
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TEST-TIME ADAPTATION FOR REGRESSION
BY SUBSPACE ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates test-time adaptation (TTA) for regression, where a regres-
sion model pre-trained in a source domain is adapted to an unknown target distri-
bution with unlabeled target data. Although regression is one of the fundamental
tasks in machine learning, most of the existing TTA methods have classification-
specific designs, which assume that models output class-categorical predictions,
whereas regression models typically output only single scalar values. To enable
TTA for regression, we adopt a feature alignment approach, which aligns the fea-
ture distributions between the source and target domains to mitigate the domain
gap. However, we found that naive feature alignment employed in existing TTA
methods for classification is ineffective or even worse for regression because the
features are distributed in a small subspace and many of the raw feature dimen-
sions have little significance to the output. For an effective feature alignment in
TTA for regression, we propose Significant-subspace Alignment (SSA). SSA con-
sists of two components: subspace detection and dimension weighting. Subspace
detection finds the feature subspace that is representative and significant to the
output. Then, the feature alignment is performed in the subspace during TTA.
Meanwhile, dimension weighting raises the importance of the dimensions of the
feature subspace that have greater significance to the output. We experimentally
show that SSA outperforms various baselines on real-world datasets.

1 INTRODUCTION

Deep neural networks have achieved remarkable success in various tasks (LeCun et al., 1998a;
Krizhevsky et al., 2012; He et al., 2016; Dargan et al., 2020). In particular, regression, which is
one of the fundamental tasks in machine learning, is widely used in practical tasks such as hu-
man pose estimation or age prediction (Lathuilière et al., 2019). The successes of deep learning
have usually relied on the assumption that the training and test datasets are sampled from an i.i.d.
distribution. In the real world, however, such an assumption is often invalid since the test data
are sampled from distributions different from the training one due to distribution shifts caused by
changes in environments. The performance of these models thus deteriorates when a distribution
shift occurs (Hendrycks & Dietterich, 2019; Recht et al., 2019). To address this problem, test-time
adaptation (TTA) (Liang et al., 2023) has been studied. TTA aims at adapting a model pre-trained in
a source domain (training environment) to the target domain (test environment) with only unlabeled
target data. However, most of the existing TTA methods are designed for classification; that is, TTA
for regression has not been explored much (Liang et al., 2023). Regarding TTA for classification,
two main approaches have been explored: entropy minimization and feature alignment.

The entropy minimization approach was introduced by Wang et al. (2021), and the subsequent meth-
ods follow this approach (Zhou & Levine, 2021; Niu et al., 2022; Zhang et al., 2022; Zhao et al.,
2023; Enomoto et al., 2024). Although entropy is a promising proxy of the performance on the tar-
get domain, entropy minimization is classification-specific because it assumes that a model directly
outputs predictive distributions, i.e., a probability for each class. In contrast, typical regression mod-
els output only single scalar values, not distributions. Thus, we cannot use the entropy minimization
approach for regression models.

Another approach, the feature alignment, preliminarily computes the statistics of intermediate fea-
tures of the source dataset after pre-training in the source domain (Ishii & Sugiyama, 2021; Kojima

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Number of valid (having non-zero variance) feature dimensions and feature subspace di-
mensions (i.e., the rank of the feature covariance matrix), and R2 scores on the test datasets. Al-
though the original feature space has 2048 dimensions in the experiment except for the California
Housing dataset, the features of the regression models are distributed within the subspaces that have
less than a hundred dimensions. Our method improves R2 scores by the feature subspace in most
cases, whereas the naive feature alignment sometimes diverged (displayed as ‘-’) because of too few
valid dimensions. See Section 4.3.1 for more details. ∗The average over a model trained on each
gender/target is reported.

R2 (↑)

Dataset #Valid dims. #Subspace dims. Source Naive feature alignment SSA (ours)

SVHN 353 14 0.406 - 0.511
UTKFace 2041 76 0.020 0.705 0.731
Biwi Kinect∗ 713 34.5 0.706 0.753 0.778
California Housing (100 dims.) 45 40 0.605 - 0.639

et al., 2022; Eastwood et al., 2022; Adachi et al., 2023; Jung et al., 2023). Then, upon moving to
the target domain, the feature distribution of the target data is aligned with the source distribution
by matching the target feature statistics with the pre-computed source ones without accessing the
source dataset. Although this approach seems applicable to regression because it allows arbitrary
forms of the model output, it assumes to use all feature dimensions to be aligned, and does not
sufficiently consider the nature of regression tasks. For instance, regression models trained with
standard mean squared error (MSE) loss tend to make features less diverse than classification mod-
els do (Zhang et al., 2023). In particular, we experimentally observed that the features of a trained
regression model are distributed in only a small subspace of the entire feature space (Table 1). In
this sense, naively aligning all feature dimensions makes the performance suboptimal or even be
harmful in regression as shown in Table 1 because it equally treats important feature dimensions and
degenerated unused ones.

In this paper, we address TTA for regression on the basis of the feature alignment approach. To re-
solve the aforementioned feature alignment problem in TTA for regression, we propose Significant-
subspace Alignment (SSA). SSA consists of two components: subspace detection and dimension
weighting. Subspace detection uses principal component analysis (PCA) to find a subspace of the
feature space in which the features are concentrated. This subspace is representative and significant
to the model output. Then, we perform feature alignment within this subspace, which improves
the effectiveness and stability of TTA by focusing only on valid feature dimensions in the subspace.
Further, in regression, a feature vector is finally projected onto a one-dimensional line so as to output
a scalar value. Thus, the subspace dimensions that have an effect on the line need a precise feature
alignment. To do so, dimension weighting raises the importance of the subspace dimensions with
respect to their effect on the output.

We conducted experiments on various regression tasks, such as UTKFace (Zhang et al., 2017), Biwi
Kinect (Fanelli et al., 2013), and California Housing (Nugent, 2017). The results showed that our
SSA retains the important feature subspace during TTA and outperforms existing TTA baselines that
were originally designed for classification by aligning the feature subspace.

2 PROBLEM SETTING

We consider a setting with a neural network regression model fθ : X → R pre-trained on a labeled
source dataset S = {(xs

i, y
s
i) ∈ X × R}Ns

i=1, where xs
i and ys

i are an input and its label, and X is
the input space. Our goal is to adapt fθ to the target domain by using an unlabeled target dataset
T = {xt

i ∈ X}Nt
i=1 without accessing S. Note that the target labels yt

i ∈ R are not available. In the
source dataset S, the data {(xs

i, y
s
i)} are sampled from the source distribution ps over X ×R. In the

target dataset T , we assume covariate shift (Shimodaira, 2000), which is a distribution shift that often
occurs in the real world. In other words, the target data xt

i are sampled from the target distribution
pt over X that is different from ps, but the predictive distribution is the same, i.e., ps(x) ̸= pt(x) and
ps(y|x) = pt(y|x).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Target domain

Test-time adaptation

Source domain

Pre-training

Feature space

1. Pre-compute significant subspace 𝐯s, 𝜆s from 𝒮

2. Align target features in the subspace with ℒTTA

0. Pre-train the source model on 𝒮

Feature extractor
Regressor

Source dataset 𝒮

Target dataset 𝒯

Figure 1: Overview of significant-subspace alignment (SSA). A more detailed procedure is listed in
Algorithm 1.

We split the regression model fθ into a feature extractor gϕ : X → RD and linear regressor hψ(z) =
w⊤z + b, where D is the number of feature dimensions, w ∈ RD, b ∈ R, ϕ and ψ = (w, b) are
the parameters of the models. The whole regression model using the feature extractor and linear
regressor is denoted by fθ = hψ ◦ gϕ, where θ = (ϕ, ψ).

3 TEST-TIME ADAPTATION FOR REGRESSION

In this section, we describe the basic idea behind Significant-subspace Alignment (SSA) in Sec-
tion 3.1 and describe it in detail in Section 3.2. Our method can be applied regardless of the form of
input data since SSA does not rely on input-specific method, such as image data augmentations or
self-supervised tasks.

3.1 BASIC IDEA: FEATURE ALIGNMENT

The basic idea of our TTA method for regression is to align the feature distributions of the source
and target domains instead of using entropy minimization, as usually done in TTA for classifica-
tion. As we assume a covariate shift where the input distribution changes, we update the feature
extractor gϕ to pull back the target feature distribution to the source one. Here, we describe a naive
implementation of the idea and its problem.

First, in the source domain, we compute the source feature statistics (mean and variance of each
dimension) on S after the source training:

µs =
1

Ns

∑Ns

i=1
zs
i, σs 2 =

1

Ns

∑Ns

i=1
(zs
i − µs)⊙ (zs

i − µs), (1)

where zs
i = gϕ(x

s
i) ∈ RD is a source feature and ⊙ is the element-wise product.

Then, we move to the target domain, where we cannot access the source dataset S . Given a target
mini-batch B = {xt

i}Bi=1 sampled from T , we compute the mini-batch mean and variance µ̂t and
σ̂t 2 analogously to Equation (1).

For feature alignment, we seek to make the target statistics similar to the source ones. For this
purpose, we use the KL divergence as Nguyen et al. (2022) proved that it is included in an upper
bound of the target error in unsupervised domain adaptation. Concretely, we minimize the KL
divergence between two diagonal Gaussian distributions N (µs,σs 2) and N (µ̂t, σ̂t 2):

LTTA(ϕ) =
∑D

d=1
DKL

(
N (µs

d, σ
s
d
2)∥N (µ̂t

d, σ̂
t 2
d)

)
+DKL

(
N (µ̂t

d, σ̂
t 2
d)∥N (µs

d, σ
s
d
2)
)
, (2)

where the subscripts d represent the d-th elements of the mean and variance vectors. Here, we used
both directions of the KL divergence because it empirically had good results as recommended by
Nguyen et al. (2022). The KL divergence between two univariate Gaussians can be written in a
closed form (Duchi, 2007)

DKL
(
N (µ1, σ

2
1)∥N (µ2, σ

2
2)
)
=

[
log

(
σ2
2/σ

2
1

)
+ {(µ1 − µ2)

2 + σ2
1}/σ2

2 − 1
]
/2. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

However, in regression models, the features tend to be less diverse than in classification (Zhang
et al., 2023). In addition to the insight from Zhang et al. (2023), we observed that the features
of a regression model trained on S are distributed in only a small subspace of the feature space
and many dimensions of the feature space had zero variances. Table 1 shows the numbers of valid
(having non-zero variance) feature dimensions and feature subspace dimensions (see Section 4.3.1
for more details). This property makes the naive feature alignment described above unstable since
the KL divergence in Equation (3) includes the variance in the denominator. Also, this naive feature
alignment is ineffective because many of the feature dimensions have a small effect on the subspace.

3.2 SIGNIFICANT-SUBSPACE ALIGNMENT

In this section, we describe our method, Significant-subspace Alignment (SSA), to tackle the afore-
mentioned problem of naive feature alignment. Figure 1 shows an overview of SSA. As described
in Section 3.1, the features of a regression model tend to be distributed in a small subspace of the
feature space. Thus, we introduce subspace detection to detect a subspace that is representative
and significant to the output and then perform feature alignment in the subspace. Subspace detec-
tion is similar to principal component analysis (PCA). Further, in our regression model, a feature
z = gϕ(x) is projected onto a one-dimensional line determined by w of hψ in order to output a
scalar value w⊤z + b. Thus, a subspace basis vs

d whose direction is not orthogonal to w needs
precise feature alignment. We use dimension weighting to prioritize such dimensions.

