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Abstract

While numerous time series models claim state-of-the-art performance, their evaluation
often relies on flawed experimental setups, leading to questionable conclusions. This study
provides a critical re-evaluation of this landscape, using ModernTCN as a case study. We
conduct a rigorous and extended benchmark, correcting methodological issues related to data
loading, validation, and evaluation methods, and show that performance claims are sensitive
to these details. Additionally, we find that ModernTCN overlooks a line of research in global
convolutional models, and our comparison reveals that despite claims of an enlarged effective
receptive field (ERF), it falls short of these methods. More than a critique, we introduce an
architectural innovation: by embedding irregularly sampled data with a continuous kernel
convolution and processing it with the ModernTCN backbone, we achieve new state-of-the-
art performance on the challenging PhysioNet 2019 dataset. This work not only provides
a robust reassessment of ModernTCN but also serves as an audit of the commonly used
general time series analysis experimental setup, which includes tasks such as forecasting,
imputation, classification, and anomaly detection.1

1 Introduction

Time series analysis is a fundamental problem with broad applications across various domains, including
weather forecasting (Bi et al., 2023), anomaly detection in spacecraft monitoring (Su et al., 2019b), medical
symptom classification (Kiyasseh et al., 2021), and missing data imputation (Luo et al., 2018).

ModernTCN is a general time series analysis model designed to enhance performance across five key time
series tasks: long-term forecasting, short-term forecasting, classification, imputation, and anomaly detection.
It modernizes traditional Temporal Convolutional Networks (TCNs) Bai et al. (2018) by enlarging the
effective receptive field (ERF), drawing inspiration from computer vision advances (Liu et al., 2022a; Ding
et al., 2022a) and Transformer architectures (Vaswani et al., 2017). The model also incorporates techniques
from transformer-based time series models, such as patching and variable independence approaches (Nie
et al., 2023).

The concept of a general time series analysis model, as seen in ModernTCN, builds on the experimental setup
introduced by TimesNet (Wu et al., 2023). However, this setup has several flaws. For example, the setup
often accelerates testing by splitting data into batches and discarding the last incomplete batch of the test
set, which can lead to unfair comparisons and misleading results (Qiu et al., 2024). In anomaly detection, this
setup employs an evaluation method prior to scoring, which can lead to an overestimation of performance,
as demonstrated by Kim et al. (2022). Additionally, for short-term forecasting and classification, the test
set is used for validation, leading to overly optimistic results and an unfair comparison with earlier baselines

1The official repository for this work is available at: https://github.com/onderakacik/RE-ModernTCN
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that adhere to stricter evaluation protocols. Alongside ModernTCN, many papers, such as GPT4TS (Zhou
et al., 2023), UniTS (Gao et al., 2024), and TimeMixer++ (Wang et al., 2025), follow this general time series
analysis setup.

The primary purpose of this study is to validate this setup using ModernTCN as a means. Furthermore, we
extend the benchmarks and experiments to rectify the limitations of the original setup, thereby improving
the robustness. Additionally, we address the oversight of global convolutional-based models (Romero et al.,
2021b; Gu et al., 2021; Romero et al., 2021a; Knigge et al., 2023) in the original study. By harnessing the
synergy between a global convolutional method (Romero et al., 2021b) and ModernTCN, we enhance the
model performance on irregularly sampled data.

The contributions of this study are:

• Auditing the general time series analysis experimental setup using ModernTCN as a case study,
identifying and correcting critical flaws in data handling and evaluation protocols.

• Innovating ModernTCN by integrating it with a global convolutional method, resulting in a superior
model for irregularly sampled data and achieving state-of-the-art performance on the PhysioNet 2019
dataset (Reyna et al., 2019).

• Validating ModernTCN’s claims of an extended effective receptive field by visualizing and comparing
its ERF against global convolutional methods.

2 Related Work

General time series models like ModernTCN, TimesNet and UniTS aim to provide comprehensive solutions
across various time series tasks. TimesNet introduces a unified framework for time series analysis by trans-
forming 1D time series into 2D tensors, allowing for the modeling of complex temporal variations using 2D
kernels (Wu et al., 2023). UniTS employs task tokenization to integrate predictive and generative tasks
into a single framework, using a modified transformer block to capture universal time series representations,
enabling transferability across diverse datasets and tasks (Gao et al., 2024). All these models utilize an
experimental setup that originates from TimesNet, similar to ModernTCN.

Recent studies are addressing the faulty setups in long-term forecasting and anomaly detection, which are part
of the general time series analysis setup. The "Drop Last Trick," as highlighted by Qiu et al. (2024), involves
discarding the last batch if it contains fewer instances than the batch size, which can lead to misleading
results. Kim et al. (2022) have shown the misleading nature of point adjustment in anomaly detection.
Additionally, Liu & Paparrizos (2024) proposes a comprehensive benchmark addressing the known but often
ignored issues in the domain of time series anomaly detection.

Transformers have shown strong performance in time series forecasting, as demonstrated by models like
PatchTST (Nie et al., 2023). However, MLP-based models have gained popularity by questioning the ne-
cessity of transformers, offering similar performance with greater efficiency, as seen in DLinear (Zeng et al.,
2023). Convolution-based models, on the other hand, strike a balance by being more efficient than trans-
formers with subquadratic time complexity and more expressive than MLPs (Luo & Wang, 2024; Wang
et al., 2022).

In addition to TimesNet and ModernTCN, convolutional models like TCN (Bai et al., 2018) and MICN
(Wang et al., 2022) offer distinct approaches to time series analysis. TCN, as described by Bai et al. (2018),
employs causal convolutions to ensure no information leakage from future to past, allowing it to handle
sequences of any length and map them to output sequences of the same length. This architecture is designed
to combine simplicity with autoregressive prediction and long memory, making it effective for sequence
modeling. On the other hand, MICN goes beyond causal convolution by proposing a multi-scale convolution
structure that combines local features and global correlations in time series, enhancing its ability to capture
complex temporal patterns.

In addition to the task-specific models, a significant recent development is the emergence of Time Series
Foundation Models (TSFMs), which are pre-trained on massive data to achieve zero-shot forecasting capa-
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bilities (Gao et al., 2024; Das et al., 2024; Ansari et al., 2024; Woo et al., 2024; Liu et al., 2024; Auer et al.,
2025). These models offer enhanced generalizability and simplified application, often leveraging in-context
learning from their extensive pre-training.

Lastly, ModernTCN is inspired by computer vision techniques to enlarge the ERF, but it overlooks a line
of research involving models with global convolution capabilities, such as CKConv Romero et al. (2021b),
FlexConv Romero et al. (2021a), CCNN Knigge et al. (2023), and S4 Gu et al. (2021). These models
achieve substantially larger ERFs through continuous kernel formulations, enabling arbitrarily large memory
horizons while maintaining efficiency.

3 Methodology

3.1 ModernTCN

input DWConv
ConvFFN1
Groups:M

ConvFFN2
Groups:D output

Figure 1: Diagram of the ModernTCN block. Adapted from Luo & Wang (2024).

ModernTCN (Luo & Wang, 2024) introduces a convolutional approach with large kernel sizes inspired by
advances in computer vision (Liu et al., 2022c; Ding et al., 2022b; Liu et al., 2022b). It leverages modern
convolution techniques, incorporating depthwise and pointwise convolution layers organized similarly to
Transformer blocks (Vaswani et al., 2017). The depthwise convolution (DWConv) layer is responsible for
learning temporal information among tokens on a per-channel basis, akin to the self-attention module in
Transformers. A large kernel is used in DWConv to enhance the effective receptive field, allowing the model to
capture long-term dependencies more effectively. The ConvFFN module consists of two pointwise convolution
layers that adopt an inverted bottleneck structure. This module is applied twice in the architecture, first
along feature dimensions and then between variables, to learn new feature representations.

The pipeline of ModernTCN is as follows:

1. Input: The process begins with the input time series Xin ∈ RM×L, where M is the number of
variables and L is the input length.

2. Patchify Embeddings: The input is transformed into a higher-dimensional space by patching in
a variable-independent manner, resulting in Xemb ∈ RM×D×N , where D is the feature dimension
and N is the number of patches.

3. Backbone: As shown in Figure 1 each ModernTCN block consists of:

• DWConv Layer: Processes temporal information independently for each variable and each
feature, maintaining dimensions M × D.

• ConvFFN Module: This module consists of two pointwise convolution layers and adopts an
inverted bottleneck structure. It is applied twice:
– ConvFFN1: Processes each variable independently with groups=M, learning new feature

representations independently for each variable. Until this point, the entire pipeline main-
tains variable independence.

– ConvFFN2: Processes across variables with groups=D, capturing dependencies between
different variables. This is the first component in the pipeline that allows cross-variable
information mixing.

These blocks are stacked and organized in a residual manner as shown in Figure 1.

4. Flatten and Prediction Head:
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• Forecasting: The output is reshaped and passed through a prediction head to produce the
final time series output X̂ ∈ RM×T , where T is the prediction length.

• Imputation and Anomaly Detection: The prediction head produces output X̂ ∈ RM×L.
• Classification: The representation is flattened to and passed through a projection layer with

a SoftMax activation to yield the classification result X̂ ∈ R1×Cls, where Cls is the number of
classes.

5. RevIN: For all tasks except classification, Stationary Technique RevIN (Kim et al., 2021) is applied.
It normalizes the input time series per variable with zero mean and unit standard deviation before
patching and embedding. After the forward process, the mean and deviation are added back to the
final prediction per variable.

This architecture leverages the decoupling of temporal, feature, and variable dimensions to improve both
performance and efficiency in time series analysis, while the enlarged kernel size in DWConv enhances its
ability to capture long-term dependencies.

