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ABSTRACT

Single point supervised oriented object detection has gained attention and made
initial progress within the community. Diverse from those approaches relying
on one-shot samples or powerful pretrained models (e.g. SAM), PointOBB has
shown promise due to its prior-free feature. In this paper, we propose PointOBB-
v2, a simpler, faster, and stronger method to generate pseudo rotated boxes from
points without relying on any other prior. Specifically, we first generate a Class
Probability Map (CPM) by training the network with non-uniform positive and
negative sampling. We show that the CPM is able to learn the approximate object
regions and their contours. Then, Principal Component Analysis (PCA) is applied
to accurately estimate the orientation and the boundary of objects. By further
incorporating a separation mechanism, we resolve the confusion caused by the
overlapping on the CPM, enabling its operation in high-density scenarios. Exten-
sive comparisons demonstrate that our method achieves a training speed 15.58×
faster and an accuracy improvement of 11.60%/25.15%/21.19% on the DOTA-
v1.0/v1.5/v2.0 datasets compared to the previous state-of-the-art, PointOBB. This
significantly advances the cutting edge of single point supervised oriented detec-
tion in the modular track. Code and models will be released.

1 INTRODUCTION

Oriented object detection is essential for accurately labeling small and densely packed objects, es-
pecially in scenarios like remote sensing imagery, retail analysis, and scene text detection, where
Oriented Bounding Boxes (OBBs) provide precise annotations. However, annotating OBBs is labor-
intensive and costly. Therefore, numerous weakly supervised methods have emerged in recent years,
including horizontal bounding box supervision and point supervision. Representative methods for
horizontal bounding box supervision include H2RBox (Yang et al., 2023a) and H2RBox-v2 (Yu
et al., 2023). In addition, point supervision, which only requires labeling the point and category
for each object, significantly reduces the annotation cost. Notable point-supervised methods include
P2RBox (Cao et al., 2024), Point2RBox (Yu et al., 2024), and PointOBB (Luo et al., 2024).

As illustrated in Fig. 1, existing point-supervised oriented object detection methods can be broadly
categorized into three paradigms: (a) SAM-based methods (Cao et al., 2024; Zhang et al., 2024)
rely on the powerful SAM (Kirillov et al., 2023) model, which, although effective in natural im-
ages, struggles with cross-domain tasks like aerial imagery, particularly in small object and densely
packed scenarios. Additionally, SAM-based methods are slow and memory-intensive due to post-
processing; (b) Prior-based Weakly-supervised Oriented Object Detection (WOOD) methods, such
as Point2RBox (Yu et al., 2024), integrate human priors which reduce generalizability since different
datasets require distinct prior knowledge. Further, the end-to-end setup limits flexibility, prevent-
ing these methods from leveraging more powerful detectors and benefiting from their performance
improvements; (c) Modular WOOD methods (Luo et al., 2024) do not rely on manually designed
priors and offer greater flexibility by decoupling pseudo-label generation from the detector, making
them more suitable for efficient and scalable detection tasks.

As a previous state-of-the-art method, PointOBB falls under the modular WOOD category and offers
a feasible solution for point-supervised detection. However, it has several practical limitations: the
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Figure 1: Compare with existing point supervised methods, including (a) Prompt OOD (i.e. SAM
based); (b-c) Weakly OOD: Prior-based and Modular. OOD means Oriented Object Detection.

pseudo-label generation process is very slow, taking approximately 7-8 times longer than the subse-
quent detector training. Additionally, its training requires significant GPU memory due to multiple
view transformations. Moreover, the variability in the number of Region of Interest (RoI) propos-
als can lead to out-of-memory issues, particularly in dense object scenarios. Although limiting the
number of RoI proposals can mitigate this issue, it results in degraded performance.

Considering the aforementioned issues, our motivation is to design a simpler, faster, and stronger
method, which leads to the development of PointOBB-v2. Our approach aims to retain the strengths
of the modular WOOD paradigm while addressing the inefficiencies of PointOBB, particularly in
terms of speed and memory consumption, making it more suitable for real-world applications.

PointOBB-v2 introduces a novel and concise pipeline that discards the teacher-student structure,
achieving significant improvements in the accuracy and generation speed of the pseudo-label, and
improving memory efficiency, especially in scenarios with small and dense objects. Specifically, we
generate Class Probability Maps (CPM) from point annotations and design a novel sample assign-
ment strategy to capture object contours and orientations from the CPM. Next, we apply non-uniform
sampling based on the probability distribution and use Principal Component Analysis (PCA) to de-
termine object boundaries and directions. To address dense object distributions, we design a separa-
tion mechanism to reduce confusion in pseudo-label generation caused by connected CPMs.

