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ABSTRACT

Multi-domain reinforcement learning (RL) for large language models (LLMs)
involves highly intricate reward surfaces, posing significant challenges in finding
parameters that excel across all domains. Recent empirical studies have further
highlighted conflicts among domains, where gains in one capability often come at
the expense of another. However, approaches to mitigate such conflicts and enhance
multi-domain reasoning remain largely underexplored. To address this challenge,
we propose Curvature-Guided Policy Optimization (CGPO), a principled and scal-
able training framework to advance the multi-domain reasoning of LLMs. Inspired
by Newton’s method, CGPO exploits the geometric structure in the reward surface,
while sidestepping the prohibitive cost of Hessian computation. At each update,
CGPO processes domains in random order, preconditioning their gradients with
curvature information from other domains to foster richer cross-domain interac-
tions. This mechanism further promotes implicit gradient alignment by maximizing
inter-domain inner products in expectation, steering the parameters toward regions
that jointly enhance multi-domain performance. Extensive experiments on a mixed
dataset covering math, coding, science, and creative writing, evaluated across seven
widely-used benchmarks, show that CGPO significantly outperforms all baselines
in terms of faster reward improvement and stronger multi-domain capability.

1 INTRODUCTION

Large language models (LLMs) have recently achieved remarkable progress in complex reasoning
tasks, including mathematical problem solving (Yang et al., 2024; Yu et al., 2025a), code generation
(Ye et al., 2025; Zeng et al., 2025), and creative writing (Fein et al., 2025; Carrera et al., 2025). A
key driver behind these advances is reinforcement learning (RL), particularly policy optimization
methods such as PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024). While earlier work
primarily focused on applying RL within single domains (Hu et al., 2025; Yu et al., 2025a), more
recent studies have moved toward multi-domain reasoning, constructing diverse datasets (Cheng
et al., 2025), training general reward models (Ma et al., 2025), and empirically examining interactions
among different reasoning capabilities (Li et al., 2025b; Cheng et al., 2025).

Despite these advances, multi-domain RL for LLMs still confronts significant challenges. The
coexistence of diverse data distributions and reward signals produces highly complex reward surfaces,
making it difficult to find parameters that excel across all domains simultaneously (Vithayathil Vargh-
ese & Mahmoud, 2020; Crawshaw, 2020). Recent studies further show that, although multi-domain
RL can yield overall benefits, it is often hindered by cross-domain conflicts, where gains in one capa-
bility are accompanied by losses in another (Cheng et al., 2025; Li et al., 2025b). These difficulties
are further compounded by the nature of RL training: on one hand, online sampling (i.e., rollouts)
introduces unpredictable interactions among domain-specific samples; on the other hand, generating
rollouts is computationally expensive, and much of this effort is wasted when cross-domain conflicts
cancel out the contributions. These considerations make it crucial to develop RL frameworks that
fully exploit mixed datasets to enhance LLMs’ reasoning across diverse domains.

Cross-domain conflicts often manifest as gradient conflicts (Chen et al., 2025b), yet widely-used
approaches for mitigating them face notable limitations in the context of RL for LLMs. Most existing
methods intervene during gradient aggregation once conflicts occur, aiming to balance updates across
domains. On the one hand, they do not leverage the underlying geometry of the reward surface or loss
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landscape (Liu et al., 2023; Sener & Koltun, 2018). On noisy, rollout-based gradients, such purely
reactive strategies tend to amplify update variance and degrade both stability and performance. On the
other hand, many techniques require storing and manipulating all domain gradients simultaneously
on the GPU (Yu et al., 2020; Liu et al., 2024; 2021). This incurs substantial memory overhead that
grows rapidly with the number of domains and can even result in out-of-memory failures, severely
limiting the scalability of multi-domain RL for LLMs. Alternatively, recent work suggests that
second-order methods such as Newton’s method and its approximation SOAP (Vyas et al., 2025) can
mitigate gradient conflicts in PINNs (Wang et al., 2025), but their reliance on Hessian computations
renders them infeasible for the high-dimensional, rollout-heavy setting of RL for LLMs. These
limitations compellingly motivate the following question: How to mitigate cross-domain conflicts in
a manner that is both consistent with the nature of RL and efficient at scale, thereby enhancing
the multi-domain reasoning capabilities of LLMs?

In this paper, we propose CGPO, a principled and scalable policy optimization framework, to
enhance multi-domain reasoning for LLMs1. CGPO draws inspiration from Newton’s method, while
incorporating a design specifically adapted to the distinct challenges of multi-domain RL for LLMs.
Newton’s method exploits the geometric structure of the loss landscape (i.e., the Hessian matrix)
to precondition gradients, correcting directional deviations induced by anisotropy and facilitating
efficient convergence. To retain these benefits while circumventing the computational burden of
full Hessian computation, we adapt the preconditioning step into a lightweight mechanism tailored
for efficient RL training of LLMs. Specifically, at each parameter update, domains are processed
in random order, with each domain’s gradient modulated by curvature information from others,
thereby inducing rich cross-domain interactions. Another appealing feature of this mechanism
is that it implicitly aligns domain gradients by maximizing their inner products in expectation,
guiding the parameters toward regions of high cross-domain consistency. We validate CGPO on
a diverse dataset of 20k samples spanning mathematical reasoning, code generation, scientific
QA, and creative writing using Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct, evaluated across
seven benchmarks. Our results demonstrate that CGPO consistently outperforms a broad spectrum
of baselines—including curriculum learning strategies, gradient balancing techniques, and joint
learning—achieving faster reward gains and markedly stronger multi-domain reasoning capabilities.

2 PRELIMINARIES

2.1 MULTI-DOMAIN LANGUAGE MODELING AS REINFORCEMENT LEARNING

An LLM πθ (with parameters θ) defines a conditional probability distribution over output responses
y = [y1, . . . , yT ] given a query x ∼ D, represented as πθ(y | x) =

∏T
t=1 πθ(yt | x,y1:t−1). To

align LLMs with desired behaviors, recent work formulates language generation as a reinforcement
learning (RL) problem. The model acts as a policy that interacts with an environment by generating
responses y to queries x, and each response receives a reward R(x,y) ∈ R that reflects its quality.

In many real-world applications, LLMs are expected to perform well across multiple domains, each
corresponding to a distinct type of query or task. Formally, let there be K domains with query
distributions {Dk}Kk=1. Each domain k defines its own reward function Rk(·, ·), reflecting task-
specific quality criteria. Assuming equal importance for all domains, the multi-domain training
objective is to maximize the average expected reward (we abbreviate y ∼ πθ(· | x) as y ∼ πθ):
J (θ) = 1

K

∑K
k=1 Jk(θ) =

1
K

∑K
k=1 Ex∼Dk,y∼πθ

[Rk(x,y)]. We provide a discussion on extending
this formulation to non-uniform domain importance in Appendix E.2.

2.2 POLICY OPTIMIZATION ALGORITHMS

The multi-domain formulation in Section 2.1 reduces to the standard RL objective when expressed
with a generic query distribution D and reward function R, i.e., J (θ) = Ex∼D,y∼πθ

[R(x,y)].

