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Abstract

Multivariate Time Series (MTS) forecasting involves analyzing the evolution and interre-
lationships of multiple variables over time. Effectively mining relationships between MTS
variables remains challenging as variables may imply multiple relational patterns. Re-
cently, graph-based approaches have exhibited substantial effectiveness in capturing rela-
tionships between MTS variables. However, these methods often adhere to the paradigm
of capturing low-level pairwise relationships, which limits their ability to capture other
high-level beyond pairwise relational patterns. To address this issue, we present a syn-
ergistic graph learning framework that combines the modeling advantages of graphs and
hypergraphs to uncover more comprehensive relational patterns. This framework mainly
consists of two parts. Firstly, we introduced a Synergistic Relation Construction module,
which incorporates dynamic graph and hypergraph structures to model low-level pairwise
and high-level beyond pairwise relationships among variables, representing multi-level rela-
tional patterns through obtained adjacency matrices and incidence matrices. Additionally,
we developed a Synergistic Relation Learning mechanism, that leverages novel synergistic
graph and hypergraph convolutional networks to facilitate spatial dependency interactions
across multi-levels, along with temporal convolutional networks to capture more compre-
hensive spatial-temporal dependencies. We conducted comprehensive experiments on four
benchmark datasets, and experimental results demonstrate that our model outperforms
the state-of-the-art performance.

Keywords: Multivariate time series forecasting, Multi-level relational learning, Graph
neural network, Hypergraph neural network

1. Introduction

Time series forecasting involves inferring future trends and patterns by analyzing past obser-
vational data. Accurate predictions of time series play a crucial role in decision-making and
planning across various societal domains. Multivariate Time Series (MTS) forecasting is a
significant subtask in time series forecasting Bai et al. (2020); Frigola-Alcalde (2016). MTS
focuses on the evolution and interrelationships of multiple variables over time, rendering it
more challenging to forecast future trends.

In the early stage, traditional statistical methods Frigola (2015); Frigola-Alcalde (2016);
Roberts et al. (2013), such as Vector AutoRegressive and Gaussian Processes, were widely

∗ Corresponding author.

© 2024 Y. Xie, Q. Liu, R. Hou, T. Dai & T. Lan.



Xie Liu Hou Dai Lan

employed for MTS tasks. These methods were used to learn linear dependencies at different
time points to forecast future trends. However, they heavily depend on predefined assump-
tions and may fail to capture nonlinear patterns. With the advent of deep neural networks,
there has been a shift towards leveraging their powerful modeling capabilities in handling
non-stationary and nonlinear dependencies for MTS forecasting. Various approaches have
emerged, including Convolutional Neural Networks (CNNs) that utilize local receptive fields
Li et al. (2021), Recurrent Neural Networks (RNNs) for sequence modeling Lai et al. (2018);
Shi et al. (2015), and Transformer models employing global attention mechanisms Huang
et al. (2019); Shih et al. (2019). While these mechanisms excel in in identifying depen-
dencies among features over lengthy durations, they predominantly disregard the essential
influence of spatial information in MTS forecasting endeavors.

Recently, Graph Neural Networks (GNNs) have gained widespread attention for MTS
tasks, due to their ability to model spatial relationships among multivariate variables. In
structured MTS data, predefined graph structures have been utilized to simulate the spatial
relationships between variables Li et al. (2018); Yu et al. (2018). The local spatial dependen-
cies among variables were then learned through the neighborhood information aggregation
mechanism of graph convolution networks. Furthermore, to capture the spatial dependen-
cies among variables that require global dependency, the global attention mechanism is
integrated with graph convolution Guo et al. (2019); Song et al. (2020). For unstructured
MTS data, constructing predefined graphs is challenging. Therefore, models typically em-
ploy adaptive learning strategies to capture the spatial dependencies among variables Chen
et al. (2023); Cai et al. (2024); Wu et al. (2020); Ye et al. (2022, 2021). Although these
methods can model spatial relationships through predefined or adaptively learned adja-
cency matrices, their ability to capture multiple relational patterns and complex spatial
dependencies is often limited Zhang et al. (2019).