3.2 Tasks and Datasets

Table 1: Dataset descriptions. The dataset size is organized in (train, validation, test). The column length
refers to prediction length for forecasting tasks, input length for imputation, series length for classification,
and sliding window length for anomaly detection. Partially adapted from Wu et al. (2023).

Tasks Dataset Dim(+Static) Length Dataset Size Information (Frequency)

Long-term
forecasting

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) Electricity (15 mins)
ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (hourly)

Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Electricity (hourly)
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Transportation (hourly)

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather (10 mins)
Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate (daily)

ILI 7 {24, 36, 48, 60} (617, 74, 170) Illness (weekly)

Short-term
forecasting

original

M4-Yearly 1 6 (23000, 0, 23000) Demographic
M4-Quarterly 1 8 (24000, 0, 24000) Finance
M4-Monthly 1 18 (48000, 0, 48000) Industry
M4-Weekly 1 13 (359, 0, 359) Macro
M4-Daily 1 14 (4227, 0, 4227) Micro

M4-Hourly 1 48 (414, 0, 414) Other

Extended ETTm1 7 {6, 12, 24} (34465, 11521, 11521) Electricity (15 mins)
ETTh1 7 {6, 12, 24} (8545, 2881, 2881) Electricity (hourly)

Imputation

ETTm1, ETTm2 7 96 (34465, 11521, 11521) Electricity (15 mins)
ETTh1, ETTh2 7 96 (8545, 2881, 2881) Electricity (15 mins)

Electricity 321 96 (18317, 2633, 5261) Electricity (15 mins)
Weather 21 96 (36792, 5271, 10540) Weather (10 mins)

Classification
original

EthanolConcentration 3 1751 (261, 0, 263) Alcohol industry
FaceDetection 144 62 (5890, 0, 3524) Face (250Hz)
Handwriting 3 152 (150, 0, 850) Handwriting

Heartbeat 61 405 (204, 0, 205) Heart beat
JapaneseVowels 12 29 (270, 0, 370) Voice

PEMS-SF 963 144 (267, 0, 173) Transportation (daily)
SelfRegulationSCP1 6 896 (268, 0, 293) Healthcare (256Hz)
SelfRegulationSCP2 7 1152 (200, 0, 180) Healthcare (256Hz)
SpokenArabicDigits 13 93 (6599, 0, 2199) Voice (11025Hz)

UWaveGestureLibrary 3 315 (120, 0, 320) Gesture

Extended
Speech Commands MFCC 20 161 (24483, 5246, 5246) Voice(16000Hz)

Speech Commands Raw 1 16000 (24483, 5246, 5246) Voice(16000Hz)
PhysioNet 34(+5) 72 (28235, 6050, 6050) Healthcare

Character Trajectories 3 [60-182] (1209, 213, 1436) Handwriting

Anomaly
detection

SMD 38 100 (566724, 141681, 708420) Server machine
MSL 55 100 (44653, 11664, 73729) Spacecraft

SMAP 25 100 (108146, 27037, 427617) Spacecraft
SWaT 51 100 (396000, 99000, 449919) Infrastructure
PSM 25 100 (105984, 26497, 87841) Server machine

Extended TSB-AD-U 1 It is curated from 23 different datasets. See Appendix A.2 for details.
TSB-AD-M [2-248] It is curated from 17 different datasets. See Appendix A.2 for details.

Time series analysis encompasses a variety of tasks, each designed to extract different insights from sequential
data. This study focuses on five primary tasks: long-term forecasting, short-term forecasting, imputation,
classification, and anomaly detection. An overview of all the datasets used is given in Table 1.

Long-term forecasting involves predicting future values over an extended time horizon, often requiring
the model to capture complex temporal dependencies. ModernTCN (Luo & Wang, 2024) uses datasets such
as ETT (Zhou et al., 2021), Electricity (UCI), Traffic (PeM), Weather (Wet), Exchange (Lai et al., 2018),
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and ILI (CDC), covering real-world applications from different domains. In these multivariate forecasting
tasks, the model predicts future values for all variables in the time series simultaneously.

Short-term forecasting focuses on predicting values over a shorter time frame, typically requiring the
model to capture immediate trends and patterns. ModernTCN uses the M4 dataset (Makridakis, 2018),
which contains univariate time series with different frequencies from different domains. We extend the
experiments to ETT (Zhou et al., 2021) by adapting it for short term multivariate forecasting.

Imputation aims to fill in missing values in a time series, which is crucial for handling incomplete data and
ensuring data quality. ModernTCN (Luo & Wang, 2024) uses ETT (Zhou et al., 2021), Electricity (UCI),
and Weather (Wet) datasets for this task.

Classification is sequence-level that verifies the model’s capacity in high-level representation learning.
ModernTCN (Luo & Wang, 2024) uses 10 multivariate datasets from the UEA Time Series Classification
Archive (Bagnall et al., 2018). We extend to Speech Commands (Warden, 2018) and PhysioNet (Reyna
et al., 2019), following the experimental setup from CKConv (Romero et al., 2021b). Speech Commands
enables us to compare ModernTCN with other convolution-based models that has global receptive fields.
PhysioNet’s irregular sampling and high proportion of missing values present a challenging classification
task. Additionally, we extend the evaluation to variable length time series classification using Character
Trajectories dataset (Bagnall et al., 2018).

Anomaly detection seeks to identify unusual patterns or outliers in a time series, which is essential
for detecting abnormal events and potential issues. ModernTCN (Luo & Wang, 2024) evaluates anomaly
detection performance on SMD (Su et al., 2019a), MSL (Hundman et al., 2018), SMAP (Hundman et al.,
2018), SWaT (Mathur & Tippenhauer, 2016), and PSM (Abdulaal et al., 2021), covering service monitoring,
space & earth exploration, and water treatment applications. We extend the evaluation to TSB-AD (Liu &
Paparrizos, 2024), a comprehensive benchmark for anomaly detection consisting of 1070 high-quality time
series from a diverse collection of 40 datasets (see Table 19 for details).

3.3 Experimental Setup

For the reproduction of the experiments from ModernTCN, the optimal settings specified in the paper (Luo
& Wang, 2024) and the source code2 are used. For the extended experiments we conducted a grid search
over the relevant hyperparameters for each setup (See Appendix A.1 for details). For the best-performing
hyperparameters, we reported the mean and standard deviation over 5 runs.

Upon investigating the source code, we identified issues affecting the five tasks used in Luo & Wang (2024).
We fixed the errors and rerun the experiment for long-term forecasting and imputation tasks. For short-term
forecasting, classification and anomaly detection, we extended the experiments to new datasets instead.

3.3.1 Issues in the Original Setup

Drop Last Trick. As pointed out by Qiu et al. (2024), many implementations of existing methods often
employ a "Drop Last Trick" during the testing phase (Nie et al., 2022; Wang et al., 2022; Zhou et al.,
2022; 2021), which involves discarding the last batch if it contains fewer instances than the batch size. This
approach may lead to unfair comparisons by excluding part of the test data. Upon reviewing the source code,
we found this trick is employed for long-term forecasting and imputation tasks. Given that most datasets
in the long-term forecasting experiments use a batch size of 512, this could result in discarding a significant
amount of the test set (See Appendix 25 for further analysis). Therefore, we additionally experiment without
employing this trick to assess its impact on the results and ensure a fair comparison (Table 2 and Table 4).

Data Leakage from Test to Validation. As detailed in Table 1, the M4 dataset (Makridakis, 2018) for
short-term forecasting and the UEA dataset (Bagnall et al., 2018) for classification are provided with only
train and test splits. Upon reviewing the source code, we identify that the test set is used for validation. This
practice introduces an information leakage as the model gains indirect exposure to the test data, leading to

2The official source code for ModernTCN can be found at https://github.com/luodhhh/ModernTCN
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an overestimation of its generalization capabilities. Consequently, the reproduction results for these datasets
are excluded from the main results section and are instead presented in Appendix E.1 and Appendix E.2.

Point Adjustment in Anomaly Detection. Reconstruction-based anomaly detection identifies anomalies
when reconstruction errors between input sequences and their model-generated reconstructions exceed a
threshold. The threshold is calculated by taking a specific percentile of the reconstruction error scores from
the training data, ensuring that a defined percentage of the data is considered normal. But ModernTCN
calculates the threshold using both training and test sets, introducing information leakage. We reproduce
the experiments using thresholds calculated from training data only. More importantly, the evaluation
employs "point adjustment" (PA), which considers an entire anomaly segment correctly detected if just
one point within it is flagged - a protocol that Kim et al. (2022) demonstrated can severely overestimate
performance. To illustrate this overestimation, we implemented a naive baseline that periodically flags every
100th time point as anomalous, which should perform well under PA despite having no actual anomaly
detection capability. 100 is set as the period in the naive approach because the sliding window size is 100.

3.3.2 Extended Setups

Extending Short-term Forecasting to ETT. Inspired by the appendices in Luo & Wang (2024), we
evaluate short-term multi-variate forecasting on the ETT dataset (Zhou et al., 2021). While ModernTCN
(Luo & Wang, 2024) keeps the input sequence length constant at 2x the prediction length, we explored the
input sequence length as a hyperparameter, experimenting with 2x, 3x, and 4x the prediction length. We
consider three prediction lengths: 6, 12, and 18 time points, selecting the best-performing input length for
reporting. We did a hyperparameter search for the kernel size and employed the optimal hyperparameters
from the corresponding long-term forecasting experiments for the rest. For comparison, we decided to include
three top-performing models of different kinds from Qiu et al. (2024): TimesNet (convolution-based) (Wu
et al., 2023), PatchTST (transformer-based) (Nie et al., 2023), and DLinear (MLP-based) (Zeng et al., 2023).