Subspace detection. After the training on the source dataset S, we detect the subspace in which the
source features are distributed. Instead of computing the variance of each dimension as Equation (1),
we compute the covariance matrix:

Σs =
1

Ns

∑Ns

i=1
(zs
i − µs)(zs

i − µs)⊤, (4)

where the source mean vector µs is the same as Equation (1).

Then, we detect the source subspace. On the basis of PCA, the subspace is spanned by the eigen-
vectors of the covariance matrix Σs, denoted by vs

k (∥vs
k∥2 = 1). The corresponding eigenvalues

λs
k represent the variance of the source features along the direction vs

k. We use the top-K largest
eigenvalues λs

1, . . . , λ
s
K (λs

1 > · · · > λs
K), the corresponding source bases vs

1, . . . ,v
s
K , and the

source mean µs as the source statistics.

Dimension weighting. Since we assume that the output is computed with a linear regressor hψ(z) =
w⊤z+ b, the effect of a subspace dimension vs

d to the output is determined by w⊤vs
d. To prioritize

the subspace dimensions that have larger effect on the output, we determine the weight of each
subspace dimension as follows:

αd = 1 + |w⊤vs
d|. (5)

αd assigns a larger weight when the direction along a subspace basis vs
d affects the output, or keep

the weight to one when not.

Feature alignment. This step is done in the target domain. Given a target mini-batch B sampled
from the target dataset T , we project the target features zt

i = gϕ(x
t
i) into the source subspace and

then compute the feature alignment loss. The projection of the target feature is computed as follows:

z̃t
i = Vs(zt

i − µs), (6)

where Vs = [vs
1, . . . ,v

s
K]⊤ ∈ RK×D. With z̃t

i ∈ RK , we compute the projected target mean and
variance over the mini-batch analogously to Equation (1); this is denoted by µ̃t and σ̃t 2. On the
other hand, the projected source mean and variance are 0 and the eigenvalues λs = [λs

1, . . . , λ
s
K]

since Σsvs
k = λs

kv
s
k. Thus, the KL divergence in the detected subspace is computed between

two K-dimensional diagonal Gaussians N (0,λs) and N (µ̃t, σ̃t 2). Using subspace detection and
dimension weighting, the loss of SSA is:

LTTA(ϕ) =
∑K

d=1
αd

{
DKL

(
N (0, λs

d)∥N (µ̃t
d, σ̃

t 2
d)

)
+DKL

(
N (µ̃t

d, σ̃
t 2
d)∥N (0, λs

d)
)}

=
1

2

∑K

d=1
αd

(
(µ̃t
d)

2 + λs
d

σ̃t 2
d

+
(µ̃t
d)

2 + σ̃t 2
d

λs
d

− 2

)
. (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

During TTA, we optimize the feature extractor gϕ to minimize LTTA, i.e., we seek ϕ∗ =
minϕ LTTA(ϕ). We update only the affine parameters γ and β of the normalization layers such
as batch normalization (Ioffe & Szegedy, 2015) or layer normalization (Ba et al., 2016) inspired by
Tent (Wang et al., 2021). This strategy is effective not only to retain the source knowledge but also
to enable flexible adaptation (Frankle et al., 2021; Burkholz, 2024). The procedure of SSA is listed
in Algorithm 1 of the Appendix.

Is diagonal Gaussian distribution appropriate? For computing KL divergence of LTTA, we as-
sume the source and target feature distributions as diagonal Gaussian. This is reasonable because
features are likely to follow a Gaussian distribution when projected onto the feature subspace de-
tected by subspace detection as the number of original feature dimensions increases, as described
in Figure 3 in Section 4.3.4. Moreover, since subspace detection uses the PCA, the features pro-
jected onto the subspace are decorrelated. Thus, assuming that each dimension is independent, i.e.,
diagonal, is also reasonable.

4 EXPERIMENT

This section provides empirical analysis of feature subspaces and evaluations of SSA on various
regression tasks. First, we checked whether the learned features are distributed in a small subspace
(Section 4.3.1) and then evaluated the regression performance (Sections 4.3.2 and 4.3.3). We also
analyzed the effect of the TTA methods from the perspective of the feature subspace (Section 4.3.4).

4.1 DATASET

We used regression datasets with two types of covariate shift, i.e., domain shift and image corruption.
SVHN-MNIST. SVHN (Netzer et al., 2011) and MNIST (LeCun et al., 1998b) are famous digit-
recognition datasets. Although they are mainly used for classification, we used them for regression
by training models to directly output a scalar value of the label. We used SVHN and MNIST as the
source and target domains, respectively.
UTKFace (Zhang et al., 2017). UTKFace is a dataset consisting of face images. The task is to
predict the age of the person in an input image. For the source model, we trained models on the
original UTKFace images. For the target domain, we added corruptions such as noise or blur to the
images. The types of corruption were the same as those of ImageNet-C (Hendrycks & Dietterich,
2019). We applied 13 types of corruption at the highest severity level of the five levels.
Biwi Kinect (Fanelli et al., 2013). Biwi Kinect is a dataset consisting of person images. The task is
to predict the head pose of the person in an input image in terms of pitch, yaw, and roll angles. We
separately trained models to predict each angle. The source and target domains are the gender of
the person in the image. We conducted experiments on six combinations of the source/target gender
and task, i.e., {male → female, female → male} × {pitch, yaw, roll}. We trained regression models
to directly output head pose angles in radian, which are roughly in (−0.4π, 0.4π).
California Housing (Nugent, 2017). California Housing is a tabular dataset aiming at predicting
housing prices from the information of areas. We split the dataset into non-coastal and coastal areas
for the source and target domains in accordance with He et al. (2024).

More details of the datasets are provided in Appendix C.1.

4.2 SETTING

Source model. We used ResNet-26 (He et al., 2016) for SVHN, ResNet-50 for UTKFace and Biwi
Kinect, and an MLP for California Housing. We modified the last fully-connected layer to output
single scalar values and trained the models with the standard MSE loss on each dataset and task.
The details of the training are provided in Appendix C.
Test-time adaptation with SSA (ours). We minimized LTTA on the target datasets. We used the
outputs of the penultimate layer of the model as features, which had 2048 dimensions. We set the
number of dimensions of the feature subspace to K = 100 as the default throughout the experi-
ments. More detailed settings are provided in Appendix C.3.
Baseline. Since there are no TTA baselines designed for regression, we compared SSA with TTA
methods designed for classification but can be naively modified to regression: Source (no adapta-
tion), BN-adapt (Benz et al., 2021), Feature restoration (FR) (Eastwood et al., 2022), Prototype,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Test scores on SVHN-MNIST. The
best scores are bolded.

Method R2(↑) RMSE (↓) MAE (↓)

Source 0.406 2.232 1.608
DANN 0.307±0.09 2.406±0.16 1.489±0.09

TTT 0.288±0.02 2.443±0.03 1.597±0.03

BN-adapt 0.396±0.00 2.251±0.01 1.458±0.00

Prototype 0.491±0.00 2.065±0.01 1.479±0.01

FR 0.369±0.01 2.300±0.02 1.631±0.02

VM −685.1±27.63 75.83±1.52 75.78±1.52

RSD 0.252±0.12 2.497±0.20 1.703±0.20

SSA (ours) 0.511±0.03 2.024±0.06 1.209±0.04

Oracle 0.874±0.00 1.028±0.00 0.575±0.00

Table 3: Test R2 score and RMSE on Cali-
fornia Housing.

Method R2(↑) RMSE (↓) MAE (↓)

Source 0.605 0.684 0.516
BN-adapt 0.318±0.00 0.899±0.00 0.699±0.00

Prototype −0.726±0.01 1.431±0.00 1.196±0.00

FR 0.510±0.01 0.762±0.01 0.534±0.01

RSD - - -
SSA (ours) 0.639±0.00 0.655±0.00 0.469±0.00

Oracle 0.729±0.00 0.567±0.00 0.404±0.00

Variance minimization (VM), and RSD (Chen et al., 2021). In addition, we used the following meth-
ods other than TTA as baselines: test-time training (TTT) (Sun et al., 2020), DANN (Ganin et al.,
2016), and Oracle (fine-tuning using labels; performance upper bound). The details of the baseline
methods are described in Appendix C.3.

4.3 RESULT

4.3.1 NUMBER OF DIMENSIONS OF THE FEATURE SUBSPACE

After the pre-training on the source dataset, we counted the numbers of valid feature dimensions (i.e.,
having non-zero variances) and dimensions of the feature subspace in which the source features are
distributed. The latter value corresponds to the rank of the covariance matrix of the source features
in Equation (4). Table 1 shows the result of each source dataset and regression test R2 scores.
Although the number of feature dimensions is 2048 in ResNet, many feature dimensions of the
regression models have zero variance because of ReLU activation. This is the cause of the failure of
the naive feature alignment, as described in Section 3.1. Moreover, the source features are distributed
in only a small subspace with fewer than a hundred dimensions. In the California Housing dataset,
we can also see the same tendency that the number of the subspace dimensions is only 40 whereas
the number of the entire feature dimensions is 100. This property limits the performance of the naive
feature alignment in regression since aligning the entire feature space is ineffective to the subspace
in which the features are actually distributed.

In the MLP used for the California Housing dataset, the subspace dimensions compared to the
entire feature space is higher than the ResNets used for the other datasets. One explanation for
this difference is model capacity and task complexity. MLP’s capacity is low relative to the task
(California Housing)’s complexity. On the other hand, the ResNet-26, which has high capacity,
resulted in lower subspace dimensions on SVHN, which has low complexity.

4.3.2 REGRESSION PERFORMANCE

We evaluated the regression performance in terms of the R2 score (coefficient of determination),
which is widely used in regression tasks (see Appendix B). Tables 2 and 3 show the scores for the
SVHN-MNIST and California Housing. In the both cases, SSA outperformed the baselines; some of
them even underperformed the Source. This is because the baselines were designed for classification
tasks and they broke the feature subspaces learned by the source model (see Section 4.3.4). On the
other hand, RSD (Chen et al., 2021) is originally designed for regression in UDA but did not work
in the California Housing dataset because of numerical instability of SVD performed on every target
feature batch. In contrast, our method is stable since it avoids degenerated dimensions during TTA.
Table 4 shows the R2 scores on the UTKFace with image corruption. We can see that SSA had the
highest R2 scores for most of the corruption types. In particular, SSA outperformed the baselines
by a large margin on noise-type corruption which significantly degraded the performance of Source.
Table 5 shows the R2 scores on Biwi Kinect with genders different from the source domains. SSA
constantly had higher R2 scores than the baselines; the baselines’ scores sometimes significantly
dropped or even diverged (Prototype). In summary, SSA consistently improved the scores whereas
the baselines sometimes even underperformed Source. Moreover, SSA worked well not only on
image data but also tabular data.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Test R2 scores on UTKFace with image corruption. The best scores are bolded.