In real-world MTS data, variables exhibit various associative patterns and display high-
level interactions Shang and Chen (2024). Figure. 1 shows the normalized stock price trends
of four NASDAQ 100 index component companies from November 2016 to December 2016.
It’s worth noting that technology companies such as Apple, Amazon, and Facebook con-
sistently share a similar trend, contrasting sharply with the performance of the catering
company Starbucks. This difference illustrates that there are not only directly pairwise
low-level relationships between variables but also may indicate the presence of other ab-
stract higher-level relationship patterns (e.g. relationships among technology companies).
However, existing graph-based methods fail to fully capture these relationship patterns as
conventional graph structure adheres to a message-passing paradigm between pairwise, ig-
noring other abstract and semantic higher-level relationship patterns, leading to incomplete
modeling of relationships between variables (Limitation 1 ). Meanwhile, when learning spa-
tial dependencies in MTS data, existing graph convolutional networks either only propagate
low-level correlations between nodes, or only use mined high-level information through hy-
pergraphs which ignores the information sharing and interaction between multiple levels.
(Limitation 2 ).

In this paper, we propose a Multi-level Relational Learning with Synergistic Graphs
(MSG) framework to address the aforementioned limitations. Specifically, for Limitation
1, we introduce a synergistic graph learning framework that combines the modeling capabil-
ities of both dynamic graphs and hypergraphs. This framework adaptively models low-level
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Figure 1: An illustration of non-pairwise relationship in stock price. The stock price trends
of the three technology companies, Apple, Amazon, and Facebook exhibit a some-
what similar trend, distinctly differing from the trend of the catering company
Starbucks. These differences may indicate the presence of other high-level beyond
pairwise relationship patterns among the multivariate variables.

pairwise relationships through graphs and facilitates shared high-level connections among
non-pairwise variables through hypergraphs to model multi-level relationship patterns. Fur-
thermore, to address Limitation 2, we present a novel dual-layer attribute-enhanced hyper-
graph convolution network. This approach leverages hyperedges from the incidence matrices
to represent high-order attribute information of variables, enabling attribute-layer hyper-
graph convolution to capture high-level spatial dependencies. By employing a dual-layer
network, we enhance the interaction between high-level attribute features and low-level
original features through forward and backward propagation of spatial information utilizing
incidence matrices. In summary, our primary contributions are outlined as follows:

• We propose a synergistic graph learning framework, encompassing both low-level
pairwise relationships and high-level beyond pairwise relationships through dynamic
graphs and hypergraphs to unravel multi-level relationship patterns among variables
in MTS forecasting.

• We design a novel dual-layer attribute-enhanced hypergraph convolutional network
that effectively captures high-level spatial dependencies among variables at the at-
tribute layer and facilitates multi-level information sharing through a dual-layer in-
formation propagation mechanism.

• We conducted extensive experiments on four real-world MTS datasets with no prior
graph structure. The results illustrate that our MSG outperforms state-of-the-art
methods.
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2. Related Work

2.1. MTS Forecasting.

Multivariate time series forecasting predicts future points using multiple variables. Tradi-
tional methods like ARIMA struggle with complexity, while Bayesian methods like Gaus-
sian Processes Frigola (2015) face nonlinearities. Deep learning methods, HyDCNN Li
et al. (2021) employ CNNs to capture locally correlated feature dependencies. LSTNet and
FC-LSTM Lai et al. (2018); Shi et al. (2015) utilize RNNs to capture temporal dependen-
cies. TPA-LSTM Shih et al. (2019) and DSANet Huang et al. (2019) enhance long-term
dependencies with attention mechanisms, exploring correlations across different time peri-
ods. However, dismissing the internal relationships among variables poses challenges when
validating real MTS data.

2.2. Graphs for MTS Forecasting.

Graph Neural Networks (GNNs) Kipf and Welling (2017) improve spatial relationships
between variables using weighted edges. In MTS tasks, pioneering works like STGNN and
DCRNN Yu et al. (2018); Li et al. (2018) utilize graph structures to simulate non-Euclidean
distances between variables. ASTGCN Guo et al. (2019) combines attention mechanisms
and spatial-temporal Graph Convolutional Networks (GCNs) to capture spatial-temporal
features. STSGCN Song et al. (2020) addresses spatial-temporal data heterogeneity by
aggregating long-range dependencies. GCRNN and FourierGNN Ye et al. (2021); Yi et al.
(2024) optimize static graph structures for learning variable relationships. TPGNN Liu
et al. (2022) establishes dynamic graph structures among variables using static matrix basis
and time-varying coefficients. MAGNN and ESG Chen et al. (2023); Ye et al. (2022) propose
dynamic graph learning networks for MTS data. However, these methods primarily model
low-level pairwise relationships, ignoring high-level abstract relationships.

