
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GAS: IMPROVING DISCRETIZATION OF DIFFUSION
ODES VIA GENERALIZED ADVERSARIAL SOLVER

Anonymous authors
Paper under double-blind review

ABSTRACT

While diffusion models achieve state-of-the-art generation quality, they still suffer
from computationally expensive sampling. Recent works address this issue with
gradient-based optimization methods that distill a few-step ODE diffusion solver
from the full sampling process, reducing the number of function evaluations from
dozens to just a few. However, these approaches often rely on intricate training
techniques and do not explicitly focus on preserving fine-grained details. In this
paper, we introduce the Generalized Solver: a simple parameterization of the
ODE sampler that does not require additional training tricks and improves quality
over existing approaches. We further combine the original distillation loss with
adversarial training, which mitigates artifacts and enhances detail fidelity. We
call the resulting method the Generalized Adversarial Solver and demonstrate its
superior performance compared to existing solver training methods under similar
resource constraints.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b) offer state-of-the-art
generation quality in diverse vision problems, including unconditional and conditional (Dhariwal &
Nichol, 2021; Ho & Salimans, 2022) generation, text-to-image (Nichol et al., 2021; Ramesh et al.,
2022; Saharia et al., 2022; Rombach et al., 2022; Esser et al., 2024), text-to-video (Blattmann et al.,
2023; Brooks et al., 2024; Zheng et al., 2024; Chen et al., 2024b) and even text-to-3D (Poole et al.,
2022; Wang et al., 2023) generation. One of the reasons for their success consists in satisfying both
high sample quality (Dhariwal & Nichol, 2021; Karras et al., 2022) and mode coverage from the
generative trilemma (Xiao et al., 2021). In theory, this allows diffusion models to produce desirable
samples from the target distribution given unlimited computation time.

Besides, many improvements were made to satisfy the third requirement on generation speed. One
way to tackle high inference time is to train a new model that utilizes the pre-trained diffusion and
requires fewer inference steps. This may be achieved by straightening the generation trajectories (Liu
et al., 2022b; 2023; Wang et al., 2024) or by directly performing diffusion distillation (Salimans
& Ho, 2022; Song et al., 2023; Sauer et al., 2023; Yin et al., 2023) into a few-step student. These
training-based methods are capable of fast generation with superior quality on large-scale scenarios.
Their training procedures, however, are computation and memory-heavy and may be infeasible for
users with resource constraints on cutting-edge problems, such as video generation.

Due to the mentioned resource requirements, the lightweight approach of directly accelerating
generation is preferable most of the time. Such inference-time methods as designing specific
solvers (Song et al., 2020a; Lu et al., 2022a; Zhang & Chen, 2022), caching intermediate steps (Ma
et al., 2024; Wimbauer et al., 2024), or performing quantization (Gu et al., 2022; Badri & Shaji, 2023),
push the boundaries of the pre-trained model by utilizing its knowledge as much as possible given
a fixed computational budget. Among them, specifically designed solvers are mostly theoretically
sound and are capable of producing high-quality samples similar to the full-inference model. However,
they require significant hyperparameter search (Zhou et al., 2024b; Zhao et al., 2024) for each model
and may be suboptimal depending on the particular setting.

A natural improvement of the idea consists in training (hyper-)parameters of the inference-time
"student" sampler to match the full-inference "teacher" model. The approach is free-form and allows
for optimizing timestep schedule (Sabour et al., 2024; Tong et al., 2024) as well as the sampler

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Illustration of the Generalized Adversarial Solver image generation in comparison with
the training-free UniPC (Zhao et al., 2024) solver with equal number of function evaluations (NFEs).
Our method shows superior results that are almost identical to teacher images in terms of generation
quality.

coefficients (Kim et al., 2024; Frankel et al., 2025) for each prediction step. Currently existing
methods for training the sampler succeed in improving test-time efficiency of the model compared
to the standard solvers. At the same time, they do not realize the full potential of the paradigm and
tend to have inefficiencies that lead to nuanced and complicated training schemes. Among these
are the unstable loss scale (Sabour et al., 2024), limited parameter space (Tong et al., 2024) and
disentanglement of the parameter subsets (Frankel et al., 2025) which we find to be harmful for
training. Besides, straightforward sampler distillation into a student with limited parameters may be
ineffective for preserving the fine-grained details and may interfere with the generation quality.

In this paper, we aim to tackle the aforementioned issues by introducing a simple yet effective
sampler parameterization and modifying the distillation loss. Specifically, we construct a sampler
that performs each sampling step by calculating a weighted sum of the current velocity direction
with all of the points and directions from previous steps. We propose to utilize a pre-defined solver
as a time-dependent guidance and learn correction to its theoretically derived weights to facilitate
and accelerate training. On top of that, we endow the sampler distillation with the adversarial
loss (Goodfellow et al., 2014) to further boost the sampler quality. Most importantly, we

1. Introduce a novel sampler parameterization that we call the Generalized Solver and demon-
strate its significant impact on training acceleration;

2. Combine it with the adversarial training and validate its postitive impact on the fine-grained
generation details;

3. Show that the resulting Generalized Adversarial Solver achieves superior results compared
to the existing methods of solver/timestep training on several pixel-space and latent-space
data sets.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b) simulate the data
distribution by defining the forward process of gradual data noising and constructing its time reversal.
The forward process is commonly defined by a sequence {pt|0}t∈[0,T ] of transition probabilities
pt|0(xt|x0) = N

(
xt | αtx0, σ

2
t I
)
. It perturbs the initial data distribution pdata(x0) = p0(x0) by

destroying part of its signal and replacing it with the independent Gaussian noise. Here, αt and σ2
t

are positive differentiable functions that define the corresponding noise schedule. Typically, their
choice ensures that the sequence of the corresponding marginal distributions pt(xt) converges to a
simple and tractable prior distribution pT (xT ) (e.g. standard normal). For each noise schedule one
can construct the equivalent Probability Flow ODE (PF-ODE) (Song et al., 2020b)

dxt =

[
f(t)xt −

1

2
g2(t)∇xt

log pt(xt)

]
dt, (1)

where setting

f(t) =
d logαt

dt
, g2(t) = dσ2

t − 2
d logαt

dt
σ2
t (2)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and sampling the endpoint xT from the prior distribution pT ensures (Lu et al., 2022a) that xt ∼ pt
for all time steps. Essentially, ODE formulation allows one to obtain a backward process of data
generation by reversing the velocity of the particle given access to the score function∇xt

log pt(xt)
of the perturbed data distribution. In practice, diffusion models approximate the score function by
optimizing the Denoising Score Matching (Vincent, 2011) objective

min
θ

∫ T

0

Ep0,t(x0,xt)∥sθ(xt, t)−∇xt log pt|0(xt|x0)∥2dt, (3)

where the score functions∇xt log pt|0(xt|x0) of the conditional Gaussian distributions are tractable
and equal to −(xt − αtx0)/σ

2
t . Besides the score networks, one can directly approximate the ODE

velocity function by setting vθ(xt, t) = f(t)xt − (1/2)g2(t)sθ(xt, t).

2.2 ODE SOLVERS

Sampling from a diffusion model amounts to numerically approximating the solution of the
corresponding PF-ODE (Eq. 1). Standard numerical methods for solving a general-form ODE
dxt = v(xt, t)dt are mainly based on approximating the direction xt+h − xt via Taylor expansion.

The first-order Euler scheme makes a step h · v(xt, t), which is simple, yet has a large discretization
error. Its higher-order modifications generally approximate the derivatives with finite differences.
This correction allows Runge-Kutta methods to produce high-quality results (Lu et al., 2022a; Zhang
& Chen, 2022; Karras et al., 2022). However, these methods require mid-point evaluations, which
harms performance in low-NFE regimes (see e.g. (Zhang & Chen, 2022, Table 2)). In contrast, Linear
Multistep solvers (Liu et al., 2022a; Zhang & Chen, 2022) use only previously calculated points and
directions for the same approximation, thus remain useful in this setting.

Recently designed solvers such as DDIM (Song et al., 2020a), DPM-Solver(++) (Lu et al., 2022a;b),
DEIS (Zhang & Chen, 2022), and UniPC (Zhao et al., 2024), exploit the semi-linear nature of
the PF-ODE (Hochbruck & Ostermann, 2010). They approximate the integral in the "variation of
constants" formula

xt =
αt
αu

xu −
∫ t

u

αt
ατ
· g

2(τ)

2
s(xτ , τ)dτ, (4)

allowing more accurate steps thanks to the non-unit coefficient of xu, and enabling computationally
efficient multistep solvers.

Several previous works highlight the importance of choosing the timestep schedule (the set of time
points at which function evaluations are performed), which has a significant impact on the image
generation quality (see (Karras et al., 2022, Appendix D.1) and (Frankel et al., 2025, Appendix H.3)).