Experimental results demonstrate that our method consistently improves accuracy, speed, and mem-
ory efficiency across various datasets compared to PointOBB, achieving several state-of-the-art re-
sults. Specifically, on the DOTA-v1.0 dataset, our method, when using pseudo-labels for training
with Rotated FCOS, improves the mAP from 30.08% (PointOBB) to 41.68%, a gain of 11.60%
mAP. In more challenging datasets like DOTA-v1.5 and DOTA-v2.0, which contain a higher density
of small objects, our method achieves mAP of 36.39% and 27.22%, with respective gains of 25.15%
and 21.19% over PointOBB, demonstrating its robustness in handling small and densely packed
objects. Furthermore, our pseudo-label generation process is 15.58 times faster, reducing the time
from 22.28 hours to 1.43 hours. On the DOTA-v1.5 and DOTA-v2.0 datasets, PointOBB requires
limiting the number of RoI proposals due to high memory consumption, while our method operates
without such restrictions, with a memory usage of approximately 8GB.

Our contributions are summarized as follows:

• We propose a novel and efficient pipeline for point-supervised oriented object detection, which
eliminates the time- and memory-consuming teacher-student structure, significantly improving
pseudo-label generation speed and reducing memory usage.

• Without any additional deep network design, our method relies solely on class probability maps to
generate accurate object contours, using efficient PCA to determine object directions and bound-
aries. We also design a vector constraint method to distinguish small objects in dense scenarios,
improving detection performance.

• Experimental results show that our method consistently outperforms PointOBB across multiple
datasets, achieving 11.60%/25.15%/21.19% gain on the DOTA-v1.0/v1.5/v2.0 datasets, with a
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15.58× speedup in pseudo-label generation and memory usage reduced to approximately 8GB
without limiting RoI proposals.

2 RELATED WORK

In addition to horizontal detection (Zhao et al., 2019; Liu et al., 2020), oriented object detection
(Yang et al., 2018; Wen et al., 2023) has received extensive attention. In this section, we first intro-
duce oriented detection supervised by rotated boxes. Then, approaches to point-supervised oriented
detection and other weakly-supervised settings are discussed.

2.1 RBOX-SUPERVISED ORIENTED DETECTION

Representative works include anchor-based detector Rotated RetinaNet (Lin et al., 2020), anchor-
free detector Rotated FCOS (Tian et al., 2019), and two-stage solutions, e.g. RoI Transformer (Ding
et al., 2019), Oriented R-CNN (Xie et al., 2021), and ReDet (Han et al., 2021). Some research en-
hances the detector by exploiting alignment features, e.g. R3Det (Yang et al., 2021b) and S2A-Net
(Han et al., 2022). The angle regression may face boundary discontinuity and remedies are devel-
oped, including modulated losses (Yang et al., 2019a; 2022; Qian et al., 2021) that alleviate loss
jumps, angle coders (Yang & Yan, 2020; Yang et al., 2021a; Yang & Yan, 2022; Yu & Da, 2023) that
convert the angle into boundary-free coded data, and Gaussian-based losses (Yang et al., 2021c;d;
2023b;c; Murrugarra-Llerena et al., 2024) transforming rotated bounding boxes into Gaussian dis-
tributions. RepPoint-based methods (Yang et al., 2019b; Hou et al., 2023; Li et al., 2022) provide
alternatives that predict a set of sample points that bounds the spatial extent of an object.

2.2 POINT-SUPERVISED ORIENTED DETECTION

Recently, several methods for point-supervised oriented detection have been proposed: 1) P2RBox
(Cao et al., 2024), PMHO (Zhang et al., 2024) and PointSAM (Liu et al., 2024) propose oriented
object detection with point prompts by employing the zero-shot Point-to-Mask ability of SAM (Kir-
illov et al., 2023). 2) Point2RBox (Yu et al., 2024) has introduced a novel end-to-end approach based
on knowledge combination in this domain. 3) PointOBB (Luo et al., 2024) achieves point annotation
based RBox generation method for oriented object detection through scale-sensitive consistency and
multiple instance learning.

Among these methods, P2RBox, PMHO and PointSAM require SAM model pre-trained on massive
amounts of labeled data, whereas Point2RBox requires one-shot samples (i.e. human priors) for
each category. Although achieving better accuracy, they are not as general as PointOBB. Hence, we
choose PointOBB as our baseline to develop a simpler, faster, and stronger method, PointOBB-v2.