2.3. Hypergraphs for MTS Forecasting.

A hypergraph extends the concept of a graph by allowing edges to connect multiple nodes,
providing a more comprehensive representation of relationships. It’s effective for illustrating
complex associations and higher-level relationships, promising improved modeling in MTS
forecasting. The Hypergraph Neural Networks (HGNNs) Feng et al. (2019) pioneered the
use of hypergraph neural networks to capture high-level relationships in MTS forecasting.
Another approach involves adjusting feature embeddings Jiang et al. (2019). Techniques
enhancing hypergraph features include HCRNNs Yi and Park (2020) for structured sen-
sor networks, spatial-temporal synchronization Wang and Zhu (2022) for traffic flow, Li
et al. (2022) merging hypergraph and graph neural structures for crime rate prediction, Ma
et al. (2022) using fuzzy clustering for stock price trends, and Xu et al. (2022) introducing
trainable multi-scale hypergraphs for collective behavior trajectories.

While HGCNs have found applications in scenarios like traffic flow and crime rate predic-
tion, their predictive performance on MTS data remains suboptimal due to the challenge of
capturing complex multi-level relationship interactions among variables. Models like ReMo
Wu et al. (2023) utilize hypergraphs to handle unstructured MTS data, representing vari-
ables and relationships as nodes and hyperedges. However, relying solely on hypergraphs
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may not suffice for some datasets, as they struggle to capture multi-level relationship pat-
terns effectively. In contrast to prior approaches, we propose a novel MSG designed to
enhance the model’s ability to capture diverse correlation patterns in unstructured MTS
data. MSG captures low-level pairwise and high-level beyond pairwise relationships through
adaptively synergistic graph learning framework and introduces a dual-layer propagation
learning mechanism for multi-level interactive sharing.

3. Preliminary

3.1. Problem Formulation.

In this paper, we focus on multivariate time series forecasting. Formally, given a sequence
of observed time series signals X = {x1,x2, · · · ,xt, · · · ,xT }, where xt ∈ RN×1 denotes the
values at time step t, N is the number of variable, xi,t denotes the ith variable at time step
t, our aim are to forecasting the future value x̂t+H ∈ RN×1 at single time step t+H based
on the historical values of the previous L time steps, where H denotes look-ahead horizon.
The problem can be formulated as:

xt−L+1:t
F−→ x̂t+H (1)

where F denotes the mapping function that the model intends to parameterize for single-
step forecasting.

3.2. Graph & Hypergraph.

A graph is represented by G = (V, E) where V is the set of nodes, E is the set of edges. The
adjacency matrix A ∈ RN×N describes the relationship between pairs of nodes. We use N
to denote the number of nodes in a graph. A hypergraph can be denoted as HG = (HV,HE)
where HV denotes the node set and HE = {e1, e2, · · · , ek} denotes the hyperedge set. Hy-
pergraphs allow a hyperedge to connect multiple nodes, which differs from a graph struc-
ture. We utilize an incidence matrix I ∈ RN×K to explain the structure of a hypergraph.
Hypergraph adjacency matrix AH ∈ RK×K aims to characterize the relationship between
hyperedges. N and K represent the number of nodes and hyperedges, respectively.

4. Methodology

In this section, we present our model MSG and its main part. The overall framework is
shown in Fig. 2. MSG consists of three parts: the multi-scale feature extraction mod-
ule to capture different temporal and spatial characteristics across scale in Fig. 2(a), the
Synergistic Relationship Construction (SRC) module to model multiple relationship pat-
terns in Fig. 2(b), and the Synergistic Relationship Learning (SRL) module to learn intri-
cate spatial-temporal dependencies in Fig. 2(c). A more detailed description is as follows:

4.1. Multi-Scale Feature Extraction

We constructed a multi-scale feature extraction network Chen et al. (2023) to transform
the original time series into feature representations of different scales. It extracts details
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Figure 2: The overall framework of MSG.

from small-scale features and captures slow-changing trends from large-scale features. As
shown in Fig. 2(a), firstly, the original MTS input undergoes sequential CNN operations
in the temporal dimension. Each layer generates feature representations at multiple scales.