2.3 SOLVER AND SCHEDULE DISTILLATION

Several recently introduced acceleration methods outsource the choice of solver coefficients and
the timestep schedule to the gradient-based optimization. Specifically, LD3 (Tong et al., 2024) and
S4S (Frankel et al., 2025) formulate this as an instance of knowledge distillation (Hinton et al., 2015).
Given the pre-trained diffusion model and the corresponding ODE dxt = v(xt, t)dt, one can define
the complete "teacher" sampler to be the output of a multi-step high-quality approximation of the
PF-ODE, which we denote by

ΦT (xT ) = ODESolve (xT ,v(·, ·), T → 0 | Schedule, Solver; Params) . (5)

Here, xT is the initial value, v(·, ·) is the corresponding velocity field and T → 0 shows the interval,
where we solve the ODE. "Solver" and "Schedule" define the sampling scheme and "Params" account
for the additional parameters of the scheme. Then, one could take any parameterization of the
lightweight "student"

ΦS(xT | θ, ϕ, ξ) = ODESolve (xT ,v(·, ·), T → 0 | Schedule(θ),Solver(ϕ); Params(ξ)) (6)

with a bounded computational requirements and optimize its parameters by minimizing a distance d
between the corresponding outputs

min
θ,ϕ,ξ
Ldistill(θ, ϕ, ξ) = min

θ,ϕ,ξ
EpT (xT )d

(
ΦS(xT | θ, ϕ, ξ); ΦT (xT )

)
. (7)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Illustration of the Generalized Adversarial Solver. Our student makes each sampling
step by calculating the weighted average of all previous points and velocity directions. We train the
corresponding weights and timestep schedule via distillation and adversarial loss.

In addition, LD3 and S4S account for the limited parameterization of the student and simplify its
objective by allowing to slightly adapt the input and facilitate replication of the teacher output

min
θ,ϕ,ξ
Lsoft(θ, ϕ, ξ) = min

θ,ϕ,ξ
EpT (xT ) min

x′
T∈B(xT ,rσT )

d
(
ΦS(x′

T | θ, ϕ, ξ); ΦT (xT )
)
, (8)

where B(xT , rσT ) = {x : ∥x−xT ∥2 ≤ rσT } is the ball centered in xT with a radius rσT controlled
by the additional hyperparameter r. We thoroughly discuss parameterizations of the methods and
compare them with our Generalized Solver in Section 3.1.

2.4 ADVERSARIAL TRAINING

Adversarial training (Goodfellow et al., 2014) is a powerful way to guide a free-form generator Gθ(z)
towards realistic outputs via optimizing the minimax objective (Nowozin et al., 2016)

min
θ

max
ψ

Ep(z)f (Dψ(Gθ(z))) + Epdata(x)f (−Dψ(x)) . (9)

Here, f(t) is commonly equal to − log(1 + e−t), the discriminator Dψ is trained to distinguish real
samples from the fake ones, while the generator aims to trick him. Family of the GAN losses with
the form of Equation 9 (Nowozin et al., 2016; Mao et al., 2017; Lim & Ye, 2017) suffers from mode
collapse (Arjovsky et al., 2017; Gulrajani et al., 2017). One of the alternatives is the relativistic GAN
loss (Jolicoeur-Martineau, 2018)

min
θ

max
ψ

Ep(z)pdata(x)f
(
Dψ(Gθ(z))−Dψ(x)

)
(10)

that is specifically designed to discourage mode dropping (Sun et al., 2020). Together with the
gradient penalty

Lgrad(θ, ψ) = λ1Epdata(x)∥∇xDψ(x)∥2 + λ2Ep(z)∥∇xDψ(Gθ(z))∥2 (11)

on discriminator outputs and architecture improvements, relativistic loss allows Huang et al. (2024)
to build a novel high-quality GAN baseline R3GAN which we use throughout the paper.

3 METHOD

In this section, we construct Generalized Adversarial Solver (GAS): an automatic sampler learning
method that combines a simple yet effective parameterization with distillation and adversarial training.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1 GENERALIZED SOLVER (GS)

In Section 2.2 we have discussed that linear multi-step solvers and their specifically designed diffusion
counterparts are the preferable families under strict requirements on computations. Given a timestep
schedule T = t0 > t1 > . . . > tN = δ > 0 and order K they all have the same signature

xn+1 = anxn +

n∑
j=max(n−K+1,0)

cj,nv(xj , tj), (12)

where the coefficients an := an(tn, tn+1) and cj,n := cj,n(tj , tj+1) typically depend on the current
and the next timesteps. We propose several modifications to this basic signature. First, we stress
that the less restriction on NFE is, the less parameters the method has. Second, one can see that
depending on the parameterization of the diffusion model the formula may also contain the weighted
sum of previous points (if e.g. one substitutes v(xj , tj) = f(tj)xj − (1/2)g2(tj)s(xj , tj)) along
with the network predictions. We thus propose to increase the capacity of the signature by adding the
weighted sum of all previous points 1 and get rid of the restriction on the order of the solver:

xn+1 =

n∑
j=0

aj,nxj +

n∑
j=0

cj,nv(xj , tj). (13)

Given this signature, we next define our parameterization that has three sets of parameters: (θ, ϕ, ξ).
The first set θ of parameters defines the timestep schedule via the cumprod transformation: the logits
θn are transformed into "stick breaking" portions σ(θn) ∈ [0, 1]. The time steps are then defined as

tθn = (T − δ)
n∏
j=1

σ(θj) + δ. (14)

The second set ϕ defines the solver coefficients. However, we do not straightforwardly set
aj,n := aj,n(ϕ) and cj,n := cj,n(ϕ). Instead, we use a powerful base multi-step solver (e.g.
DPM-Solver++(3M) (Lu et al., 2022b)) as a source of theoretical guidance for the trained coefficients.
This base solver offers time-dependent theoretical coefficients an,n(tθn:n+1) and cj,n(tθj:n+1), which
we can use as a strong backbone for our solver. We then train additive corrections to these coefficients
in the following way. We set

aj,n(θ, ϕ) :=

{
an,n(t

θ
n:n+1) + ân,n(ϕ), j = n;

âj,n(ϕ), else,
(15)

thus adding a trainable scalar ân,n(ϕ) to the current point coefficient an,n(tθn:n+1) and training
scalars âj,n(ϕ) for all the previous point coefficients.

Next, since the "old" velocities (computed more then K steps before) do not have theoretical
coefficients, we train one scalar ĉj,n(ϕ) per time step j ≤ n−K and set

cj,n(θ, ϕ) = ĉj,n(ϕ). (16)
Finally, we define the coefficients before the "recent" velocities (computed less then K steps before).
Here, theoretical base coefficients are typically constructed via weighted sum of the approximations
v̂(j)
n of the higher-order derivatives v(j)(xn, t

θ
n) via finite differences (which are themselves weighted

sums of previously computed velocities). This leads to the sum of the form
∑K−1
j=0 c̃j,n(t

θ
j:n+1) · v̂

(j)
n .

Combined with the finite-difference approximation of the derivatives v̂(j)
n =

∑n
i=n−j ωi,n ·v(xi, tθi ),

we obtain
K−1∑
j=0

c̃j,n(t
θ
j:n+1) ·

n∑
i=n−j

ωi,n · v(xi, tθi ). (17)

Here, we train additive corrections ĉj,n(ϕ) for the coefficients c̃j,n(tθj:n+1) corresponding to the
derivatives approximation. We thus obtain sum

K−1∑
j=0

[
c̃j,n(t

θ
j:n+1) + ĉj,n(ϕ)

]
·

n∑
i=n−j

ωi,n · v(xi, tθi ), (18)

1Theoretically, one could represent previous points as a linear combination of the previous velocity vectors.
However, this "over-parameterization" may simplify training.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Comparison of solver parameterizations between our GS, LD3 (Tong et al., 2024) and
S4S (Frankel et al., 2025). We propose to add additive guidance to several velocity coefficients with
a theoretical term from a pre-defined solver instead of just two multiplicative terms an and bn. The
guidance is marked by the dependence of coefficients on θ. We add a weighted sum of the previous
points to the prediction.

Method Parameterization

LD3 xn+1 = an(t
θ
n, t

θ
n+1) · xn +

n∑
j=max(n−K+1,0)

cj,n(t
θ
j , . . . , t

θ
n+1) · v(xj , tθj + ξj)

S4S xn+1 = an(t
θ
n, t

θ
n+1) · xn + bn(t

θ
n, t

θ
n+1) ·

n∑
j=max(n−K+1,0)

cj,n(ϕ) · v(xj , tθj + ξj)

GS xn+1 = an,n(θ, ϕ) · xn +
n−1∑
j=0

aj,n(ϕ) · xj +
n∑
j=0

cj,n(θ, ϕ) · v(xj , tθj + ξj)

which produces recent velocity coefficients

ci,n(θ, ϕ) = ωi,n

K−1∑
j=n−i

[
c̃j,n(t

θ
j:n+1) + ĉj,n(ϕ)

]
. (19)

We initialize the corrections with zeros to obtain an efficient initialization. By doing this, we ensure
that even sudden change of the time steps does not completely ruin the solver performance due to the
meaningful dependence of its coefficients on time. We show the positive impact of the theoretical
guidance in Section 4.2.