2.3 OTHER WEAKLY-SUPERVISED SETTINGS

Compared to the Point-to-RBox, some other weakly-supervised settings have been better studied.
These methods are potentially applicable to our Point-to-RBox task setting by using a cascade
pipeline, such as Point-to-HBox-to-RBox and Point-to-Mask-to-RBox. In our experiment, cascade
pipelines powered by state-of-the-art weakly-supervised approaches are also adopted for compari-
son. Here, several representative work are introduced.

HBox-to-RBox. The seminal work H2RBox (Yang et al., 2023a) circumvents the segmentation
step and achieves RBox detection directly from HBox annotation. With HBox annotations for the
same object in various orientations, the geometric constraint limits the object to a few candidate
angles. Supplemented with a self-supervised branch eliminating the undesired results, an HBox-to-
RBox paradigm is established. An enhanced version H2RBox-v2 (Yu et al., 2023) is proposed to
leverage the reflection symmetry of objects to estimate their angle, further boosting the HBox-to-
RBox performance. EIE-Det (Wang et al., 2024) uses an explicit equivariance branch for learning
rotation consistency, and an implicit equivariance branch for learning position, aspect ratio, and
scale consistency. Some studies (Iqbal et al., 2021; Sun et al., 2021; Zhu et al., 2023) use additional
annotated data for training, which are also attractive but less general.
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Figure 2: Our PointOBB-v2 first generates a Class Probability Map (CPM) with a positive and
negative sample assignment strategy during training. It then applies Principal Component Analysis
(PCA) to infer object orientation and boundaries to generate pseudo labels.

Point-to-HBox. Several related approaches have been developed, including: 1) P2BNet (Chen et al.,
2022) samples box proposals of different sizes around the labeled point and classify them to achieve
point-supervised horizontal object detection. 2) PSOD (Gao et al., 2022) achieves point-supervised
salient object detection using an edge detector and adaptive masked flood fill.

Point-to-Mask. Point2Mask (Li et al., 2023) is proposed to achieve panoptic segmentation using
only a single point annotation per target for training. SAM (Segment Anything Model) (Kirillov
et al., 2023) produces object masks from input point/HBox prompts. Though RBoxes can be ob-
tained from the segmentation mask by finding the minimum circumscribed rectangle, such a com-
plex pipeline can be less cost-efficient and perform worse (Yang et al., 2023a; Yu et al., 2023).

3 METHOD

Our task focuses on oriented object detection with single point supervision. We first utilize point
annotations for each object in the training dataset to generate pseudo labels, which are then used
to train an existing detector. As shown in Fig. 2, the model first generates a Class Probability
Map (CPM) based on the point annotations. Specifically, during training, we devise a positive and
negative sample assignment strategy, where the resulting CPM outlines the rough object contours,
with higher probabilities concentrated around the point and along the object axes.

We generate pseudo oriented bounding boxes according to CPM. We perform non-uniform sampling
around the point annotation of each object, guided by the probability distribution within the CPM.
We convert the sampling process into a weighted probability approach, which maintains the same
expected result while eliminating the variance introduced by random sampling. By applying Prin-
cipal Component Analysis (PCA) to the weighted grid points, we can infer the object’s orientation.
We then determine the object boundaries by combining the thresholded CPM with the inferred ori-
entation. Furthermore, to address densely populated object scenarios, we introduce a mechanism for
differentiating between closely situated objects, ensuring effective separation and accurate detection.

3.1 CLASS PROBABILITY MAP GENERATION

The Class Probability Map (CPM) represents the per-class probability for each point on the feature
map, with values ranging between [0, 1]. To generate the CPM, our model first takes an image I
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Learned CPMInput Image Learned CPMInput Image

Figure 3: Visualization of class probability map (CPM).

of dimension (C,H,W ) as input and processes it through a ResNet-50 (He et al., 2016) backbone
with an FPN (Lin et al., 2017) structure. The final class probability map is derived from the highest-
resolution feature map of the FPN, which is then projected through a projection layer. The output is
a map of size (Nclass, H0,W0). Formally, it is defined as:

CPM = Proj(f(I)0), (1)

where CPM is the class probability map, Proj(·) represents the projection layer, and f(I)0 is the
highest-resolution feature map from the ResNet-50 + FPN.