Extending Classification to Speech Commands. For the classification task, we employ the Speech
Commands dataset (Warden, 2018). This dataset has two versions: Speech Commands Raw and Speech
Commands MFCC. The Speech Commands Raw version consists of 105,809 one-second audio recordings of 35
spoken words sampled at 16kHz. Following the preprocessing steps of Kidger et al. (2020), we extract 34,975
recordings from ten spoken words to construct a balanced classification problem. The Speech Commands
MFCC utilizes mel-frequency cepstrum coefficients extracted from the raw data, resulting in time series
of length 161 and 20 channels. This dataset is frequently used by convolution-based models with global
receptive fields (Romero et al., 2021b;a; Knigge et al., 2023; Gu et al., 2021).

Extending to Variable Length Time Series Classification. The CharacterTrajectories dataset is part
of the UEA time series classification archive (Bagnall et al., 2018). It consists of 2,858 time series of varying
lengths, each with 3 channels representing the x, y positions and the pen tip force while writing a Latin
alphabet character in a single stroke. The goal is to classify which of the 20 different characters was written
using the time series data. The length of the time series varies between 60 and 182. Unlike Romero et al.
(2021b), we retained the original test set and created a validation split by taking 15% of the training set.
This approach ensures comparability with Lee & Shin (2025). Additionally, we reran the CKConv (Romero
et al., 2021b) experiments with this new setup using its official codebase3.

Extending to Irregularly Sampled Data. The PhysioNet 2019 challenge on sepsis prediction provides
an irregularly sampled, partially observed dataset with 40,335 time series of variable lengths, capturing ICU
patient data (Reyna et al., 2019). Each series includes 5 static features, like age, and 34 dynamic features,
such as respiration rate, with only 10.3% of values observed. Following Kidger et al. (2020); Romero et al.
(2021b), we analyze the first 72 hours of patient data to predict sepsis development over their entire stay,
which can last up to a month. This setup tests the model’s ability to handle sparse and irregular data,
creating a robust test bed for ModernTCN, which claims state-of-the-art performance on the imputation
task. Similar to ModernTCN, we ablate the cross-variable component to assess its impact on handling
missing values in a multivariate setting. Most importantly, we introduce an innovation in our reproducibility

3The official CKConv codebase can be found at https://github.com/dwromero/ckconv
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study by combining a global convolutional method (Romero et al., 2021b) with ModernTCN, as detailed in
Table 10.

Extending Anomaly Detection to TSB-AD. Extending our anomaly detection experiments to the
TSB-AD datasets and benchmark (Liu & Paparrizos, 2024) is beneficial due to its comprehensive nature,
encompassing over 40 datasets and a wide array of baselines. The benchmark includes 40 time-series anomaly
detection algorithms categorized into statistical, neural network-based, and foundation model-based methods.
This extension addresses critical issues in the field, such as flawed datasets and biased evaluation measures,
by employing VUS-PR (Volume Under the Surface of Precision-Recall) as a more reliable evaluation metric.
VUS-PR is threshold-independent, summarizing performance across all possible anomaly score thresholds,
thus providing a holistic and stable evaluation. It is more robust to temporal misalignments and less
biased towards random or noisy scores compared to traditional measures like PA-F1 and AUC-ROC. By
incorporating a tolerance buffer around anomaly boundaries, VUS-PR enhances the relevance of anomaly
scoring, making it a superior choice for evaluating time-series anomaly detection models.

4 Experimental Results

4.1 Results Reproducing the Original Paper

4.1.1 Long-Term Forecasting

The "Drop Last Trick" significantly impacts datasets like ETTh and Exchange, where a substantial percentage
of the test set is discarded, as in Table 2. This leads to notable changes in MSE/MAE, particularly for these
datasets, as a high percentage of data is dropped. Additionally, the ILI dataset exhibits significant changes
in MSE/MAE, likely due to its small size (Table 1). For further analysis, please refer to the Appendix D.

All results in Table 3 are presented after the "Drop Last Trick" is corrected. PatchTST (Nie et al., 2023),
TimesNet (Wu et al., 2023), and DLinear (Zeng et al., 2023) are the best-performing methods based on
transformer, convolution, and MLP architectures, respectively, as identified by Qiu et al. (2024). We include
MICN (Wang et al., 2022) and TCN (Bai et al., 2018) as extra convolution-based baselines. Additionally,
we include results for several Time Series Foundation Models (TSFMs) in a zero-shot setting (Gao et al.,
2024; Das et al., 2024; Ansari et al., 2024; Woo et al., 2024; Liu et al., 2024; Auer et al., 2025).

The ranks in Table 3 are calculated independently for task-specific models and foundational models. While
PatchTST is the top-performing task-specific model, ModernTCN remains highly competitive by frequently
ranking second and outperforming other convolutional baselines. Notably, TiRex not only leads the founda-
tional models but also rivals the best task-specific models with superior MAE in most cases and competitive
MSE, even though only the Electricity dataset from our benchmark was part of its pre-training data (Auer
et al., 2025).

Table 2: Long-term forecasting reproduced results of ModernTCN. Reported, Rerun and Fixed refer to
original paper results, results before and after the "Drop Last Trick" is fixed respectively. Dropped % shows
percentage of test data points excluded when using the trick. ∆ MSE/MAE shows performance change
when the trick is fixed and it is calculated as "∆ = Fixed - Rerun". Results are averaged from 4 different
prediction lengths: {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for others.

ETTh1 ETTh2 ETTm1 ETTm2 Electricity Weather Traffic Exchange ILI
Result Type MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Reported 0.404 0.420 0.322 0.379 0.351 0.380 0.253 0.314 0.156 0.253 0.224 0.264 0.396 0.270 0.302 0.366 1.440 0.786
Rerun 0.404 0.421 0.322 0.379 0.355 0.383 0.255 0.319 0.159 0.256 0.224 0.267 0.401 0.274 0.305 0.368 1.490 0.797
Fixed 0.419 0.429 0.347 0.394 0.356 0.383 0.254 0.318 0.163 0.259 0.226 0.267 0.410 0.280 0.343 0.392 2.000 0.892
Dropped % 11.10% 11.10% 11.10% 11.10% 2.23% 2.23% 2.23% 2.23% 0.25% 0.25% 1.64% 1.64% 0.60% 0.60% 14.49% 14.49% 5.88% 5.88%
∆ MSE/MAE +0.015 +0.008 +0.025 +0.015 +0.001 0.000 -0.001 -0.001 +0.004 +0.003 +0.003 +0.001 +0.009 +0.006 +0.038 +0.024 +0.510 +0.095

4.1.2 Imputation

The results presented in Table 4 demonstrate that due to the smaller batch size used in the imputation task,
as referenced in Table 25, the percentage of dropped points from the test set is minimal. This minimal drop
percentage explains why the results remained unchanged after the "Drop Last Trick" was corrected.

7



Published in Transactions on Machine Learning Research (06/2025)

Table 3: Long-term forecasting task results after the "Drop Last Trick" is fixed. All results averaged from 4
different prediction lengths: {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for others. Lower MSE/MAE
indicates better performance. Bold indicates best performance, and underline indicates second-best perfor-
mance. Ranks are calculated independently for task-specific models and foundational models.

ETTh1 ETTh2 ETTm1 ETTm2 Electricity Weather Traffic Exchange ILI
Model 1st/2nd MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ModernTCN 3/13 0.420 0.429 0.348 0.395 0.355 0.382 0.254 0.318 0.164 0.258 0.226 0.267 0.413 0.285 0.343 0.392 2.078 0.929
PatchTST 13/3 0.411 0.428 0.347 0.389 0.349 0.381 0.255 0.313 0.163 0.261 0.225 0.262 0.405 0.283 0.352 0.397 1.770 0.859
TimesNet 0/0 0.459 0.455 0.394 0.416 0.430 0.428 0.294 0.332 0.186 0.287 0.261 0.287 0.626 0.328 0.421 0.442 2.174 0.951
DLinear 1/1 0.420 0.432 0.492 0.478 0.354 0.377 0.259 0.324 0.167 0.264 0.239 0.290 0.434 0.295 0.349 0.411 2.185 1.040
MICN 1/1 0.420 0.447 0.482 0.471 0.355 0.383 0.294 0.357 0.179 0.290 0.239 0.289 0.539 0.313 0.320 0.396 2.368 1.049
TCN 0/0 1.004 0.787 3.398 1.545 1.190 0.840 2.465 1.177 0.385 0.448 0.409 0.422 1.061 0.556 1.785 1.093 4.320 1.359
Chronos 0/7 0.445 0.421 0.368 0.381 0.425 0.388 0.292 0.319 0.166 0.250 0.266 0.280 0.448 0.269 0.489 0.473 2.865 1.006
TimesFM 2/6 0.451 0.437 0.403 0.411 0.429 0.416 0.335 0.346 0.155 0.245 0.232 0.251 0.370 0.244 0.433 0.446 1.812 0.849
UniTS 1/0 0.528 0.491 0.406 0.418 0.713 0.553 0.321 0.355 0.432 0.488 0.291 0.313 0.725 0.582 0.424 0.448 4.066 1.459
MOIRAI 1/4 0.433 0.429 0.360 0.385 0.518 0.437 0.340 0.356 0.202 0.286 0.308 0.292 0.381 0.222 0.436 0.436 3.415 1.207
Timer 1/1 0.432 0.431 0.361 0.400 0.666 0.535 0.292 0.343 0.182 0.272 0.265 0.302 0.451 0.305 0.501 0.483 3.721 1.355
TiRex 14/2 0.433 0.416 0.330 0.362 0.378 0.365 0.263 0.302 0.155 0.239 0.226 0.247 0.413 0.253 0.426 0.430 1.741 0.821

In our comparison of ModernTCN with TimesNet, PatchTST, DLinear, and MICN, ModernTCN clearly
outperforms all other methods (Table 5). TimesNet ranks second, which aligns with the fact that both
ModernTCN and TimesNet are designed for general time series analysis, whereas PatchTST, DLinear,
and MICN are specifically developed for time series forecasting. Additionally, PatchTST and DLinear are
variable-independent models, while this task is inherently multivariate. The ability to model cross-variable
interactions may facilitate the imputation of missing values by leveraging information from existing variables
at the same time point, thereby modeling inter-variate dependencies effectively.