Method D
ef

oc
us

bl
ur

M
ot

io
n

bl
ur

Z
oo

m
bl

ur

C
on

tr
as

t

E
la

st
ic

tr
an

sf
or

m

Jp
eg

co
m

p.

Pi
xe

la
te

G
au

ss
ia

n
no

is
e

Im
pu

ls
e

no
is

e

Sh
ot

no
is

e

B
ri

gh
tn

es
s

Fo
g

Sn
ow

Mean

Source 0.410 0.159 0.658 −3.906 0.711 0.069 0.595 −2.536 −2.539 −2.522 0.661 −0.029 −0.544 −0.678

DANN 0.512 0.586 0.637 −0.720 0.729 0.698 0.807 −4.341 −3.114 −3.744 0.590 −0.131 −0.425 −0.609
TTT 0.748 0.761 0.773 0.778 0.826 0.772 0.861 0.525 0.532 0.477 0.775 0.397 0.493 0.671

BN-Adapt 0.727 0.759 0.763 0.702 0.826 0.778 0.850 0.510 0.510 0.446 0.790 0.392 0.452 0.654
Prototype −1.003 −1.020 −1.016 −0.719 −0.967 −0.908 −0.974 −0.514 −0.512 −0.512 −1.004 −0.823 −0.822 −0.830
FR 0.794 0.839 0.849 0.756 0.899 0.825 0.946 0.509 0.522 0.458 0.861 0.408 0.428 0.700
VM −2.009 −1.991 −2.037 −1.889 −1.918 −1.918 −1.751 −2.181 −2.207 −2.176 −1.927 −2.250 −2.197 −2.035
RSD 0.789 0.833 0.851 0.749 0.897 0.825 0.941 0.502 0.503 0.445 0.862 0.419 0.500 0.701
SSA (ours) 0.803 0.839 0.851 0.792 0.899 0.829 0.943 0.580 0.592 0.560 0.863 0.440 0.517 0.731

Oracle 0.856 0.890 0.889 0.862 0.917 0.873 0.960 0.635 0.652 0.635 0.895 0.519 0.671 0.789

Table 5: Test R2 scores on Biwi Kinect. The best scores are bolded.
Female → Male Male → Female

Method Pitch Roll Yaw Pitch Roll Yaw Mean

Source 0.759 0.956 0.481 0.763 0.791 0.485 0.706

DANN 0.698±0.03 0.826±0.03 −0.039±0.08 0.711±0.01 0.850±0.01 0.076±0.05 0.520±0.02

TTT −0.062±0.20 0.606±0.00 0.031±0.02 0.750±0.00 0.725±0.00 −0.321±0.00 0.288±0.03

BN-adapt 0.771±0.00 0.953±0.00 0.493±0.01 0.832±0.00 0.842±0.00 0.585±0.00 0.746±0.00

Prototype −318±0.00 - - - - - -
FR −1.27±0.70 0.742±0.05 −2.69±0.79 0.622±0.06 0.855±0.01 −0.406±0.30 −0.357±0.23

VM −0.302±0.00 −0.062±0.00 −0.089±0.00 −0.101±0.01 −0.045±0.00 0.001±0.00 −0.100±0.00

RSD 0.783±0.02 0.954±0.00 0.489±0.02 0.832±0.00 0.846±0.01 - -
SSA (ours) 0.860±0.00 0.962±0.00 0.513±0.01 0.869±0.00 0.886±0.00 0.575±0.00 0.778±0.00

Oracle 0.966±0.00 0.981±0.00 0.804±0.00 0.959±0.00 0.970±0.00 0.811±0.00 0.915±0.00

4.3.3 ABLATION STUDY

We performed an ablation study on the subspace detection and dimension weighting. For the SSA
variant without subspace detection (i.e., naively aligning the entire feature space), we simply selected
the top-K feature dimensions that had the largest variances. In this case, we directly used the
weight of the linear regressor hψ to compute the dimension weight αd as αd = 1 + |wd| instead of
Equation (5). Table 6 shows the test R2 scores with and without subspace detection and dimension
weighting on each dataset. Without subspace detection, the scores were worse than Source on
MNIST and Biwi Kinect, and of the same level as simple baselines like BN-adapt (Benz et al.,
2021) on UTKFace (Table 4). In contrast, subspace detection significantly improved the scores on
all three datasets. Dimension weighting also improved the scores, although the gain was smaller than
in the case of subspace detection. This is because the variance of the feature subspace dimension
correlates with the weight; i.e., the top-K selected dimensions with respect to variance tended to
have high importance to the output. Table 7 lists the correlation coefficients between the top K =
100 variances of the source features along the source bases λs

d and the corresponding dimension
weight αd. We can see that there are strong correlations in the three datasets we used. But we can
expect that dimension weighting can raise the importance of the feature dimensions that have low
variance but affect the output, which further improves regression performance.

Next, we investigated the effect of the number of feature subspace dimensions K. We varied K
within {10, 25, 50, 75, 100, 200, 400, 1000, 2048}. Table 8 shows the test R2 scores. Although

Table 6: Test R2 scores of SSA with and without subspace detection and dimension weighting.
Scores averaged over corruption types and gender-task combinations are reported for UTKFace and
Biwi Kinect, respectively. The best scores are bolded.

Subspace Weight SVHN UTKFace Biwi Kinect California

0.333±0.04 0.642±0.27 0.672±0.24 0.626±0.01

✓ 0.508±0.04 0.728±0.16 0.778±0.17 0.633±0.00

✓ ✓ 0.511±0.03 0.731±0.16 0.778±0.17 0.639±0.00

Source 0.406 0.020 0.706 0.605

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 7: Correlation coefficients between the top K = 100 variances of source features along the
source bases λs

d and weight αd in Equation (5).

Dataset SVHN UTKFace
Biwi Kinect

(Female, Pitch)
Correlation 0.787 0.917 0.782

2.5 5.0 7.5 10.0 12.5
Number of subspace bases n

0.5

1.0

1.5

2.0

M
ea

n
re
co

ns
t.
er
ro
rL Method

SSA (ours)
BN-adapt
Source, Prototype

1

0 20 40 60 80
Number of subspace bases n

5.0

7.5

10.0

12.5

M
ea

n
re
co

ns
t.
er
ro
rL Method

SSA (ours)
BN-adapt
Source, Prototype
FR
VM

1

0 10 20 30 40
Number of subspace bases n

2.5

5.0

7.5

10.0

M
ea

n
re
co

ns
t.
er
ro
rL Method

SSA (ours)
BN-adapt
Source, Prototype
FR
VM

1(a) SVHN (b) UTKFace (Gaussian noise)
(c) Biwi Kinect

(Female → Male, Pitch)

Figure 2: Reconstruction error of features reconstructed with the source bases relative to the original
target features. Note that Source and Prototype are the same, since Prototype does not update the
feature extractor of the model. FR (Eastwood et al., 2022) and VM are not plotted in (a) because
they had huge errors.

the best K differs among the datasets, K = 100 consistently produced competitive results. With
increasing K, the best or competitive scores were when K was close to the number of the subspace
dimensions in Table 1. This indicates the importance of the subspace feature alignment. When
K ≥ 400 in MNIST and K ≥ 1000 in Biwi Kinect, the loss became unstable or diverged because
SSA attempted to align too many degenerated feature dimensions. In contrast, although settingK ≥
1000 gave the good scores on UTKFace, K = 100 produced a competitive score. Appendix D.4
provides the results for California Housing, which we observed the same tendency with the other
three datasets. From these results, although K is a hyperparameter, we can determine K before
accessing the test dataset by calculating the number of the source feature subspace dimensions.

4.3.4 FEATURE SUBSPACE ANALYSIS

Table 8: Test R2 scores of SSA for
different numbers of feature subspace
dimensions K. The best scores are
bolded.

K MNIST UTKFace Biwi Kinect

10 0.494 0.693 0.688
25 0.538 0.717 0.761
50 0.524 0.728 0.767
75 0.516 0.732 0.774
100 0.511 0.731 0.778
200 0.496 0.731 0.771
400 - 0.731 0.755
1000 - 0.732 -
2048 - 0.725 -

Feature reconstruction. To verify that the reason why
the baseline methods degrade the regression performance
is that they affect the feature subspace learned by the
source model as mentioned in Section 4.3.2, we examined
the reproducibility of the target features with the source
bases Vs after TTA. That is, the target features can be
represented by a linear combination of the source bases
if the model retains the source subspace throughout TTA
and the target features fit within the subspace. To mea-
sure this quantitatively, we computed the reconstruction
error L as the Euclidean distance between a target fea-
ture vector zt and zt

r, the one reconstructed with n source
bases:

L = ∥zt
r − zt∥2, zt

r = µs +
∑n

d=1
((zt − µs)⊤vs

d)v
s
d, (8)

where zt is a target feature vector extracted with the model after TTA, and n is the number of
dimensions of the source subspace listed in Table 1.

Figure 2 plots the reconstruction error L versus n on the three datasets. The error decreased as n
increased for all methods, but SSA reduced the error with a smaller n than in those of the baselines,
indicating that it could make the target features fit within the source subspace. Especially in the case
of Biwi Kinect (c), the baseline methods produced larger errors than Source; i.e., they broke the
learned subspace.

In terms of feature alignment, Figure 4 in Appendix D.2 visualizes and evaluates the feature gap
between the domains in the subspace.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.2 0.4 0.6 0.8 1.0
0

2500

5000

−0.02 0.00 0.02 0.04
0

500

0.2 0.4 0.6 0.8 1.0
0

2000

−0.050−0.025 0.000 0.025 0.050
0

500

0.2 0.4 0.6 0.8 1.0
0

2000

4000

−0.15 −0.10 −0.05 0.00 0.05 0.10
0

500

1

0.0 0.5 1.0 1.5
0

100

200

−0.3 −0.2 −0.1 0.0 0.1 0.2
0

100

200

0.0 0.1 0.2 0.3
0

2000

0.2 0.4 0.6
0

100

200

0.00 0.05 0.10 0.15
0

1000

2000

−0.3 −0.2 −0.1
0

200

1

0.0 0.2 0.4 0.6
0

250

500

−0.2 −0.1 0.0 0.1
0

50

100

0.00 0.25 0.50 0.75 1.00 1.25
0

500

1000

−0.2 0.0 0.2
0

50

100

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

−0.1 0.0 0.1
0

50

100

1

(a) SVHN-MNIST (b) UTKFace (Gaussian noise) (c)
Biwi Kinect

(Female → Male, Pitch)

Figure 3: Histograms of three randomly selected target feature dimensions. Left: Original features.
Right: Projected features.

Another effect of subspace detection. Subspace detection has another effect on feature alignment.
We used the KL divergence between two diagonal Gaussian distributions in Equation (3) to measure
the distribution gap between the source and target features, under the assumption that the features
follow a Gaussian distribution. Here, while it is not clear that the assumption actually holds espe-
cially when features are output through activation functions like ReLU as in ResNet, we argue that
the subspace detection of SSA has, in addition to an effective feature alignment, the effect of making
such features follow a distribution close to a Gaussian.