3.2 LABEL ASSIGNMENT

A key component of our approach is the design of a robust sample assignment strategy for both pos-
itive and negative samples. This strategy is essential for building an accurate CPM, which outlines
rough object contours, concentrating higher probabilities around object centers and along their axes.
To ensure reliable separation of objects, especially in densely populated scenarios, our method ad-
dresses the challenge of closely situated objects by introducing additional mechanisms for effective
differentiation. We illustrate this label assignment in the upper-right part of Fig. 2. The specific
details of the sample assignment process are outlined below:

Positive Label Assignment. For positive samples, we select all points within a fixed radius b1 (set
to 6 in our model) around each point. If a point lies within multiple such radii, it is assigned to the
closest center. The condition for positive samples is as follows:

∃GTi ∈ GT1∼N , (d(p,GTi) < b1) ∧ (d(p,GTi) = min(d(p,GT1∼N )))

⇒ p is positive, cls(p) = cls(GTi).
(2)

Negative Label Assignment. Given N ground truth objects (GT), for each GTi, we identify its
nearest neighboring object GTj based on the Euclidean distance. This gives us a vector distmin

with dimension [N ], where each element disti represents the minimum distance between GTi and
its closest neighbor. We then draw a circle with radius α × disti around GTi, where α (set to 1 in
our model) is a fixed proportional constant. Points outside all such circles are designated as negative
samples. The negative sample condition is formulated as:

∀GTi ∈ GT1∼N , d(p,GTi) > α× disti ⇒ p is negative. (3)

In addition to the above defined negative labels, we also set the middle region between objects
as negative to make the boundaries clearer between densely packed objects (denoted as “Neg./M”
in ablation Tab. 4). For each GTi, we identify its nearest neighbor GTj that belongs to the same
class. A circle is drawn with a radius b2 (set to 4 in our model) and centered at the midpoint of the
line connecting GTi and GTj , and points within this circle are assigned as negative samples. The
condition is defined as:

∀GTi ∈ GT1∼N ,∃GTj ∈ GT1∼N , d(GTi,GTj) = min(d(GTi,GT1∼N ))

∧cls(GTi) = cls(GTj) ∧ d(p, (GTi + GTj)/2) < b2 ⇒ p is negative.
(4)

Robustness. While we do not explicitly define positive and negative samples based on precise object
contours or oriented bounding boxes, which may result in some inaccuracies during label assignment
(i.e. incorrectly assigning a small portion of positive or negative samples during training), this does
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not significantly hinder our method’s ability to learn accurate object contours. These minor label
assignment inaccuracies, particularly in densely populated regions or for objects with extreme aspect
ratios, do not affect the overall robustness and effectiveness of the approach. As demonstrated in
Fig. 3, our strategy is capable of learning the correct contours, even for objects with large aspect
ratios and in densely packed scenarios.

3.3 ORIENTATION AND BOUNDARY ESTIMATION VIA PCA

After obtaining the CPM, we sample points around each ground truth based on the class probabil-
ities, and then apply Principal Component Analysis (PCA) on the sampled points to determine the
object’s orientation. As shown in bottom part of Fig. 2, we sample points around the GT based on
the probabilities in the CPM for the corresponding object class. We choose a 7× 7 grid centered at
the GT with the coordinates of the 49 integer points z1∼49 as:

(x, y), x ∈ [−3, 3], y ∈ [−3, 3]. (5)

For each grid point zi, we can compute the CPM probability pi and decide whether to sample the
point based on this probability. Once we have the sampled points, we apply PCA to find the primary
direction of the point set, which represents the object’s orientation. While PCA provides the correct
primary direction in expectation, the randomness introduced by sampling can cause variance in the
result from a single pass. Although averaging over multiple sampling runs can mitigate this variance,
it also increases computational cost.

To address this, we propose an equivalent method that transforms probabilistic sampling into a
weighted coordinate transformation. Instead of sampling points probabilistically, we assign a weight
of pi to each point zi, ensuring the same expected outcome while eliminating the variance caused
by random sampling. The covariance matrix is then defined as:

Cz =

N∑
i=1

pi(zi − µz)
T(zi − µz). (6)

We then perform eigenvalue decomposition on Cz:

Czvi = λivi. (7)

The eigenvector v1 corresponding to the largest eigenvalue λ1 is chosen as the primary direction.
Since Cz is a real symmetric matrix, the secondary direction is guaranteed to be orthogonal to the
primary direction. This orthogonality corresponds to the perpendicular relationship between the two
adjacent sides of an oriented bounding box.

After identifying the primary and secondary directions, we determine the object boundaries along
these directions. Starting from the center, we move along each direction and stop when the value at
a position falls below a threshold, indicating the object boundary.

