NFE=6 NFE=7

CIFAR 30m 40m 50m 60m LSUN 35m 45m 50m 60m
GS FFHQ 40m 60m 80m 95m GS ImageNet 75m 95m 115m 135m

AFHQv2 40m 60m 80m 95m MS-COCO 50m 60m 70m 80m

CIFAR 85m 100m 115m 130m LSUN 125m 140m 150m 165m
GAS FFHQ 160m 185m 210m 240m GAS ImageNet 185m 210m 245m 270m

AFHQV2 160m 185m 210m 240m MS-COCO 60m 75m 90m 105m

C.3 MEMORY USAGE

We are investigating the peak-memory GS/GAS required for training iteration depending on NFE.

In Table[9]we demonstrate the peak-memory usage for GS/GAS compared to LD3. When measuring
the memory, we used the config we further report in Appendix [D} GS requires the same amount of
peak-memory allocated as LD3.

Incorporation of the discriminator loss to the training process of GAS only requires additional less
than 4 gigabyte of memory usage, which is a minor overhead, especially considering its efficiency in
terms of the final generation quality. This overhead is limited to training at inference time, GAS and
GS sample at the same speed. Additionally, storing prior states does not provide additional overhead
for peak-memory usage.

Table 9: Peak-memory usage (in gigabyte) for training iteration for GS and GAS in CIFAR10 and
Imagenet-256. We use LD3 in our implementation. The official implementation uses LPIPS, rather
than L1 distance in latent space as we do, which leads to the use of a VAE decoder at each step and
incurs additional memory usage.

(a) CIFAR10 (b) Imagenet-256
NFE=4 NFE=6 NFE=8 NFE=10 NFE=4 NFE=5 NFE=6 NFE=7
GS 17GB 23GB 28GB 34GB GS 37GB 45GB 54GB 62GB
GAS 19GB 25GB 30GB 35GB GAS 41GB 49GB 57GB 66GB
LD3 17GB 23GB 28GB 34GB LD3 37GB 45GB 54GB 62GB

C.4 INFERENCE TIME

Inference process of our method requires additional operations performed with all prior states.
However, they are incomparably computationally simpler than one step of diffusion model (function

18

Under review as a conference paper at ICLR 2026

evaluation). Thus, the all-clock time on inference for GS is comparable to the solvers baselines,
which we show in Table

Table 10: Inference time in minutes for ImageNet dataset. We obtain the comparison by generating
1,024 images with batch 64 utilizing a single HI00 GPU. GAS differs from GS only in the training
process; their inference times are identical.

Method NFE=4 NFE=5 NFE=6 NFE=7

UniPC3M) 0.36m 046m 0.55m 0.64m
GS (Ours) 0.36m 045m 0.55m 0.64m

This pattern does not depend on the model and dataset choice; therefore, our method does not
introduce any inference time overhead on both pixel, latent or text-to-image diffusion models.

D EXPERIMENTAL DETAILS

D.1 BASELINE DISCRETIZATION HEURISTICS

In this section, we provide the reader with the common timestep schedules, used in the paper.

Polynomial discretization (time-quadratic, time-uniform) defines the timestep schedule via a
polynomial function of the uniform sequence. Specifically, it defines

S\ P
ti:<]i/') (T_teps)+tepsa i=0,1,...,N. (23)

Here p is often set to 1 or 2 (Song et al.,[2020b; [Ho et al.,2020; |Song et al.,|2020a)) which corresponds
to time quadratic and time uniform discretization.

Time logSNR schedule builts on top of the signal-to-noise ratio 7 /oZ. Specifically, log-SNR uses

the transformation A\; = log(o:/ ;) and defines

N —i
N

This schedule offers high generation quality with different versions of the DPM-Solver (Lu et al.,
2022aib; |[Zheng et al.| 2023)).