We visualized the histograms of the target features zt
i extracted with the source model and ones

projected to the source subspace with Equation (6). Figure 3 show the histograms of three randomly
selected dimensions of the original and projected features of the three datasets. In the left column
of each figure, the histograms of the original features concentrate on zero because of the ReLU
activation and do not follow a Gaussian distribution, which makes the KL divergence computation
with Equation (3) inaccurate. On the other hand, the histograms of the projected features in the right
columns are close to Gaussians. Thus, subspace detection makes it easier to align the features with
the Gaussian KL divergence.

The reason why the projected features follow a Gaussian distribution can be interpreted as follows.
From Equation (6), the k-th element of a projected feature vector z̃t

i,k is

z̃t
i,k =

∑D

d=1
(zt
i,d − µs

d)v
s
k,d. (9)

Here, we regard each term ai,d := (zt
i,d − µs

d)v
s
k,d as a random variable. Assuming that ai,d is

independent of the feature dimension d, the central limit theorem guarantees that the distribution
of the projected features, i.e., the sum of ai,d, becomes closer to a Gaussian as the total number of
dimensions D increases.

5 RELATED WORK

5.1 UNSUPERVISED DOMAIN ADAPTATION

Unsupervised domain adaptation (UDA) has been actively studied as a way to transfer knowledge
in the source domain to the target domain (Csurka, 2017). Theoretically, it is known that the up-
per bound of the error on the target domain includes a distribution gap term between the source
and target domains (Ben-David et al., 2010; Ganin et al., 2016; Nguyen et al., 2022). For regres-
sion, Cortes & Mohri (2011) theoretically explored regression UDA. RSD (Chen et al., 2021) and
DARE-GRAM (Nejjar et al., 2023) take into account that the feature scale matters in regression and
explicitly align the feature scale during the feature alignment. However, UDA requires the source
and target datasets to be accessed simultaneously during training, which can be restrictive when
datasets cannot be accessed due to privacy or security concerns, or storage limitations.

More recently, source-free domain adaptation (SFDA), which does not access the source dataset
during adaptation, has been studied. The SFDA setting is similar to TTA in that SFDA adapts
models with only unlabeled target data. However, SFDA requires to store the whole target dataset
and access the dataset for multiple epochs to train additional models (Li et al., 2020; Xia et al.,
2021; Chu et al., 2022; Sanyal et al., 2023; He et al., 2024) or perform clustering (Liang et al.,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2020). On the other hand, TTA does not train additional models nor access the target dataset for
multiple epochs, which enables instant adaptation with low computational resource and storage.

5.2 TEST-TIME TRAINING

Test-time training (TTT) is also similar to TTA as it adapts models with unlabeled target data. The
main difference is that TTT requires to modify the model architecture and training procedure in
the source domain. The main approach of TTT is additionally training an self-supervised branch
simultaneously with the main supervised task in the source domain. Then, during adaptation, the
model is updated via minimizing the self-supervised loss on the target data. On the basis of this
approach, TTT methods with various self-supervised tasks have been proposed such as rotation
prediction (Sun et al., 2020), contrastive learning (Liu et al., 2021), clustering (Hakim et al., 2023),
or distribution modeling with normalizing flow (Osowiechi et al., 2023). However, adding additional
losses to the training prohibits the use of off-the-shelf pre-trained models or may potentially affect
the performance of the main task. In contrast, TTA accepts arbitrary training methods in the source
domain and thus off-the-shelf-models can be adapted.

5.3 TEST-TIME ADAPTATION

Test-time adaptation (TTA) aims to adapt a model trained on the source domain to the target domain
without accessing the source data (Liang et al., 2023). TTA can be applied in a wider range of
situations than SFDA and TTT in that TTA does not train additional models or modify the model
architecture and source pre-training. TTA for classification has attracted attention for its practicality.
Various types of TTA methods have been developed.
Entropy-based. Wang et al. (2021) found that the entropy of prediction strongly correlates with
accuracy on the target domain and proposed test-time entropy minimization (Tent), which is the
most representative of the TTA methods. BACS (Zhou & Levine, 2021), MEMO (Zhang et al.,
2022), EATA (Niu et al., 2022) and DELTA (Zhao et al., 2023) follow the idea of Tent and improve
adaptation performance. T3A (Iwasawa & Matsuo, 2021) adjusts the prototype in the feature space
during testing. IST (Ma, 2024) employs graph-based pseudo label modification. However, these
TTA methods are designed for classification and cannot be applied to regression. For instance,
computing entropy, which is widely adopted in TTA, requires a predictive probability for each class,
whereas ordinary regression models only output a single predicted value. Thus, we investigate an
approach that does not rely on entropy.
Feature alignment. Feature alignment is based on the insight of UDA and makes the target feature
distribution close to the source one. Since accessing the source data is restricted in the TTA setting,
methods based on the feature alignment match the statistics of the target features to those of the
pre-computed source. BN-adapt (Benz et al., 2021) updates the feature mean and variance stored
in batch normalization (BN) layers (Ioffe & Szegedy, 2015). DELTA (Zhao et al., 2023) modifies
BN and introduces class-wise loss re-weighting. CFA (Kojima et al., 2022), BUFR (Eastwood et al.,
2022), CAFe (Adachi et al., 2023), and CAFA (Jung et al., 2023) incorporate pre-computed source
statistics. Although some of these methods are directly applicable to regression, we have observed
that they are not effective or even degrade regression performance.
Other tasks. TTA for depth estimation (Li et al., 2023) super resolution (Deng et al., 2024), and
point cloud (Wang et al., 2024) are proposed. But they have task-specific architectures or methods
and cannot be applied to ordinary regression.

6 CONCLUSION

We proposed significant-subspace alignment (SSA), a novel test-time adaptation method for regres-
sion models. Since we have found that the naive feature alignment fails in regression TTA because
of the learned features being distributed in a small subspace, we incorporated subspace detection and
dimension weighting procedures into SSA. Experimental results show that SSA achieved higher R2

scores on various regression tasks than did baselines that were originally designed for classification
tasks. We will extend TTA to further broader tasks and settings such as concept drift in the future.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ethics statement. The potential ethical concern is that a model may have fairness or bias issues in
certain sensitive applications if the model adapts to biased target data. The model’s behavior should
be carefully monitored in such a situation.

Reproducibility statement. Details on the datasets and experimental settings are described in Sec-
tions 4.1 and 4.2 and Appendix C. We also provide the code in the supplementary material.

REFERENCES

Kazuki Adachi, Shin’ya Yamaguchi, and Atsutoshi Kumagai. Covariance-aware feature alignment
with pre-computed source statistics for test-time adaptation to multiple image corruptions. In
IEEE International Conference on Image Processing (ICIP), 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Machine learning, 79(1):151–175,
2010.

Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. Revisiting Batch Normalization for
Improving Corruption Robustness. In IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), 2021.

Rebekka Burkholz. Batch normalization is sufficient for universal function approximation in CNNs.
In International Conference on Learning Representations (ICLR), 2024.

Xinyang Chen, Sinan Wang, Jianmin Wang, and Mingsheng Long. Representation Subspace Dis-
tance for Domain Adaptation Regression. In International Conference on Machine Learning
(ICML), 2021.

Tong Chu, Yahao Liu, Jinhong Deng, Wen Li, and Lixin Duan. Denoised maximum classifier
discrepancy for source-free unsupervised domain adaptation. In AAAI Conference on Artificial
Intelligence, 2022.

Corinna Cortes and Mehryar Mohri. Domain adaptation in regression. In International Conference
on Algorithmic Learning Theory, pp. 308–323. Springer, 2011.

Gabriela Csurka. A Comprehensive Survey on Domain Adaptation for Visual Applications, pp. 1–
35. Springer International Publishing, Cham, 2017. ISBN 978-3-319-58347-1. doi: 10.1007/
978-3-319-58347-1 1. URL https://doi.org/10.1007/978-3-319-58347-1_1.

Shaveta Dargan, Munish Kumar, Maruthi Rohit Ayyagari, and Gulshan Kumar. A survey of deep
learning and its applications: a new paradigm to machine learning. Archives of Computational
Methods in Engineering, 27:1071–1092, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE/CVF International Conference on Computer Vision and
Pattern Recognition (CVPR), 2009.

Zeshuai Deng, Zhuokun Chen, Shuaicheng Niu, Thomas Li, Bohan Zhuang, and Mingkui Tan. Effi-
cient test-time adaptation for super-resolution with second-order degradation and reconstruction.
Advances in Neural Information Processing Systems (NeurIPS), 36, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. In International Conference on Learning Representations (ICLR), 2021.

D.C Dowson and B.V Landau. The Fréchet distance between multivariate normal distributions.
Journal of Multivariate Analysis, 12(3):450–455, 1982.

John Duchi. Derivations for Linear Algebra and Optimization, 2007. http://ai.stanford.
edu/˜jduchi/projects/general_notes.pdf.

11

https://doi.org/10.1007/978-3-319-58347-1_1
http://ai.stanford.edu/~jduchi/projects/general_notes.pdf
http://ai.stanford.edu/~jduchi/projects/general_notes.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Cian Eastwood, Ian Mason, Chris Williams, and Bernhard Schölkopf. Source-Free Adaptation to
Measurement Shift via Bottom-Up Feature Restoration. In International Conference on Learning
Representations (ICLR), 2022.

Shohei Enomoto, Naoya Hasegawa, Kazuki Adachi, Taku Sasaki, Shin’Ya Yamaguchi, Satoshi
Suzuki, and Takeharu Eda. Test-time adaptation meets image enhancement: Improving accu-
racy via uncertainty-aware logit switching. In IEEE International Joint Conference on Neural
Networks (IJCNN), 2024.

Gabriele Fanelli, Matthias Dantone, Juergen Gall, Andrea Fossati, and Luc Van Gool. Random
Forests for Real Time 3D Face Analysis. Int. J. Comput. Vision, 101(3):437–458, February 2013.

V. Fomin, J. Anmol, S. Desroziers, J. Kriss, and A. Tejani. High-level library to help with training
neural networks in pytorch. https://github.com/pytorch/ignite, 2020.

Jonathan Frankle, David J. Schwab, and Ari S. Morcos. Training BatchNorm and Only BatchNorm:
On the Expressive Power of Random Features in CNNs. In International Conference on Learning
Representations (ICLR), 2021.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

Gustavo A. Vargas Hakim, David Osowiechi, Mehrdad Noori, Milad Cheraghalikhani, Ali Bahri,
Ismail Ben Ayed, and Christian Desrosiers. ClusT3: Information Invariant Test-Time Training.
In IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE/CVF International Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Tianlang He, Zhiqiu Xia, Jierun Chen, Haoliang Li, and S-H Gary Chan. Target-agnostic source-free
domain adaptation for regression tasks. In IEEE International Conference on Data Engineering
(ICDE), 2024.

Dan Hendrycks and Thomas Dietterich. Benchmarking Neural Network Robustness to Common
Corruptions and Perturbations. In International Conference on Learning Representations (ICLR),
2019.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In International Conference on Machine Learning (ICML),
2015.

Masato Ishii and Masashi Sugiyama. Source-free Domain Adaptation via Distributional Alignment
by Matching Batch Normalization Statistics. arXiv preprint arXiv:2101.10842, 2021.

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic
domain generalization. Advances in Neural Information Processing Systems (NeurIPS), 34, 2021.