3.4 OBJECT DIFFERENTIATION IN DENSE SCENARIOS

In dense scenarios, objects can be difficult to distinguish on the CPM. This can affect the PCA’s
ability to determine the object orientation and the boundary identification. To address this, we
design a “Vector Constraint Suppression” method to resolve boundary ambiguity.

Vector Constraint Suppression. Even after determining the correct orientation in dense scenarios,
the object boundaries may still be unclear, making it difficult to precisely locate them using the
probability threshold described in Sec. 3.3. In most cases, simply distinguishing between two closely
positioned objects is sufficient to define the object’s boundary.

We propose a simple constraint: For each GTi, we first find its nearest same-class neighbor GTj

and compute the vector u = ⟨GTi,GTj⟩ between GTi and GTj . If the angle between this vector
and the primary or secondary direction is smaller than a threshold α (set to π/6 in our model),
we consider this direction valid for boundary definition. The boundary is then constrained by the
following condition:

u · vk <
1

2
× d(GTi,GTj) if angle(u, vk) < α (8)
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Table 1: Results of each category on the DOTA-v1.0 dataset. FCOSR and ORCNN refer to Rotated
FCOS and Oriented R-CNN. ∗ indicates using additional human knowledge priors.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP50

Point2Mask-RBox 4.0 23.1 3.8 1.3 15.1 1.0 3.3 19.0 1.0 29.1 0.0 9.5 7.4 21.1 7.1 9.72
P2BNet+H2RBox 24.7 35.9 7.0 27.9 3.3 12.1 17.5 17.5 0.8 34.0 6.3 49.6 11.6 27.2 18.8 19.63
P2BNet+H2RBox-v2 11.0 44.8 14.9 15.4 36.8 16.7 27.8 12.1 1.8 31.2 3.4 50.6 12.6 36.7 12.5 21.87
Point2RBox-RC 62.9 64.3 14.4 35.0 28.2 38.9 33.3 25.2 2.2 44.5 3.4 48.1 25.9 45.0 22.6 34.07
Point2RBox-SK∗ 53.3 63.9 3.7 50.9 40.0 39.2 45.7 76.7 10.5 56.1 5.4 49.5 24.2 51.2 33.8 40.27
PointOBB (FCOSR) 26.1 65.7 9.1 59.4 65.8 34.9 29.8 0.5 2.3 16.7 0.6 49.0 21.8 41.0 36.7 30.08
PointOBB-v2 (FCOSR) 64.5 27.8 1.9 36.2 58.8 47.2 53.4 90.5 62.2 45.3 12.1 41.7 8.1 43.7 32.0 41.68
PointOBB (ORCNN) 28.3 70.7 1.5 64.9 68.8 46.8 33.9 9.1 10.0 20.1 0.2 47.0 29.7 38.2 30.6 33.31
PointOBB-v2 (ORCNN) 63.7 45.6 2.0 39.5 50.5 49.6 45.4 89.8 62.9 41.3 13.6 42.8 8.9 39.5 29.5 41.64
PointOBB (ReDet) 24.2 75.0 0.5 60.6 59.3 46.1 45.7 6.1 10.1 25.0 0.2 50.4 30.0 45.0 31.1 33.95
PointOBB-v2 (ReDet) 65.4 52.1 2.2 44.4 55.0 49.3 51.8 89.0 70.2 47.0 16.2 43.9 13.0 43.8 29.4 44.85

where vk is the primary or secondary direction, GTj is the nearest same-class object to GTi, and 1
2

means that the boundary should be closer to GTi than to GTj .

4 EXPERIMENT

4.1 DATASETS

DOTA (Xia et al., 2018) is a large-scale dataset designed for object detection in aerial images,
covering various object categories and complexities. DOTA has three versions:

DOTA-v1.0 has 2,806 images with 188,282 instances across 15 categories, annotated as: Plane
(PL), Baseball Diamond (BD), Bridge (BR), Ground Track Field (GTF), Small
Vehicle (SV), Large Vehicle (LV), Ship (SH), Tennis Court (TC), Basketball
Court (BC), Storage Tank (ST), Soccer Ball Field (SBF), Roundabout (RA),
Harbor (HA), Swimming Pool (SP), Helicopter (HC). The images range from 800×800
to 4,000×4,000 pixels and exhibit significant variation in scale and orientation.

DOTA-v1.5 extends DOTA-v1.0 by adding annotations for extremely small objects (less than 10
pixels) and introducing a new category, Container Crane (CC). It includes a total of 403,318
instances while retaining the same image count and dataset split as DOTA-v1.0.