Directly optimizing J (θ) is challenging due to the discrete, variable-length output space and
the dependency of the distribution πθ on the parameters θ. Instead, the policy gradient the-
orem (Sutton et al., 1998) provides an unbiased estimator for the gradient, i.e., ∇θJ (θ) =

1Additional discussion on the applicability of CGPO to LLM pre-training is provided in Appendix E.1.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Ex∼D,y∼πθ
[∇θ log πθ(y | x)A(x,y)], where A(x,y) = R(x,y) − b(x) denotes the advantage

of response y over a baseline b(x). In practice, the true advantage function is unknown and must be
estimated from rollouts. This is typically done by training a value function Vϕ(x) to approximate
the expected reward, and then computing an estimated advantage Â(x,y) = R(x,y)− Vϕ(x). By
combining this estimator with importance sampling using rollouts from an old policy πθold , one can
define a surrogate objective L(θ; θold,D) = Ex∼D,y∼πθold

[
πθ(y|x)

πθold
(y|x) Â(x,y)

]
.

While the theoretical surrogate objective using the true advantage A has a gradient that coincides
exactly with ∇θJ (θ) at θ = θold, practical objectives using the estimated advantage Â serve as
a first-order approximation. This approximation is reliable as long as the updated policy πθ re-
mains close to πθold . Building on this, Proximal Policy Optimization (PPO) (Schulman et al., 2017)
ensures stable policy updates by maximizing a clipped surrogate objective LPPO(θ; θold,D) =

Ex∼D,y∼πθold

[
min

(
πθ(y|x)

πθold
(y|x) Â(x,y), clip1+ε

1−ε

(
πθ(y|x)

πθold
(y|x)

)
Â(x,y)

)]
, where ε is a small hyper-

parameter and clipγhigh
γlow

(·) = clip(·, γlow, γhigh) is the clipping function.

However, the reliance of PPO on a separately trained critic model to estimate b(x) introduces
substantial memory and computational overhead. To address this, recent critic-free methods rep-
resented by GRPO (Shao et al., 2024) have emerged. GRPO estimates the baseline directly from
a group of sampled responses. Specifically, it samples G responses {y(i)}Gi=1 for each query x,
obtains their rewards {r(i)}Gi=1, and then computes a normalized advantage for each response:
Â(i) =

[
r(i) −mean

(
{r(j)}Gj=1

)] /
std
(
{r(j)}Gj=1

)
. The overall GRPO surrogate objective is

LGRPO(θ; θold,D) = Ex∼D,{y(i)}G
i=1∼πθold[

1

G

G∑
i=1

min

(
πθ(y

(i) | x)
πθold(y

(i) | x)
Â(i), clip

1+εhigh
1−εlow

(
πθ(y

(i) | x)
πθold(y

(i) | x)

)
Â(i)

)
− βD(i)

KL(πθ∥πref)

]
, (1)

where εlow, εhigh, and β are hyperparameters, πref is a reference policy (typically the initial model),
and D(i)

KL(πθ∥πref) is a sample-based KL divergence penalty. In this work, we adopt GRPO as our
base policy gradient algorithm due to its efficiency and scalability.

Surrogate Objectives as Faithful Gradient Approximators. While the policy gradient theorem
provides an unbiased gradient for the true advantage A, practical algorithms rely on estimated
advantages Â, which introduce variance. Surrogate objectives like PPO and GRPO are designed to
stabilize these gradients: PPO uses clipping to enforce a trust region, making ∇θLPPO(θ; θold,D) a
reliable approximation of ∇θJ (θ), while GRPO’s combination of clipping and KL regularization
similarly produces a stable gradient ∇θLGRPO(θ; θold,D) that approximates the KL-regularized
objective ∇θ (J (θ)− β′DKL(πθ∥πref)).

2.3 NEWTON’S METHOD FOR GRADIENT PRECONDITIONING

Newton’s method is a classical second-order optimization algorithm that leverages the curvature of
the objective to accelerate convergence. Given a twice-differentiable loss L(θ), the Newton update
is θt+1 = θt −H(θt)

−1g(θt), where g(θt) = ∇θL(θt) and H(θt) = ∇2
θL(θt) is the Hessian. By

preconditioning the gradient with local curvature, Newton’s method corrects for anisotropy, producing
more direct steps toward an optimum. It is particularly effective in complex, conflicting landscapes;
e.g., Wang et al. (2025) shows that Newton’s method and its approximate variant SOAP (Vyas et al.,
2025) mitigate gradient conflicts in PINNs and accelerate convergence.

However, directly applying Newton’s method to RL for LLMs is impractical: the Hessian is high-
dimensional and costly to compute or invert, and rollout-based gradients are noisy. Still, the principle
of leveraging curvature to guide updates provides a valuable foundation for designing optimization
strategies that handle conflicting gradients and complex surfaces, as we explore in Section 3.

3 CURVATURE-GUIDED POLICY OPTIMIZATION

Building on the preliminaries, we seek to leverage the insight that Newton’s method couples gradients
with curvature information—a property that can be particularly valuable in multi-domain RL for
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Figure 1: Illustration of CGPO (one update step). After generating responses, computing rewards,
and estimating advantages for each domain, CGPO randomly permutes the domain order and applies
updates sequentially, followed by interpolation with the original model. The parameter change
∆θ can be approximately decomposed into a single-domain gradient term—capturing per-domain
learning—and a cross-domain interaction term that facilitates transfer across domains. Note that
CGPO introduces only negligible additional computation overhead (see Section 4.3 for details).

LLMs, where interactions between domains are often complex and interdependent. Rather than
directly approximating the Newton update, which would be computationally prohibitive in our setting,
we distill its essential idea into a lightweight mechanism that induces cross-domain gradient-curvature
interactions via sequential task updates. Our method unfolds in three parts: Section 3.1 motivates the
design by analyzing the structure of the Newton update, Section 3.2 presents a simple perturbation-
based procedure to capture the desired interactions, and Section 3.3 integrates these components into
a practical algorithm, i.e., our proposed CGPO. An overview of CGPO is illustrated in Figure 1.

3.1 MOTIVATION: WHY HESSIAN-GRADIENT INTERACTIONS MATTER

The starting point of CGPO is an informal observation about Newton’s method. Although exact
second-order updates are infeasible in large-scale RL for LLMs, the Newton term Hg (omitting
θt) couples gradient and curvature, suggesting that such interactions may help reconcile conflicting
gradients in multi-domain learning. To illustrate, consider a heuristic expansion: H−1g ≈ (I− (I−
H))−1g ≈ (I+(I−H)+O((I−H)2))g ≈ 2g−Hg+O((I−H)2g), where the approximations are
informal and serve to reveal the structure rather than provide a rigorous formula. In the multi-domain
setting, where g =

∑K
k=1 gk and H =

∑K
k=1 Hk, the product −Hg then contains cross-domain

terms −Hjgi (i ̸= j), in which the curvature of domain j modulates the gradient of domain i.

These interactions effectively transmit curvature signals across tasks, amplifying, dampening, or
redirecting updates—capabilities absent in first-order methods. This motivates our key design
principle: instead of computing Hessians explicitly, we seek tractable mechanisms that induce such
cross-domain interactions to better align multi-domain optimization.

3.2 APPROXIMATE CROSS-DOMAIN INTERACTIONS VIA SEQUENTIAL UPDATES

Given the motivation above, the question is how to induce Hessian-gradient interactions without
explicitly computing Hessians. Our key idea is to approximate them by observing how the gradient
of one domain changes after parameter updates from another.