Sanghun Jung, Jungsoo Lee, Nanhee Kim, Amirreza Shaban, Byron Boots, and Jaegul Choo. CAFA:
Class-Aware Feature Alignment for Test-Time Adaptation. In IEEE/CVF International Confer-
ence on Computer Vision (ICCV), 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Takeshi Kojima, Yutaka Matsuo, and Yusuke Iwasawa. Robustifying vision transformer without
retraining from scratch by test-time class-conditional feature alignment. In International Joint
Conference on Artificial Intelligence (IJCAI), 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Master’s thesis, University of Tront, 2009.

12

https://github.com/pytorch/ignite

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in Neural Information Processing Systems (NeurIPS), 2012.

Stéphane Lathuilière, Pablo Mesejo, Xavier Alameda-Pineda, and Radu Horaud. A comprehensive
analysis of deep regression. IEEE transactions on pattern analysis and machine intelligence, 42
(9):2065–2081, 2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998a.

Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. MNIST handwritten digit database,
1998b. URL http://yann.lecun.com/exdb/mnist/.

Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and Si Wu. Model Adaptation: Unsupervised
Domain Adaptation Without Source Data. In IEEE/CVF International Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

Zhi Li, Shaoshuai Shi, Bernt Schiele, and Dengxin Dai. Test-time Domain Adaptation for Monoc-
ular Depth Estimation. In IEEE International Conference on Robotics and Automation (ICRA),
2023.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine
Learning (ICML), 2020.

Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distri-
bution shifts. International Journal of Computer Vision (IJCV), 2023.

Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexan-
dre Alahi. TTT++: When Does Self-Supervised Test-Time Training Fail or Thrive? Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Jing Ma. Improved self-training for test-time adaptation. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2024.

TorchVision maintainers and contributors. Torchvision: Pytorch’s computer vision library. https:
//github.com/pytorch/vision, 2016.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. UMAP: Uniform Manifold
Approximation and Projection. The Journal of Open Source Software, 3(29):861, 2018.

Ismail Nejjar, Qin Wang, and Olga Fink. DARE-GRAM: Unsupervised Domain Adaptation Regres-
sion by Aligning Inverse Gram Matrices. In IEEE/CVF International Conference on Computer
Vision and Pattern Recognition (CVPR), 2023.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning, 2011.

A Tuan Nguyen, Toan Tran, Yarin Gal, Philip HS Torr, and Atılım Güneş Baydin. KL Guided
Domain Adaptation. In International Conference on Learning Representations (ICLR), 2022.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
Tan. Efficient test-time model adaptation without forgetting. In International conference on
machine learning (ICML), 2022.

Cam Nugent. the California Housing Prices Dataset. Kaggle, 2017. https://www.kaggle.
com/datasets/camnugent/california-housing-prices.

David Osowiechi, Gustavo A. Vargas Hakim, Mehrdad Noori, Milad Cheraghalikhani, Ismail
Ben Ayed, and Christian Desrosiers. TTTFlow: Unsupervised Test-Time Training With Nor-
malizing Flow. In IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
2023.

13

http://yann.lecun.com/exdb/mnist/
https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://www.kaggle.com/datasets/camnugent/california-housing-prices
https://www.kaggle.com/datasets/camnugent/california-housing-prices

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. Advances in Neural Information Processing Systems (NeurIPS), 32, 2019.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International Conference on Machine Learning (ICML), 2019.

Sunandini Sanyal, Ashish Ramayee Asokan, Suvaansh Bhambri, Akshay Kulkarni, Jogendra Nath
Kundu, and R Venkatesh Babu. Domain-specificity inducing transformers for source-free domain
adaptation. In IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of statistical planning and inference, 90(2):227–244, 2000.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
ing with self-supervision for generalization under distribution shifts. In International Conference
on Machine Learning (ICML), 2020.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
Test-Time Adaptation by Entropy Minimization. In International Conference on Learning Rep-
resentations (ICLR), 2021.

Yanshuo Wang, Ali Cheraghian, Zeeshan Hayder, Jie Hong, Sameera Ramasinghe, Shafin
Rahman, David Ahmedt-Aristizabal, Xuesong Li, Lars Petersson, and Mehrtash Harandi.
Backpropagation-free network for 3d test-time adaptation. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2024.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Haifeng Xia, Handong Zhao, and Zhengming Ding. Adaptive adversarial network for source-free
domain adaptation. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
augmentation. Advances in Neural Information Processing Systems (NeurIPS), 35, 2022.

Shihao Zhang, Linlin Yang, Michael Bi Mi, Xiaoxu Zheng, and Angela Yao. Improving Deep Re-
gression with Ordinal Entropy. In International Conference on Learning Representations (ICLR),
2023.

Zhifei Zhang, Yang Song, and Hairong Qi. Age Progression/Regression by Conditional Adversarial
Autoencoder. In IEEE/CVF International Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

Bowen Zhao, Chen Chen, and Shu-Tao Xia. DELTA: DEGRADATION-FREE FULLY TEST-TIME
ADAPTATION. In International Conference on Learning Representations (ICLR), 2023.

Aurick Zhou and Sergey Levine. Bayesian Adaptation for Covariate Shift. Advances in Neural
Information Processing Systems (NeurIPS), 34, 2021.

14

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A LIMITATION

One limitation of SSA is that it assumes a covariate shift, where p(y|x) does not change. Addressing
distribution shifts where p(y|x) changes, e.g., concept drift, will specifically be addressed as a target
in future work.

B EVALUATION METRIC

We used the R2 score (coefficient of determination) to measure the performance of the regression
models. R2 is computed as follows:

R2 = 1−
∑N
i=1(ŷi − yi)

2∑N
i=1(yi − ȳ)2

, (10)

where ŷi is a predicted value of the regression model, yi is the ground-truth, and ȳ = (1/N)
∑N
i=1 yi

is the mean of the ground truth values. R2 is close to 1 when the regression model is accurate.

C EXPERIMENTAL SETTINGS

We used PyTorch (Paszke et al., 2019) and PyTorch-Ignite (Fomin et al., 2020) to make the imple-
mentations of the source pre-training, proposed method, and baselines. We conducted the experi-
ments with a single NVIDIA A100 GPU.

C.1 DATASETS

SVHN (Netzer et al., 2011): We downloaded SVHN via torchvision.datasets.SVHN. It
can be used for non-commercial purposes only1.

MNIST (LeCun et al., 1998b): We downloaded MNIST via torchvison.datasets.MNIST.
We could not find any license information for MNIST.

UTKFace (Zhang et al., 2017): We downloaded UTKFace via the official site2. It is available for
non-commercial research purposes only.

Biwi Kinect (Fanelli et al., 2013): We downloaded Biwi Kinect via Kaggle3. It is released under
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.

California Housing (Nugent, 2017): We downloaded the dataset from Kaggle4. It is released in
public domain.

C.2 PRE-TRAINING ON THE SOURCE DOMAIN

SVHN: We trained ResNet-26 (He et al., 2016) from scratch. For optimization, we used
Adam (Kingma & Ba, 2015) and set the learning rate to 0.0001, weight decay to 0.0005, batch
size to 64, and number of epochs to 100. We minimized the MSE loss between the predicted values
and digit labels. For the implementation of ResNet-26, we used the PyTorch Image Models (timm)
library (Wightman, 2019).

UTKFace: We randomly split the dataset into 80% for training and 20% for validation. We fine-
tuned ResNet-50 pre-trained on ImageNet (Deng et al., 2009). We minimized the MSE loss to
predict the ages of the persons in the images. For optimization, we used the same hyperparameters

1http://ufldl.stanford.edu/housenumbers/
2https://susanqq.github.io/UTKFace/
3https://www.kaggle.com/datasets/kmader/biwi-kinect-head-pose-database
4https://www.kaggle.com/datasets/camnugent/california-housing-prices

15

http://ufldl.stanford.edu/housenumbers/
https://susanqq.github.io/UTKFace/
https://www.kaggle.com/datasets/kmader/biwi-kinect-head-pose-database
https://www.kaggle.com/datasets/camnugent/california-housing-prices

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

as the above SVHN case. For the implementation of ResNet-50, we used torchvision (maintainers
& contributors, 2016) with IMAGENET1K V2 initial weights.

Biwi Kinect: We split the dataset into male and female images and further randomly split them into
80% for training and 20% for validation. We fine-tuned ResNet-50 pre-trained on ImageNet in the
same way as the UTKFace case. We separately trained the models to predict each of the three head
angles, i.e., pitch, roll, and yaw, of the persons in the images. In total, we pre-trained six source
models ({male, female} × {pitch, yaw, roll}).

California Housing: We extracted the data of non-coastal areas for the source domain and split
them into 90% for training and 10% for validation. We standardized the whole dataset using the
source mean and standard deviation. We trained a five-layer MLP, with 100-dimensional hidden
layers, ReLU activation, and batch normalization.

C.3 TEST-TIME ADAPTATION

As for setting the hyperparameters of the baseline methods, we basically followed their original
papers. For adaptation, we adopted an offline manner for fair comparison, i.e., we ran TTA for one
epoch and then ran evaluation, which is widely adopted in existing TTA works (Wang et al., 2021;
Zhou & Levine, 2021; Eastwood et al., 2022). For the evaluation, we ran each TTA three times with
different random seeds and reported the means of the scores.

Source: We simply fixed the source-pretrained model (i.e., model.eval() in PyTorch) and per-
formed inference.

BN-adapt (Benz et al., 2021): updates the feature mean and variance stored in the batch normaliza-
tion layers during testing, i.e., ran inference with model.train() mode in PyTorch.

Feature restoration (FR) (Eastwood et al., 2022): uses the source statistics of the features and
outputs as a form of dimension-wise histogram and aligns the target feature histogram to the source
one. The original FR uses the histograms of the features and logits pre-computed with the source
dataset. Since our focus is on regression models, we used the outputs instead of logits. We set the
number of bins of the histograms to eight and the temperature τ of soft-binning to 0.01 following
Eastwood et al. (2022). We set learning rate to 0.0001 (this value gave the best score).

Prototype: We tweaked T3A (Iwasawa & Matsuo, 2021), which regards the weights of the last
fully-connected layer as the prototype of each class and updates the prototypes with the mean of
the arriving target features during testing. We regarded w of the linear regressor hψ as a single
prototype and updated it with the mean of the target features. Although T3A determines whether to
use a feature for making an update by using entropy, we omitted this component since we cannot
compute entropy with regression models.

Variance minimization (VM): makes augmented views of input images and minimizes output vari-
ance. This is a modification of MEMO (Zhang et al., 2022), which minimizes the marginal entropy
of the augmented views of inputs in the same manner. We set the number of augmented views to 32
per input and set the learning rate to 0.001 with Adam optimizer.

Representation subspace distance (RSD) (Chen et al., 2021): The original RSD is a UDA method
designed for regression, which aligns the SVD bases between source and target mini-batches. To
adapt to TTA, we pre-computed the SVD of the source features wit the whole source dataset instead
of mini-batches before TTA and align the target feature SVD with the RSD loss during testing.

SSA (ours): Algorithm 1 lists the procedure of SSA. For optimization, we used Adam (Kingma &
Ba, 2015) with a learning rate= 0.001, (β1, β2) = (0.9, 0.999), and weight decay= 0, which is the
default setting in PyTorch (Paszke et al., 2019). We set the batch size to 64 following other TTA
baselines.