The feature representation at the kth scale, is defined as Xk ∈ RN× T

2k−1×Fk

, where N
represent the number of variables, T

2k−1 is the sequence length in kth dimension and F k is
the feature dimension of the kth scale. Then, We use two parallel convolutional networks
to add features of a certain scale. One use kernel sizes 1× 7, 1× 6, and 1× 3 at each layer,
the stride is set to 2; the other with kernel size 1× 1 and a 1× 2 pooling layer, formally:

Xk
1 = ReLU

(
θkcon1 ∗Xk−1 + bk1

)
(2)

Xk
2 = Pooling

(
ReLU

(
θkcon2 ∗Xk−1 + bk2

))
(3)

where θkcon1 and θkcon2 are different convolution kernels, bk2, b
k
2 are biases. Finally, we compute

the feature representations for each scale Xk:

Xk = Xk
1 +Xk

2 (4)

4.2. Synergistic Relationship Construction

In this part, we propose a Synergistic Relationship Construction module utilizing graph and
hypergraph structures for capturing multi-level relationship patterns between variables, and
this structure eliminates the need for pre-defined graphs. The details is shown in Fig. 2(b).



MSG

Graph Structure Construction. For the graph structures, we design a parameter
overlay involving the combination of data-driven and parameter-driven strategies to adap-
tively model dynamic relationships shown in Fig. 3. Firstly, The static graphs learned in a
parameter-driven manner are adopted in Wu et al. (2020) to acquire the inter-node distance
relationships. The formulas are as follows:

Mk
s1 = tanh

(
Ek

randθ
k
s1

)
, Mk

s2 = tanh
(
Ek

randθ
k
s2

)
(5)

Ak
s = ReLU

(
tanh

(
Mk

s1

(
Mk

s2

)T −Mk
s2

(
Mk

s1

)T))
(6)

Figure 3: The details parameter overlay in-
volving the combination of data-
driven and parameter-driven strat-
egy. We add static and dynamic
pairwise relationships to represent
low-level relational patterns.

where Ek
rand represents randomly initial-

ized node embeddings at kth scale, θks1 and
θks2 are learnable parameter during training,
tanh and ReLU are the activate function.
Static representation Mk

s1 and Mk
s2 were

used to get the adjacency matrix, which rep-
resents the static low-level pairwise relation-
ships at kth scale.

Subsequently, we design a data-driven
strategy to learn dynamic low-level pair-
wise patterns as the limited parameters Mk

s

can’t grow infinitely to model dynamic fea-
tures that change constantly. Therefore, We
treat the data itself as dynamic features at
each timestep and use an MLP to map the
original MTS data Xk ∈ RN×T to the dy-
namic information Uk ∈ RF×F . And Uk

is then merged with the dynamic represen-
tation Mk

d1 and Mk
d2, thereby learning the

dynamic adjacency matrix Ak
d ∈ RN×N at

kth scale.

Uk = ReLU
(
θk2

(
ReLU

(
θk1X

k
)))

(7)

Mk
d1 = tanh

(
Ek

randθ
k
d1U

k
)
, Mk

d2 = tanh
(
Ek

randθ
k
d2U

k
)

(8)

Ak
d = ReLU

(
tanh

(
Mk

d1

(
Mk

d2

)T −Mk
d2

(
Mk

d1

)T))
(9)

By combining the static and dynamic adjacency matrices, we derive the final adjacency
matrix Ak at the kth scale, effectively capturing static and dynamic pairwise relationships
patterns A =

{
A1,A2, . . . ,Ak

}
across multiple scales.

Ak = Ak
s +Ak

d (10)

Hypergraph Structure Construction. While the adjacency matrix can only capture
pairwise relationships between variables, we introduce hypergraph structures to establish
high-level beyond pairwise relational patterns. Specifically, we randomly initialize hyperedge
(which can also be cluster)Ek

cluster at kth scale multiple with φk
2 to get hyperedge embedding
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P k
2 ∈ RK×F . Then we multiply P k

1 and the transpose of P k
2 to get the incidence matrix

Ik ∈ RN×K , where N is the number of variables, K is the number of hyperedges. The
incidence matrix at kth scale can be expressed as:

P k
1 = tanh

(
Xkφk

1

)
, P k

2 = tanh
(
Ek

clusterφ
k
2

)
(11)

Ik = ReLU
(
tanh

(
P k

1

(
P k

2

)T))
(12)

φk
1 and φk

2 are trainable parameters at kth scale. Similarly, I =
{
I1, I2, . . . , Ik

}
contains

the set of all incidence matrices, which can express high-level beyond pairwise relationships
at multiple scales among variables.