Consider two domains i and j. Let domain i updates the parameters from θ
(i)
pre to θ

(i)
post. Denoting the

Hessian of domain j at θ(i)pre by Hj

(
θ
(i)
pre

)
, the gradient of domain j then shifts as

gj

(
θ
(i)
post

)
− gj

(
θ(i)pre

)
≈ Hj

(
θ(i)pre

)(
θ
(i)
post − θ(i)pre

)
≈ ηHj

(
θ(i)pre

)
gi

(
θ(i)pre

)
, (2)

which corresponds to the cross-domain product Hjgi. This approximation is derived from a first-
order Taylor expansion and policy gradient ascent (see Appendix B.1 for the detailed derivation).
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Algorithm 1 CGPO (one epoch illustration)
1: Input: πθinit , reward functions {Rk}Kk=1, datasets {Dk}Kk=1
2: Hyperparameter: number of steps T,M , learning rate η, mixing coefficient α
3: Initialization: πref ← πθinit , πθnew ← πθinit
4: for t = 1, . . . , T do
5: πθold ← πθnew

6: Sample a batch D(t),k =
{
x
(i)
(t),k

}|D(t),k|

i=1
from Dk for 1 ≤ k ≤ K

7: Generate responses
{
y
(i,j)
(t),k

}G

j=1
∼ πθold

(
· | x(i)

(t),k

)
for 1 ≤ i ≤ |D(t),k|, 1 ≤ k ≤ K

8: Compute rewards
{
r
(i,j)
(t),k

}G

j=1
and advantages

{
Â

(i,j)
(t),k

}G

j=1
for 1 ≤ i ≤ |D(t),k|, 1 ≤ k ≤ K

9: for m = 1, . . . ,M do
10: Sample a mini-batch D(t,m),k from D(t),k for 1 ≤ k ≤ K
11: Let σ(1), . . . , σ(K) denote a random permutation of 1, . . . ,K
12: ϕ0 ← θnew
13: for k = 1, . . . ,K do
14: Update parameters by maximizing Eq. (1) with D(t,m),σ(k) and associated responses:

ϕk = ϕk−1 − η ·
|D(t,m),σ(k)|∑K
k=1 |D(t,m),k|

· gGRPO

(
ϕk−1; θold, D(t,m),σ(k)

)
15: θnew ← ϕ0 + α(ϕK − ϕ0)
16: Output: πθnew

Thus, sequential updates naturally generate the desired interaction term. Further, to extend beyond
two domains, we randomize the order of domains at each iteration. Over time, this exposes every
pair of domains to such interactions, allowing curvature information to propagate across domains.
Intuitively, each domain feels the curvature of others: one nudges the parameters, another responds,
producing coordinated updates that help reconcile conflicting objectives.

3.3 FULL ALGORITHM: RANDOMIZED CROSS-TASK INTERACTIONS

Building on the insights above, we now introduce CGPO, a principled algorithm for multi-domain
policy optimization, illustrated in Figure 1, with pseudocode in Alg. 1. At each training step, we
sample batches from all domains and generate multiple candidate responses under the current policy
(Lines 6-7). These responses are evaluated by domain-specific reward functions to obtain rewards
and advantage estimates (Line 8). We then repeatedly draw mini-batches (Lines 9-10) and perform
a randomized sequential update: domains are visited according to a random permutation (Lines
11-13), and at each step the parameters are updated with respect to one domain, conditioned on
perturbations induced by previously visited domains (Line 14). Finally, the updated parameters are
interpolated with the original ones using a mixing coefficient α (Line 15), stabilizing training by
balancing curvature-informed exploration with retention of the base policy.

To understand how sequential updates induce cross-domain Hessian–gradient interactions, consider
Lines 11–15. Let the domain order be σ(1), . . . , σ(K), and denote the loss, gradient, and Hessian of
domain k at parameter ϕ by Lk(ϕ), gk(ϕ), and Hk(ϕ). With ϕ0 → ϕ1 → · · · → ϕK , the gradient of
domain σ(k) at ϕk−1 can be expanded (see Appendix B.2) as

gσ(k)(ϕk−1) = gσ(k)(ϕ0)−
k−1∑
l=1

η|Dσ(l)|∑K
s=1 |Dσ(s)|

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2). (3)

For simplicity, assume uniform batch sizes |Dσ(l)|/
∑K

s=1 |Dσ(s)| = 1/K, then

gσ(k)(ϕk−1) = gσ(k)(ϕ0)−
η

K

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2). (4)
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Aggregating over k, the overall parameter change after one sequential pass is (see Appendix B.3)

α(ϕK − ϕ0) = −
αη

K

K∑
k=1

gk(ϕ0) +
αη2

K2

K∑
k=1

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2). (5)

The first term is the aggregated gradient; the second term contains cross-domain Hessian–gradient
products. Importantly, the expression above describes the update for a fixed permutation σ. Because
our algorithm re-samples σ independently at every iteration, the quantity relevant for understanding
CGPO’s behavior is the expectation over the random permutation σ. Taking expectation over σ
makes every ordered pair (i, j) appear with equal probability; symmetrizing their contributions
then yields Hi(ϕ0)gj(ϕ0) +Hj(ϕ0)gi(ϕ0) =

∂
∂ϕ0

(
gi(ϕ0)

⊤gj(ϕ0)
)

(please see Appendix B.4 for
details). This shows that the update encourages alignment of domain gradients. For an analysis of
why joint learning does not induce the same cross-domain effect, please see Appendix E.3.

After illustrating how the parameter change encodes both aggregated gradients and cross-domain
interactions, it is helpful to clarify the role of the final interpolation step. The vector ϕK−ϕ0 provides
a geometry-informed update direction enriched by these interactions. The mixing coefficient α then
controls how far we move along this direction (for ablations, see Section 4.3): a sufficiently large
α enables the method to benefit from curvature-informed coordination across domains, whereas an
excessively large value may push the update outside the locally smooth region where gradient-based
approximations remain reliable, potentially destabilizing training—analogous to taking an overly
large learning rate in standard optimization. Conversely, setting α too small would under-utilize the
information encoded in ϕK − ϕ0 and collapse the update to a near-identity update, losing the benefits
introduced sequential interactions. The interpolation therefore functions as a principled mechanism
that balances stability and effective use of cross-domain geometric information.

Crucially, this analysis is not restricted to surrogate losses Lk: as argued in Section 2.2, GRPO
surrogates provide faithful approximations of the true policy gradients within their trust regions.
Thus, the induced interactions improve alignment not only among surrogate gradients but also
among the true policy gradients ∇θJk(θ). In effect, randomized sequential updates encourage
cooperation across domains by introducing curvature–gradient couplings that steer optimization
toward coordinated improvements on the full multi-domain objective

∑K
k=1 Jk(θ).

Discussion. We highlight two clarifications to better situate our approach.

• Sequential updates is a common technique across different learning paradigms. For example, in
meta-learning, Reptile (Nichol et al., 2018) adopts sequential updates to learn an initial model for
rapid adaptation to new tasks, while in federated learning, methods such as FedAvg (McMahan
et al., 2017) aggregate sequential client updates to improve global optimization. However, these
precedents do not diminish the novelty of our contributions. First, our sequential update originates
from our observation of Newton’s method and its capability to navigate complex landscapes, where
inherent curvature–gradient interactions naturally emerge across domains. Second, we adapt this
mechanism to the multi-domain RL for LLMs setting, where domain-specific rewards and surrogate
policy gradients pose unique challenges absent in meta-learning or federated learning. Finally,
we integrate randomized ordering, surrogate faithfulness (via GRPO), and stabilization through
interpolation into a unified algorithm tailored for large-scale RLHF. These innovations collectively
distinguish CGPO as a novel and practical solution for multi-domain policy optimization.