A(t;) =

(A7 = Aeps) + Aeps, ©=0,1,...,N. (24)

GITS schedule provides an optimized sequence of noise levels for diffusion models, targeting
very low NFEs. Originally proposed in |Chen et al.| (2024a)) for ODE-based diffusion processes
with trajectory regularity constraints. We use optimized timesteps in Stable Diffusion experiments
from Tong et al.| (2024). Concretely, the timestep schedules are:

NFE =4 : [1, 0.6837, 0.3673, 0.1176, 0.001];

NFE = 5 : [1, 0.7669, 0.4839, 0.2341, 0.0676, 0.001];

NFE =6 : [1, 0.7836, 0.5504, 0.3340, 0.1508, 0.0343, 0.001};

NFE =7 : [1, 0.8502, 0.6004, 0.4006, 0.2175, 0.0843, 0.0176, 0.001];

NFE =8 : [1, 0.8502, 0.6504, 0.4672, 0.3007, 0.1675, 0.0676, 0.0176, 0.001].

D.2 TEACHER SOLVER

Data generation For a fair comparison, we follow [Tong et al.[(2024) to generate the teacher dataset.
We choose UniPC with the parameters used in LD3. We utilize class condition of the ImageNet-256

teacher and generate the corresponding dataset with the classifier-free guidance scale of 2.0 and
generate 50 images per each of the 1000 classes. We report details in Table[TT]

Stable Diffusion details Regarding text-to-image generation with Stable Diffusion, we observe
that output image distributions of low-NFE students (NFE = 3-5) differ significantly from those of a

19

Under review as a conference paper at ICLR 2026

Table 11: Detailed description of the UniPC solver parameters used for a teacher dataset generation
consisting of 50000 images for both pixel and latent space scenarios.

CIFAR10 FFHQ AFHQv2 LSUN-Bedroom-256 Imagenet-256

Order 3 3 3 3 3

NFE 20 20 20 20 10

Time schedule logSNR logSNR logSNR time-uniform time-quadratic
B(h) bhl bhl bhl bh2 bh2

Teps le-4 le-4 le-4 le-3 le-3

FID 2.03 2.60 2.16 3.06 4.10

high-NFE teacher (e.g., NFE = 10). Since such students have very few trainable parameters, direct
distillation can be inefficient. The same pattern was found in [Tong et al.[(2024). For such reason and
a fair comparison, we follow identical to the LD3 approach teacher generation protocol. We train
student at NFE = n with the teacher at NFE = n + 1. This "one-plus" teacher minimizes the gap in
noise dynamics and yields smoother, more reliable convergence.

Moreover, in our experiments, we find that FID loses its correlation with perceived fidelity at high
NFEs, so we treat improvements in that regime with particular caution. Recognizing this unreliability
beyond NFE = 8 reinforces our choice of simpler teachers as the most robust path to high-quality
samples. Further details on teacher parameters are provided in Table[12]

Table 12: Detailed solver parameter settings for teacher-generated dataset using 30000 MS-COCO
prompts.

Student’s NFE =~ NFE=4 NFE=5 NFE=6 NFE=7
Teacher’s NFE 5 6 7 8

Solver IPNDM(2M) IPNDM(2M) IPNDM(2M) IPNDM(2M)
Time schedule GITS GITS GITS GITS

FID 14.10 12.08 11.80 11.48

D.3 SOLVER COEFFICIENTS PARAMETERIZATION

The detailed description of the Generalized Solver step is provided in Algorithm|[I] Specifically,
when all parameters ¢ are set to zero, the GS reduces exactly to DPM-Solver++(3M) (Lu et al.,
2022b)).

D.4 PRACTICAL IMPLEMENTATION DETAILS

We define W, H, and C' as the width, height, and number of channels of an image, respectively.
Similarly, W', H’, and C’ represent the corresponding dimensions in the latent space for the Latent
Diffusion model (Rombach et al., [2022).

Optimizer and trainable parameters We update three primary parameter sets during training: ¢
defines the timestep schedule, ¢ defines the solver coefficients and £ acts as a correction to the time
steps that we evaluate the pre-trained model on. We use one optimizer for all parameter groups. We
use time-uniform schedule for the initialization of parameters 6. We initialize £ and &; ,(¢), a;.n(®)
with zeros. We use the EMA version of the model parameters for evaluation and update the EMA
weights after each training iteration.

Evaluation We evaluate our models (Table using the FID score with 50 000 randomly
generated samples. For ImageNet, we generate an equal number of samples for each class to ensure a
balanced FID evaluation. We use EMA weights for evaluations. We calculate FID using reference
statistics and code from [Karras et al.| (2022). For MS-COCO (Table we obtain the FID score on

20

Under review as a conference paper at ICLR 2026

Algorithm 1 Generalized solver (GS) with theoretical guidance from DPM-Solver++(3M). Denote
hi =)‘t(’ 7/\t(.’71 fori = 1,...,]\7.