The multi-scale adjacency matrix set A and incidence matrix set I were sent to subse-
quent SRL modules to learn spatial-temporal dependencies.

4.3. Synergistic Relationship Learning

The SRL mechanism, shown in Fig. 2(c), leverages novel synergistic graph and hypergraph
convolutional networks to facilitate the interaction of spatial dependencies across multi-
levels, along with temporal convolutional networks to capture more comprehensive spatial-
temporal dependencies.

Graph Convolutional Networks. In the spatial dependencies learning phase, firstly,
we use bidirectional graph convolution networks to learn the incoming and outgoing infor-
mation of a node.

Hk
G = GNNk

in

(
Xk,Ak, θkin

)
+GNNk

out

(
Xk,

(
Ak

)T
, θkout

)
(13)

where θkin and θkout are parameters for incoming and outgoing, Hk
G ∈ RN×T×F is the spatial

feature coming from bidirectional graph convolution at kth scale.
Dual-layer Attribute-enhanced Hypergraph Convolutional Networks. Unlike

conventional hypergraph convolutional networks, this network has a dual-layer structure,

Figure 4: The details of the dual-layer
attribute-enhanced propagation.

allowing for cross-layer interaction and learn-
ing between node layer features and attribute
layer features, thereby enhancing the spatial
dependency feature association of multi-levels.
As shown in Fig. 4, we first propagate the
original nodes to hyperedges (represented by
node e), which are also considered as clus-
ter centers with common attributes of multiple
nodes. Secondly, we learn the high-level rela-
tionships of nodes in the attribute layer by up-
dating the AH matrix. Finally, we construct
the incidence matrix to associate hyperedges
with original nodes, establishing non-linear re-
lationships between the attribute layer and
nodes. For example, the red arrow in Fig. 4
indicates the spatial dependence from node 5



MSG

to node 2. In traditional GCNs, node 5 and node 2 might not have a direct correlation.
However, by exploring the spatial dependencies between the attribute layer and nodes, node
5 and node 2 can be connected through path node 5 to attribute 1 to attribute 3 to node 2.

To get the hyperedge embedding matrix Sk, we multiply the incidence matrix and
embeddings of input at the kth scale. And add an additional adjacency learnable matrix
Ak

H ∈ RK×K to extract the high-level spatial dependencies at attribute layer between
hyperedges. The formula can be formulated as:

Sk = ϕ
(
Ak

HIkXk
)
+ IkXk (14)

where Sk ∈ RK×F represents the embedding representation of K hyperedges, each hyper-
edge dimension is F , Ik is the incidence matrix at kth scale, Xk represents embedding scales
at kth layer. Further, we aggregated these hyperedges to generate original node embedding
Hk

HG ∈ RN×T×F at kth scale. The formula is shown in Eq. (15).

Hk
HG = IkSk

l = Ik
(
ϕ
(
Ak

HIkXk
)
+ IkXk

)
(15)

Fusion GCNs & HGCNs. We add the two types of spatial features together, enabling
the model to learn a more comprehensive representation of spatial dependencies. β is the
hyper-parameter.

Hk = βHk
G + (1− β)Hk

HG (16)

Temporal Convolutional Networks. After learning the spatial dependencies, we
offer temporal convolutional networks (TCNs) to capture the temporal dependencies. We
feed the Hk obtained in the previous layer into a temporal convolution layer to obtain
spatial-temporal representation Hk

full at each scale.

Hk
full = θktcn ∗Hk (17)

We perform a convolution operation on Hk
full ∈ RN×F in the time dimension. θktcn denotes

the different convolution kernels in different scales.

4.4. Fusion & Output

In this section, we first concatenate feature representations from multiple scales to obtain
H ∈ Rk×N×F . Subsequently, we perform average pooling across the scale dimension to
achieve Pooling (H) ∈ RN×F .And we utilize an MLP layer with a kernel size of 1 × F ,
and a CNN with a 1× 1 kernel size to transform Pooling (H) into the required dimension,
resulting in the final prediction x̂t+H ∈ RN×1. Finally, the output x̂t+H is compared with
the ground truth labels, and parameters are iteratively learned through a back propagation
gradient update mechanism. The formulas are as follows:

H = Concat
(
H1

full,H
2
full, . . . ,H

k
full

)
x̂t+H = MLP (Pooling (H))

(18)

where Concat denotes the concatenation operation. We use the Mean Square Error (MSE)
loss function to achieve convergence of the model.
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5. Experiments

5.1. Experimental Setup

Datasets. We evaluate the model performance on four benchmark datasets. Details of
the datasets can be found in the footnotes.