DOTA-v2.0 further expands the dataset to 11,268 images and 1,793,658 instances, covering 18 cat-
egories. Two additional categories, Airport (AP) and Helipad (HP), are introduced, providing
a more diverse and challenging set of aerial images.

4.2 EXPERIMENTAL SETTINGS

Our implementation is based on the MMRotate library (Zhou et al., 2022). In the pseudo-label
generation stage, we train the model for 6 epochs using momentum SGD as the optimizer. We set
the weight decay to 1e-4, with an initial learning rate of 0.005, which decays by a factor of 10 after
the 4th epoch. The batch size for training is set to 2. For the detector training phase using pseudo-
labels, we use the same detector configurations as the default settings in MMRotate. Throughout the
entire training process, random flipping is employed as the only data augmentation technique. Our
experiments were accelerated using two GeForce RTX 3090 GPUs.

4.3 MAIN RESULTS

Results on DOTA-v1.0. As shown in Tab. 1, our method achieves state-of-the-art performance
compared to the previous leading approaches, i.e. PointOBB and Point2RBox. Specifically, under
three different detectors, our method attains mAP50 scores of 41.68%, 41.64%, and 44.85%, repre-
senting improvements of 11.60%, 8.33%, and 10.90% over PointOBB, respectively. Additionally,
when compared to Point2RBox-RC, which does not incorporate human prior knowledge, our ap-
proach achieves a substantial gain of 10.78%. Even when compared with Point2RBox-SK, which
leverages manual sketches to assist in boundary determination, our method still outperforms it by
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Table 2: Results on DOTA-v1.0/v1.5/v2.0, reporting the mAP50 metric. FCOSR and ORCNN refer
to Rotated FCOS and Oriented R-CNN. ∗ indicates using additional human knowledge priors.

Method DOTA-v1.0 DOTA-v1.5 DOTA-v2.0
Point2Mask-RBox 9.72 - -
P2BNet+H2RBox 19.63 - -
P2BNet+H2RBox-v2 21.87 - -
Point2RBox-RC 34.07 24.31 14.69
Point2RBox-SK∗ 40.27 30.51 23.43
PointOBB (FCOSR) 30.08 10.66 5.53
PointOBB-v2 (FCOSR) 41.68 (+11.60) 30.59 (+19.93) 20.64 (+15.11)

PointOBB (ORCNN) 33.31 10.92 6.29
PointOBB-v2 (ORCNN) 41.64 (+8.33) 32.01 (+21.09) 23.40 (+17.11)

PointOBB (ReDet) 33.95 11.24 6.03
PointOBB-v2 (ReDet) 44.85 (+10.90) 36.39 (+25.15) 27.22 (+21.19)

Table 3: Comparison of the training time in pseudo-
label generation phase and the accuracy between
PointOBB and PointOBB-v2. The reported mAP50
is trained with Rotated FCOS.

Method Epochs Train Hours mAP50

PointOBB 24 22.28 30.08
PointOBB-v2 6 1.43 41.68

Table 4: Ablation study with different label
assignment strategies.

Pos. Neg. Neg./M mAP50

✓ 23.62
✓ ✓ 44.75
✓ ✓ 18.21
✓ ✓ ✓ 44.85

4.58%. These results demonstrate the robustness and effectiveness of our approach, even without
the need for manual prior knowledge.

Results on DOTA-v1.5/v2.0. Both DOTA-v1.5 and DOTA-v2.0 present a higher level of difficulty
due to the increased number of densely packed and smaller objects. As Tab. 2 shows, our method
demonstrates significant improvements over other approaches on these more challenging datasets,
indicating its strength in handling small and densely distributed objects, attributed to the separation
mechanism we designed. In comparison to PointOBB, our method achieves substantial gains on
both DOTA-v1.5 and DOTA-v2.0, with greater absolute improvements and higher percentages. For
instance, when trained with ReDet, our approach improves by 36.39% on DOTA-v1.5 and 27.22%
on DOTA-v2.0, corresponding to 25.15% and 21.19% increases, which surpass the 10.90% improve-
ment on DOTA-v1.0. Furthermore, our method consistently outperforms Point2RBox. Even when
compared to Point2RBox-SK, which incorporates human prior knowledge, our method achieves
improvements of 5.88%/3.79% on DOTA-v1.5/v2.0, respectively.

Computational Cost. Our method is highly lightweight, primarily due to its single-branch structure,
which eliminates the need for the traditional teacher-student framework. Unlike other methods, we
do not require multiple image transformations or consistency constraints within the model. As
shown in Tab. 3, the pseudo-label training process for our model takes only 1.43 hours, which is
15.58 times faster than the 22.28 hours required by PointOBB.