Table 4: Imputation task reproduced results of ModernTCN. Reported, Rerun and Fixed refer to original
paper results, results before and after the "Drop Last Trick" is fixed respectively. Dropped % shows percentage
of test data points excluded when using the trick. ∆ MSE/MAE shows performance change when the trick is
fixed and it is calculated as "∆ = Fixed - Rerun". Results are averaged from 4 different mask ratios {12.5%,
25%, 37.5%, 50%}.

ETTh1 ETTh2 ETTm1 ETTm2 Electricity Weather
Result Type MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Reported 0.050 0.150 0.042 0.131 0.020 0.093 0.019 0.082 0.073 0.187 0.027 0.044
Rerun 0.050 0.150 0.042 0.131 0.021 0.094 0.020 0.083 0.073 0.186 0.027 0.044
Fixed 0.050 0.150 0.042 0.131 0.021 0.094 0.020 0.083 0.073 0.186 0.027 0.044
Dropped % 0.03% 0.03% 0.03% 0.03% 0.01% 0.01% 0.01% 0.01% 0.25% 0.25% 0.11% 0.11%
∆ MSE/MAE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5: Imputation task results after the "Drop Last Trick" is fixed. We randomly mask {12.5%, 25%,
37.5%, 50%} time points in length-96 time series. The results are averaged from 4 different mask ratios. A
lower MSE or MAE indicates better performance. Bold indicates best performance, and underline indicates
second-best performance.

ETTh1 ETTh2 ETTm1 ETTm2 Electricity Weather
Model MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ModernTCN 0.050 0.150 0.042 0.131 0.021 0.094 0.020 0.083 0.073 0.186 0.027 0.044
TimesNet 0.089 0.199 0.051 0.149 0.027 0.107 0.022 0.090 0.094 0.211 0.031 0.056
PatchTST 0.134 0.238 0.066 0.164 0.045 0.133 0.028 0.098 0.091 0.209 0.033 0.057
DLinear 0.201 0.306 0.142 0.259 0.093 0.206 0.096 0.208 0.132 0.260 0.052 0.110
MICN 0.125 0.250 0.205 0.307 0.070 0.182 0.144 0.249 0.119 0.247 0.056 0.128

4.1.3 Anomaly Detection

As shown in Table 6, the rerun results generally align with those reported in the original paper. When
eliminating data leakage by calculating thresholds using only training data, we observe a slight perfor-
mance degradation. Most notably, our naive baseline—which simply flags every 100th timepoint as anoma-
lous—outperforms ModernTCN across most datasets, achieving the highest average F1 score. This finding
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raises significant questions about the effectiveness of sophisticated models for anomaly detection when eval-
uated using point adjustment protocols, supporting the critique by Kim et al. (2022) that such evaluation
methods can severely overestimate model performance.

Table 6: Anomaly Detection task. P: precision, R: recall, F1: F1-score (all values in %). Reported: scores
from Luo & Wang (2024). Rerun: naively reproduced results. No Leakage: results calculating the thresholds
using only training data. Naive: baseline approach. Bold: best score between valid models (No Leakage and
Naive). Avg.: average F1 score across all 5 datasets.

Model SMD MSL SMAP SWaT PSM Avg.P R F1 P R F1 P R F1 P R F1 P R F1
Reported 87.86 83.85 85.81 83.94 85.93 84.92 93.17 57.69 71.26 91.83 95.98 93.86 98.09 96.38 97.23 86.62
Rerun 87.43 81.64 84.44 89.59 74.94 81.61 90.82 55.93 69.23 95.77 90.28 92.94 98.65 94.57 96.57 84.96
No Leakage 78.42 83.76 81.00 86.07 77.12 81.35 92.31 55.42 69.26 93.45 93.16 93.30 98.62 94.58 96.56 84.29
Naive 79.86 91.40 85.24 90.14 80.76 85.19 93.27 94.48 93.87 93.05 96.93 94.95 97.32 94.55 95.91 91.03

4.2 Results Beyond the Original Paper

4.2.1 Short-Term Forecasting on ETT

Referring to the results presented in Table 7, ModernTCN exhibits competitive performance, particularly
in the ETTm1 dataset, where it achieves the best results for very short-term forecasting. This aligns with
findings from Yang et al. (2024), which demonstrated ModernTCN’s effectiveness for ultra-short-term multi-
step prediction tasks. However, in ETTh1 dataset, PatchTST demonstrates superior performance.

Table 7: Short-Term Forecasting Results on ETT (ETTh1 and ETTm1). 6x1h, 12x1h, and 18x1h refer to
steps ahead forecasting for ETTh1, while 6x15m, 12x15m, and 18x15m refer to steps ahead forecasting for
ETTm1. Results are averaged over 5 runs, and both mean and standard deviation are reported.

6x15m 12x15m 18x15m 6x1h 12x1h 18x1h
Model MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ModernTCN 0.127 ± 0.001 0.216 ± 0.001 0.204 ± 0.001 0.269 ± 0.001 0.220 ± 0.001 0.296 ± 0.001 0.300 ± 0.006 0.350 ± 0.003 0.300 ± 0.001 0.346 ± 0.001 0.308 ± 0.001 0.351 ± 0.001
PatchTST 0.138 ± 0.003 0.222 ± 0.001 0.244 ± 0.004 0.295 ± 0.005 0.240 ± 0.002 0.312 ± 0.001 0.253 ± 0.003 0.321 ± 0.001 0.278 ± 0.003 0.333 ± 0.002 0.288 ± 0.002 0.344 ± 0.002
TimesNet 0.144 ± 0.002 0.235 ± 0.001 0.231 ± 0.003 0.295 ± 0.003 0.256 ± 0.003 0.326 ± 0.001 0.316 ± 0.002 0.367 ± 0.001 0.337 ± 0.007 0.383 ± 0.004 0.348 ± 0.006 0.393 ± 0.004
DLinear 0.146 ± 0.001 0.233 ± 0.001 0.287 ± 0.001 0.323 ± 0.001 0.303 ± 0.001 0.347 ± 0.001 0.284 ± 0.002 0.339 ± 0.001 0.292 ± 0.001 0.341 ± 0.002 0.300 ± 0.001 0.347 ± 0.001

4.2.2 Classification on Speech Commands

ModernTCN exhibits limited parameter efficiency, particularly when handling many input variables. Its
design maintains a separate feature space for each variable throughout the network, which inflates the model
size as the number of variables increases. For instance, in the Speech Commands MFCC dataset with 20
variables and a feature dimension of 32, this results in over 4 million parameters. In contrast, CCNN (Knigge
et al., 2023) projects all variables into a shared model space at the input stage, resulting in significantly
greater parameter efficiency.

This inefficiency becomes more apparent when comparing across datasets. On the Speech Commands Raw
dataset, which contains only a single variable, ModernTCN’s selected model size of 512 results in a much
smaller model with approximately 500K parameters. Despite the challenge posed by the long input sequence
length (16,000), ModernTCN performs better than CKConv in this setting. This is primarily due to two
factors: the aggressive downsampling of the raw signal during embedding and the use of a large model dimen-
sion (512), which enhances the model’s expressiveness. However, even in this favorable setting, ModernTCN
still underperforms compared to more advanced global convolutional baselines.

We further analyze ModernTCN’s ability to model long-range dependencies through effective receptive field
(ERF) visualizations, following the methodology of Kim et al. (2023) and Ding et al. (2022a), as adapted
by Luo & Wang (2024). We sample 50 sequences from the Speech Commands MFCC validation set and
compute the relative gradient contributions of each input timepoint to the center of the feature map after
a fixed number of blocks. The resulting visualizations are shown in Figure 2, where lighter regions indicate
stronger influence.
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Global models like CCNN{4,140} achieve a much larger ERF with significantly fewer parameters (200K vs.
4M) due to their global kernel design. This enables them to better capture long-range dependencies and
contributes to their superior classification performance, as reported in Table 8. Additional implementation
details and extended analysis for ERFs are available in Appendix B.

(a) CCNN after 1 block (b) CCNN after 3 blocks

(c) ModernTCN (kernel size 13) after 1 block (d) ModernTCN (kernel size 13) after 3 blocks

(e) ModernTCN (kernel size 71) after 1 block (f) ModernTCN (kernel size 71) after 3 blocks

Figure 2: Comparison of effective receptive fields (ERF) for different models. Each row shows a different
model configuration, while columns show the ERF after 1 block (left) and 3 blocks (right).