Test-time training (TTT) (Sun et al., 2020): incorporates a self-supervised rotation prediction task
during pre-training in the source domain; then it updates the feature extractor by minimizing the self-
supervised loss during testing. The rotation-prediction branch is a linear layer that takes a feature z
and outputs four logits corresponding to the rotation angles {0◦, 90◦, 180◦, 270◦} of an input image.
For optimization, we used SGD and set the learning rate to 0.001 in accordance with Sun et al.
(2020).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 Significant-subspace alignment (SSA).
Input: Pre-trained source model fθ, source bases Vs, source mean µs, source variances λs, target

dataset T
Output: Adapted model fθ′

Compute weights for each dimension of the source subspace αd according to Equation (5)
for all mini-batch {xt

i}i in T do
Extract target features {zt

i = gϕ(x
t
i)}i

Project target features {zt
i}i into {z̃t

i}i according to Equation (6)
Compute projected target mean µ̃t and variances σ̃t 2 analogously to Equation (1)
Update ϕ of the feature extractor gϕ to minimize LTTA according to Equation (7)

end for

Table 9: Comparison between using KL divergence and 2-Wasserstein distance for feature alignment
in SSA on SVHN-MNIST. The top row is our method.

Metric Subspace detection R2 (↑) RMSE (↓)

KL ✓ 0.511±0.03 2.024±0.06

KL 0.338±0.04 2.355±0.07

2WD ✓ 0.425±0.02 2.196±0.04

2WD 0.342±0.04 2.348±0.07

L1 ✓ 0.472±0.03 2.104±0.05

L1 0.347±0.06 2.337±0.11

Source 0.406 2.232

Domain adversarial neural network (DANN) (Ganin et al., 2016): is an unsupervised domain
adaptation method which adversarially trains a feature extractor and domain discriminator to learn
domain-invariant features. We trained the domain discriminator during training in addition to the
main regression model. We used layer4 of ResNet for the discriminator. We scheduled the learning
rate and the weight of the domain adaptation loss by following Ganin et al. (2016).

Oracle: fine-tunes the model using labels during testing, i.e., the upper bound of the performance.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 METRIC FOR FEATURE ALIGNMENT

We used the KL divergence between two Gaussian distributions in Equation (3) for the feature
alignment in SSA. One may suppose that other metrics could also be used, since the variance term
in the denominator makes the naive TTA loss in Equation (2) unstable, as mentioned in Section 3.1.
Here, we tried the 2-Wasserstein distance (2WD) between two Gaussian distributions (Dowson &
Landau, 1982) and the L1 norm of the statistics:

W 2
2

(
N (µ1, σ

2
1),N (µ2, σ

2
2)
)
= (µ1 − µ2)

2 + (σ1 − σ2)
2, (11)

L1

(
N (µ1, σ

2
1),N (µ2, σ

2
2)
)
= |µ1 − µ2|+ |σ1 − σ2|. (12)

We replaced the KL divergence with the 2WD and L1 in Equation (7) as follows:

LTTA-2WD=
∑K

d=1
αdW

2
2

(
N (µ̃t

d, σ̃
t 2
d),N (0, λs

d)
)
=
∑K

d=1
αd

{
(µ̃t
d)

2+

(√
σ̃t 2
d −

√
λs
d

)2
}
,

(13)

LTTA-L1=
∑K

d=1
αdL1

(
N (µ̃t

d, σ̃
t 2
d),N (0, λs

d)
)
=
∑K

d=1
αd

{
|µ̃t
d|+

∣∣∣∣√σ̃t 2
d −

√
λs
d

∣∣∣∣} . (14)

Tables 9 to 11 compare the effects of using the KL divergence and 2WD on SVHN-MNIST, UTK-
Face, and Biwi Kinect. The KL divergence with subspace detection (SSA) achieved highest R2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 10: R2 scores of cases using KL divergence and 2-Wasserstein distance for feature alignment
in SSA on UTKFace. The top row is our method.

Metric
Subspace
detection D

ef
oc

us
bl

ur

M
ot

io
n

bl
ur

Z
oo

m
bl

ur

C
on

tr
as

t

E
la

st
ic

tr
an

sf
or

m

Jp
eg

co
m

pr
es

si
on

Pi
xe

la
te

G
au

ss
ia

n
no

is
e

Im
pu

ls
e

no
is

e

Sh
ot

no
is

e

B
ri

gh
tn

es
s

Fo
g

Sn
ow

Mean

KL ✓ 0.803 0.839 0.851 0.792 0.899 0.829 0.943 0.580 0.592 0.560 0.863 0.440 0.517 0.731
KL 0.826 0.853 0.825 0.752 0.904 0.843 0.944 0.377 0.421 0.294 0.842 0.246 0.205 0.641
2WD ✓ 0.816 0.843 0.826 0.729 0.903 0.830 0.946 0.353 0.424 0.302 0.824 0.177 0.192 0.628
2WD 0.827 0.854 0.832 0.755 0.906 0.845 0.946 0.389 0.439 0.298 0.846 0.223 0.238 0.646
L1 ✓ 0.834 0.858 0.851 0.775 0.910 0.849 0.949 0.484 0.546 0.489 0.845 0.334 0.206 0.687
L1 0.830 0.854 0.840 0.744 0.905 0.847 0.942 0.362 0.418 0.288 0.848 0.233 0.277 0.645

Source 0.410 0.159 0.658 −3.906 0.711 0.069 0.595 −2.536 −2.539 −2.522 0.661 −0.029 −0.544 −0.678

Table 11: R2 scores of cases using KL divergence and 2-Wasserstein distance for feature alignment
in SSA on Biwi Kinect. The top row is our method.

Female → Male Male → Female

Metric
Subspace
detection Pitch Roll Yaw Pitch Yaw Roll Mean

KL ✓ 0.860±0.00 0.962±0.00 0.513±0.01 0.869±0.00 0.886±0.00 0.575±0.00 0.778±0.00

KL 0.525±0.04 0.945±0.00 0.240±0.03 0.835±0.01 0.874±0.01 0.613±0.01 0.672±0.01

2WD ✓ 0.708±0.05 0.954±0.00 0.465±0.01 0.765±0.01 0.916±0.01 0.617±0.00 0.738±0.01

2WD 0.540±0.05 0.949±0.00 0.279±0.02 0.829±0.01 0.862±0.02 0.598±0.01 0.676±0.01

L1 ✓ 0.750±0.07 0.958±0.00 0.482±0.01 0.858±0.00 0.922±0.00 0.641±0.00 0.768±0.01

L1 0.562±0.03 0.949±0.00 0.314±0.04 0.802±0.00 0.861±0.01 0.613±0.00 0.684±0.01

Source 0.759 0.956 0.481 0.763 0.791 0.485 0.706

scores in almost all cases. In contrast, the 2WD variant of SSA produced only a slight improvement
over Source on SVHN-MNIST (Table 9) and sometimes it had even worse scores than Source on
Biwi Kinect (Table 11). This degradation of 2WD is because the scale of the variance σ2

d is different
among feature dimensions d. The KL divergence can absorb the difference in scale since it includes
the ratio of the variances, as in Equation (7).

D.2 FEATURE VISUALIZATION

Figure 4 illustrates PCA visualizations of the source and target features after TTA. In the visual-
izations of SVHN-MNIST (a) and Biwi Kinect (c), we can see that SSA makes the target feature
distribution fit within the source distribution while the target features of the baselines protrude from
the source distribution. In UTKFace (b), the target features of Source significantly degenerate to a
single point, but the other methods alleviate this. In Figure 4, we also report the optimal transport
distance (OTD) between the features of the both domains, which evaluates the feature alignment
quantitatively. In addition to that our SSA alleviates the feature distribution gap in the subspace,
SSA retains the source subspace better, as shown in Figure 2 of Section 4.3.4.

We also visualized the source and target features with UMAP (McInnes et al., 2018) in Figure 5
to see the relation not limited within the top-2 principal components. We first trained the UMAP
mapping with the source features projected onto the top K = 100 dimensional principal component
space before TTA, which are shared among TTA methods. Then, we mapped the target features after
TTA with the learned UMAP mapping. We can also see that the target feature distribution becomes
closer to the source one by our SSA.

D.3 EFFECT OF ORIGINAL FEATURE DIMENSIONS ON THE SUBSPACE

As mentioned in Section 3.1, many of the feature dimensions have a small effect on the subspace,
which makes the naive feature alignment ineffective. To verify the effect of changing the original
features on the subspace, we computed the gradient of a subspace feature vector z̃ with respect to

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

So
ur

ce
−10 −8 −6 −4 −2 0 2 4

−4

−2

0

2

OTD: 0.199

Source
Target

1

−20 0 20 40 60 80

−20

−10

0

10
OTD: 34.2

Source
Target

1

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0
−5

0

5

OTD: 1.09

Source
Target

1

B
N

-a
da

pt

−10 −8 −6 −4 −2 0 2 4

−4

−2

0

2

OTD: 0.266
Source
Target

1

−20 0 20 40 60 80

−20

−10

0

10
OTD: 7.23

Source
Target

1

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0
−5

0

5

OTD: 1.73

Source
Target

1

FR

−10 −8 −6 −4 −2 0 2 4

−4

−2

0

2

OTD: 0.273

Source
Target

1

−20 0 20 40 60 80

−20

−10

0

10
OTD: 6.91

Source
Target

1

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0
−5

0

5

OTD: 1.96
Source
Target

1

SS
A

(O
ur

s)

−10 −8 −6 −4 −2 0 2 4

−4

−2

0

2

OTD: 0.126
Source
Target

1

−20 0 20 40 60 80

−20

−10

0

10
OTD: 6.61

Source
Target

1

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0
−5

0

5

OTD: 1.79

Source
Target

1
(a) SVHN-MNIST (b) UTKFace (c) Biwi Kinect

Figure 4: PCA visualizations of source and target features of each dataset and method. The blue
and orange dots represent the source and target features, respectively. We also report the optimal
transport distance (OTD) between the principal components of the source and target features.

So
ur

ce

−10 −5 0 5 10 15
−10

0

10
Source
Target

1

−2.5 0.0 2.5 5.0 7.5 10.0 12.5

0

5

10

Source
Target

1

−10 0 10 20

0

10

Source
Target

1

SS
A

(O
ur

s)

−10 −5 0 5 10 15
−10

0

10
Source
Target

1

−2.5 0.0 2.5 5.0 7.5 10.0 12.5

0

5

10

Source
Target

1

−10 0 10 20

0

10

Source
Target

1
(a) SVHN-MNIST (b) UTKFace (c) Biwi Kinect

Figure 5: UMAP (McInnes et al., 2018) visualizations of source and target features on each dataset.
The blue and orange dots represent the source and target features, respectively.

the d-th dimension of the original feature zd. With Equation (6), the norm of the gradient sd is:

sd =

∥∥∥∥ ∂z̃∂zd
∥∥∥∥
2

= ∥(Vs⊤)d∥2 = ∥[vs
1,d, . . . , v

s
K,d]∥2, (15)

which is the norm of the d-th row of Vs.