• Exchange-Rate1: The dataset comprises the daily sampled exchange rates of eight
countries spanning from 1990 to 2016.

• Electricity2: The hourly electricity consumption in kWh recorded from 2012 to 2014,
involving 321 clients.

• Traffic3: A dataset comprising 48 months of hourly data from 2015 to 2016, obtained
from the California Department of Transportation. The dataset delineates road oc-
cupancy rates.

• Nasdaq4: A subset of the full NASDAQ 100 stock dataset. It includes 105 days of
stock data starting from July 26, 2016 to December 22, 2016.

Following existing works Chen et al. (2023); Guo et al. (2019); Wu et al. (2019, 2020), we
split the four datasets into the training set (60%), test set (20%) and validation set (20%)
in chronological order. The source code is available in our repository5.

Experimental Settings. The model is implemented in Python with PyTorch 1.9.0 and
trained on an NVIDIA Tesla A100 GPU. Following the existing work Wu et al. (2020,
2019), the input window size T is set to 168, The learning rate is set to 0.0001, and we use
Adam optimizer to propagate all the trainable parameters. We aim to forecast at single-step
intervals for the next 3, 6, 12, and 24 steps, denoted as the horizon h = (3, 6, 12, 24).

Evaluation Matrix. We evaluate the model’s performance using the Root Relative
Squared Error (RSE) and the Empirical Correlation Coefficient (CORR). The formulas
are defined as follows:

RSE =

√∑n
i=1 (x̂i − xi)

2√∑n
i=1 (xi − x̄)2

CORR =

∑n
i=1 (xi − x̄)

(
x̂i − ¯̂x

)√∑n
i=1 (xi − x̄)2

√∑n
i=1

(
x̂i − ¯̂x

)2
(19)

Baselines. We have chosen eight competitive spatial-temporal methods, namely TPA-
LSTM Shih et al. (2019), AGCRN Bai et al. (2020), Graph WaveNet Wu et al. (2019),
MTGNN Wu et al. (2020), MTHetGNN Wang et al. (2022), ESG Ye et al. (2022), MAGNN
Chen et al. (2023), and ReMo Wu et al. (2023). TPA-LSTM uses an attention-based RNN.

1. https://github.com/laiguokun/multivariate-time-series-data
2. https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3. http://pems.dot.ca.gov
4. https://cseweb.ucsd.edu/yaq007/NASDAQ100 stock data
5. https://github.com/YoungXiee/MSG



MSG

Table 1: Baseline comparison for multivariate time series methods.

Dataset Exchange-Rate Traffic Electricity Nasdaq

Horizon Horizon Horizon Horizon

Methods Metrics 3 6 12 24 3 6 12 24 3 6 12 24 3 6 12 24

TPA-LSTM RSE 0.0174 0.0241 0.0341 0.0444 0.4487 0.4658 0.4641 0.4765 0.0823 0.0916 0.0964 0.1006 0.0012 0.0013 0.0018 0.0024
CORR 0.9790 0.9709 0.9564 0.9381 0.8812 0.8717 0.8717 0.8629 0.9439 0.9337 0.9250 0.9133 0.9745 0.9707 0.9705 0.9627

AGCRN RSE 0.0269 0.0331 0.0374 0.0476 0.4379 0.4635 0.4694 0.4707 0.0766 0.0894 0.0921 0.0967 0.0012 0.0018 0.0022 0.0023
CORR 0.9717 0.9615 0.9531 0.9334 0.8850 0.8670 0.8679 0.8664 0.9408 0.9309 0.9222 0.9183 0.9878 0.9877 0.9816 0.9701

Graph WaveNet RSE 0.0251 0.0300 0.0381 0.0486 0.4484 0.4689 0.4725 0.4741 0.0746 0.0922 0.0909 0.0962 0.0018 0.0022 0.0023 0.0026
CORR 0.9740 0.9640 0.9510 0.9294 0.8801 0.8674 0.8646 .8646 0.9459 0.9310 0.9267 0.9226 0.9953 0.9943 0.9840 0.9834