Table 8: Classification Results on Speech Commands - Accuracy

Model Size Speech Commands MFCC Speech Commands Raw
CKCNN-Seq (Romero et al., 2021b) 98K 0.953 0.717
S4 (Gu et al., 2021) 300K 0.940 0.983
FlexTCN-6 (Romero et al., 2021a) 375K 0.977 0.917
CCNN{4,140} (Knigge et al., 2023) 200K 0.950 0.983
CCNN{6,380} (Knigge et al., 2023) 2M 0.980 0.984
ModernTCN 4M/500k 0.922 ± 0.001 0.843 ± 0.007

4.2.3 Variable Length Time Series Classification

Both ModernTCN and CKConv demonstrate strong performance in the variable length time series classifi-
cation task (Table 9), outperforming the best baselines from Lee & Shin (2025). The high scores achieved
by these models can be attributed to the nature of the task. In this context, convolutional models like Mod-
ernTCN and CKConv benefit from their ability to extract features through template matching as they slide
over the time dimension. CKConv, in particular, excels in this task, likely due to the continuous nature of
the handwriting trajectories. By representing the 1D convolutional kernel as a continuous function, CKConv
effectively captures the underlying patterns in the data, leading to its exceptional performance.

Table 9: Results of Variable Length Time Series Classification (Accuracy and MAP) over 5 runs, with values
representing the mean and standard deviation. ModernTCN and CKConv were adapted, while the other
baselines were selected from (Lee & Shin, 2025) as the best variants/models for both metrics.

Model Accuracy (%) MAP (%)
ModernTCN 95.02 ± 0.9 94.42 ± 0.9
CKConv 99.07 ± 0.3 99.00 ± 0.3
Refined TIP 78.11 ± 1.18 83.35 ± 0.83
InceptionTime (IP) 82.81 ± 0.40 69.28 ± 0.45

4.2.4 Irregularly Sampled Time Series Classification

Sepsis prediction is a critical task, as early detection significantly improves patient outcomes. The PhysioNet
Sepsis Prediction dataset (Reyna et al., 2019) presents a challenging test bed due to its irregularly sampled
nature, which results in missing values. CKConv demonstrates strong performance on this task, surpassing
models specifically designed for irregularly sampled data (Kidger et al., 2020).
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The ability of ModernTCN to handle missing values is evidenced by its superior performance in the impu-
tation tasks within this study. This capability extends to irregularly sampled data, as shown in Table 10.
Additionally, ModernTCN’s proficiency in mixing information between variables through its cross-variable
component (ConvFFN2) is crucial, as its removal leads to a performance drop. This is indicated as "Mod-
ernTCN - Variable Independent," where the model becomes variable-independent until the fully connected
projection layer at the end.

Both ModernTCN and CKConv exhibit strong performance on data with missing values. To harness their
synergistic potential, we combined them by employing CKConv to embed the raw signals within Mod-
ernTCN, while retaining the ModernTCN pipeline for subsequent processing. This approach, denoted as
"CKConv + ModernTCN," outperforms all other baselines. The improvement is statistically significant in
both comparisons—against CKConv and ModernTCN alone (Wilcoxon signed-rank test, one-sided p = 0.031
for both). This combination leverages two key properties of CKConv: (1) the continuous nature of the kernel,
which inherently handles irregularly sampled data, and (2) parameter efficiency, as the parameter size of the
continuous kernel is decoupled from the input sequence length. This innovative combination could serve as a
promising starting point for future studies, particularly in testing on irregularly sampled datasets, including
those with very long sequence lengths.

Table 10: Comparison of Model Performance on the PhysioNet Dataset (AUC ± Std Dev)

Model AUC ± Std Dev
CKConv 0.883 ± 0.011
ModernTCN 0.895 ± 0.007
ModernTCN - Variable Independent 0.875 ± 0.004
CKConv + ModernTCN 0.904 ± 0.004

4.2.5 Anomaly Detection

In the context of anomaly detection, ModernTCN’s performance varies significantly between univariate
and multivariate time series datasets. On the univariate TSB-AD-U dataset (Figure 3(a)), ModernTCN
ranks among the lowest-performing methods, placing third to last. This result aligns with the findings of
Liu & Paparrizos (2024), which suggest that statistical methods often provide more effective and robust
solutions for univariate time-series anomaly detection. Conversely, on the multivariate TSB-AD-M dataset
(Figure 3(b)), ModernTCN emerges as the best-performing method. This success can be attributed to the
extensive engineering and design considerations within ModernTCN that specifically address the complexities
of multivariate time series data.

5 Discussion

This study provides a critical re-evaluation of ModernTCN (Luo & Wang, 2024), using it as a case study to
audit the general time series analysis experimental setup. Our rigorous and extended benchmark revealed
that performance claims are sensitive to methodological details in data handling and evaluation. After
correcting flaws like the "Drop Last Trick" in long-term forecasting, we found that ModernTCN, while
competitive, is often outperformed by other leading models like PatchTST. Similarly, our anomaly detection
experiments showed that its performance varies drastically; it lags behind simpler statistical methods on
univariate data but excels in multivariate contexts. This highlights the importance of its architectural
components, such as the cross-variable ‘ConvFFN2‘ module, which our ablation study confirmed is crucial
for handling missing data.

Furthermore, we addressed ModernTCN’s oversight of a significant line of research in global convolutional
models. Our analysis of effective receptive fields (ERFs) revealed that despite its claims of an enlarged ERF, it
achieves a smaller receptive field compared to continuous kernel approaches like CCNN (Knigge et al., 2023),
and at a much higher parameter cost. This finding motivated our main architectural innovation: integrating
ModernTCN with a global continuous kernel for embedding irregularly sampled data. This hybrid model
achieves new state-of-the-art performance on the PhysioNet 2019 dataset. This innovative combination
opens new avenues for future research, particularly in exploring its application to other irregularly sampled
datasets and those with extended sequence lengths.
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(a) Accuracy evaluation on univariate TSB-AD-U.

(b) Accuracy evaluation on multivariate TSB-AD-M.

Figure 3: Accuracy evaluation on univariate and multivariate time series anomaly detection. In the boxplot,
the mean value is marked by a dashed line and the median by a solid line. Adapted from (Liu & Paparrizos,
2024).

Overall, this work highlights the importance of carefully considering experimental design choices in time
series analysis. Some widely used practices—such as the "Drop Last Trick" in forecasting, using the test set
for validation in classification and short-term forecasting, and point adjustment in anomaly detection—may
unintentionally bias results. We encourage the community to carefully review these aspects and consider
adopting benchmarking frameworks like the one we present here. Doing so can help ensure more robust,
reliable, and comparable evaluations, ultimately fostering stronger progress in time series modeling.

5.1 Contact with the authors

The authors were contacted via email to request the code for ERF visualization and to discuss the flaws in
the experimental setup. Unfortunately, no response was received.
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A Experimental details

A.1 Hyperparameters on the Extended Setups

For the original experiments, which aimed at reproducing results, we utilized the optimal settings reported
in the ModernTCN paper. For the extended experiments, we conducted a grid search to determine the
optimal hyperparameters. The grid for this search was constructed based on the optimal parameters of
corresponding tasks as described in the ModernTCN paper. The specific details of the grid search and the
selected parameters for the extended setups are provided in the tables below. Evaluations were performed
on the validation set for 10 epochs, and the hyperparameters yielding the best validation score were selected.

Table 11: Hyperparameters for Speech Commands (MFCC)

Parameter Options Considered Selected Value
Patch Size, Stride 1,1; 8,4; 16,8 1,1
Dimension 32, 64, 128 32
Kernel Size 13, 31, 51, 71 13
Learning Rate Scheduling exponential (type1), step (type2), delayed exponential (type3) type3
Number of ModernTCN Blocks 2, 3, 4 3

Table 12: Hyperparameters for Speech Commands (Raw)

Parameter Options Considered Selected Value
Patch Size, Stride 1,1; 16,8; 32,16; 64,32 32,16
Dimension 64, 128, 256, 512 512
Kernel Size 13, 31, 51, 71 71
Learning Rate Scheduling exponential (type1), step (type2), delayed exponential (type3) type3
Number of ModernTCN Blocks 2, 3, 4 3

Table 13: Hyperparameters for PhysioNet

Parameter Options Considered Selected Value
Patch Size, Stride 1,1; 8,4; 16,8 1,1
Dimension 16, 32, 64, 128 32
Kernel Size 13, 31, 51, 71 31
Learning Rate Scheduling exponential (type1), step (type2), delayed exponential (type3) type3
Number of ModernTCN Blocks 2, 3, 4 4

Table 14: Hyperparameters for Character Trajectories

Parameter Options Considered Selected Value
Patch Size, Stride 1,1; 8,4; 16,8 1,1
Dimension 16, 32, 64, 128 32
Kernel Size 13, 31, 51, 71 13
Learning Rate Scheduling exponential (type1), step (type2), delayed exponential (type3) type3
Number of ModernTCN Blocks 2, 3, 4 2

Table 15: Hyperparameters for TSB-AD Anomaly Detection (Multivariate)

Parameter Options Considered Selected Value
Window Size 32, 96, 192 96
Learning Rate 1e-3, 1e-4, 1e-5 0.001
Kernel Size 13, 31, 51, 71 13
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Table 16: Hyperparameters for TSB-AD Anomaly Detection (Univariate)

Parameter Options Considered Selected Value
Window Size 32, 96, 192 96
Learning Rate 1e-3, 1e-4, 1e-5 0.001
Kernel Size 13, 31, 51, 71 13

Table 17: Hyperparameters for Short Term Forecasting on ETTh1

Parameter Options Considered Selected Value
Input Sequence Length (Pred Len 6) 6x1, 6x2, 6x3 6x3
Kernel Size (Pred Len 6) 7, 13 13
Input Sequence Length (Pred Len 12) 12x1, 12x2, 12x3 12x3
Kernel Size (Pred Len 12) 7, 13, 31 13
Input Sequence Length (Pred Len 18) 18x1, 19x2, 18x3 18x3
Kernel Size (Pred Len 18) 7, 13, 31 13