Figure 6 shows the histograms of sd computed with the three datasets. As expected, most of the
dimensions of the original feature space had small effects; only a few dimensions had significant
effect to the subspace. Specifically, SVHN-MNIST and Biwi Kinect strongly showed this tendency.
In contrast, a larger number of raw feature dimensions affected the subspace in UTKFace compared
with the other datasets. This is why the test R2 score was improved from Source without subspace
detection in UTKFace, while the scores on the other datasets were lower than those of Source, as
shown in Table 6.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0
sd

0

1000

1

0.0 0.5 1.0
sd

0

200

1

0.0 0.5 1.0
sd

0

1000

1

(a) SVHN-MNIST (b) UTKFace (c) Biwi Kinect

Figure 6: Histograms of the gradient of a projected feature z̃ with respect to each original feature
dimension zd computed with Equation (15).

Table 12: Test R2 scores of SSA for different numbers of feature subspace dimensions K on Cali-
fornia Housing.

K 1 5 10 25 50 75 100

R2 0.496 0.625 0.639 0.625 - - -

D.4 ADDITIONAL ABLATION

Table 12 shows theR2 scores on California Housing with changingK of SSA (the same experiment
as Table 8). K = 10 produced the best result, but K = 5 and 25 also gave competitive scores.
When K ≥ 50, which exceeds the number of the subspace dimensions in Table 1, the loss became
unstable or diverged because SSA attempted to align too many degenerated feature dimensions, as
mentioned in Section 4.3.3.

Tables 13 and 14 shows the test R2 scores without subspace detection (i.e., naively aligning raw
features) with respect to K. Without subspace detection, the performance of regression on the target
domain is limited even when all dimensions of the original feature space are aligned. This result
supports the importance of aligning the representative feature subspace with subspace detection.

D.5 EXPERIMENTS ON VISION TRANSFORMER

We experimented TTA with vision transformer (ViT) (Dosovitskiy et al., 2021) on SVHN-MNIST.

First, we trained a ViT-B/16 regressor on SVHN and computed the number of feature dimensions as
Section 4.3.4. We used the output of the penultimate layer for the features.

Table 15 shows the numbers of the valid (zero variance) and subspace dimensions. Since no activa-
tion function is applied to the feature vectors of ViTs unlike ResNets, all 768 feature dimensions are
valid (non-zero variance). However, the number of the subspace dimensions is 503 in the regression
model, which is smaller that of the classification model. Although the subspace dimension is larger
than the ResNet cases in Table 1, we can also see the same tendency.

Table 16 shows the TTA results on SVHN-MNIST. SSA outperforms the baselines.

D.6 MULTI-TASK REGRESSION MODEL

We applied TTA methods to multi-task regression models, which output multiple prediction values
at the same time. We trained ResNet-50 regression models on Biwi Kinect. Unlike the experiments
on the same dataset in Section 4.3, a single regression model outputs pitch, roll, and yaw angles.

Table 13: Test R2 scores of SSA without subspace detection. The right column represents the score
with subspace detection.

K 1 5 10 25 50 75 100 10 (ours)

R2 0.524 0.605 0.625 0.620 0.584 - - 0.639

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 14: Test R2 scores of SSA without subspace detection. The bottom row represents the scores
with subspace detection of K = 100 from Table 8.

K SVHN UTKFace Biwi Kinect

10 0.302 0.674 0.737
25 0.348 0.656 0.674
50 0.334 0.651 0.691
75 0.329 0.645 0.578
100 0.338 0.641 0.672
200 0.343 0.643 0.670
400 - 0.643 0.709
1000 - 0.656 0.755
2048 - 0.706 0.753

100 (ours) 0.511 0.731 0.778

Table 15: Number of valid (having non-zero variance) feature dimensions and feature subspace
dimensions of the ViT trained on SVHN.

Regression Classification
#Valid dims #Subspace dims. #Valid dims #Subspace dims.

768 503 768 544

Table 17 shows the test R2 score on each target angle. We compared TTA methods that can be
easily extended to multi-task regression tasks. Our SSA outperformed the other baselines in most
cases. The numbers of the source feature subspace dimensions were 134 and 132 for the male and
female models, which are larger than single-task models but much smaller than the entire feature
dimensions (2048). Thus, SSA is also effective for multi-task regression models.

D.7 COMBINATION WITH CLASSIFICATION TTA

Although our SSA is designed for regression, the subspace detection and feature alignment loss
can be used to classification since they operates in the feature space and works regardless of model
output forms. Here, we applied the subspace detection and feature alignment loss to classification
models. We trained ResNet-26 on SVHN and CIFAR10 (Krizhevsky et al., 2009), and tested on
MNIST and CIFAR10-C (Hendrycks & Dietterich, 2019).

Table 18 shows the number of the valid feature dimensions and subspace dimensions in classification
and regression models on the source datasets. Although the number of the feature dimensions of the
classification models are larger than those of the regression models, the subspace is smaller than the
entire feature space. Thus, we expect that our SSA is also effective on classification models.

Tables 19 and 20 show the classification accuracies. We can easily combine our method with
entropy-based TTA methods in classification. Although SSA significantly improves the accuracy,
combining SSA with Tent (Wang et al., 2021) further boosts the accuracy.

Table 16: Test R2 score and RMSE on SVHN-MNIST with ViT.
Method R2 (↑) RMSE (↓)

Source 0.658 1.693
Prototype 0.468±0.00 2.111±0.00

FR 0.724±0.00 1.522±0.01

VM −1009±11.8 92.02±0.54

SSA (ours) 0.741±0.03 1.471±0.08

Oracle 0.960±0.00 0.575±0.02

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 17: Test R2 scores on multi-task Biwi Kinect (higher is better). The best scores are in bold-
face.

Female → Male Male → Female

Method Pitch Yaw Roll Pitch Yaw Roll Mean

Source 0.904 0.628 0.960 0.794 0.419 0.854 0.760
BN-adapt 0.912±0.00 0.606±0.00 0.967±0.00 0.791±0.00 0.471±0.00 0.921±0.00 0.778

VM −1.875±0.37 −1.962±0.73 −0.093±0.03 −0.365±0.08 −0.143±0.12 −0.000±0.02 −0.740
RSD 0.912±0.00 0.606±0.00 0.967±0.00 0.792±0.00 0.472±0.00 0.921±0.00 0.778

SSA (ours) 0.913±0.00 0.555±0.01 0.970±0.00 0.837±0.00 0.540±0.00 0.942±0.00 0.793

Oracle 0.976±0.00 0.859±0.00 0.988±0.00 0.958±0.00 0.804±0.00 0.979±0.00 0.928

Table 18: Comparison of the numbers of valid (having non-zero variance) feature dimensions and
feature subspace dimensions (i.e., the rank of the feature covariance matrix) between classification
and regression. When training classification models, we discretized the labels.

Classification Regression
Dataset #Valid dims #Subspace dims. #Valid dims #Subspace dims.

SVHN 1946 64 353 14
CIFAR10 1521 86 561 50
UTKFace 2048 1471 2041 76
Biwi Kinect (mean) 2048 277 713 34.5
California Housing (100 dims.) 100 100 45 40

D.8 HYPERPARAMETER SENSITIVITY

We investigated SSA’s sensitivity to the other hyperparameters. Tables 21 to 23 and Tables 24 to 26
show the results when varying the learning rate and batch size, respectively.

Typical ranges of the learning rate and batch size produce competitive performance. For the batch
size, a larger batch size results in better performance since the estimation of feature mean and vari-
ance becomes more accurate. But batch sizes ≥ 16 produce competitive performance.

D.9 ADDITIONAL RESULTS

Tables 27 and 28 provide the performance measured by MAE on UTKFace and Biwi Kinect, which
are corresponding to Tables 4 and 5.

D.10 ONLINE SETUP

We evaluated regression TTA in an batched online setting, where model update and evaluation are
performed alternatively with a batch in every iteration. Tables 29 to 31 display the results. Our SSA
can outperform the baselines also in the batched online setting.

Table 19: Test classification accuracy (%) on SVHN-MNIST.
Method Accuracy

Source 53.82
Tent 75.68±8.49

SSA 79.97±0.67

Tent+SSA 80.69±0.52

Oracle 97.48±0.02

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 20: Test classification accuracy (%) on CIFAR10-C. The best and second scores are in bold-
face and underlined.

Method B
ri

gh
tn

es
s

C
on

tr
as

t

D
ef

oc
us

bl
ur

E
la

st
ic

tr
an

sf
or

m

Fo
g

G
au

ss
ia

n
no

is
e

Im
pu

ls
e

no
is

e

Jp
eg

co
m

pr
es

si
on

M
ot

io
n

bl
ur

Pi
xe

la
te

Sh
ot

no
is

e

Sn
ow

Z
oo

m
bl

ur

Mean

Source 77.80 19.97 57.74 72.33 47.62 69.06 46.97 79.82 58.92 76.88 70.44 72.18 60.75 62.34
Tent 79.06 56.88 77.00 73.70 67.41 76.98 70.02 79.22 74.28 77.80 77.70 75.27 77.08 74.03
SSA 81.34 64.98 79.11 74.48 71.89 78.44 70.48 79.63 76.03 79.48 78.91 76.55 77.80 76.09
Tent+SSA 81.43 65.26 79.30 74.61 71.98 78.41 70.59 79.57 76.13 79.51 78.96 76.50 77.84 76.16

Oracle 85.62 77.57 83.93 79.59 78.68 83.15 76.42 84.09 81.45 84.27 83.60 81.94 83.28 81.82

Table 21: Test R2 scores of SSA on SVHN-MNIST with different learning rates. Higher is better.
Learning rate 0.0001 0.0005 0.001 0.005 0.01

R2 0.472±0.00 0.516±0.01 0.509±0.03 0.510±0.07 0.212±0.21

Table 22: Test R2 scores of SSA on UTKFace with different learning rates. Higher is better.

Learning rate D
ef

oc
us

bl
ur

M
ot

io
n

bl
ur

Z
oo

m
bl

ur

C
on

tr
as

t

E
la

st
ic

tr
an

sf
or

m

Jp
eg

co
m

pr
es

si
on

Pi
xe

la
te

G
au

ss
ia

n
no

is
e

Im
pu

ls
e

no
is

e

Sh
ot

no
is

e

B
ri

gh
tn

es
s

Fo
g

Sn
ow

Mean

0.0001 0.781 0.828 0.836 0.755 0.895 0.820 0.941 0.526 0.534 0.469 0.860 0.420 0.474 0.703
0.0005 0.786 0.828 0.834 0.767 0.893 0.820 0.938 0.551 0.566 0.513 0.861 0.434 0.508 0.715
0.001 0.791 0.830 0.835 0.769 0.891 0.822 0.936 0.569 0.585 0.540 0.861 0.446 0.510 0.722
0.005 0.796 0.832 0.815 0.723 0.877 0.815 0.918 0.587 0.594 0.550 0.844 0.424 0.406 0.706
0.01 0.769 0.804 0.769 0.668 0.863 0.792 0.899 0.523 0.574 0.464 0.811 0.327 0.293 0.658

Table 23: Test R2 scores of SSA on Biwi Kinect with different learning rates. Higher is better.
Female → Male Male → Female

Learning rate Pitch Roll Yaw Pitch Roll Yaw Mean

0.0001 0.787 0.955 0.505 0.842 0.849 0.581 0.753
0.0005 0.840 0.958 0.519 0.861 0.875 0.577 0.772
0.001 0.859 0.962 0.515 0.869 0.889 0.571 0.777
0.005 0.877 0.963 0.492 0.859 0.893 0.549 0.772
0.01 0.879 0.960 0.484 0.849 0.870 0.491 0.756

Table 24: Test R2 scores of SSA on SVHN-MNIST with different batch sizes. Higher is better
Batch size 8 16 32 64 128 256

R2 0.353±0.04 0.497±0.01 0.505±0.02 0.509±0.03 0.528±0.02 0.522±0.01

Table 25: Test R2 scores of SSA on UTKFace with different batch sizes. Higher is better.