MTGNN RSE 0.0194 0.0259 0.0349 0.0456 0.4162 0.4754 0.4461 0.4535 0.0745 0.0878 0.0916 0.0953 0.0015 0.0018 0.0020 0.0026
CORR 0.9786 0.9708 0.9551 0.9372 0.8963 0.8667 0.8794 0.8810 0.9474 0.9316 0.9278 0.9234 0.9912 0.9876 0.9834 0.9754

MTHetGNN RSE 0.0198 0.0259 0.0345 0.0451 0.4826 0.5198 0.5147 0.5250 0.0749 0.0892 0.0959 0.0969 0.0016 0.0026 0.0020 0.0030
CORR 0.9769 0.9701 0.9539 0.9360 0.8643 0.8452 0.8744 0.8418 0.9456 0.9307 0.8783 0.8782 0.9919 0.9897 0.9849 0.9799

ESG RSE 0.0181 0.0246 0.0345 0.0468 0.4235 0.4685 0.4508 0.4746 0.0718 0.0844 0.0898 0.0962 0.0015 0.0028 0.0024 0.0031
CORR 0.9792 0.9717 0.9564 0.9392 0.8943 0.8692 0.8741 0.8656 0.9494 0.9372 0.9321 0.9279 0.9901 0.9887 0.9830 0.9705

MAGNN RSE 0.0183 0.0246 0.0343 0.0474 0.4097 0.4555 0.4423 0.4434 0.0745 0.0876 0.0908 0.0963 0.0010 0.0011 0.0018 0.0020
CORR 0.9778 0.9712 0.9557 0.9399 0.8992 0.8753 0.8815 0.8813 0.9476 0.9323 0.9282 0.9217 0.9975 0.9951 0.9864 0.9846

ReMo RSE 0.0173 0.0240 0.0340 0.0443 0.4414 0.4380 0.4634 0.4645 0.0779 0.0879 0.0949 0.1011 0.0015 0.0016 0.0017 0.0025
CORR 0.9753 0.9680 0.9565 0.9373 0.8750 0.8839 0.8713 0.8703 0.9381 0.9227 0.9167 0.9058 0.9977 0.9953 0.9914 0.9838

MSG RSE 0.0178 0.0251 0.0335 0.0442 0.4118 0.4289 0.4403 0.4463 0.0735 0.0837 0.0887 0.0934 0.0008 0.0011 0.0015 0.0019
CORR 0.9883 0.9828 0.9737 0.9609 0.8978 0.8890 0.8826 0.8815 0.9494 0.9373 0.9263 0.9245 0.9979 0.9958 0.9921 0.9850

AGCRN introduces an adaptive GCRN. Graph WaveNet combines GCNs and CNNs. MT-
GNN includes a graph learning layer. MTHetGNN utilizes relation and temporal embed-
dings with a heterogeneous graph. ESG employs evolutionary graphs. MAGNN features a
multi-scale pyramid structure. ReMo uses a multi-view hypergraph approach.

5.2. Experimental Results

Table 1 shows the experimental results of the proposed MSG. On the NASDAQ dataset,
MSG achieved the best results across all horizons, with an average reduction in the RSE
metric by 10.43%. On the exchange rate dataset, based on the thousandth percentile
on the CORR metric, MSG outperformed the best baseline model by an average of 1.5
percentage points across all horizons, a performance improvement five times that of other
models. On the traffic and electricity datasets, MSG also achieved the best results in 5
out of 8 horizons. Achieving good performance on datasets across various task contexts
demonstrates the strong robustness of our model.

Through analysis, we found that MSG shows a notable improvement in performance on
the NASDAQ and Exchange-Rate datasets for the following primary reasons: Compared
to other datasets, the shared connections and high-level features in stock-type data are
more significant and prevalent. Thus, the ability of MSG to model relationships at different
levels is key to its performance improvement. Moreover, the enhancement in performance
on other datasets also indicates that our model can adapt to the needs of multi-domain
MTS prediction tasks, rather than being designed for a specific type of data.
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Figure 5: Ablation study on the left and Hyperparameter Study on the right.