In terms of memory consumption, our approach is also more efficient. For dense object scenarios
such as DOTA-v2.0, our method uses approximately 8GB of memory, making it suitable for most
GPUs. In contrast, PointOBB faces out-of-memory issues when handling such dense scenes, requir-
ing restrictions on the number of RoIs to run properly. However, this limitation severely impacts the
detector’s performance, resulting in numerous small objects being undetected.

4.4 ABLATION STUDIES

Label Assignment. Tab. 4 demonstrates the impact of our three label assignment strategies on
model performance. In these experiments, different label assignment strategies were used to train
and generate the CPM. When a specific strategy was applied to define positive and negative samples,
the remaining points were ignored during training. We observed that using a simple circular strategy
to determine positive samples resulted in only 23.62%. However, by incorporating a more compre-
hensive strategy to identify negative samples, the performance increased significantly to 44.75%.
Furthermore, assigning middle region between objects to negative (denoted as “Neg./M”) yielded a
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Table 5: Ablation study of sample methods.
“Probabilistic” means sample according to the
CPM probability.

Sample Probabilistic Weighted
mAP50 41.40 44.85

Table 6: Ablation of vector constraint module
to handle dense objects. “w” and “w/o” indicate
the “with” and “without” the module.

Vector Constraint w/o w
mAP50 27.88 44.85

Table 7: Ablation study of
the sampling size of PCA.

Size mAP50

5 43.35
7 44.85
9 44.17
11 43.63

Table 8: Ablation study of point annotations inaccuracy. We report
the pseudo-label generation quality (measured by mIoU) and detec-
tion performance (measured by mAP50)

Point
Range

DOTA-v1.0 DOTA-v1.5 DOTA-v2.0
mIoU mAP50 mIoU mAP50 mIoU mAP50

0% 45.40 44.85 43.65 36.39 42.91 27.22
10% 42.89 42.30 41.85 34.20 41.46 25.14
20% 40.22 38.46 39.47 30.95 39.30 23.45

Table 9: Comparison of pseudo-label generation quality (measured by mIoU) and detection perfor-
mance (measured by mAP50) across different datasets. Additionally, we selected three representa-
tive categories—Small Vehicle (SV), Large Vehicle (LV), and Ship (SH)—which are
abundant and exhibit characteristics of small objects and densely packed distributions. mean repre-
sents the average value across all classes in the dataset.

Dataset Method Memory
(GB)

mIoU mAP50
SV LV SH mean SV LV SH mean

DOTA-v1.0 PointOBB >24∗ 57.06 49.78 46.59 44.88 59.32 46.06 45.71 33.95
PointOBB-v2 5.99 52.74 47.65 48.82 45.40 55.00 49.27 51.77 44.85

DOTA-v1.5 PointOBB >24∗ 9.69 26.58 26.49 30.65 0.01 4.15 11.40 11.24
PointOBB-v2 7.35 40.42 45.62 49.74 43.65 20.52 42.97 48.53 36.39

DOTA-v2.0 PointOBB >24∗ 10.01 24.45 21.33 26.63 0.49 1.22 0.36 6.03
PointOBB-v2 7.67 42.47 48.14 46.45 42.91 20.94 28.76 22.15 27.22

∗ The training stage requires constraining to around 70 RoIs; otherwise it results in out-of-memory errors.

slight improvement, raising the mAP to 44.85%. This underscores the crucial role of the negative
label assignment strategy, which contributes greatly to the performance gains.

PCA Sampling Strategy and Size. We conducted ablation experiments on the PCA sampling strat-
egy and the range of sampling sizes. As shown in Tab. 5, our weighted method for PCA calculation
improves accuracy by 3.45% compared to the probabilistic method. We also found that this improve-
ment primarily benefits classes with larger aspect ratios, such as large vehicles and harbors. This
is because CPM in elongated objects exhibit significant probability variation along the short axis of
their oriented bounding boxes, and probabilistic sample method introduces considerable instability.
Additionally, we evaluated the impact of the PCA sampling size. As shown in Tab. 7, our method
achieves the best performance when the sampling size is set to 7.

Vector Constraint. As shown in Tab. 6, applying the vector constraint significantly improves de-
tection performance. Through further analysis, we found that the improvement is primarily con-
centrated in dense object categories, such as small vehicles, large vehicles, and ships. In contrast,
sparse categories like harbors and swimming pools are almost unaffected. This observation aligns
with the motivation behind the design of this module, which especially addresses densely packed
object scenarios.