Batch size D
ef

oc
us

bl
ur

M
ot

io
n

bl
ur

Z
oo

m
bl

ur

C
on

tr
as

t

E
la

st
ic

tr
an

sf
or

m

Jp
eg

co
m

pr
es

si
on

Pi
xe

la
te

G
au

ss
ia

n
no

is
e

Im
pu

ls
e

no
is

e

Sh
ot

no
is

e

B
ri

gh
tn

es
s

Fo
g

Sn
ow

Mean

8 0.779 0.804 0.796 0.651 0.867 0.804 0.914 0.499 0.516 0.416 0.834 0.408 0.390 0.668
16 0.782 0.809 0.808 0.699 0.874 0.807 0.915 0.545 0.562 0.476 0.848 0.421 0.424 0.690
32 0.792 0.824 0.830 0.749 0.885 0.816 0.929 0.566 0.583 0.533 0.858 0.446 0.482 0.715
64 0.791 0.830 0.835 0.769 0.891 0.822 0.936 0.569 0.591 0.540 0.861 0.446 0.510 0.722
128 0.788 0.828 0.835 0.780 0.893 0.822 0.939 0.581 0.590 0.545 0.862 0.445 0.523 0.725
256 0.789 0.823 0.836 0.770 0.896 0.821 0.940 0.540 0.594 0.551 0.870 0.439 0.522 0.723

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 26: Test R2 scores of SSA on Biwi Kinect with different batch sizes. Higher is better.
Female → Male Male → Female

Batch size Pitch Roll Yaw Pitch Roll Yaw Mean

8 0.872 0.930 0.450 0.819 0.770 0.468 0.718
16 0.870 0.953 0.463 0.858 0.857 0.525 0.754
32 0.868 0.961 0.498 0.868 0.886 0.562 0.774
64 0.859 0.962 0.515 0.869 0.889 0.571 0.777
128 0.841 0.960 0.524 0.863 0.883 0.569 0.773
256 0.819 0.957 0.521 0.855 0.870 0.583 0.768

Table 27: Test MAE scores on UTKFace with image corruption (lower is better). The best scores
are bolded.

Method D
ef

oc
us

bl
ur

M
ot

io
n

bl
ur

Z
oo

m
bl

ur

C
on

tr
as

t

E
la

st
ic

tr
an

sf
or

m

Jp
eg

co
m

pr
es

si
on

Pi
xe

la
te

G
au

ss
ia

n
no

is
e

Im
pu

ls
e

no
is

e

Sh
ot

no
is

e

B
ri

gh
tn

es
s

Fo
g

Sn
ow

Mean

Source 10.12 12.64 7.68 39.99 7.92 13.91 9.65 32.00 32.02 31.92 8.81 15.52 19.76 18.61
DANN 9.44 8.88 8.73 19.59 7.52 8.01 6.09 41.26 35.56 38.21 9.11 16.07 18.11 17.43
TTT 6.78 6.55 6.61 6.51 5.77 6.59 5.13 9.56 9.46 10.00 6.51 10.96 9.84 7.71

BN-Adapt 7.23 6.91 6.69 7.59 5.97 6.81 5.40 10.37 10.32 10.99 6.44 11.51 10.55 8.21
Prototype 21.52 21.62 21.65 20.00 21.28 21.02 21.27 18.46 18.45 18.42 21.71 20.71 20.70 20.52
FR 6.12 5.47 5.15 6.29 4.47 5.85 3.15 9.99 9.87 10.53 5.03 11.04 10.36 7.18
VM 28.28 28.14 28.42 27.45 27.75 27.74 26.97 29.07 29.21 29.05 27.80 29.50 29.19 28.35
RSD 6.35 5.68 5.25 6.60 4.61 5.93 3.34 10.26 10.35 10.94 5.12 11.13 9.98 7.35
SSA (ours) 6.05 5.52 5.09 6.05 4.46 5.72 3.27 9.05 8.95 9.29 5.01 10.60 9.50 6.81

Oracle 5.21 4.55 4.53 4.96 3.96 4.92 2.64 8.44 8.28 8.42 4.45 10.03 8.07 6.03

Table 28: Test MAE scores on Biwi Kinect (lower is better). The best scores are bolded.
Female → Male Male → Female

Method Pitch Roll Yaw Pitch Roll Yaw Mean

Source 0.150 0.081 0.087 0.160 0.171 0.093 0.124
DANN 0.163±0.01 0.163±0.01 0.136±0.01 0.181±0.01 0.166±0.01 0.147±0.00 0.159±0.00

TTT 0.283±0.02 0.236±0.00 0.140±0.00 0.165±0.00 0.212±0.00 0.190±0.00 0.205±0.00

BN-adapt 0.146±0.00 0.085±0.00 0.090±0.00 0.153±0.00 0.134±0.00 0.090±0.00 0.116±0.00

Prototype 6.935±0.00 - - - - - 6.935±0.00

FR 0.376±0.05 0.192±0.01 0.248±0.02 0.212±0.01 0.150±0.01 0.182±0.02 0.226±0.01

VM 0.367±0.00 0.407±0.00 0.136±0.00 0.418±0.00 0.463±0.00 0.135±0.00 0.321±0.00

RSD 0.142±0.01 0.085±0.00 0.090±0.00 0.154±0.00 0.132±0.00 - 0.121±0.00

SSA (ours) 0.112±0.00 0.079±0.00 0.086±0.00 0.141±0.00 0.126±0.00 0.090±0.00 0.106±0.00

Oracle 0.054±0.00 0.054±0.00 0.059±0.00 0.076±0.00 0.068±0.00 0.065±0.00 0.063±0.00

Table 29: Test scores on SVHN-MNIST in the batched online setting. The best scores are bolded.
Method R2(↑) RMSE (↓) MAE (↓)

Source 0.406 2.232 1.608
TTT 0.296±0.01 2.430±0.01 1.587±0.01

BN-adapt 0.384±0.00 2.272±0.00 1.480±0.00

Prototype 0.484±0.00 2.080±0.00 1.489±0.00

FR 0.342±0.00 2.348±0.00 1.657±0.01

VM −227.105±7.22 43.729±0.69 37.021±0.72

RSD 0.312±0.08 2.397±0.15 1.607±0.15

SSA (ours) 0.488±0.01 2.072±0.03 1.265±0.02

Oracle 0.745±0.00 1.463±0.01 0.882±0.01

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 30: Test R2 scores on UTKFace with image corruption in the batched online setting. The best
scores are bolded.

Method D
ef

oc
us

bl
ur

M
ot

io
n

bl
ur

Z
oo

m
bl

ur

C
on

tr
as

t

E
la

st
ic

tr
an

sf
or

m

Jp
eg

co
m

pr
es

si
on

Pi
xe

la
te

G
au

ss
ia

n
no

is
e

Im
pu

ls
e

no
is

e

Sh
ot

no
is

e

B
ri

gh
tn

es
s

Fo
g

Sn
ow

Mean

Source 0.410 0.187 0.658 −3.906 0.701 0.069 0.595 −2.536 −2.539 −2.522 0.661 −0.018 −0.543 −0.676
TTT 0.742 0.758 0.773 0.778 0.828 0.769 0.860 0.519 0.531 0.483 0.776 0.391 0.462 0.667

BN-Adapt 0.726 0.758 0.757 0.719 0.822 0.774 0.849 0.492 0.504 0.451 0.788 0.375 0.437 0.650
Prototype −1.001 −1.017 −1.014 −0.719 −0.965 −0.907 −0.972 −0.514 −0.513 −0.511 −1.003 −0.823 −0.822 −0.829
FR 0.786 0.834 0.844 0.765 0.895 0.820 0.944 0.499 0.509 0.449 0.858 0.409 0.453 0.697
VM −1.457 −1.401 −1.503 −1.230 −1.327 −1.343 −1.251 −1.538 −1.538 −1.524 −1.330 −1.632 −1.577 −1.435
RSD 0.783 0.829 0.843 0.761 0.893 0.820 0.940 0.503 0.509 0.447 0.858 0.416 0.483 0.699
SSA (ours) 0.794 0.834 0.844 0.789 0.896 0.823 0.943 0.550 0.564 0.524 0.861 0.427 0.520 0.721

Oracle 0.825 0.868 0.863 0.824 0.908 0.845 0.951 0.578 0.586 0.577 0.872 0.472 0.605 0.752

Table 31: Test R2 scores on Biwi Kinect in the batched online setting. The best scores are bolded.
Female → Male Male → Female

Method Pitch Roll Yaw Pitch Roll Yaw Mean

Source 0.759 0.956 0.481 0.763 0.791 0.485 0.706
TTT −0.207±0.05 0.610±0.00 0.010±0.02 0.743±0.00 0.722±0.00 −0.296±0.00 0.264±0.01

BN-adapt 0.759±0.00 0.951±0.00 0.487±0.00 0.827±0.00 0.837±0.00 0.567±0.00 0.738±0.00

Prototype −317.740±0.02 - - - - - -
FR −0.124±0.06 0.818±0.02 −2.049±0.24 0.775±0.02 0.852±0.01 0.128±0.08 0.067±0.06

VM −0.242±0.01 −0.057±0.00 −0.089±0.00 −0.101±0.00 −0.051±0.00 −0.006±0.00 −0.091±0.00

RSD 0.768±0.01 0.951±0.00 0.486±0.00 0.826±0.00 0.838±0.00 - -
SSA (ours) 0.825±0.00 0.957±0.00 0.502±0.00 0.853±0.00 0.865±0.00 0.567±0.00 0.761±0.00

Oracle 0.923±0.00 0.971±0.00 0.672±0.00 0.925±0.00 0.934±0.00 0.717±0.01 0.857±0.00

25

	Introduction
	Problem Setting
	Test-time Adaptation for Regression
	Basic Idea: Feature Alignment
	Significant-subspace Alignment

	Experiment
	Dataset
	Setting
	Result
	Number of Dimensions of the Feature Subspace
	Regression Performance
	Ablation Study
	Feature Subspace Analysis

	Related Work
	Unsupervised Domain Adaptation
	Test-time Training
	Test-time Adaptation

	Conclusion
	Limitation
	Evaluation Metric
	Experimental Settings
	Datasets
	Pre-training on the Source Domain
	Test-time Adaptation

	Additional Experimental Results
	Metric for Feature Alignment
	Feature Visualization
	Effect of Original Feature Dimensions on the Subspace
	Additional Ablation
	Experiments on Vision Transformer
	Multi-task Regression Model
	Combination with Classification TTA
	Hyperparameter Sensitivity
	Additional Results
	Online Setup