The last set ξ of parameters acts as a correction to the time steps that we evaluate the pre-trained
model on. Analogous to Tong et al. (2024) and Frankel et al. (2025) we define the decoupled time
steps tθj + ξj and use them for making predictions with the diffusion model. Combining the signature
from Equation 13 with the introduced parameterization, we obtain the Generalized Solver (GS)

xn+1 = an,n(θ, ϕ) · xn +

n−1∑
j=0

aj,n(ϕ) · xj +
n∑
j=0

cj,n(θ, ϕ) · v(xj , tθj + ξj). (20)

and extensively compare it with the parameterizations of LD3 and S4S in Table 1.

3.2 GENERALIZED ADVERSARIAL SOLVER (GAS)

We train the Generalized Solver on the previously established distillation loss from Equation 7.
Specifically, we take d from the distillation loss (Equation 7) to be LPIPS in pixel-space and L1

in latent-space experiments. We do not use the soft version from Equation 8. It is important to
examine the "solver distillation" problem from another perspective. Essentially, it is an instance of the
paired translation problem/learning a mapping from its input/output samples. Several works (Isola
et al., 2017; Ledig et al., 2017) have shown that the standard regression loss could greatly benefit
from adding the adversarial loss on the outputs. Recently, adversarial loss has been established as a
powerful tool to boost performance of the diffusion distillation (Kim et al., 2023; Sauer et al., 2023;
2024; Yin et al., 2024) methods.

Given this, we augment distillation-based training of the GS via distillation loss and obtain the
Generalized Adversarial Solver (GAS). We denote our solver’s output as

ΦS (xT |θ, ϕ, ξ) = ODESolve(xT ,v(·, ·), T → 0 | GS(θ, ϕ, ξ)), (21)
where GS(θ, ϕ, ξ) defines the Generalized Solver signature and parameterization, defined in Sec-
tion 3.1 and Equation 20 specifically. We denote the discriminator by Dψ and train GAS on the sum
of distillation and adversarial losses

{
min
θ,ϕ,ξ

max
ψ
LGAS(θ, ϕ, ξ, ψ) = min

θ,ϕ,ξ
max
ψ
Ldistill(θ, ϕ, ξ) + Ladv(θ, ϕ, ξ, ψ);

Ladv(θ, ϕ, ξ, ψ) = EpT (xT )pT (yT )f
(
Dψ

(
ΦS (xT |θ, ϕ, ξ)

)
−Dψ

(
ΦT (yT )

))
.

(22)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We exploit R3GAN (Huang et al., 2024) relativistic loss with f(t) = − log(1 + e−t) and add the
discriminator gradient penalties from Equation 11 to facilitate its training dynamics.

The incorporation of the adversarial loss is also effective in terms of removing generation artifacts
in low NFE regimes, where regression task becomes harder. We will further demonstrate this in
Section 4.

4 EXPERIMENTS

We demonstrate efficiency of the proposed method by conducting experiments on several pixel and
latent space experiments. We perform evaluation on pixel-space CIFAR10 (32×32) (Krizhevsky
et al., 2009), FFHQ (64×64) (Karras et al., 2019), and AFHQv2 (64×64) (Choi et al., 2020). Among
latent diffusion models (Rombach et al., 2022) we cover LSUN Bedroom (256×256) (Yu et al., 2015)
and the class-conditional ImageNet (256×256) (Russakovsky et al., 2015). Additionally, we assess
the Stable Diffusion (Rombach et al., 2022) model on the MSCOCO (512×512) (Lin et al., 2015)
text-to-image dataset. We use Karras et al. (2022) and Rombach et al. (2022) pretrained models for
pixel and latent space experiments respectfully.

We choose distance d (Equation 7) in distillation loss to be LPIPS (Zhang et al., 2018) in pixel-space
and L1 in latent-space experiments. We initialize timesteps using a time-uniform schedule and utilize
the DPM-Solver++(3M) (Lu et al., 2022b) coefficients as the guiding theoretical parameters. For
pixel-space models we use a pretrained R3GAN discriminator. For latent experiments we adapt the
same discriminator architecture, but train it from scratch. We calculate FID (Heusel et al., 2017) using
50000 samples, unless stated otherwise. The additional training details can be found in Appendix D.

4.1 MAIN RESULTS

In Table 2 we illustrate that the proposed methods, GS and GAS, systematically enhance image
sampling quality across different solvers, especially in low NFE setups. As an example, the S4S
Alt (Frankel et al., 2025) algorithm reports a FID score of 10.63 with NFE=4 on the FFHQ dataset,
whereas GAS achieves a significantly better FID score of 7.86 under the same conditions. Our
approach outperform all previously proposed methods across all evaluated datasets. Specifically,
GAS achieves a FID score of 4.48 with NFE=4 on the AFHQv2 dataset and 3.79 on the FFHQ dataset
using NFE=6. Additionally, we achieve the FID score of 5.38 on the conditional ImageNet dataset
with NFE=4, 4.60 on the LSUN Bedrooms dataset with NFE=5, and 14.71 on the MS-COCO dataset
with NFE = 4.

4.2 ABLATION STUDY

Coefficients parametrization First, we demonstrate significant impact of solver parameterization
on training efficiency. Specifically, we show the difference between our parameterization, that
represents coefficients as sum of fixed theoretical guidance and explicitly trained additive corrections,
and the parameterization from another high-quality method S4S (Frankel et al., 2025). For a fair
comparison, we implemented LMS + PC S4S solver type removing a constraint on the solver order.
This guarantees Generalized Solver and S4S to have the same number of trainable parameters.

In Table 3 we demonstrate our parameterization’s superior performance on different datasets and
NFEs. Our results are consistent with the training issue reported in (Frankel et al., 2025). Figure 3
represents the dynamics of LPIPS loss on the evaluation dataset in different training iterations of the
experiment. Our parametrization shows a more efficient training process, faster convergence and
more stable training behavior.

Adversarial training Addition of the adversarial training is a crucial part of our contribution,
because it significantly improves the image generation quality as seen in Tables 2a, 2b. It is crucial
for low NFE setups because teacher image can be too difficult for the student to replicate it, therefore
smaller values of the regression loss (LPIPS or L1 for pixel and latent models respectfully) does
not always correlate with smaller FID scores (as can be seen in Table 4) and occasionally results
in visible artifacts. Examples of such behavior are presented in Figure 4. Adding adversarial loss
makes the student’s generation closer to teacher’s distribution and thus removes appearing artifacts
and makes generation more realistic, in spite of occasionally resulting in bigger LPIPS or L1 losses.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: We evaluate FID score comparison of the proposed GS and GAS methods against existing
solvers like UniPC and iPNDM, and alongside training-based approaches such as GITS, DMN, LD3,
and S4S. We report the FIDs of the teacher models as those utilized during our training process. The
baseline scores were taken from the corresponding papers, unless otherwise noted.† report utilizing
teacher model having significantly different FID score, thus it cannot be fairly compared to other
methods.

(a) Pixel-space datasets include CIFAR10 (32×32),
AFHQv2 (64×64), and FFHQ (64×64)

Method NFE=4 NFE=6 NFE=8 NFE=10

CIFAR10
Solvers

DPM++ (3M) 46.59 12.16 4.62 3.08
UniPC (3M) 43.92 13.12 4.41 3.16
iPNDM (3M) 35.04 11.80 5.67 3.69

Solver optimization methods

UniPC [GITS] 25.32 11.19 5.67 3.70
UniPC [DMN] 26.35 8.09 5.90 2.45
iPNDM [GITS] 15.63 6.82 4.29 2.78
iPNDM [DMN] 28.09 9.24 7.68 3.31
Best LD3 9.31 3.35 2.81 2.38
S4S Alt 6.35 2.67 2.39 2.18
GS (Ours) 4.41 2.55 2.25 2.18
GAS (Ours) 4.05 2.49 2.24 2.17
Teacher 2.03

FFHQ
Solvers

DPM++ (3M) 46.14 14.01 6.18 4.18
UniPC (3M) 53.25 11.24 5.59 3.90
iPNDM (3M) 36.54 16.44 8.11 5.39

Solver optimization methods

UniPC [GITS] 21.38 12.21 7.84 4.46
UniPC [DMN] 25.82 9.47 6.85 3.54
iPNDM [GITS] 18.05 9.38 5.72 3.96
iPNDM [DMN] 31.30 12.12 11.00 5.24
Best LD3 17.96 5.97 3.50 3.25
S4S Alt 10.63 4.62 3.15 2.91
GS (Ours) 10.70 4.49 2.96 2.67
GAS (Ours) 7.86 3.79 2.87 2.66
Teacher 2.60

AFHQv2
Solvers

DPM++ (3M) 27.82 10.72 4.28 3.19
UniPC (3M) 33.78 8.27 4.60 3.81
iPNDM (3M) 23.20 9.55 4.49 3.19

Solver optimization methods

UniPC [GITS] 12.20 7.26 3.86 2.88
UniPC [DMN] 30.32 14.46 6.85 2.94
iPNDM [GITS] 12.89 6.10 4.03 3.26
iPNDM [DMN] 33.15 16.01 10.12 3.22
Best LD3 9.96 3.63 2.63 2.27
S4S Alt 6.52 2.70 2.29 2.18
GS (Ours) 5.92 2.87 2.33 2.25
GAS (Ours) 4.48 2.66 2.29 2.31

Teacher 2.16

(b) Latent diffusion models are tested on the LSUN-
Bedroom and ImageNet datasets (256×256).