1: 1/}1 —ehn 1
2 Xp41 £ [a’n,’ﬂ(tfz:nJrl) + a”ﬂ,n(”)] “Xp — [atn+1 ¢1 + én,n(“)] . U(Xnvtz + 571)
3: if n = 1 then
4: ro < L271
5 D1y + TLU[U(Xnth'i'gn) _’U(anlatz_l +£nfl)]
6: Xp41 & Xpt1 — [at%l% + énfl’n(u)} - D1y
7: else if n > 2 then
8: ro, 1 < 7h}:71, h/;_:fz
9: ’(ﬂg — % +1
10: g b2 -1
11: D1y « % ['v(xn7tz + En,) - v(xn—lvt%—l + gn,—l)]
12: D]-l — % [’U(Xn—lath—l + énfl) - U(Xn—Qatfl—2 + 511,72)}
13: D1+ Dl1g+ &-[D1; — D1,]
. 1
14 D2+ —-[D1; - D14]

15: Xp41 & Xp41 + [atn+1¢2 + énfl’n(()):l -D1 — [atn+l¢3 + én,Q’n(U)] -D2
16: end if

max(n—1,0) max(n—3,0)
17: Xpp1 = Xng1 + 20 ain(0) x5+ X ¢a(0) - v(x,t] + &)
Jj=0 j=0

30 000 images using the same validation captions and FID reference statistics as in LD3 (Tong et al.}
2024).

D.4.1 PIXEL SPACE DIFFUSION ON CIFAR10, FFHQ, AND AFHQV2

* Pre-trained diffusion model:
— EDM (Karras et al., [2022);
* Teacher:
— UniPC solver, NFE = 20, logSNR schedule;
¢ Discriminator R3GAN (Huang et al.,[2024):
— Pre-trained CIFAR10 checkpoint for CIFAR10;
— Pre-trained FFHQ-64 checkpoint for both FFHQ and AFHQV2;
— Training in pixel space;
* Image resolution:
- W = H = 32, C = 3 for CIFARI10;
- W = H = 64, C = 3 for FFHQ and AFHQV?2;
* Training/validation dataset size:
— CIFARI10: 1400/1000 for GS and GAS;
— FFHQ and AFHQv2: 1400/1000 for GS; 5000/1000 for GAS;
* Solver training:
— Lygistin is LPIPS;
— Lgqp with weight = 0.1 for CIFAR10 and weight = 1.0 for FFHQ and AFHQV?2;
EMA decay = 0.999;
Batch size = 24;
Adam optimizer, Ir = 0.001, betas = (0.9, 0.999), weight decay = 0.0;
Gradients are clipped by the norm of 1.0;

* Discriminator training:

21

Under review as a conference paper at ICLR 2026

D.4.2

D.4.3

— Batch size = 24;
— Adam optimizer, Ir = 0.00001, betas = (0.9, 0.999), weight decay = 0.0;
- A1 and A in Equation[I1]are equal to 0.1;

Training duration:
— 10k iterations for GS/GAS;

LATENT SPACE DIFFUSION ON LSUN-BEDROOM AND IMAGENET

Pre-trained diffusion model:
— LDM (Rombach et al., 2022);
Teacher:
— UniPC solver for both LSUN-Bedrooms and ImageNet;
— NFE = 20 and time-uniform schedule for LSUN;
— NFE = 10 and time-quadratic schedule for ImageNet;
Discriminator R3GAN (Huang et al.,[2024):
— FFHQ-64 architecture with random initialization;
— Training in latent space;
Image resolution:
-W=H=256,C=3;
- W' =H' =64,C"=3;
Guidance scale: 2.0 (for ImageNet);
Training/validation dataset size:
— 1400/1000 for GS;
- 5000/1000 for GAS;
Solver training:
— Lygistqn 1s L1 in latent space;
— Lg4p With weight = 1.0;
— EMA decay = 0.999;
— Batch size = §;
Adam optimizer, Ir = 0.001, betas = (0.9, 0.999), weight decay = 0.0;
Gradients are clipped by the norm of 1.0;