• A natural concern is that multiple updates per step could inflate the effective learning rate. To avoid
this, we scale each gradient proportionally to its mini-batch size and normalize by the total across
domains. This ensures that the overall update magnitude is consistent with that of using a single
aggregated batch, thereby preserving comparability with standard mini-batch optimization.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Tasks and Datasets. We focus on enhancing the LLMs’ overall capabilities across four domains—
mathematical reasoning, code generation, scientific QA, and creative writing. These domains not
only represent core areas of current research interest but also span four distinct forms of reward
feedback, thereby ensuring both comprehensiveness and diversity. For mathematics, code, and
science, we construct subsets from the Guru dataset (Cheng et al., 2025) with attention to dataset
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size and sample difficulty (as Guru poses non-trivial challenges for 7B-scale models): the math
subset contains 6,250 samples, consisting of the 5,000 easiest problems (ranked by the pass rate
of Qwen2.5-7B-Instruct) and 1,250 more challenging ones; the code subset totals 4,740 samples,
comprising all 3,791 problems with a Qwen2.5-7B-Instruct’s pass rate of at least 25% plus an
additional 949 randomly sampled from the remainder, ensuring a roughly 4:1 ratio between easier
and harder samples; and the scientific QA subset includes the entire STEM split of Guru, with
3,591 samples. For creative writing, we randomly sample 2,000 samples each from the three most
popular datasets available on Huggingface (LitBench (Fein et al., 2025), Creative Writing-ShareGPT
(Nitral-AI, 2024), and wildchat-creative-writing-3k-rft (kevinshin, 2025)), yielding a dataset of 6,000
samples. For details of the datasets, please see Appendix C.1.

Baselines. We compare our CGPO with several representative baselines. For vanilla strategies, we
include joint learning, which directly trains on a multi-domain dataset without any special strategies.
For curriculum learning (CL), following the taxonomy in (Soviany et al., 2022), we include Omni-
Thinker (Li et al., 2025a), a progressive CL method, and self-paced CL, which schedules training
from easier to harder examples based on task difficulty (measured by pass rate). For gradient
balancing, we include FAMO (Liu et al., 2023), categorized in (Chen et al., 2025b) as a representative
approach for balancing gradient magnitudes across domains. We also attempted to implement gradient
manipulation methods such as PCGrad (Yu et al., 2020), but these require simultaneously storing and
operating on multiple per-domain gradients on GPUs, which leads to out-of-memory (OOM) issues
in the RL for LLM setting. For more details of baselines, please refer to Appendix C.2.

Training Details. We train Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on the multi-domain
dataset using the verl framework (Sheng et al., 2025). For the implementation of multi-domain
training in terms of data processing and reward design, we follow the codebases of (Cheng et al.,
2025) and (Ma et al., 2025). For math, we adopt rule-based rewards; for coding, we evaluate models’
outputs using unit test cases based on SandboxFusion (Bytedance-Seed-Foundation-Code-Team
et al., 2025); for scientific QA, we use a 1.5B General-Verifier (Ma et al., 2025) to assess the
consistency between model outputs and groundtruth answers; and for creative writing, we compare
model responses with reference answers using Qwen2.5-72B-Instruct. Besides, we require the model
to enclose its reasoning process within <think></think> tags and penalize responses that violate
this format requirement, along with domain-specific constraints. Details of the reward functions
are provided in Appendix C.3. We use a learning rate of 1 × 10−6, a prompt batch size of 128, a
mini-batch size of 64, a group size of 8, a rollout temperature of 1.0, εlow = 0.2, εhigh = 0.28, and
β = 0.001 for CGPO and all baselines. We run all experiments for one epoch on 8 NVIDIA A100
GPUs (80GB). For more details of hyperparameters, please see Appendix C.4.

Evaluation. We evaluate our models on seven widely-used benchmarks: MATH500 (Hendrycks
et al., 2021), AMC 2023 (MAA, 2023), HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021),
GPQA-diamond (Rein et al., 2023), SuperGPQA (Team et al., 2025), and WritingBench (Wu et al.,
2025). To ensure consistent scaling across benchmarks, the scores on WritingBench are multiplied
by 10. We use vLLM (Kwon et al., 2023) for efficient inference, generating 4 responses per query
with a temperature of 0.6 and top-p sampling of 0.95. Further details can be found in Appendix C.5.

4.2 MAIN RESULTS

CGPO boosts the multi-domain reasoning of LLMs. Table 1 presents the results across different
methods. From the table we make the following observations: (1) CGPO achieves the highest average
performance for both model scales (3B and 7B), ranking either first or second in most individual
domains. This demonstrates its effectiveness in enhancing multi-domain reasoning capabilities
of LLMs. (2) For smaller models (3B), CGPO consistently outperforms other baselines on code
generation and creative writing, while maintaining competitive performance on math and scientific
QA. FAMO and Omni-Thinker also provide gains over joint learning, particularly in code generation
and scientific QA, but they lag behind CGPO in creative writing. Self-paced CL remains the weakest
overall, likely due to imbalanced domain difficulty and insufficient coverage of informative responses
at different training stages. (3) For larger models (7B), CGPO achieves clear improvements across
nearly all domains, with the largest gains on code generation and creative writing, highlighting that
its benefits scale with model capacity. Notably, FAMO shows competitive results, especially in math
and creative writing, confirming that gradient balancing can help, but it still falls short of CGPO in
aggregating multi-domain knowledge effectively. These results collectively indicate that curriculum
learning and gradient weighting methods can provide partial improvements, but their reliance on task
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Table 1: Performance of models (Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct) trained on
the multi-domain dataset with different methods, evaluated on multiple benchmarks. The bold
font indicates the best result and an underline indicates the second-best result.

Methods Math Code Generation Scientific QA Creative Writing AVG
MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench

# Qwen2.5-3B-Instruct
Joint Learning 64.50 39.38 72.39 59.40 24.87 24.12 58.61 49.04
Omni-Thinker 65.65 41.50 71.95 58.80 21.34 26.75 57.90 49.13
Self-paced CL 65.30 38.75 70.12 58.80 24.37 24.72 57.82 48.55
FAMO 63.80 39.12 72.48 59.20 23.47 26.51 58.46 49.01
CGPO 64.20 39.71 74.29 60.80 24.37 26.63 63.04 ⋆50.42

# Qwen2.5-7B-Instruct
Joint Learning 76.00 56.25 79.88 68.60 19.70 32.75 63.15 56.62
Omni-Thinker 75.10 53.75 82.93 68.60 23.86 30.63 62.35 56.75
Self-paced CL 74.70 51.88 82.93 68.00 21.72 30.25 63.68 56.17
FAMO 75.65 55.63 82.54 68.80 23.07 31.49 63.62 57.26
CGPO 75.55 59.38 84.15 72.00 26.77 32.75 66.52 ⋆59.59
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Figure 2: Training reward curves for Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on four domains
(code, creative writing, math, and scientific QA), comparing CGPO and joint learning.

difficulty, loss, or gradient magnitude alone is insufficient. In contrast, CGPO leverages geometric
information via randomized sequential updates and interpolation, enabling coordinated multi-domain
optimization and consistent performance gains across mathematical reasoning, code generation,
scientific QA, and open-ended creative tasks.