Method NFE=4 NFE=5 NFE=6 NFE=7

LSUN-Bedroom-256 (latent space)
Solvers

DPM++ (3M) 48.82 18.64 8.50 5.16
UniPC (3M) 39.78 13.88 6.57 4.56
iPNDM (3M) 11.93 6.38 5.08 4.39

Solver optimization methods

UniPC [GITS] 70.93 47.37 22.33 17.27
UniPC [DMN] 29.22 8.21 4.40 4.55
iPNDM [GITS] 76.86 59.17 28.09 19.54
iPNDM [DMN] 11.82 6.15 4.71 5.16
Best LD3 8.48 5.93 4.52 4.16
S4S Alt† 20.89 13.03 10.49 10.03
GS (Ours) 9.83 5.32 3.77 3.34
GAS (Ours) 6.68 4.60 3.77 3.36

Teacher 3.06

Imagenet-256 (latent space)
Solvers

DPM++ (3M) 26.07 11.91 7.51 5.95
UniPC (3M) 20.01 8.51 5.92 5.20
iPNDM (3M) 13.86 7.80 6.03 5.35

Solver optimization methods

UniPC [GITS] 54.88 34.91 14.62 9.04
UniPC [DMN] 16.72 7.96 7.54 7.81
iPNDM [GITS] 56.00 43.56 19.33 10.33
iPNDM [DMN] 10.15 7.33 7.25 7.40
Best LD3 9.19 5.03 4.46 4.32
S4S Alt† 5.13 4.30 4.09 4.06
GS (Ours) 7.87 4.93 4.30 4.17
GAS (Ours) 5.38 4.87 4.32 4.17

Teacher 4.10

(c) Traning dataset for SD consists of 1000 MS-
COCO samples, while FID is computed across
30,000 prompts to generate images with spatial reso-
lution of 512×512.

Method NFE=4 NFE=5 NFE=6 NFE=7

MS-COCO (Stable Diffusion v1.5)
iPNDM (2M) 17.76 14.41 13.86 13.76
iPNDM [GITS] 18.05 14.11 12.10 11.80
Best LD3 17.32 13.07 12.40 11.83
S4S† 16.05 13.26 11.17 10.83
GS (Ours) 14.94 11.97 11.71 11.32
GAS (Ours) 14.71 11.91 11.73 11.36

Teacher 14.10 12.08 11.80 11.48

4.3 METHOD EFFICIENCY

Dataset size We next show that GAS is efficient in terms of dataset size and training time. To this
end, we measure method’s performance on the "full" dataset scenario with 49000 samples and find
the smaller dataset size that demonstrates equivalent results. First, we observe that the dataset size of
1400 is enough for training GS without adversarial loss. However, the solver’s optimization problem
becomes more challenging in low-NFE scenarios with adversarial loss. Here, we expand the dataset

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: We compare our parametrization with S4S variant
on CIFAR and FFHQ datasets in terms of FID and LPIPS
scores. Both setups use batch size of 24, while training
dataset consists of 49k samples. Teacher dataset has FID
score of 2.03 and 2.60 for CIFAR10 and FFHQ datasets
respectfully.

NFE=4 NFE=6 NFE=8 NFE=10

FID LPIPS FID LPIPS FID LPIPS FID LPIPS

CIFAR10
S4S 31.44 0.273 2.93 0.073 2.87 0.072 2.26 0.027
Our 4.39 0.116 2.51 0.046 2.21 0.017 2.15 0.010
FFHQ
S4S 24.24 0.175 11.08 0.117 7.76 0.098 3.97 0.045
Our 10.79 0.116 4.40 0.046 2.97 0.016 2.70 0.005

0 10000 20000 30000 40000
Training iteration

0.00

0.05

0.10

0.15

0.20

0.25

LP
IP

S

FFHQ Generalized
Ours NFE=6
Ours NFE=8
Ours NFE=10
S4S NFE=6
S4S NFE=8
S4S NFE=10

Figure 3: LPIPS evaluation loss for
training iterations comparing S4S and
our parametrization. Our method re-
sults in more stable training process.

Figure 4: Incorporating an adversarial loss into the training process
enhances generation quality reducing occurring image artifacts in low
NFEs regimes. In this setup, the teacher model uses UniPC (3M) solver
with NFE=10, while the student models operate with a reduced NFE=4.

Table 4: Results of 10k train-
ing iterations calculated on
1000 validation samples.

FID Ldistill
FFHQ
GS 10.70 0.116
GAS 7.86 0.127

LSUN
GS 9.64 0.172
GAS 7.54 0.174

from 1400 samples to 5000 and obtain results indistinguishable from the full-dataset scenario in all
datasets and settings. Additional information provided in Appendix C.1.

Performance Without adversarial training, GS converges within 1-2.5 hours depending on the
dataset, which is comparable to the most relevant baselines LD3 and S4S. In case of GAS, training
time increases to 2-9 hours, which is larger, but still requires similar order. We refer the reader to the
Appendix C.2 for the exact comparison of metrics depending on training time and Appendix C.3 for
peak-memory usage in for backward pass.

5 DISCUSSION

In this paper, we propose Generalized Adversarial Solver, the novel parameterization and training
algorithm for automatic gradient-based solver optimization. The main novelty is additive theoretical
guidance of solver coefficients and combination of distillation loss with adversarial training. We
establish that the introduced Generalized Solver parameterization significantly accelerates training
compared to the existing parameterizations. We show that adding the adversarial loss significantly
boosts method’s performance and allows to tackle the image artifacts present in simple solver
distillation. We extensively compare our method with other solver/timestep training approaches and
demonstrate its superior performance on 6 datasets, ranging from 32× 32 pixel-space CIFAR10 to
256× 256 latent-space ImageNet and 512× 512 MS-COCO with Stable Diffusion.

Limitations Our method relies on performing backpropagation through the whole solver inference,
which may face scalability issues when applied to larger image sizes and bigger models. We explore
the generalizability of our method between different datasets in Section B.2. However, a potential
concern remains as to whether GS/GAS requires separate training for each preferred inference NFEs.
We leave the development of lightweight modifications to our method for future work.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the clarity and reproducibility of our work, we provide excessive description of all parts
of our method. Appendix D provides the pseudocode of our algorithm, exactly matching the way it
appears in our implementation; configurations and hyperparameters of all "teacher" generations and
"student" training processes, including batch sizes, optimizer choice and other fine-grained details;
and expressions for commonly used timestep schedules mentioned in the paper.

Furthermore, our experiments are built upon publicly available datasets (e.g., CIFAR10, FFHQ) and
pre-trained model checkpoints to ensure our experimental setups are accessible and verifiable.

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models,
November 2023. URL https://mobiusml.github.io/hqq_blog/.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. 2024.
URL https://openai. com/research/video-generation-models-as-world-simulators, 3:1, 2024.

Thibault Castells, Hyoung-Kyu Song, Bo-Kyeong Kim, and Shinkook Choi. Ld-pruner: Efficient
pruning of latent diffusion models using task-agnostic insights, 2024. URL https://arxiv.
org/abs/2404.11936.

Defang Chen, Zhenyu Zhou, Can Wang, Chunhua Shen, and Siwei Lyu. On the trajectory regularity
of ode-based diffusion sampling. arXiv preprint arXiv:2405.11326, 2024a.

Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7310–7320, 2024b.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for
multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8188–8197, 2020.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. arXiv preprint arXiv:2403.03206, 2024.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models, 2023. URL
https://arxiv.org/abs/2305.10924.

Eric Frankel, Sitan Chen, Jerry Li, Pang Wei Koh, Lillian J Ratliff, and Sewoong Oh. S4s: Solving
for a diffusion model solver. arXiv preprint arXiv:2502.17423, 2025.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Joshua M Susskind. Boot: Data-free distil-
lation of denoising diffusion models with bootstrapping. In ICML 2023 Workshop on Structured
Probabilistic Inference {\&} Generative Modeling, 2023.

10

https://mobiusml.github.io/hqq_blog/
https://arxiv.org/abs/2404.11936
https://arxiv.org/abs/2404.11936
https://arxiv.org/abs/2305.10924


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10696–10706, 2022.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. Advances in neural information processing systems, 30,
2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numerica, 19:209–286,
2010.