Discriminator training:
— Batch size = &;
— Adam optimizer, Ir = 0.00001, betas = (0.9, 0.999), weight decay = 0.0;
— A and \s in Equation are equal to 0.1;

Training duration:
— 30k iterations for GS/GAS;

TEXT-TO-IMAGE GENERATION WITH STABLE DIFFUSION

Pre-trained diffusion model:

— Stable Diffusion v1.5 (Rombach et al., [2022);

— Gradient checkpointing at every UNet inference;
Teacher:

— NFE = n + 1, where n = student NFE;
— IPNDM(2M) solver with GITS;

Discriminator R3GAN (Huang et al., 2024):
— FFHQ-64 architecture with random initialization;

22

Under review as a conference paper at ICLR 2026

— First convolution layer modified to accept 4-channel latent inputs;
— Training in latent space;
* Image resolution:
- WxH=512x512,C=3
- W' xH =64 x64,C' =4
* Guidance scale: 7.5;
* Training/validation dataset size:
— 1400/128 for GS;
— 5000/128 for GAS;
* Solver training:
— La;stiy 1s L1 in latent space;
— Lgap With weight = 1.0;
EMA decay = 0.999;
Batch size = 4;
Adam optimizer, Ir = 0.001, betas = (0.9, 0.999), weight decay = 0.0;
Gradients are clipped by the norm of 1.0;

* Discriminator training:
— Batch size = 4;
— Adam optimizer, Ir = 0.00001, betas = (0.9, 0.999), weight decay = 0.0;
— A and \s in Equation are equal to 0.1;

¢ Training duration:

— 1k iterations for GS;
— 2k iterations for GAS;

E ADDITIONAL SAMPLES

To further demonstrate the method’s competitive results, we provide the reader with the additional
samples of GS and GAS, compared to the teacher and the baseline UniPC with the same NFE. For
all models/datasets except Stable Diffusion, we choose samples corresponding to 6 random seeds
(marked as "random") and 6 samples that are the most distinguishable between GS and GAS in
terms of pixel-space L; distance (marked as "selected"). We choose the selected sample seeds at
NFE = 4 and report the corresponding samples for all NFEs. We report the samples for FFHQ

(Figures[7} [8l PL[I0), AFHQv2 (Figures [T} [T2] [T3] [T4), LSUN Bedroom (Figures[13] [16] [17] [I8) and
11 22).

ImageNet (Figures[T9] 20

Most random samples show only minor fine-grained differences between GS and GAS (which is still
important and has a positive effect on FID, as indicated in Table2). At the same time, the selected
samples fully demonstrate the potential effect of the adversarial loss on the image quality. Most GAS
samples at NFE = 4 demonstrate superior image quality compare to GS, while being farther from
teacher. This further complements the results demonstrated in Figure {4} At the same time, one could
tell that the pictures enhanced by adversarial loss, differ depending on NFE: pictures from the same
random seeds become significantly closer to the teacher starting from NFE = 6. This also indicates
that the effect of the adversarial loss is the most prominent at low NFEs, where it is harder for the
student to replicate teacher’s performance.

Mode collapse It is also worth noting that incorporation of the adversarial loss to the training
process does not lead to mode collapse — a common concern in such cases — as we explicitly
address this issue using the relativistic GAN loss from [Huang et al.[|(2024). The random samples
reported in Figures[7} 24]show generation diversity, while low resulting FID values indicate both high
quality of our images and the absence of mode collapse.

23

Under review as a conference paper at ICLR 2026

Stable Diffusion For the Stable Diffusion experiments, we generate images from the 250 MS-
COCO-val prompts with both the official LD3 implementation and our GAS method, initializing
both with identical random latent noise. From these outputs, we select six images at random
(marked "random") and six that best highlight the visual differences between GAS and LD3 (marked
"selected").

Random prompts:

* “A woman sitting on a bench and a woman standing waiting for the bus.”

“jumbo jet sits on the tarmac while another takes off”
* “An old green car parked on the side of the street.”
* “A gas stove next to a stainless steel kitchen sink and countertop.”

* “A person walking through the rain with an umbrella.”
Selected prompts:

* “A man in a wheelchair and another sitting on a bench that is overlooking the water.”

“A fireplace with a fire built in it.”