CGPO achieves faster reward improvement across all domains. Figure 2 presents the training
reward curves of Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on the four domains, with all curves
smoothed using EMA to clearly reveal trends. For both model sizes, the curves of CGPO consistently
remain above those of joint learning. The advantage is particularly pronounced in code generation
and creative writing, while in math and scientific QA the improvement is evident but less striking.
Notably, compared with the other three domains, creative writing is more subjective, requiring the
model to generate diverse and creative outputs rather than strictly structured or precise answers; this
makes potential conflicts with the other domains the largest. The substantial advantage of CGPO
in the reward curve for creative writing compared to joint learning provides strong evidence that
CGPO effectively mitigates cross-domain conflicts. We also observe considerable differences in
initial reward levels across domains. Taking Qwen2.5-7B-Instruct as an example, creative writing
and scientific QA start near −0.4 and 0, respectively, reflecting largely incorrect outputs, whereas
math and especially coding begin from higher baselines (coding around 0.1). This indicates that
the models enter RL training with uneven domain-specific capabilities. Importantly, CGPO delivers
varing degrees of acceleration even for domains with comparable starting points, suggesting that
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Table 3: Ablation study on domain order randomization in CGPO with Qwen2.5-7B-Instruct.
The bold font indicates the better result.

Methods Math Code Generation Scientific QA Creative Writing AVG
MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench

CGPOfix 77.20 56.88 83.54 69.60 23.08 31.75 67.30 58.48
CGPO 75.55 59.38 84.15 72.00 26.77 32.75 66.52 59.59

Table 4: Ablation study on the effect of the mixing coefficient α in CGPO with Qwen2.5-7B-
Instruct. The bold font indicates the best result and an underline indicates the second-best result.

α
Math Code Generation Scientific QA Creative Writing AVG

MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench

0.9 75.85 55.88 84.15 71.20 21.72 32.25 66.01 58.15
1.2 75.55 59.38 84.15 72.00 26.77 32.75 66.52 59.59
1.5 75.55 55.25 81.10 69.20 23.36 35.37 66.47 58.04

factors such as dataset difficulty or reward function design may influence the speedup. Investigating
the underlying causes of these differences is left for future work.

4.3 ANALYSIS AND ABLATIONS

Table 2: Computation cost comparison be-
tween joint learning and CGPO (1 epoch).
Note that the units of total time and per-step
time are different (hours vs. minutes).

Methods Total (h) Step (min)
# Qwen2.5-3B-Instruct
Joint Learning 14.8 5.58
CGPO 16.0 6.04

# Qwen2.5-7B-Instruct
Joint Learning 17.8 6.72
CGPO 18.6 7.02

CGPO introduces only negligible additional com-
putation overhead. In multi-domain RL for LLMs,
the dominant computational bottleneck typically lies
in generating responses and computing rewards—
particularly in domains such as coding and creative
writing—rather than in the forward and backward
passes of the model itself. Against this backdrop,
the additional operations introduced by CGPO are
minimal. The sequential updates across domains
are essentially equivalent to splitting a mini-batch
into smaller chunks and processing them sequentially,
which incurs almost the same computational cost as
standard mini-batch training. Furthermore, the final
interpolation with the mixing coefficient α amounts
to a single vector operation, which is computationally negligible. Taken together, these factors ensure
that the overall overhead of CGPO is practically insignificant, and the total training cost remains
nearly identical to that of joint learning. As shown in Table 2, the per-step wall-clock time under
CGPO is only slightly higher than joint learning, confirming that our method adds no meaningful
overhead in practice. For timing experiments on 32B and 72B models, please see Appendix F.1.

Randomizing domain order is necessary for effective cross-domain interactions. We conduct
ablations to examine the necessity of randomizing domain order. Specifically, we compare the
standard randomized variant with a fixed-order variant (CGPOfix), where the sequence of domains
remains unchanged throughout training. As shown in Table 3, randomizing the order consistently
leads to higher average performance across all benchmarks. This result highlights that randomization
is essential: it ensures balanced sequential updates among domains, avoiding systematic bias in
Hessian–gradient interactions. In contrast, fixed ordering allows earlier domains to dominate updates,
while later domains can only adapt passively, reducing overall multi-domain coordination.

The mixing coefficient α plays a critical role in balancing stability and curvature exploitation.
To study its effect, we experiment with α ∈ {0.9, 1.2, 1.5} and report the corresponding multi-domain
performance in Table 4. Among these choices, α = 1.2 achieves the best overall average, reflecting a
favorable trade-off between retaining the base policy and incorporating curvature-informed updates.
Notably, the average performance of all tested α values exceeds that of the strongest baseline, FAMO
(57.26), indicating that CGPO is robust to the choice of α. The fact that all α values are close to 1.0
suggests that the interpolation does not substantially change the effective learning rate; the observed
gains therefore arise from the curvature-aware sequential updates rather than step size adjustments.
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5 RELATED WORK

Multi-domain RL for LLMs. RL has become central to post-training LLMs (Schulman et al., 2017;
Shao et al., 2024; Yu et al., 2025a; Liu et al., 2025), yet achieving stable improvements across multiple
domains remains challenging. One difficulty lies in designing reward functions that generalize across
diverse tasks. Some works propose broadly applicable reward computation, such as simplifying
binary rewards via ground-truth properties (Zhou et al., 2025) or using correctness likelihood (Yu
et al., 2025b). Others adopt domain-specific reward designs, e.g., hybrid rule-based, sandbox, and
LLM-as-a-judge systems (Li et al., 2025a). A second challenge is understanding cross-domain
interactions: Cheng et al. (2025) analyze how single-domain training affects other skills, while
Li et al. (2025b) extend this to math, coding, and puzzles. Most prior work relies on empirical
observations, and a deeper understanding of multi-domain optimization dynamics remains limited.

Mitigating Gradient Conflicts. Gradient interference is a major obstacle in multi-task learning
(Chen et al., 2025b). Approaches such as GradNorm (Chen et al., 2018), PCGrad (Yu et al., 2020),
MGDA (Sener & Koltun, 2018), ConFIG (Liu et al., 2024), and CAGrad (Liu et al., 2021) resolve
conflicts by balancing or projecting task gradients. While effective in standard MTL settings, they are
difficult to scale to RL for LLMs: many require storing all task gradients on-device, causing memory
bottlenecks, or operate reactively without leveraging reward-landscape geometry, leading to high
variance under noisy rollout-based gradients. These limitations motivate scalable, memory-efficient
mechanisms for mitigating cross-domain conflicts, as pursued by CGPO.

Second-Order Optimization Methods. The loss landscapes of deep neural networks are often
highly complex, posing challenges for first-order optimization algorithms, such as gradient descent.
Without insights into the geometric structure of the landscape, first-order methods can easily get
trapped in saddle points or narrow valleys, making it difficult to reach better local optima. In contrast,
second-order optimization methods, such as Newton’s method, exploit geometric information like the
Hessian matrix to precondition gradients according to the local curvature, offering stronger theoretical
guarantees. To mitigate the computational cost of full Hessian computation, various approximate
Newton methods have been proposed, including AdaGrad (Duchi et al., 2011), K-FAC (Martens
& Grosse, 2015), GGT (Agarwal et al., 2018), Shampoo (Gupta et al., 2018), and SOAP (Vyas
et al., 2025). Recent studies show that Newton’s method and SOAP (Vyas et al., 2025) can alleviate
gradient conflicts in PINNs (Wang et al., 2025), providing inspiration for our approach. However,
due to the massive parameter scale of LLMs, directly applying approximate variants of Newton’s
method in RL for LLMs is fundamentally infeasible (we provide a detailed discussion in Appendix
E.4). Motivated by this, we distill the core idea of leveraging curvature information and develop
CGPO, a principled and scalable framework for multi-domain RL in LLMs.