5.3. Ablation Studies

We conducted extensive ablation experiments to evaluate each module’s effectiveness in
MSG. We removed the multi-scale and dynamic learning strategies to showcase our model’s
efficacy in capturing dynamic patterns. We also removed graphs and hypergraphs to validate
the necessity of the proposed approach in capturing multi-level relational patterns. Ablation
types are defined as follows:

• w/o adaptive-multi-scale: MSG without the multi-scale learning strategy.

• w/o adaptive-dynamic: MSG without the dynamic learning strategy.

• w/o hypergraph: synergistic graph without the driven of the hypergraph.

• w/o graph: synergistic graph without the driven of the graph.

Ablation experimental results on the Nasdaq dataset shown in in Fig. 5 left illustrate
that the multi-scale learning strategy is critical to prediction accuracy, and its exclusion
(dark blue bars) results in a 47% average accuracy drop across four levels. At the same
time, the omission of the dynamic learning strategy (light blue bars) caused the model’s
average accuracy in RSE to drop significantly by 136.5%. This confirms the apparent
complex relationships between variables at different time scales in MTS data and emphasizes
the importance of multi-scale and dynamic strategies in capturing variable relationships.
Furthermore, when we remove hypergraphs or graphs individually (indicated in orange
and yellow bars), the model still retains the integrity of the remaining modules, but they
only perform at the baseline level. Compared with the original MSG, the RSE accuracy
dropped significantly by 154.1% and 88.9% respectively. This subtle finding emphasizes
the importance of a balanced integration of hypergraphs and graphs, highlighting their
complementary roles in capturing relationships at different levels.

We also study the hyperparameters of MSG focusing on the number of hyperedges
and the weights combination of graphs and hypergraphs. The experimental results on
Exchange-Rate and Nasdaq datasets are shown in Fig. 5 right. We adjusted the number
of hyperedges within the range of 8, 16, 32, and 64 from the first row and observed their
significant impact on performance, particularly when datasets have varying numbers of
variables. For example, the exchange-rate dataset with 8 variables and the Nasdaq dataset
with 82 variables showed optimal hyperedge sizes of 16 and 64, respectively. Setting an
appropriate number of hyperedges is crucial for better results. The combination of graph and
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Figure 6: Case Study. We visualized the correlation graph in NASDAQ, stocks with IDs
4, 7, and 8 represent Apple, Amazon, and Facebook, respectively. The left panel
utilizes synergistic graphs and hypergraphs, while the right panel only uses graph
structures.

hypergraph weights, using β values from 0.2 to 0.8 in row two, revealed the equal importance
of both components in synergistic graph learning. However, excessive dominance of either
graphs or hypergraphs led to performance degradation. This highlights the significance of
simultaneously modeling low-level and high-level relationships among variables for effective
relation pattern mining.

5.4. Case Study

To provide additional support for the justification of our proposed synergistic graph in
learning multiple patterns, we computed the average embeddings of ten stocks in the Nas-
daq dataset at different scales and visualized the correlation graph among these stocks.
Stock IDs 4, 7, and 8 represent Apple, Amazon, and Facebook, respectively. In Fig. 1,
we have already demonstrated a common trend among these three stocks. However, as
shown in the right panel of Fig. 6, the traditional graph structure clearly fails to capture
this shared connection, where the relationship between Apple and Facebook is significantly
stronger than that between Apple and Amazon. In contrast, as illustrated in the left panel,
our proposed synergistic graph learning mechanism makes the relationships among Apple,
Amazon, and Facebook closer and more consistent. This indicates that our proposed mech-
anism, which models and learns beyond pairwise relationships through the propagation of
information via hyperedges, effectively captures and models this sharing connection among
multiple variables.

6. Conclusion

In this paper, we present a novel MSG framework for multivariate time series forecasting.
We proposed a synergistic graph mechanism that seamlessly integrates dynamic graphs and
hypergraphs to adaptively capture multi-level relationships among variables. Additionally,
we put forth a novel spatial learning strategy that combines synergistic graph and hyper-
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graph convolutional and networks to effectively facilitate the interaction of spatial depen-
dencies across multi-levels, along with temporal convolutional networks, which learns more
comprehensive spatial-temporal dependencies. We conducted an intriguing experiment by
integrating the capabilities of hypergraphs and graphs, and the model exhibited superi-
ority on baseline datasets. Our study may offer valuable insights for modeling intricate
relationships among variables in future MTS tasks.
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