Nick Huang, Aaron Gokaslan, Volodymyr Kuleshov, and James Tompkin. The gan is dead; long
live the gan! a modern gan baseline. Advances in Neural Information Processing Systems, 37:
44177–44215, 2024.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125–1134, 2017.

Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing from standard gan.
arXiv preprint arXiv:1807.00734, 2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Ue-
saka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning
probability flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Sanghwan Kim, Hao Tang, and Fisher Yu. Distilling ode solvers of diffusion models into smaller
steps. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 9410–9419, 2024.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image
super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4681–4690, 2017.

Jae Hyun Lim and Jong Chul Ye. Geometric gan. arXiv preprint arXiv:1705.02894, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context, 2015. URL https://arxiv.org/abs/1405.0312.

11

https://arxiv.org/abs/1405.0312


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
on manifolds. In International Conference on Learning Representations, 2022a. URL https:
//openreview.net/forum?id=PlKWVd2yBkY.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022b.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference on
Learning Representations, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15762–15772, 2024.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least
squares generative adversarial networks. In Proceedings of the IEEE international conference on
computer vision, pp. 2794–2802, 2017.

Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-step text-to-image diffusion model with
variational score distillation. arXiv preprint arXiv:2312.05239, 2023.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems, 29,
2016.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling
schedules in diffusion models. arXiv preprint arXiv:2404.14507, 2024.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

12

https://openreview.net/forum?id=PlKWVd2yBkY
https://openreview.net/forum?id=PlKWVd2yBkY


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Tim Salimans, Thomas Mensink, Jonathan Heek, and Emiel Hoogeboom. Multistep distillation of
diffusion models via moment matching. arXiv preprint arXiv:2406.04103, 2024.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042, 2023.

Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rombach.
Fast high-resolution image synthesis with latent adversarial diffusion distillation. In SIGGRAPH
Asia 2024 Conference Papers, pp. 1–11, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Ruoyu Sun, Tiantian Fang, and Alexander Schwing. Towards a better global loss landscape of gans.
Advances in Neural Information Processing Systems, 33:10186–10198, 2020.

Vinh Tong, Trung-Dung Hoang, Anji Liu, Guy Van den Broeck, and Mathias Niepert. Learning to
discretize denoising diffusion odes. arXiv preprint arXiv:2405.15506, 2024.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Compu-
tation, 23:1661–1674, 2011. URL https://api.semanticscholar.org/CorpusID:
5560643.

Fu-Yun Wang, Ling Yang, Zhaoyang Huang, Mengdi Wang, and Hongsheng Li. Rectified diffusion:
Straightness is not your need in rectified flow. arXiv preprint arXiv:2410.07303, 2024.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in Neural Information Processing Systems, 36:8406–8441, 2023.

Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. Learning fast samplers
for diffusion models by differentiating through sample quality. In International Conference on
Learning Representations, 2021.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, Christian Rupprecht, Daniel Cremers, Peter Vajda, and
Jialiang Wang. Cache me if you can: Accelerating diffusion models through block caching. 2024.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion gans. arXiv preprint arXiv:2112.07804, 2021.

Shuchen Xue, Zhaoqiang Liu, Fei Chen, Shifeng Zhang, Tianyang Hu, Enze Xie, and Zhenguo Li.
Accelerating diffusion sampling with optimized time steps. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8292–8301, 2024.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. arXiv preprint
arXiv:2311.18828, 2023.

13

https://api.semanticscholar.org/CorpusID:5560643
https://api.semanticscholar.org/CorpusID:5560643


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
William T Freeman. Improved distribution matching distillation for fast image synthesis. arXiv
preprint arXiv:2405.14867, 2024.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. Advances in Neural Information
Processing Systems, 36, 2024.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode
solver with empirical model statistics. Advances in Neural Information Processing Systems, 36:
55502–55542, 2023.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou,
Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all, march 2024.
URL https://github. com/hpcaitech/Open-Sora, 1(3):4, 2024.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024a.

Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion
models in around 5 steps. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7777–7786, 2024b.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A RELATED WORK

Among many inference-time acceleration algorithms, solver-based methods treat diffusion models
as ODEs with a (partially) black-box velocity function. Specifically, PNDM (Liu et al., 2022a)
and iPNDM (Zhang & Chen, 2022) apply the linear multistep method to the corresponding PF-
ODE. DPM-Solver (Lu et al., 2022a), DEIS (Zhang & Chen, 2022) use the variation of constants
(Equation 4) and approximate the underlying integral. DPM-Solver++ (Lu et al., 2022b) extends this
idea to the multi-step version, and UniPC (Zhao et al., 2024) modifies it with the predictor-corrector
framework. Besides the solver distillation loss, introduced for optimizing the timesteps in LD3 (Tong
et al., 2024) and used for optimizing both timesteps and solver coefficients in S4S (Frankel et al.,
2025), many automatic solver selection methods were proposed. DDSS (Watson et al., 2021) directly
optimizes generation quality of the solver. AYS (Sabour et al., 2024) optimizes timesteps to minimize
the KL divergence between the backward SDE and the discretization. GITS (Chen et al., 2024a)
choose the timesteps by utilizing trajectory structure of the PF-ODE and DMN (Xue et al., 2024)
allows for the fast model-free choice of parameters via optimizing an upper-bound on the solution
error. Some approaches manipulate diffusion-specific properties and utilize redundancies in their
computations. Namely, DeepCache (Ma et al., 2024) and CacheMe (Wimbauer et al., 2024) propose to
perform block or layer caching and reuse activations from the previous timesteps. The other directions
of acceleration include quantization (Gu et al., 2022; Badri & Shaji, 2023) and pruning (Fang et al.,
2023; Castells et al., 2024).

In contrast, diffusion distillation techniques aim at compressing a pre-defined diffusion model by
training a few-step student. Several methods learn to mimic solution of the PF-ODE. This includes
optimizing the regression loss between the outputs (Salimans & Ho, 2022) or learning the integrator
between arbitrary timesteps (Gu et al., 2023; Song et al., 2023; Kim et al., 2023).The other use
diffusion models as a training signal that assesses likelihood of the generated images. It is commonly
formalized as optimizing the Integrated KL divergence (Luo et al., 2024; Yin et al., 2023; 2024;
Nguyen & Tran, 2023) by training an additional "fake" diffusion model on the generator’s output
distribution. Other methods consider matching scores (Zhou et al., 2024a) or moments (Salimans
et al., 2024) of the corresponding distributions. Many distillation methods enhance student generation
quality by adding the adversarial training (Kim et al., 2023; Yin et al., 2024), including discriminator
loss on detector (Sauer et al., 2023) or teacher features (Sauer et al., 2024).

B ADDITIONAL EXPERIMENTS

B.1 FID PROGRESSION DURING TRAINING

To better understand the training process, we visualize the dynamics of the FID score during the
training process.

When comparing the GS and GAS FID scores for FFHQ, as visualized in Figure 5a, we observe that
incorporating the adversarial objective requires more training iterations for our method to converge.
However, it is more important that, as previously reported in Table 2a, it achieves a significantly
lower FID score, allowing for a better trade-off between generation quality and a slight increase in
training time.

Figure 5b demonstrates that although GAS achieves excellent FID scores after 30k iterations, it could
potentially yield even better results with further training. This is suggested by the continuing decrease
in the FID score for NFEs of 4 and 5 with each additional training iteration. Scenarios involving a
larger number of NFEs for model inference do not display this pattern, since they comprise a bigger
student’s capacity and lead to easier optimization task and earlier convergence.

B.2 GENERALIZATION ACROSS DATASETS

Regarding generalization across datasets with significantly different dimensionalities (e.g., CIFAR
vs. COCO), the optimal schedule for a smaller resolution may not be optimal for higher resolutions
due to simpler denoising tasks at equivalent noise levels (larger images have greater correlation
among nearby pixels). To further demonstrate the method’s generalization results, we tested solver

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Training iteration

10

15

20

25

30

35

40

45

50

FI
D

FFHQ NFE=4
GS
GAS

(a) FID values during training for the
FFHQ dataset, using 4 NFE with the
GS and GAS. We evaluate FID every
500 training iterations, computing it
based on 5000 generated samples.

5000 10000 15000 20000 25000 30000
Training interations

4.00

5.00

6.00

7.00

8.00

9.00

FI
D

LSUN-Bedrooms-256

5000 10000 15000 20000 25000 30000
Training interations

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

Imagenet-256

NFE=4 NFE=5 NFE=6 NFE=7

(b) GAS FID training dynamics for latent space datasets for several
NFE scenarios. We generate 50k images for each of 5000, 10k, 20k
and 30k iterations checkpoints, and evaluate FID scores based on
those datasets.

Figure 5: FID score for several checkpoints during training of GS and GAS for both pixel (FFHQ)
and latent space (LSUN, ImageNet) datasets.

transfer between closely related diffusion models (FFHQ and AFHQv2), demonstrating practical
generalizability. We thus illustrate its generalization in Table 5.