6 CONCLUSION AND LIMITATIONS

We present CGPO, a principled and scalable framework for multi-domain RL of LLMs. Inspired by
Newton’s method, CGPO leverages the geometric structure of the reward surfaces to precondition
gradients, while avoiding the cost of full Hessian computation. Through randomized sequential
updates, each domain’s gradient is modulated by curvature information from other domains, fostering
cross-domain interactions and implicitly aligning gradients. Experiments on a diverse multi-domain
dataset covering mathematical reasoning, code generation, scientific QA, and creative writing show
that CGPO outperforms all baselines, achieving faster reward improvement and stronger multi-domain
reasoning across all benchmarks.

Limitations. Although CGPO demonstrates consistent performance improvements across multiple
domains, several broader limitations remain. First, similar to existing multi-domain RL4LLMs
approaches (Li et al., 2025a), we employ external reward models for certain domains, which may
themselves be constrained by current LLM-based evaluation paradigms. For instance, in the creative
writing domain, using a single LLM-as-a-judge may introduce stylistic biases that reflect the limits of
automated evaluation. Second, similar to existing studies (Cheng et al., 2025; Li et al., 2025b), the
overall effectiveness depends on the coverage and granularity of domain-specific rewards, and future
advances in reward modeling may naturally enhance performance. Finally, while the randomized
sequential update scheme encourages cross-domain interaction, exploring more elaborate scheduling
strategies or structured coordination mechanisms remains an open direction for future work. We view
these limitations as reflecting broader challenges shared across current RL4LLMs research, and we
hope that our work can contribute to the community’s continued progress on addressing them.
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7 ETHICS STATEMENT

This work studies multi-domain reinforcement learning for LLMs using publicly available or appro-
priately licensed datasets across domains such as mathematics, coding, scientific QA, and creative
writing. No human subjects were directly involved. While our methods improve cross-domain
optimization, models trained with them could be misused to produce plausible but incorrect or unsafe
outputs. We strongly discourage any deployment outside research contexts and emphasize that reward
functions and training setups are designed to encourage safe and aligned outputs. All research was
conducted in accordance with the ICLR Code of Ethics, with no conflicts of interest or external
influence on methodology or results.

8 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed descriptions of our algorithm (CGPO) in Section 3.3
and Algorithm 1, including pseudo-code and key hyperparameters. Experimental setups, including
data processing, reward functions, and evaluation benchmarks, are described in Section 4 and
Appendix C. Where applicable, we provide references to publicly available datasets. All derivations,
approximations, and additional analyses supporting the method are included in Appendix B. Together,
these materials provide sufficient information for replication of the reported results.
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A LLM USAGE STATEMENT

In preparing this manuscript, we used a large language model (LLM) in two distinct ways. First, we
employed LLMs as an assistive tool for text refinement, including improving grammar, wording, and
clarity. Second, LLMs themselves are the primary subject of this research: we study reinforcement
learning (RL) training for LLMs. Accordingly, all experiments involve using large models for training,
inference, and scoring, as part of the methodology under investigation.

All scientific content, including problem formulation, methodology, experiments, and conclusions,
was developed and verified entirely by the authors. The authors take full responsibility for the integrity
and accuracy of the manuscript. No LLM was credited as an author, and all substantive research
contributions are attributable exclusively to the human authors.

B MATHEMATICAL DERIVATIONS

B.1 DETAILED DERIVATION OF EQ. (2)

Eq. (2) in Section 3.2 states:

gj

(
θ
(i)
post

)
− gj

(
θ(i)pre

)
≈ Hj

(
θ(i)pre

)(
θ
(i)
post − θ(i)pre

)
≈ ηHj

(
θ(i)pre

)
gi

(
θ(i)pre

)
. (6)

Derivation: Assuming the gradient function gj(θ) is smooth, we apply a first-order Taylor expansion
around θ

(i)
pre :

gj

(
θ
(i)
post

)
≈ gj

(
θ(i)pre

)
+Hj

(
θ(i)pre

)(
θ
(i)
post − θ(i)pre

)
+O(∥∆θ∥2), (7)

where Hj(θ) = ∇2
θLj(θ) is the Hessian matrix for domain j, and ∆θ = θ

(i)
post − θ

(i)
pre . Neglecting

higher-order terms and rearranging gives:

gj

(
θ
(i)
post

)
− gj

(
θ(i)pre

)
≈ Hj

(
θ(i)pre

)(
θ
(i)
post − θ(i)pre

)
. (8)

In policy optimization, parameters are updated via gradient ascent (maximizing rewards):

θ
(i)
post = θ(i)pre + ηgi

(
θ(i)pre

)
, (9)

where η is the learning rate. Substituting this into the previous equation yields:

θ
(i)
post − θ(i)pre = ηgi

(
θ(i)pre

)
, (10)

and therefore,

gj

(
θ
(i)
post

)
− gj

(
θ(i)pre

)
≈ ηHj

(
θ(i)pre

)
gi

(
θ(i)pre

)
, (11)

which is Eq. (2). This approximation shows that the gradient update from domain i influences the
gradient of domain j through the curvature of domain j.

B.2 DETAILED DERIVATION OF EQ. (3) AND EQ. (4)

Eq. (3) and Eq. (4) in Section 3.3 state:

gσ(k)(ϕk−1) = gσ(k)(ϕ0)−
k−1∑
l=1

η|Dσ(l)|∑K
s=1 |Dσ(s)|

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2) (12)

gσ(k)(ϕk−1) = gσ(k)(ϕ0)−
η

K

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2) (13)

Derivation: Consider the randomized sequential update: domains are processed in the order
σ(1), . . . , σ(K). The parameter update for each domain (using gradient ascent) is:

ϕk = ϕk−1 + ηkgσ(k)(ϕk−1), (14)
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where ηk = η|Dσ(k)|/
∑K

s=1 |Dσ(s)| is the scaled learning rate.

For domain σ(k), its gradient is evaluated at ϕk−1. Using a Taylor expansion around ϕ0:

gσ(k)(ϕk−1) = gσ(k)(ϕ0) +Hσ(k)(ϕ0)(ϕk−1 − ϕ0) +O(η2). (15)

Now compute ϕk−1 − ϕ0. Note that:

ϕk−1 = ϕ0 +

k−1∑
l=1

(ϕl − ϕl−1) = ϕ0 +

k−1∑
l=1

ηlgσ(l)(ϕl−1). (16)

To first order, we approximate gσ(l)(ϕl−1) ≈ gσ(l)(ϕ0) (error O(η2)):

ϕk−1 − ϕ0 ≈
k−1∑
l=1

ηlgσ(l)(ϕ0). (17)

Substituting into the Taylor expansion:

gσ(k)(ϕk−1) ≈ gσ(k)(ϕ0) +Hσ(k)(ϕ0)

(
k−1∑
l=1

ηlgσ(l)(ϕ0)

)
+O(η2). (18)

Substituting ηl = η|Dσ(l)|/
∑K

s=1 |Dσ(s)| gives Eq. (3).