Table 18: Hyperparameters for Short Term Forecasting on ETTm1

Parameter Options Considered Selected Value
Input Sequence Length (Pred Len 6) 6x1, 6x2, 6x3 6x3
Kernel Size (Pred Len 6) 7, 13 13
Input Sequence Length (Pred Len 12) 12x1, 12x2, 12x3 12x3
Kernel Size (Pred Len 12) 7, 13, 31 13
Input Sequence Length (Pred Len 18) 18x1, 19x2, 18x3 18x3
Kernel Size (Pred Len 18) 7, 13, 31 13

A.2 Anomaly Detection Datasets of TSB-U-AD and TSB-M-AD

We extend the evaluation to TSB-AD (Liu & Paparrizos, 2024), a comprehensive benchmark for anomaly
detection. This benchmark consists of 1070 time series from a diverse collection of 40 datasets, including 17
univariate and 13 multivariate datasets. For detailed characteristics, see Table 19.
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Table 19: Summary characteristics of 40 datasets included in TSB-AD. ‘-’ in the 2nd column indicates this
dataset is transformed from the multivariate dataset. The ‘Category’ column indicates whether the datasets
feature point anomalies (P) or sequence anomalies (Seq). Adapted from Liu & Paparrizos (2024)

Name # TS Collected # TS Curated Avg Dim Avg TS Len Avg # Anomaly Avg Anomaly Len Anomaly Ratio Category
TSB-AD-U

UCR Wu & Keogh (2021) 250 228 1 67818.7 1 198.9 0.6% P&Seq
NAB Ahmad et al. (2017) 58 28 1 5099.7 1.6 370.1 10.6% Seq
YAHOO Laptev et al. (2015) 367 259 1 1560.2 5.5 2.5 0.6% P&Seq
IOPS IOP 58 17 1 72792.3 25.6 48.7 1.3% Seq
MGAB Thill et al. (2020) 10 9 1 97777.8 9.7 20.0 0.2% Seq
WSD Zhang et al. (2022) 210 111 1 17444.5 5.1 25.4 0.6% Seq
SED ? 6 3 1 23332.3 14.7 64.0 4.1% Seq
TODS Lai et al. (2021) 15 15 1 5000.0 97.3 18.7 6.3% P&Seq
NEK Si et al. (2024) 48 9 1 1073.0 2.9 51.1 8.0% P&Seq
Stock Tran et al. (2016) 90 20 1 15000.0 1246.9 1.1 9.4% P&Seq
Power Keogh et al. (2007) 1 1 1 35040.0 4 750 8.5% Seq
Daphnet (U) Bachlin et al. (2009) - 1 1 38774.0 6 384.3 5.9% Seq
CATSv2 (U) Fleith (2023) - 1 1 300000.0 19.0 778.9 4.9% Seq
SWaT (U) Mathur & Tippenhauer (2016) - 1 1 419919.0 27.0 1876.0 12.1% Seq
LTDB (U) Goldberger et al. (2000) - 9 1 99700.0 127.5 144.5 18.6% Seq
TAO (U) TAO - 3 1 10000.0 838.7 1.1 9.4% P&Seq
Exathlon (U) Jacob et al. (2021) - 32 1 44075.8 3.1 1577.3 11.0% Seq
MITDB (U) Goldberger et al. (2000) - 8 1 631250.0 68.7 451.9 4.2% Seq
MSL (U) Hundman et al. (2018) - 9 1 3492.0 1.3 130.0 5.8% Seq
SMAP (U) Hundman et al. (2018) - 19 1 7700.2 1.2 210.1 2.8% Seq
SMD (U) Su et al. (2019a) - 38 1 24207.7 2.4 173.7 2.0% Seq
SVDB (U) Greenwald (1990) - 20 1 171380.0 36.4 292.5 3.6% Seq
OPP (U) Roggen et al. (2010) - 29 1 16544.8 1.4 653.4 6.4% Seq

TSB-AD-M
GHL Filonov et al. (2016) 48 25 19 199001.0 2.2 1035.2 1.1% Seq
Daphnet Bachlin et al. (2009) 17 1 9 38774.0 6.0 384.3 5.9% Seq
Exathlon Jacob et al. (2021) 72 27 21 60878.4 4.3 1373.3 9.8% Seq
Genesis von Birgelen & Niggemann (2018) 1 1 18 16220.0 3.0 16.7 0.3% Seq
OPP Roggen et al. (2010) 24 8 248 17426.75 1.4 394.3 4.1% Seq
SMD Su et al. (2019a) 28 22 38 25466.4 8.9 112.8 3.8% Seq
SWaT Mathur & Tippenhauer (2016) 4 2 59 207457.5 16.5 1093.6 12.7% Seq
PSM Abdulaal et al. (2021) 1 1 25 217624.0 72.0 338.6 11.2% P&Seq
SMAP Hundman et al. (2018) 54 27 25 7855.9 1.3 196.3 2.9% Seq
MSL Hundman et al. (2018) 27 16 55 3119.4 1.3 111.7 5.1% Seq
CreditCard Sharafaldin et al. (2018) 1 1 29 284807.0 465.0 1.1 0.2% P&Seq
GECCO Moritz et al. (2018) 1 1 9 138521.0 51.0 33.8 1.2% Seq
MITDB Goldberger et al. (2000) 48 13 2 336153.8 15.2 1846.8 2.7% Seq
SVDB Greenwald (1990) 78 31 2 207122.6 68.3 268.2 4.8% Seq
LTDB Goldberger et al. (2000) 7 5 2 100000.0 105.0 134.4 15.5% Seq
CATSv2 Fleith (2023) 10 6 17 240000.0 11.5 811.6 3.7% Seq
TAO TAO 45 13 3 10000.0 788.2 1.1 8.7% P&Seq

A.3 TSB-AD Baselines

We compare ModernTCN against a wide range of baselines from the TSB-AD benchmark (Liu & Paparrizos,
2024), which are categorized into three groups:

• Statistical Methods: MCD (Rousseeuw & Driessen, 1999), OCSVM (Schölkopf et al., 1999), LOF
(Breunig et al., 2000), KNN (Ramaswamy et al., 2000), KMeansAD (Yairi et al., 2001), CBLOF
(He et al., 2003), POLY (Li et al., 2007), IForest (Liu et al., 2008), HBOS (Goldstein & Dengel,
2012), KShapeAD (Paparrizos & Gravano, 2015; 2017; Boniol et al., 2021), MatrixProfile (Yeh et al.,
2016), PCA (Aggarwal, 2017), RobustPCA (Paffenroth et al., 2018), EIF (Hariri et al., 2019), SR
(Ren et al., 2019), COPOD (Li et al., 2020), Series2Graph (Boniol & Palpanas, 2020), and SAND
(Boniol et al., 2021).

• Neural Network-based Methods: AutoEncoder (Sakurada & Yairi, 2014), LSTMAD (Malhotra
et al., 2015), Donut (Xu et al., 2018), CNN (Munir et al., 2018), OmniAnomaly (Su et al., 2019a),
USAD (Audibert et al., 2020), AnomalyTransformer (Xu et al., 2021), TranAD (Tuli et al., 2022),
TimesNet (Wu et al., 2023), and FITS (Xu et al., 2023).

• Foundation Model-based Methods: OFA (GPT4TS) (Zhou et al., 2023), Lag-Llama (Rasul
et al., 2023), Chronos (Ansari et al., 2024), TimesFM (Das et al., 2024), and MOMENT (Goswami
et al., 2024).

A.4 Reproducibility and Baseline Sources

To reproduce the results presented in this paper, one can refer to the original repository. Some of the baseline
results are produced in their official codebases; one can refer to the sources listed in Table 20.

4TiRex was run for 4 different input lengths, and the best results are reported in the main content. For detailed results, see
Appendix C.4.
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Table 20: Overview of Baseline Score Calculation Sources

Task Baseline Type / Source Citation Code Repository

Long-term Forecasting Task-Specific Baselines Qiu et al. (2024) TFB
Long-term Forecasting Foundational Models (excl. Tirex) Li et al. (2025) TSFM-Bench
Long-term Forecasting Tirex Auer et al. (2025) Tirex (Submodule in RE-ModernTCN)4

Imputation Baselines Wu et al. (2023) Time-Series-Library
Short-term Forecasting Baselines Wu et al. (2023) Time-Series-Library
Speech Commands Classification Baselines - CKConv, FlexConv, CCNN, S4
Variable Length Time Series Baselines Lee & Shin (2025) CKConv
Physionet 19 Baselines Romero et al. (2021b) CKConv
Anomaly Detection Baselines Liu & Paparrizos (2024) TSB-AD (Submodule in RE-ModernTCN)

B Visualizing the ERF

Formally, let I(n × m × l) be the input time series, where n is the number of samples, m is the number of
variables, and l is the input sequence length. Let F (n × m × d × l′) be the final output feature map, we
desire to measure the contributions of every time point on I to the central points of every channel on F , i.e.,
F:,:,:,l′/2, which can be simply implemented via taking the derivatives of F:,:,:,l′/2 to I with the auto-grad
mechanism. Concretely, we sum up the central points, take the derivatives to the input as the time-wise
contribution scores and remove the negative parts (denoted by P). Then we aggregate the entries across
all the examples and the input variables, and take the logarithm for better visualization. Formally, the
aggregated contribution score matrix A(l) is given by

P = max(
∂(

∑n
i

∑m
j

∑d
k Fi,j,k,l′/2)

∂I , 0), (1)

A = log10(
n∑
i

m∑
j

Pi,j,: + 1). (2)

Then we respectively rescale A of each model to [0, 1] via dividing the maximum entry for the comparability
across models.