Table 5: We evaluate FID score comparison of GS and GAS trained on dataset and applied on another
against DPM-Solver++, LD3 and S4S. We use the GS and GAS checkpoints as in Table 2a.

(a) Solvers GS, GAS, trained on FFHQ and applied
on AFHQv2 (denoted as GS’ and GAS’) consistently
outperform baseline methods.

Method NFE=4 NFE=6 NFE=8 NFE=10

DPM-Solver++ 27.82 10.72 4.28 3.19
Best LD3 9.96 3.63 2.63 2.27
S4S Alt 6.52 2.70 2.29 2.18

GS (Ours) 5.92 2.87 2.33 2.25
GAS (Ours) 4.48 2.66 2.29 2.31
GS’ (Ours) 6.54 3.01 2.41 2.29
GAS’ (Ours) 5.15 2.81 2.44 2.32

(b) Solvers GS, GAS, trained on AFHQv2 and applied
on FFHQ (denoted as GS’ and GAS’) consistently
outperform baseline methods.

Method NFE=4 NFE=6 NFE=8 NFE=10

DPM-Solver++ 46.14 14.01 6.18 4.18
Best LD3 17.96 5.97 3.50 3.25
S4S Alt 10.63 4.62 3.15 2.91

GS (Ours) 10.70 4.49 2.96 2.67
GAS (Ours) 7.86 3.79 2.87 2.66
GS’ (Ours) 16.01 5.91 3.27 2.70
GAS’ (Ours) 9.39 4.21 2.92 2.72

B.3 ADVERSARIAL LOSS WEIGHT

One of the few hyperparameters of GAS is the GAN-weight. Starting from the resolution of 64 × 64,
the weight of the adversarial loss was fixed to 1.0 for all datasets. Figure 6 demonstrates that GAS is
insensitive to the GAN-weight selection and achieves similar FID with different weights. This shows
that our method achieves strong results without the need for hyperparameter tuning.

C EFFICIENCY OF THE METHOD

C.1 TRAINING DATASET SIZE

We conduct experiments to assess the efficiency of the proposed methods with respect to the size
of the training dataset. We examine several variations of sizes: 49000 as a baseline, 5000 and 1400
as the more lightweight alternatives. For GS, we observe that taking 1400 images and performing
10000 training iterations is sufficient for our method to converge, regardless of NFE. We note that it
reaches equivalent or better FID scores compared to a bigger training dataset (see Table 6a).

The same pattern occurs with GAS on CIFAR. The dataset of 1400 images is optimal for its training.
However, starting from the higher-dimensional FFHQ dataset, we observe the typical challenges
of adversarial training. As the discriminator used in GAS is trained simultaneously with the other
parameters of the solver, it tends to overfit and demands larger dataset size to alleviate this problem.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 0.5 1 1.5 2 5 10 100 500
adv weight

8.0
8.5
9.0
9.5

10.0
10.5

FI
D

FFHQ NFE = 4

Figure 6: FID values for FFHQ dataset with 4 NFEs for different adversarial loss weights. The metric
remains stable even at large weight values. Setting Ladv = 0 for GAS results in absence of adversarial
training, thus is a GS setting.

Adversarial training has demonstrated its efficiency, especially in scenarios with smaller inference
steps. We thus illustrate its performance in Table 6b on NFE = 4 and NFE = 6. It shows that the
training dataset size of 5000 is sufficient for matching performance of the model trained on 49000.

Table 6: Comparison of different dataset sizes with several NFEs, where N indicates the number of
samples in the training dataset. In Table 6a the FID score is calculated after 10k and 20k training
iterations to show the early convergence of the GS method. Table 6b presents the results of GAS
evaluation after 10k iterations of training.

(a) Generalized solver

NFE=4 NFE=10

N 10k 20k 10k 20k

CIFAR10 1400 4.35 4.35 2.14 2.15
49000 4.39 4.39 2.15 2.15

FFHQ 1400 10.70 10.72 2.71 2.71
49000 10.79 10.82 2.70 2.71

(b) Generalized Adversarial solver

N NFE=4 NFE=6

CIFAR10 1400 3.98 2.44
49000 3.98 2.48

FFHQ
1400 9.44 4.48
5000 7.83 3.79
49000 7.93 3.76

C.2 TRAINING TIME

We further investigate GS/GAS training dynamics by estimating their convergence time and comparing
their computational efficiency with other methods.

In Table 7a we demonstrate the training time of Progressive Distillation (PD, (Salimans & Ho, 2022))
and Consistency Distillation (CD, (Song et al., 2023)). Those methods focus on training a new
generator model that can sample images in a few-NFE manner. Both require days of training time
and are computationally demanding.

We also compare our methods with several approaches that involve training certain parameters
of solvers. In pixel space GS requires less than an hour of training time on CIFAR10, which is
comparable to LD3, S4S and S4S-Alt. Notably, it achieves FID of 2.44 with NFE = 6, while S4S-Alt
results in FID score of 2.52 with NFE = 7 and equivalent training time. Adversarial loss extends the
training time to up to 2 hours, however, as we report in Table 2a, it archives superior results in terms
of FID score.

In the latent diffusion setting, we compare our method with LD3, which reports convergence within
an hour of training time. We observe that GS and GAS require up to 3 hours; however, this is still
within the same order (for more details, see Table 7b).

In Table 8 we also provide more details about training time of our methods for both pixel and latent
space models.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Comparison of different training-based methods in terms of computational effectiveness
across both pixel and latent space selected dataset.

(a) CIFAR10

Method NFE FID Time GPU Type

CD 2 2.93 8 days A100
PD 8 2.47 8 days TPU

S4S-Alt 7 2.52 < 1 hour A100
S4S 10 2.18 < 1 hour A100
LD3 10 2.32 < 1 hour A100

GS 6 2.44 < 1 hour H100
10 2.14 < 1 hour H100

GAS 4 3.98 < 2 hours H100

(b) Imagenet-256

Method NFEs FID Time GPU Type

LD3

4 9.19

< 1 hour A1005 5.03
6 4.46
7 4.32

GS

4 7.97 < 1.5 hours

H1005 4.94 < 2 hours
6 4.29 < 2 hours
7 4.16 < 2.5 hours

GAS 4 6.06 < 3 hours H100

Table 8: Approximate training time (in minutes) for 10k iterations scenarios for GS and GAS in both
pixel and latent space. For MS-COCO we use 1k iterations scenarios. All the numbers reported are
computed using one H100 GPU.

(a) Pixel space models

NFE=4 NFE=6 NFE=8 NFE=10

GS
CIFAR 30m 40m 50m 60m
FFHQ 40m 60m 80m 95m
AFHQv2 40m 60m 80m 95m

GAS
CIFAR 85m 100m 115m 130m
FFHQ 160m 185m 210m 240m
AFHQv2 160m 185m 210m 240m

(b) Latent space models

NFE=4 NFE=5 NFE=6 NFE=7

GS
LSUN 35m 45m 50m 60m
ImageNet 75m 95m 115m 135m
MS-COCO 50m 60m 70m 80m

GAS
LSUN 125m 140m 150m 165m
ImageNet 185m 210m 245m 270m
MS-COCO 60m 75m 90m 105m

C.3 MEMORY USAGE

We are investigating the peak-memory GS/GAS required for training iteration depending on NFE.

In Table 9 we demonstrate the peak-memory usage for GS/GAS compared to LD3. When measuring
the memory, we used the config we further report in Appendix D. GS requires the same amount of
peak-memory allocated as LD3.

Incorporation of the discriminator loss to the training process of GAS only requires additional less
than 4 gigabyte of memory usage, which is a minor overhead, especially considering its efficiency in
terms of the final generation quality. This overhead is limited to training at inference time, GAS and
GS sample at the same speed. Additionally, storing prior states does not provide additional overhead
for peak-memory usage.

Table 9: Peak-memory usage (in gigabyte) for training iteration for GS and GAS in CIFAR10 and
Imagenet-256. We use LD3 in our implementation. The official implementation uses LPIPS, rather
than L1 distance in latent space as we do, which leads to the use of a VAE decoder at each step and
incurs additional memory usage.

(a) CIFAR10

NFE=4 NFE=6 NFE=8 NFE=10

GS 17GB 23GB 28GB 34GB
GAS 19GB 25GB 30GB 35GB
LD3 17GB 23GB 28GB 34GB

(b) Imagenet-256

NFE=4 NFE=5 NFE=6 NFE=7

GS 37GB 45GB 54GB 62GB
GAS 41GB 49GB 57GB 66GB
LD3 37GB 45GB 54GB 62GB

C.4 INFERENCE TIME

Inference process of our method requires additional operations performed with all prior states.
However, they are incomparably computationally simpler than one step of diffusion model (function

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

evaluation). Thus, the all-clock time on inference for GS is comparable to the solvers baselines,
which we show in Table 10.