If we assume uniform batch sizes, i.e., |Dσ(l)|/
∑K

s=1 |Dσ(s)| = 1/K, then ηl = η/K, which
simplifies to Eq. (4).

B.3 DETAILED DERIVATION OF EQ. (5)

Eq. (5) in Section 3.3 states:

α(ϕK − ϕ0) = −
αη

K

K∑
k=1

gk(ϕ0) +
αη2

K2

K∑
k=1

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2). (19)

Derivation: The total parameter change is:

ϕK − ϕ0 =

K∑
k=1

(ϕk − ϕk−1) =

K∑
k=1

ηkgσ(k)(ϕk−1). (20)

Using the approximation from Eq. (4) (uniform batch sizes):

gσ(k)(ϕk−1) ≈ gσ(k)(ϕ0)−
η

K

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0), (21)

and substituting ηk = η/K:

ϕK − ϕ0 ≈
K∑

k=1

η

K

[
gσ(k)(ϕ0)−

η

K

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0)

]

=
η

K

K∑
k=1

gσ(k)(ϕ0)−
η2

K2

K∑
k=1

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0). (22)

Multiplying by the mixing coefficient α:

α(ϕK − ϕ0) ≈
αη

K

K∑
k=1

gσ(k)(ϕ0)−
αη2

K2

K∑
k=1

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0). (23)

Note that
∑K

k=1 gσ(k)(ϕ0) =
∑K

k=1 gk(ϕ0) (permutation invariant), yielding Eq. (5).
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B.4 DERIVATION OF GRADIENT ALIGNMENT SYMMETRIZATION

In Section 3.3, it is mentioned that after randomization, the cross-term expectation symmetrizes as:

Hi(ϕ0)gj(ϕ0) +Hj(ϕ0)gi(ϕ0) =
∂

∂ϕ0

(
gi(ϕ0)

⊤gj(ϕ0)
)
. (24)

Derivation: The key mathematical insight is the following identity concerning the gradient of the
inner product between two gradients.

Consider the inner product S(ϕ0) = gi(ϕ0)
⊤gj(ϕ0). The gradient of this scalar function S with

respect to ϕ0 is given by:

∇ϕ0
S = ∇ϕ0

(
gi(ϕ0)

⊤gj(ϕ0)
)
= Hi(ϕ0)gj(ϕ0) +Hj(ϕ0)gi(ϕ0), (25)

where we have used the product rule and the symmetry of the Hessian matrices, Hj = H⊤
j . This

result can be seen by noting that the derivative of g⊤
i gj w.r.t. ϕ0 is (∂gi/∂ϕ0)

⊤gj+g⊤
i (∂gj/∂ϕ0) =

Higj +g⊤
i Hj . Since g⊤

i Hj is a row vector, its transpose is Hjgi. The gradient (as a column vector)
is therefore Higj +Hjgi.

Under a randomized ordering σ, the expectation of the cross-term involving Hσ(k)gσ(l) for k > l
will involve pairs (i, j) symmetrically. The update term derived from the second-order expansion
is proportional to Higj . The symmetric form Higj +Hjgi appearing in the gradient of the inner
product ∇ϕ0

(g⊤
i gj) indicates that, in expectation, the update encourages an increase in the inner

product between the gradients of different domains, thus promoting their alignment.

Remark. We would like to clarify the intended meaning of Eq. (5) and the role of the expectation
over permutations, in order to avoid possible ambiguities and to keep the presentation self-contained.

(1) Interpretation of Eq. (5). Eq. (5) is obtained from a deterministic Taylor expansion of one
sequential update pass conditioned on a fixed permutation σ. The resulting parameter change
decomposes into: (i) a first-order term corresponding to aggregated gradients, and (ii) a second-order
interaction term involving Hessian-gradient products. These Hessian-gradient interaction terms arise
deterministically from executing a sequential update under a specific ordering; they do not rely on
randomness or averaging. The expression makes explicit the structural cross-domain second-order
interactions induced by sequential updates.

(2) Role of the expectation over σ. The expectation over permutations is used to express a sym-
metry property. To make this more concrete, imagine that at the same parameter θt, we were
able—hypothetically, since the algorithm does not actually do this—to sample M independent

permutations
{
σ
(m)
t

}M

m=1
, each corresponding to an ordering τ

(m)
t =

(
σ
(m)
t (k)

)K
k=1

. In this hy-
pothetical scenario, as M → ∞, the events “i appears before j” and “j appears before i” would
occur with essentially equal frequency for every pair (i, j). This limiting symmetry is exactly what
our expectation argument is intended to express, and it is what leads to the symmetric combination
Higj +Hjgi in the discussion following Eq. (5).

In the actual algorithm, of course, we sample only one permutation at each iteration. This introduces
sampling error—but not bias in the expectation sense—because we do not average over multiple
permutations.

Importantly, this sampling error does not accumulate in a harmful way in practice. A helpful way to
view this is through an analogy with standard SGD: each stochastic gradient is, in expectation, equal
to the true gradient (just as the contributions of Higj and Hjgi are symmetric in expectation), yet in
practice we use only one stochastic gradient per step rather than averaging many samples—just as our
algorithm samples only one permutation per iteration rather than averaging over many permutations
at the same parameter. This practice in SGD does introduce variance and error, but it does not
undermine either the effectiveness of SGD or the usefulness of the statement that “the stochastic
gradient equals the true gradient in expectation”. The same phenomenon appears in our algorithm.

Therefore, when we refer to an expectation, we mean the conditional expectation taken at a fixed θt,
i.e., conditional on the past history Ft−1—just as the expectation of a stochastic gradient in SGD is
interpreted conditional on the current parameter value.
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C MORE DETAILS OF EXPERIMENTS

C.1 TASKS AND DATASETS

We focus on enhancing LLMs’ overall capabilities across four domains—mathematical reasoning,
code generation, scientific QA, and creative writing. These domains not only represent core areas of
current research interest but also span four distinct forms of reward feedback, thereby ensuring
both comprehensiveness and diversity.

• Mathematics: we construct a subset of 6,250 samples from the Guru dataset (Cheng et al., 2025).
This includes the 5,000 easiest problems (ranked by the pass rate of Qwen2.5-7B-Instruct) and
1,250 more challenging ones, ensuring a balance between accessible and difficult problems.

• Code generation: we select a total of 4,740 samples from Guru. Specifically, we take all 3,791
problems with a Qwen2.5-7B-Instruct’s pass rate of at least 25% and add 949 problems randomly
sampled from the remainder, yielding an approximate 4:1 ratio between easier and harder samples.

• Scientific QA: we include the entire STEM split of Guru, resulting in 3,591 samples. This
preserves the full coverage of science-related reasoning tasks while maintaining consistency with
prior benchmarks.

• Creative writing: we randomly sample 2,000 samples each from three popular Hugging-
face datasets—LitBench (Fein et al., 2025), Creative Writing-ShareGPT (Nitral-AI, 2024), and
wildchat-creative-writing-3k-rft (kevinshin, 2025)—to construct a dataset of 6,000 samples, ensur-
ing stylistic variety and broad coverage of open-ended writing abilities.

C.2 BASELINES

We compare our CGPO against four representative baselines: joint learning, Omni-Thinker (Li et al.,
2025a), Self-Paced CL, and FAMO (Liu et al., 2023).