(a) ModernTCN (b) Our Method

Figure 4: ERF visualizations from ModernTCN and our method for the same setup.

Following the mentioned methodology (from Kim et al. (2023) and Ding et al. (2022a)) as adapted in Luo
& Wang (2024), we explored the ERF visualizations for the ETTh1 forecasting task with an input sequence
length of 336. The ModernTCN approach claims to adapt these methodologies for 1D sequences; however,
the specifics of their adaptation are not detailed, nor is the code available in their official repository. To
establish a reference point, we visualized the same model under the same setup. As shown in Figure 4, the
ERF visualization from ModernTCN exhibits more colored areas compared to our method. Such differences
might be attributed to the color scheme used. In our visualizations, we clearly indicate the range of colors
corresponding to values between [0,1], whereas ModernTCN does not. Additionally, in our plots, not all
black areas represent zero gradient contribution; rather, they are very close to zero relative to the maximum
gradient contribution due to normalization. Upon closer inspection, the black regions near the center in our
visualization reveal a slight red hue, indicating a minimal gradient contribution.

Nevertheless, as depicted in Figure 2, the global convolutions-based method demonstrates a significantly
greater ability to enlarge the ERF compared to ModernTCN.
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C Full Results

C.1 ModernTCN Long-Term Forecasting

Table 21: Long-term forecasting results. "Reported": scores from ModernTCN paper. "Rerun": our repro-
duced results. "N.D.L.": No Drop Last, results with test loader not dropping incomplete last batches. "Len"
indicates prediction length in time steps (96, 192, 336, and 720 for most datasets; 24, 36, 48, and 60 for ILI).
Lower MSE/MAE indicates better performance. Values are multiplied by 1000 for brevity.

ETTh1 ETTh2 ETTm1 ETTm2 Electricity Weather Traffic Exchange ILI

M
od

el

Len MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

R
ep

or
te

d 96 368 394 263 332 292 346 166 256 129 226 149 200 368 253 80 196 1347 717
192 405 413 320 374 332 368 222 293 143 239 196 245 379 261 166 288 1250 778
336 391 412 313 376 365 391 272 324 161 259 238 277 397 270 307 398 1388 781
720 450 461 393 433 416 417 351 381 191 286 314 334 440 296 656 582 1774 868

R
er

un

96 369 394 264 333 297 348 169 256 131 227 150 204 371 256 81 197 1348 718
192 406 414 318 373 334 370 227 299 146 243 195 247 384 267 167 290 1448 820
336 392 412 314 376 371 395 276 329 166 264 237 283 404 273 314 402 1389 781
720 450 461 394 432 419 419 349 390 194 288 315 335 446 298 659 583 1775 868

N
.D

.L
. 96 376 ± 2 397 ± 2 276 ± 1 341 ± 0 295 ± 1 346 ± 1 169 ± 2 256 ± 1 133 ± 0 228 ± 0 149 ± 1 203 ± 1 384 ± 1 270 ± 1 81 ± 0 198 ± 0 1935 ± 158 818 ± 38

192 410 ± 1 417 ± 1 338 ± 2 385 ± 1 333 ± 0 370 ± 1 225 ± 2 297 ± 2 149 ± 2 243 ± 3 195 ± 1 246 ± 1 395 ± 1 277 ± 1 168 ± 0 290 ± 0 2109 ± 140 951 ± 46
336 435 ± 1 433 ± 1 370 ± 3 414 ± 2 373 ± 2 395 ± 2 273 ± 1 328 ± 1 174 ± 2 269 ± 2 245 ± 1 284 ± 1 408 ± 1 284 ± 1 307 ± 0 399 ± 0 2008 ± 102 895 ± 25
720 456 ± 1 466 ± 1 410 ± 1 442 ± 0 418 ± 2 418 ± 1 350 ± 2 390 ± 2 201 ± 6 294 ± 4 316 ± 2 335 ± 1 453 ± 0 308 ± 1 814 ± 0 679 ± 0 1949 ± 93 904 ± 34

C.2 ModernTCN Imputation

Table 22: Imputation task results with varying percentages of missing data (12.5%, 25%, 37.5%, 50%).
"Original": reproduced results. "N.D.L.": No Drop Last, results with test loader not dropping incomplete
last batches. "Miss %" indicates percentage of missing data. Lower MSE/MAE indicates better performance.
All settings from original paper’s repository. Values are multiplied by 1000 for brevity.

ECL Weather ETTh1 ETTh2 ETTm1 ETTm2

M
od

el

Miss % MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

O
ri

gi
na

l 12.5 59 170 24 39 34 126 38 122 16 83 18 77
25.0 69 181 25 41 44 143 40 127 18 89 19 80
37.5 81 196 27 44 54 157 43 134 22 96 21 85
50.0 84 199 31 52 68 175 48 142 27 106 23 91

N
.D

.L
. 12.5 59 ± 1 170 ± 2 24 ± 0 40 ± 1 34 ± 0 126 ± 0 38 ± 0 122 ± 1 16 ± 0 83 ± 0 18 ± 0 76 ± 0

25.0 69 ± 1 181 ± 2 25 ± 0 41 ± 1 44 ± 0 143 ± 1 40 ± 0 127 ± 1 18 ± 0 89 ± 0 19 ± 0 80 ± 0
37.5 81 ± 1 196 ± 3 27 ± 0 44 ± 1 54 ± 1 157 ± 2 43 ± 1 134 ± 2 22 ± 0 96 ± 0 21 ± 0 85 ± 0
50.0 84 ± 1 199 ± 3 31 ± 0 52 ± 1 68 ± 1 175 ± 2 48 ± 1 142 ± 2 27 ± 0 106 ± 0 23 ± 0 91 ± 0

C.3 Results on PhysioNet 2019 and Statistical Significance

This section provides a detailed breakdown of the model performance on the PhysioNet 2019 dataset, in-
cluding the results from five separate runs for each model configuration. Table 23 presents the individual
AUC scores, along with the mean and standard deviation, offering a comprehensive view of model stability
and performance.

Table 23: Detailed AUC scores for models on the PhysioNet 2019 dataset over 5 runs.

Model Run 1 Run 2 Run 3 Run 4 Run 5 Mean Std Dev
CKConv 0.868 0.888 0.884 0.897 0.876 0.883 0.011
ModernTCN 0.891 0.896 0.886 0.901 0.902 0.895 0.007
ModernTCN - VarIndep 0.880 0.869 0.875 0.873 0.876 0.875 0.004
CKConv + ModernTCN 0.901 0.902 0.901 0.908 0.908 0.904 0.004

The statistical significance of the performance improvement of the ‘CKConv + ModernTCN‘ model over
both ‘CKConv‘ and ‘ModernTCN‘ was evaluated using a one-sided Wilcoxon signed-rank test. This non-
parametric test is suitable for comparing two related samples. In both comparisons, the alternative hypothesis
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was that ‘CKConv + ModernTCN‘ has a greater mean AUC score. The test yielded a p-value of 0.031 for
both comparisons, indicating that the observed improvements are statistically significant.

The Python code snippet below, using the ‘SciPy‘ library, was used to perform the statistical tests.

from scipy.stats import wilcoxon

# AUC scores for CKConv, ModernTCN and CKConv + ModernTCN over 5 runs
ckconv_scores = [0.868, 0.888, 0.884, 0.897, 0.876]
moderntcn_scores = [0.891, 0.896, 0.886, 0.901, 0.902]
m_ckconv_scores = [0.901, 0.902, 0.901, 0.908, 0.908]

# One-sided Wilcoxon test: H1: M+CKConv > ModernTCN
stat_m, p_value_m = wilcoxon(m_ckconv_scores, moderntcn_scores, alternative=’greater’)
print(f"CKConv+ModernTCN vs ModernTCN: p-value={p_value_m:.3f}")

# One-sided Wilcoxon test: H1: M+CKConv > CKConv
stat_c, p_value_c = wilcoxon(m_ckconv_scores, ckconv_scores, alternative=’greater’)
print(f"CKConv+ModernTCN vs CKConv: p-value={p_value_c:.3f}")

C.4 TiRex Full Results with Varying Input Lengths

TiRex was run with four different input lengths for each prediction length to identify the optimal configu-
ration. The best-performing results are presented in the main long-term forecasting table. The full results,
detailing performance across all tested input lengths, are provided below to show the sensitivity of the model
to this hyperparameter.

Table 24: Performance with varying input (IL) and prediction (PL) lengths on long-term forecasting datasets
(PL: 96, 192, 336, 720; IL: 336, 720, 1440, 2048). Note that the Illness dataset was evaluated with different
prediction and input lengths (PL: 24, 36, 48, 60; IL: 36, 48, 60, 120), and these results are not included in
this table.