4.5 ANALYSIS

Label Accuracy. Recognizing the potential inaccuracies in human annotations, where the center
point might not be perfectly labeled, we conducted experiments by adding noise to the center points
to evaluate the robustness of our model. We selected different thresholds σ and calculated the
object’s scale as S =

√
wh. The center points were randomly shifted along a uniformly sampled

direction, with the offset distance drawn from a uniform distribution over the range [−σS, σS].
We observed a slight performance decrease as the center points were perturbed. As Tab. 8 shows,
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Generated Pseudo Labels (Train Set) Detection Results (Test Set)

PointOBB-v2

PointOBB

Figure 4: Visualization of pseudo-labels and detection results from our model compared to
PointOBB. For clarity, label texts for dense objects are hidden.

the average mAP dropped by only 2.27% with a 10% shift. Despite this decline, our method still
significantly outperforms PointOBB, demonstrating the strong robustness of our model.

Quality of Pseudo Labels. As shown in Tab. 9, our method consistently outperforms PointOBB
in generating pseudo labels, with performance gains increasing in more challenging datasets like
DOTA-v1.5 and DOTA-v2.0. Specifically, we observe mIoU improvements of 0.52%, 13.00%, and
16.28% across DOTA-v1.0, DOTA-v1.5, and DOTA-v2.0, respectively. Notably, although the im-
provement in DOTA-v1.0 is only 0.52%, training the same detector with our pseudo labels yields
a nearly 10% increase in mAP compared to PointOBB. As shown in Fig. 4, the first and second
columns illustrate that our model learns more accurate object scales, while the third column demon-
strates that, unlike PointOBB—which produces overlapping pseudo labels for small vehicles—our
method effectively distinguishes between these densely packed objects.

Dense Object Scenarios. As shown in Tab. 9, we selected three representative categories—Small
Vehicle (SV), Large Vehicle (LV), and Ship (SH)—which are characterized by small and
densely packed objects. Datasets like DOTA-v1.5 and DOTA-v2.0 introduce a much larger number
of these densely packed objects compared to DOTA-v1.0. In these challenging scenarios, our method
significantly outperforms PointOBB. For example, in DOTA-v2.0, our method achieves a mean
mIoU of 42.91% and mAP of 27.22%, whereas PointOBB drops to 26.63% and 6.03%, respectively.
Visualizations further confirm that our model generates better pseudo labels in dense scenes. In
terms of detection results, in the last column of Fig. 4, we show a dense scene with 25 large vehicles,
where our method detects all of them, while PointOBB identifies only 15.

Limitations. (a) Our method assigns negative samples based on the minimum distance between ob-
jects, requiring at least two point annotations per image. In scenarios with extremely sparse objects,
it may degrade the performance. (b) Some hyperparameters (e.g. the radius in label assignment) are
set based on the dataset. They may require adjustments when facing other scenarios.

5 CONCLUSION

In this paper, we introduced PointOBB-v2, a simpler, faster, and stronger approach for single point-
supervised oriented object detection. By employing class probability maps and Principal Compo-
nent Analysis (PCA) for object orientation and boundary estimation, our method improves detection
accuracy while discarding the traditional time- and memory-heavy teacher-student structure. Exper-
imental results demonstrate that PointOBB-v2 consistently outperforms the previous state-of-the-
art across multiple datasets, achieving a training speed 15.58× faster and accuracy improvements
of 11.60%/25.15%/21.19% on the DOTA-v1.0/v1.5/v2.0 datasets, with notable gains in small and
densely packed object scenarios. Our method achieves a substantial speedup and accuracy boost
while using less memory, showcasing its effectiveness for real-world applications.
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6 APPENDIX

6.1 NEGATIVE LABEL ASSIGNMENT

To further compare our dynamic minimum radius circle-based strategy for defining negative samples
with the fixed radius circle-based strategy, we trained the CPM using both strategies and visualized
the results. As shown in Fig. 5, our method better captures the contours of an object, whereas
the fixed radius approach produces a CPM that resembles a circle centered on the object, with
less distinct contours. This lack of clarity in the contours makes it difficult for PCA to accurately
determine the orientation and boundaries based on the CPM.

Figure 5: Visualization of the class probability map (CPM). Our dynamic radius negative label as-
signment vs. fixed radius negative label assignment. Our method produces clearer object contours,
whereas the fixed radius approach generates contours that are approximately circular, with the re-
sulting CPM primarily concentrated around the object’s center.
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