Table 10: Inference time in minutes for ImageNet dataset. We obtain the comparison by generating
1,024 images with batch 64 utilizing a single H100 GPU. GAS differs from GS only in the training
process; their inference times are identical.

Method NFE=4 NFE=5 NFE=6 NFE=7

UniPC(3M) 0.36m 0.46m 0.55m 0.64m
GS (Ours) 0.36m 0.45m 0.55m 0.64m

This pattern does not depend on the model and dataset choice; therefore, our method does not
introduce any inference time overhead on both pixel, latent or text-to-image diffusion models.

D EXPERIMENTAL DETAILS

D.1 BASELINE DISCRETIZATION HEURISTICS

In this section, we provide the reader with the common timestep schedules, used in the paper.

Polynomial discretization (time-quadratic, time-uniform) defines the timestep schedule via a
polynomial function of the uniform sequence. Specifically, it defines

ti =

(
i

N

)ρ
(T − teps) + teps, i = 0, 1, . . . , N. (23)

Here ρ is often set to 1 or 2 (Song et al., 2020b; Ho et al., 2020; Song et al., 2020a) which corresponds
to time quadratic and time uniform discretization.

Time logSNR schedule builts on top of the signal-to-noise ratio α2
t /σ

2
t . Specifically, log-SNR uses

the transformation λt = log(σt/αt) and defines

λ(ti) =
N − i
N

(λT − λeps) + λeps, i = 0, 1, . . . , N. (24)

This schedule offers high generation quality with different versions of the DPM-Solver (Lu et al.,
2022a;b; Zheng et al., 2023).

GITS schedule provides an optimized sequence of noise levels for diffusion models, targeting
very low NFEs. Originally proposed in Chen et al. (2024a) for ODE-based diffusion processes
with trajectory regularity constraints. We use optimized timesteps in Stable Diffusion experiments
from Tong et al. (2024). Concretely, the timestep schedules are:

NFE = 4 :
[
1, 0.6837, 0.3673, 0.1176, 0.001

]
;

NFE = 5 :
[
1, 0.7669, 0.4839, 0.2341, 0.0676, 0.001

]
;

NFE = 6 :
[
1, 0.7836, 0.5504, 0.3340, 0.1508, 0.0343, 0.001

]
;

NFE = 7 :
[
1, 0.8502, 0.6004, 0.4006, 0.2175, 0.0843, 0.0176, 0.001

]
;

NFE = 8 :
[
1, 0.8502, 0.6504, 0.4672, 0.3007, 0.1675, 0.0676, 0.0176, 0.001

]
.

D.2 TEACHER SOLVER

Data generation For a fair comparison, we follow Tong et al. (2024) to generate the teacher dataset.
We choose UniPC with the parameters used in LD3. We utilize class condition of the ImageNet-256
teacher and generate the corresponding dataset with the classifier-free guidance scale of 2.0 and
generate 50 images per each of the 1000 classes. We report details in Table 11.

Stable Diffusion details Regarding text-to-image generation with Stable Diffusion, we observe
that output image distributions of low-NFE students (NFE = 3-5) differ significantly from those of a

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11: Detailed description of the UniPC solver parameters used for a teacher dataset generation
consisting of 50000 images for both pixel and latent space scenarios.

CIFAR10 FFHQ AFHQv2 LSUN-Bedroom-256 Imagenet-256

Order 3 3 3 3 3
NFE 20 20 20 20 10
Time schedule logSNR logSNR logSNR time-uniform time-quadratic
B(h) bh1 bh1 bh1 bh2 bh2
teps 1e-4 1e-4 1e-4 1e-3 1e-3

FID 2.03 2.60 2.16 3.06 4.10

high-NFE teacher (e.g., NFE = 10). Since such students have very few trainable parameters, direct
distillation can be inefficient. The same pattern was found in Tong et al. (2024). For such reason and
a fair comparison, we follow identical to the LD3 approach teacher generation protocol. We train
student at NFE = n with the teacher at NFE = n+ 1. This "one-plus" teacher minimizes the gap in
noise dynamics and yields smoother, more reliable convergence.

Moreover, in our experiments, we find that FID loses its correlation with perceived fidelity at high
NFEs, so we treat improvements in that regime with particular caution. Recognizing this unreliability
beyond NFE ≈ 8 reinforces our choice of simpler teachers as the most robust path to high-quality
samples. Further details on teacher parameters are provided in Table 12.

Table 12: Detailed solver parameter settings for teacher-generated dataset using 30000 MS-COCO
prompts.

Student’s NFE NFE=4 NFE=5 NFE=6 NFE=7

Teacher’s NFE 5 6 7 8
Solver IPNDM(2M) IPNDM(2M) IPNDM(2M) IPNDM(2M)
Time schedule GITS GITS GITS GITS

FID 14.10 12.08 11.80 11.48

D.3 SOLVER COEFFICIENTS PARAMETERIZATION

The detailed description of the Generalized Solver step is provided in Algorithm 1. Specifically,
when all parameters ϕ are set to zero, the GS reduces exactly to DPM-Solver++(3M) (Lu et al.,
2022b).

D.4 PRACTICAL IMPLEMENTATION DETAILS

We define W , H , and C as the width, height, and number of channels of an image, respectively.
Similarly, W ′, H ′, and C ′ represent the corresponding dimensions in the latent space for the Latent
Diffusion model (Rombach et al., 2022).

Optimizer and trainable parameters We update three primary parameter sets during training: θ
defines the timestep schedule, ϕ defines the solver coefficients and ξ acts as a correction to the time
steps that we evaluate the pre-trained model on. We use one optimizer for all parameter groups. We
use time-uniform schedule for the initialization of parameters θ. We initialize ξ and ĉj,n(ϕ), aj,n(ϕ)
with zeros. We use the EMA version of the model parameters for evaluation and update the EMA
weights after each training iteration.

Evaluation We evaluate our models (Table 2a, 2b) using the FID score with 50 000 randomly
generated samples. For ImageNet, we generate an equal number of samples for each class to ensure a
balanced FID evaluation. We use EMA weights for evaluations. We calculate FID using reference
statistics and code from Karras et al. (2022). For MS-COCO (Table 2c) we obtain the FID score on

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 1 Generalized solver (GS) with theoretical guidance from DPM-Solver++(3M). Denote
hi = λtθi − λtθi−1

for i = 1, . . . , N .

1: ψ1 ← e−hn − 1
2: xn+1 ←

[
an,n(t

θ
n:n+1) + ân,n(ϕ)

]
· xn −

[
αtn+1

ϕ1 + ĉn,n(ϕ)
]
· v(xn, tθn + ξn)

3: if n = 1 then
4: r0 ← hn−1

hn

5: D10 ← 1
r0

[
v(xn, t

θ
n + ξn)− v(xn−1, t

θ
n−1 + ξn−1)

]
6: xn+1 ← xn+1 −

[αtn+1
ϕ1

2 + ĉn−1,n(ϕ)
]
·D10

7: else if n ≥ 2 then
8: r0, r1 ← hn−1

hn
, hn−2

hn

9: ψ2 ← ψ1

h + 1

10: ψ3 ← ψ2

h −
1
2

11: D10 ← 1
r0

[
v(xn, t

θ
n + ξn)− v(xn−1, t

θ
n−1 + ξn−1)

]
12: D11 ← 1

r1

[
v(xn−1, t

θ
n−1 + ξn−1)− v(xn−2, t

θ
n−2 + ξn−2)

]
13: D1← D10 +

r0
r0+r1

[
D10 −D11

]
14: D2← 1

r0+r1

[
D10 −D11

]
15: xn+1 ← xn+1 +

[
αtn+1

ϕ2 + ĉn−1,n(ϕ)
]
·D1−

[
αtn+1

ϕ3 + ĉn−2,n(ϕ)
]
·D2

16: end if

17: xn+1 ← xn+1 +
max(n−1,0)∑

j=0

aj,n(ϕ) · xj +
max(n−3,0)∑

j=0

cj,n(ϕ) · v(xj , tθj + ξj)

30 000 images using the same validation captions and FID reference statistics as in LD3 (Tong et al.,
2024).