Configuration ETTh1 ETTh2 ETTm1 ETTm2 Electricity Weather Traffic Exchange Illness
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96
(2

4) IL: 336 (36) 0.412 0.387 0.306 0.333 0.341 0.338 0.197 0.257 0.126 0.212 0.173 0.204 0.411 0.250 0.093 0.210 5.827 1.463
IL: 720 (48) 0.382 0.377 0.298 0.327 0.323 0.329 0.188 0.248 0.121 0.207 0.161 0.192 0.386 0.240 0.093 0.209 5.138 1.445

IL: 1440 (60) 0.377 0.376 0.288 0.321 0.322 0.329 0.181 0.244 0.120 0.206 0.154 0.187 0.380 0.237 0.096 0.213 4.067 1.299
IL: 2048 (120) 0.377 0.377 0.274 0.315 0.304 0.323 0.174 0.239 0.121 0.207 0.151 0.183 0.378 0.235 0.097 0.213 1.493 0.744

19
2(

36
) IL: 336 (36) 0.457 0.415 0.374 0.379 0.396 0.367 0.265 0.302 0.145 0.231 0.224 0.251 0.432 0.260 0.202 0.312 8.088 1.819

IL: 720 (48) 0.430 0.406 0.354 0.368 0.386 0.362 0.260 0.295 0.141 0.226 0.208 0.238 0.410 0.250 0.208 0.320 6.330 1.693
IL: 1440 (60) 0.425 0.406 0.347 0.364 0.379 0.360 0.247 0.289 0.140 0.225 0.200 0.232 0.405 0.247 0.216 0.325 4.835 1.476

IL: 2048 (120) 0.424 0.405 0.333 0.358 0.360 0.354 0.235 0.283 0.141 0.226 0.196 0.227 0.402 0.246 0.209 0.319 1.767 0.824

33
6(

48
) IL: 336 (36) 0.485 0.430 0.373 0.389 0.435 0.389 0.313 0.333 0.164 0.250 0.282 0.291 0.444 0.267 0.382 0.441 8.247 1.889

IL: 720 (48) 0.464 0.425 0.355 0.379 0.431 0.386 0.317 0.333 0.159 0.244 0.266 0.280 0.425 0.258 0.410 0.459 6.247 1.717
IL: 1440 (60) 0.452 0.424 0.351 0.376 0.413 0.381 0.298 0.325 0.158 0.244 0.250 0.269 0.420 0.255 0.419 0.465 4.788 1.493

IL: 2048 (120) 0.452 0.422 0.348 0.375 0.396 0.376 0.285 0.318 0.159 0.245 0.246 0.265 0.418 0.254 0.387 0.445 1.814 0.845

72
0(

60
) IL: 336 (36) 0.492 0.465 0.395 0.415 0.504 0.427 0.406 0.389 0.208 0.287 0.363 0.344 0.486 0.289 1.028 0.760 7.335 1.775

IL: 720 (48) 0.478 0.459 0.368 0.402 0.500 0.422 0.394 0.386 0.202 0.282 0.340 0.330 0.460 0.279 1.173 0.804 5.716 1.634
IL: 1440 (60) 0.488 0.465 0.366 0.402 0.462 0.411 0.365 0.373 0.201 0.282 0.316 0.316 0.454 0.276 1.133 0.794 4.599 1.458

IL: 2048 (120) 0.486 0.462 0.364 0.400 0.452 0.408 0.356 0.369 0.201 0.282 0.313 0.313 0.453 0.275 1.080 0.770 1.891 0.870

D Drop Last Trick

The "Drop Last Trick" refers to discarding the last batch if it contains fewer instances than the batch
size during evaluation. Table 25 examines how this affects model performance across different datasets.
Our analysis reveals that significant changes in MSE and MAE primarily occur when more than 5% of
the test set is dropped, as seen with ETTh1, ETTh2, Exchange (720), and ILI datasets. In most cases,
performance metrics increase (positive ∆ MSE/MAE values) when all data points are included, indicating
worse performance as lower values are better for these metrics. This suggests that models may have been
implicitly tuned for the smaller test sets. While most datasets show performance degradation when including
all data points, cases like Exchange (336) show improvement, which aligns with the fact that dropping data
points can lead to either better or worse performance depending on the characteristics of the excluded points.
This indicates that this faulty setup significantly affects the results, especially when a high percentage of the
test set is dropped due to high batch size and/or low test set size.
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Table 25: Analysis of the "Drop Last Trick" impact across datasets. For each dataset, we show test set size,
batch size, excluded data points, and performance differences. Numbers in parentheses indicate prediction
length for forecasting tasks. ∆ MSE/MAE shows the difference (No Drop Last - Rerun), with positive values
indicating performance degradation when all data points are included.

Task Dataset Test Set Size Batch Size Dropped Points Dropped Points (%) ∆ MSE ∆ MAE
Long-term Forecasting ETTm1 11,521 512 257 2.23% +0.001 0.000
Long-term Forecasting ETTm2 11,521 512 257 2.23% -0.001 -0.001
Long-term Forecasting ETTh1 2,881 512 321 11.10% +0.015 +0.008
Long-term Forecasting ETTh2 2,881 512 321 11.10% +0.025 +0.015
Long-term Forecasting Electricity 5,261 32 13 0.25% +0.004 +0.003
Long-term Forecasting Traffic 3,509 32 21 0.60% +0.009 +0.006
Long-term Forecasting Weather (96) 10,540 256 44 0.42% -0.002 -0.001
Long-term Forecasting Weather (192) 10,540 256 44 0.42% -0.001 -0.001
Long-term Forecasting Weather (336) 10,540 512 300 2.85% +0.007 +0.001
Long-term Forecasting Weather (720) 10,540 512 300 2.85% +0.003 +0.001
Long-term Forecasting Exchange (96) 1,422 128 14 0.98% 0.000 +0.001
Long-term Forecasting Exchange (192) 1,422 128 14 0.98% +0.001 0.000
Long-term Forecasting Exchange (336) 1,422 512 398 27.99% -0.007 -0.003
Long-term Forecasting Exchange (720) 1,422 512 398 27.99% +0.155 +0.096
Long-term Forecasting ILI 170 32 10 5.88% +0.510 +0.095
Imputation ETTm1 11,521 16 1 0.01% 0.000 0.000
Imputation ETTm2 11,521 16 1 0.01% 0.000 0.000
Imputation ETTh1 2,881 16 1 0.03% 0.000 0.000
Imputation ETTh2 2,881 16 1 0.03% 0.000 0.000
Imputation Electricity 5,261 16 13 0.25% 0.000 0.000
Imputation Weather 10,540 16 12 0.11% 0.000 0.000

E Excluded Results

The results presented in this section were excluded from our main analysis due to methodological concerns
regarding validation procedures. As detailed in the Experimental Setup section, both the M4 dataset for
short-term forecasting and the UEA dataset for classification are provided with only train and test splits,
with no designated validation set. Upon reviewing the source code, we identified that the test set was used
for validation in both cases, introducing data leakage as the model gains indirect exposure to the test data
during training through early stopping and hyperparameter selection.

A methodologically sound approach would involve creating a validation split from the training data. For
instance, N-BEATS (Oreshkin et al., 2020) addresses this issue with M4 by first creating a validation split
from the training set, finding optimal training settings on that validation set, and then training on the full
training set using these optimal settings. However, we chose not to implement this approach for several
reasons:

First, many of these datasets are already small for deep learning approaches. For example, M4-Weekly (359
samples), M4-Hourly (414 samples), and several UEA classification datasets like EthanolConcentration (261
samples) and Heartbeat (204 samples) have limited training samples to create a validation split from.

Second, implementing a proper validation approach like N-BEATS (Oreshkin et al., 2020) for ModernTCN
would yield worse results (at best the same results) than the reported, as the training is on full training set in
both cases. On top of that, those reported results are already worse than the reported results in N-BEATS
Oreshkin et al. (2020).

Rather than allocating resources to rerun these experiments, we extended our study to new datasets such
as multivariate short-term forecasting on ETT, time series classification on Speech Commands, and the
PhysioNet 2019 sepsis challenge. These extensions allowed for more methodologically sound comparisons
and a more comprehensive evaluation of ModernTCN’s capabilities across diverse time series tasks.

The tables below present the reproduced results for completeness, but we emphasize that these should be
interpreted with caution due to the methodological concerns outlined above.

E.1 M4 Dataset Results
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Table 26: Short-term forecasting task. Results are weighted averaged from several datasets under different
sample intervals. Lower metrics indicate better performance. Reported refers to the scores reported in the
ModernTCN paper. Rerun refers to the scores obtained by rerunning the model with the settings specified
in the source code.

Yearly Quarterly Monthly Others Weighted Average
Model SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA

Reported 13.226 2.957 0.777 9.971 1.167 0.878 12.556 0.917 0.866 4.715 3.107 0.986 11.698 1.556 0.838
Rerun 13.231 2.957 0.777 10.001 1.170 0.881 12.598 0.920 0.868 4.835 3.175 1.009 11.732 1.561 0.841

E.2 UEA Dataset Results

Table 27: Classification task. Accuracy metric is used. Reported refers to the scores reported in the Mod-
ernTCN paper. Rerun refers to the scores obtained by rerunning the model with the settings specified in
the source code. Datasets: EthanolConcentration (EC), FaceDetection (FD), Handwriting (HW), Heart-
beat (HB), JapaneseVowels (JV), PEMS-SF (PS), SelfRegulationSCP1 (SR1), SelfRegulationSCP2 (SR2),
SpokenArabicDigits (SAD), UWaveGestureLibrary (UWL).

EC FD HW HB JV PS SR1 SR2 SAD UWL Averaged
Reported 0.363 0.708 0.306 0.772 0.988 0.891 0.934 0.603 0.987 0.867 0.742
Rerun 0.319 0.687 0.284 0.771 0.981 0.832 0.928 0.617 0.981 0.859 0.726

F Short-Term Forecasting on ETT

(a) ModernTCN (b) PatchTST (c) DLinear (d) TimesNet

Figure 5: Short-term forecasting on ETTm1 with prediction length 12 and input length 48.
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(a) ModernTCN (b) PatchTST (c) DLinear (d) TimesNet

Figure 6: Short-term forecasting on ETTh1 with prediction length 18 and input length 72.
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