“A half eaten dessert cake sitting on a cake plate.”
* “an airport with one plane flying away and the other sitting on the runway”
* “A dirt bike rider doing a stunt jump in the air”

The resulting comparisons are shown in Figures 23] 24]

24

Under review as a conference paper at ICLR 2026

UniPC GS GAS Teacher UniPC GS GAS Teacher

Selected
Selected

Figure 7: Comparison of GS and GAS with the Figure 8: Comparison of GS and GAS with the
teacher and UniPC on FFHQ with NFE = 4. teacher and UniPC on FFHQ with NFE = 6.

25

Under review as a conference paper at ICLR 2026

UanC GAS Teacher UanC GAS Teacher

?“lf
66@56
WAl

37??

6666
= A

Selected
Selected

Random

Figure 9: Comparison of GS and GAS with the Figure 10: Comparison of GS and GAS with the
teacher and UniPC on FFHQ with NFE = 8. teacher and UniPC on FFHQ with NFE = 10.

26

Under review as a conference paper at ICLR 2026

UanC GS GAS Teacher UniPC GS GAS Teacher

Selected
Selected

H
B - Ny

.‘_‘

.

AT,
¥
-

Random

Figure 11: Comparison of GS and GAS with the = Figure 12: Comparison of GS and GAS with the
teacher and UniPC on AFHQv2 with NFE = 4. teacher and UniPC on AFHQv2 with NFE = 6.

27

Under review as a conference paper at ICLR 2026

UniP S AS Tcher UiP GS GAS Teacher

T

Selected
Selected

Random

Figure 14: Comparison of GS and GAS with the

Figure 13: Comparison of GS and GAS with the
teacher and UniPC on AFHQv2 with NFE = 10.

teacher and UniPC on AFHQv2 with NFE = 8.

28

Under review as a conference paper at ICLR 2026

UniPC GS GAS Teacher UniPC GS GAS Teacher

Selected
Selected

Random
Random

Figure 15: Comparison of GS and GAS with Figure 16: Comparison of GS and GAS with
the teacher and UniPC on LSUN-Bedroom with the teacher and UniPC on LSUN-Bedroom with
NFE = 4. NFE = 5.

29

Under review as a conference paper at ICLR 2026

UniPC GS GAS Teacher UniPC GS GAS Teacher

Selected
Selected

Random

Figure 17: Comparison of GS and GAS with Figure 18: Comparison of GS and GAS with
the teacher and UniPC on LSUN-Bedroom with the teacher and UniPC on LSUN-Bedroom with
NFE = 6. NFE = 7.

30

Under review as a conference paper at ICLR 2026

UniPC GS GAS Teacher

Selected
Selected

Figure 19: Comparison of GS and GAS with the Figure 20: Comparison of GS and GAS with the
teacher and UniPC on ImageNet with NFE = 4. teacher and UniPC on ImageNet with NFE = 5.

31

Under review as a conference paper at ICLR 2026

UniPC GS GAS Teacher UniPC
£ 25 C8a

Tem -

Selected
Selected

Figure 22: Comparison of GS and GAS with the

Figure 21: Comparison of GS and GAS with the
teacher and UniPC on ImageNet with NFE = 7.

teacher and UniPC on ImageNet with NFE = 6.

32

Under review as a conference paper at ICLR 2026

&

GITS LD3 GAS

Selected
Selected

Figure 23: Comparison of GAS with LD3 and Figure 24: Comparison of GAS with LD3 and
GITS on MS-COCO with NFE = 5. GITS on MS-COCO with NFE = 6.

33

	Introduction
	Background
	Diffusion Models
	ODE Solvers
	Solver and Schedule Distillation
	Adversarial Training

	Method
	Generalized Solver (GS)
	Generalized Adversarial Solver (GAS)

	Experiments
	Main results
	Ablation study
	Method efficiency

	Discussion
	Related Work
	Additional experiments
	FID Progression during training
	Generalization across datasets
	Adversarial loss weight

	Efficiency of the method
	Training dataset size
	Training time
	Memory usage
	Inference time

	Experimental details
	Baseline discretization heuristics
	Teacher solver
	Solver coefficients parameterization
	Practical implementation details
	Pixel space diffusion on CIFAR10, FFHQ, and AFHQv2
	Latent space diffusion on LSUN-Bedroom and ImageNet
	Text-to-Image generation with Stable Diffusion

	Additional samples