D.4.1 PIXEL SPACE DIFFUSION ON CIFAR10, FFHQ, AND AFHQV2

• Pre-trained diffusion model:
– EDM (Karras et al., 2022);

• Teacher:
– UniPC solver, NFE = 20, logSNR schedule;

• Discriminator R3GAN (Huang et al., 2024):
– Pre-trained CIFAR10 checkpoint for CIFAR10;
– Pre-trained FFHQ-64 checkpoint for both FFHQ and AFHQv2;
– Training in pixel space;

• Image resolution:
– W = H = 32, C = 3 for CIFAR10;
– W = H = 64, C = 3 for FFHQ and AFHQv2;

• Training/validation dataset size:
– CIFAR10: 1400/1000 for GS and GAS;
– FFHQ and AFHQv2: 1400/1000 for GS; 5000/1000 for GAS;

• Solver training:
– Ldistill is LPIPS;
– Ladv with weight = 0.1 for CIFAR10 and weight = 1.0 for FFHQ and AFHQv2;
– EMA decay = 0.999;
– Batch size = 24;
– Adam optimizer, lr = 0.001, betas = (0.9, 0.999), weight decay = 0.0;
– Gradients are clipped by the norm of 1.0;

• Discriminator training:

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

– Batch size = 24;
– Adam optimizer, lr = 0.00001, betas = (0.9, 0.999), weight decay = 0.0;
– λ1 and λ2 in Equation 11 are equal to 0.1;

• Training duration:
– 10k iterations for GS/GAS;

D.4.2 LATENT SPACE DIFFUSION ON LSUN-BEDROOM AND IMAGENET

• Pre-trained diffusion model:
– LDM (Rombach et al., 2022);

• Teacher:
– UniPC solver for both LSUN-Bedrooms and ImageNet;
– NFE = 20 and time-uniform schedule for LSUN;
– NFE = 10 and time-quadratic schedule for ImageNet;

• Discriminator R3GAN (Huang et al., 2024):
– FFHQ-64 architecture with random initialization;
– Training in latent space;

• Image resolution:
– W = H = 256, C = 3;
– W ′ = H ′ = 64, C ′ = 3;

• Guidance scale: 2.0 (for ImageNet);
• Training/validation dataset size:

– 1400/1000 for GS;
– 5000/1000 for GAS;

• Solver training:
– Ldistill is L1 in latent space;
– Ladv with weight = 1.0;
– EMA decay = 0.999;
– Batch size = 8;
– Adam optimizer, lr = 0.001, betas = (0.9, 0.999), weight decay = 0.0;
– Gradients are clipped by the norm of 1.0;

• Discriminator training:
– Batch size = 8;
– Adam optimizer, lr = 0.00001, betas = (0.9, 0.999), weight decay = 0.0;
– λ1 and λ2 in Equation 11 are equal to 0.1;

• Training duration:
– 30k iterations for GS/GAS;

D.4.3 TEXT-TO-IMAGE GENERATION WITH STABLE DIFFUSION

• Pre-trained diffusion model:
– Stable Diffusion v1.5 (Rombach et al., 2022);
– Gradient checkpointing at every UNet inference;

• Teacher:
– NFE = n+ 1, where n = student NFE;
– IPNDM(2M) solver with GITS;

• Discriminator R3GAN (Huang et al., 2024):
– FFHQ-64 architecture with random initialization;

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

– First convolution layer modified to accept 4-channel latent inputs;
– Training in latent space;

• Image resolution:

– W ×H = 512× 512, C = 3

– W ′ ×H ′ = 64× 64, C ′ = 4

• Guidance scale: 7.5;

• Training/validation dataset size:

– 1400/128 for GS;
– 5000/128 for GAS;

• Solver training:

– Ldistill is L1 in latent space;
– Ladv with weight = 1.0;
– EMA decay = 0.999;
– Batch size = 4;
– Adam optimizer, lr = 0.001, betas = (0.9, 0.999), weight decay = 0.0;
– Gradients are clipped by the norm of 1.0;

• Discriminator training:

– Batch size = 4;
– Adam optimizer, lr = 0.00001, betas = (0.9, 0.999), weight decay = 0.0;
– λ1 and λ2 in Equation 11 are equal to 0.1;

• Training duration:

– 1k iterations for GS;
– 2k iterations for GAS;

E ADDITIONAL SAMPLES

To further demonstrate the method’s competitive results, we provide the reader with the additional
samples of GS and GAS, compared to the teacher and the baseline UniPC with the same NFE. For
all models/datasets except Stable Diffusion, we choose samples corresponding to 6 random seeds
(marked as "random") and 6 samples that are the most distinguishable between GS and GAS in
terms of pixel-space L1 distance (marked as "selected"). We choose the selected sample seeds at
NFE = 4 and report the corresponding samples for all NFEs. We report the samples for FFHQ
(Figures 7, 8, 9, 10), AFHQv2 (Figures 11, 12, 13, 14), LSUN Bedroom (Figures 15, 16, 17, 18) and
ImageNet (Figures 19, 20, 21, 22).

Most random samples show only minor fine-grained differences between GS and GAS (which is still
important and has a positive effect on FID, as indicated in Table 2). At the same time, the selected
samples fully demonstrate the potential effect of the adversarial loss on the image quality. Most GAS
samples at NFE = 4 demonstrate superior image quality compare to GS, while being farther from
teacher. This further complements the results demonstrated in Figure 4. At the same time, one could
tell that the pictures enhanced by adversarial loss, differ depending on NFE: pictures from the same
random seeds become significantly closer to the teacher starting from NFE = 6. This also indicates
that the effect of the adversarial loss is the most prominent at low NFEs, where it is harder for the
student to replicate teacher’s performance.

Mode collapse It is also worth noting that incorporation of the adversarial loss to the training
process does not lead to mode collapse — a common concern in such cases — as we explicitly
address this issue using the relativistic GAN loss from Huang et al. (2024). The random samples
reported in Figures 7- 24 show generation diversity, while low resulting FID values indicate both high
quality of our images and the absence of mode collapse.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Stable Diffusion For the Stable Diffusion experiments, we generate images from the 250 MS-
COCO-val prompts with both the official LD3 implementation and our GAS method, initializing
both with identical random latent noise. From these outputs, we select six images at random
(marked "random") and six that best highlight the visual differences between GAS and LD3 (marked
"selected").

Random prompts:

• “A woman sitting on a bench and a woman standing waiting for the bus.”
• “jumbo jet sits on the tarmac while another takes off”
• “An old green car parked on the side of the street.”
• “A gas stove next to a stainless steel kitchen sink and countertop.”
• “A person walking through the rain with an umbrella.”

Selected prompts:

• “A man in a wheelchair and another sitting on a bench that is overlooking the water.”
• “A fireplace with a fire built in it.”
• “A half eaten dessert cake sitting on a cake plate.”
• “an airport with one plane flying away and the other sitting on the runway”
• “A dirt bike rider doing a stunt jump in the air”

The resulting comparisons are shown in Figures 23, 24.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 7: Comparison of GS and GAS with the
teacher and UniPC on FFHQ with NFE = 4.

Figure 8: Comparison of GS and GAS with the
teacher and UniPC on FFHQ with NFE = 6.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 9: Comparison of GS and GAS with the
teacher and UniPC on FFHQ with NFE = 8.

Figure 10: Comparison of GS and GAS with the
teacher and UniPC on FFHQ with NFE = 10.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 11: Comparison of GS and GAS with the
teacher and UniPC on AFHQv2 with NFE = 4.

Figure 12: Comparison of GS and GAS with the
teacher and UniPC on AFHQv2 with NFE = 6.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 13: Comparison of GS and GAS with the
teacher and UniPC on AFHQv2 with NFE = 8.

Figure 14: Comparison of GS and GAS with the
teacher and UniPC on AFHQv2 with NFE = 10.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 15: Comparison of GS and GAS with
the teacher and UniPC on LSUN-Bedroom with
NFE = 4.

Figure 16: Comparison of GS and GAS with
the teacher and UniPC on LSUN-Bedroom with
NFE = 5.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 17: Comparison of GS and GAS with
the teacher and UniPC on LSUN-Bedroom with
NFE = 6.

Figure 18: Comparison of GS and GAS with
the teacher and UniPC on LSUN-Bedroom with
NFE = 7.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 19: Comparison of GS and GAS with the
teacher and UniPC on ImageNet with NFE = 4.

Figure 20: Comparison of GS and GAS with the
teacher and UniPC on ImageNet with NFE = 5.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 21: Comparison of GS and GAS with the
teacher and UniPC on ImageNet with NFE = 6.

Figure 22: Comparison of GS and GAS with the
teacher and UniPC on ImageNet with NFE = 7.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 23: Comparison of GAS with LD3 and
GITS on MS-COCO with NFE = 5.

Figure 24: Comparison of GAS with LD3 and
GITS on MS-COCO with NFE = 6.

33


	Introduction
	Background
	Diffusion Models
	ODE Solvers
	Solver and Schedule Distillation
	Adversarial Training

	Method
	Generalized Solver (GS)
	Generalized Adversarial Solver (GAS)

	Experiments
	Main results
	Ablation study
	Method efficiency

	Discussion
	Related Work
	Additional experiments
	FID Progression during training
	Generalization across datasets
	Adversarial loss weight

	Efficiency of the method
	Training dataset size
	Training time
	Memory usage
	Inference time

	Experimental details
	Baseline discretization heuristics
	Teacher solver
	Solver coefficients parameterization
	Practical implementation details
	Pixel space diffusion on CIFAR10, FFHQ, and AFHQv2
	Latent space diffusion on LSUN-Bedroom and ImageNet
	Text-to-Image generation with Stable Diffusion


	Additional samples