• Joint learning. Joint learning is the most basic paradigm in MTL. It aggregates the loss functions
of all tasks into a single objective, enabling simultaneous optimization. As a straightforward
training strategy without any task-specific adjustments, joint learning serves as a reference point
for evaluating improvements brought by more advanced methods.

• Omni-Thinker. Omni-Thinker belongs to progressive CL methods as categorized in (Soviany et al.,
2022). It introduces the backward transfer (BWT) metric to quantify the extent of catastrophic
forgetting across domains. Based on BWT analysis, Li et al. (2025a) proposes a fixed training
order—code→ math→ scientific QA→ creative writing—with the goal of minimizing forgetting
induced by multi-domain learning.

• Self-paced CL. Self-paced CL enables the model to adaptively select training samples according
to its learning state. In our implementation, we employ Qwen2.5-7B-Instruct to rank samples by
winrate from easy to difficult, and train sequentially following this order. This curriculum reduces
the risk of being misled by difficult samples in the early stages, thereby improving stability and
promoting better generalization.

• FAMO. FAMO is a gradient-balancing approach for MTL. It adjusts loss weights to maximize
the improvement rate of the task that progresses the slowest, ensuring that all tasks advance at
a comparable pace. This balanced optimization strategy suppresses task dominance and guides
the model toward solutions that are both fairer across tasks and stronger in overall performance.
FAMO approximates weight updates using historical loss values instead of explicitly computing
multi-task gradients, reducing per-iteration time and memory complexity to O(1). This efficiency
makes it particularly suitable for large-scale LLM training.

C.3 REWARD FUNCTIONS

For all domains, we require the model to enclose its reasoning process within <think></think>
tags. The reward functions for the four domains are as follows.
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• Math. We adopt a rule-based reward function:

rmath(o, a) =


1.0, if o has a valid format and verifymath(oans, a) = true,
−0.5, if o has a valid format but verifymath(oans, a) = false,
−1.0, if o has an invalid format,

where oans denotes the predicted answer extracted from structured tags (e.g.,
<answer></answer>) in the model output o, and verifymath(·, ·) checks symbolic equivalence
between oans and the ground-truth answer a via a deterministic parser (e.g., handling equivalent
forms of expressions or equations).

• Code generation. We adopt a sandbox-based unit test reward:

rcode(o, test case) =


1.0, if o has a valid format and exec(oans) |= unittest(oans, test case),
−0.5, if o has a valid format but exec(oans) ̸|= unittest(oans, test case),
−1.0, if o has an invalid format (syntactically invalid),

where oans is the generated code, executed in a sandbox and validated against the unit tests
associated with the sample; |= denotes logical satisfaction.

• Scientific QA. We employ a 1.5B General-Verifier2 (Cheng et al., 2025) to assess consistency
between the model’s output and the ground-truth answer:

rqa(o, a) =


1.0− 0.05 ·min(||oans| − |a|| , 10) , if o has a valid format and oans = a,

0, if o has a valid format but oans ̸= a,

−1.0, if o has an invalid format,

where oans is the extracted answer content. Here, “valid format” means the response adheres to QA
conventions (e.g., no garbled text, complete sentences).

• Creative writing. We adopt an LLM-as-a-Judge strategy, scoring the model’s output o against a
reference oref via pairwise comparison:

rwriting(o, oref) =


1.0, if o has a valid format and o ≻ oref,

0.25, if o has a valid format and o ∼ oref,

−0.5, if o has a valid format and o ≺ oref,

−1.0, if o has an invalid format,

where o ≻ oref (preferred), o ∼ oref (tie), and o ≺ oref (worse) are determined by a fixed evaluator
(Qwen2.5-72B-Instruct) serving as the judge.

C.4 HYPERPARAMTERS

We use a learning rate of 1 × 10−6, a prompt batch size of 128, a mini-batch size of 64, a group
size of 8, a rollout temperature of 1.0, εlow = 0.2, εhigh = 0.28, and β = 0.001 for CGPO and all
baselines. All methods are trained for one epoch. For the mixing coefficient α, we tune it within the
range of 0.5-1.5, and provide an ablation study on α in Section 4.3.

C.5 EVALUATION

To comprehensively evaluate cross-domain capabilities, we adopt authoritative benchmarks spanning
four domains: Math, Coding, Scientific QA, and Creative Writing. The evaluation settings are
detailed below:

• Math domain
– MATH500 (Hendrycks et al., 2021): A set of 500 challenging problems sampled from the

full MATH dataset, covering seven areas: elementary algebra, algebra, geometry, number
theory, combinatorics, probability, and calculus. Problems are presented in open-ended
form and require precise solutions. This benchmark is widely adopted for assessing LLMs’
mathematical reasoning and problem-solving abilities.

2https://huggingface.co/TIGER-Lab/general-verifier
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– AMC 2023 (MAA, 2023): A set of 50 questions taken from the AMC 12A and 12B (2023)
contests, spanning algebra, geometry, number theory, combinatorics, and probability. Multiple-
choice options are removed, requiring models to directly output the final answer. This
benchmark focuses on higher-order reasoning, problem analysis, and accurate calculation.

• Coding domain
– HumanEval (Chen et al., 2021): Consisting of 164 human-written Python programming

tasks, ranging from basic algorithms to medium-level function implementations. It evaluates
whether models can generate correct and executable code from natural language descriptions.

– MBPP (Austin et al., 2021): A collection of 974 beginner-level Python problems designed
to test the ability to synthesize short programs from natural language instructions. It is a
standard benchmark for fundamental code generation.

• Scientific QA domain
– GPQA (diamond split) (Rein et al., 2023): Graduate-level QA items written and verified

by domain experts across physics, chemistry, biology, and earth sciences. The diamond split
represents the most difficult and highest-quality subset, specifically constructed to prevent
shallow memorization or pattern matching. To ensure consistent evaluation, we reconstruct
ordered option lists using randomized indexing.

– SuperGPQA (Team et al., 2025): Comprising 285 interdisciplinary graduate-level reasoning
problems, curated to prevent direct solutions via search engines. To reduce computational
cost, we use random seed 42 to sample 200 problems, ensuring both representativeness and
reliable measurement of deep reasoning ability.

• Creative Writing domain
– WritingBench (Wu et al., 2025): A benchmark of 1000 real-world writing tasks spanning

6 domains and 100 sub-themes, covering diverse styles, task types, and difficulty levels.
It evaluates generated text on quality, coherence, creativity, and task alignment through a
structured scoring framework. For efficiency, we sample 200 requests using random seed
42, and apply the official critic model WritingBench-Critic-Model-Qwen-7B3 for
automated scoring, striking a balance between evaluation cost and representativeness.

D RELATED WORK

Multi-domain RL for LLMs. The application of RL in LLMs receives widespread attention
(Schulman et al., 2017; Shao et al., 2024; Yu et al., 2025a; Liu et al., 2025). However, RL strategies
that simultaneously and steadily enhance the capabilities of LLMs across multiple domains remain an
open challenge. A key difficulty in this area lies in designing reward functions that work effectively
across diverse domains. Some researchers develop reward computation methods that are broadly
applicable across multiple domains. For example, Zhou et al. (2025) simplify the binary reward
function by leveraging properties of the ground truth. RLPR (Yu et al., 2025b) constructs its reward
based on the probability of generating correct outputs. Other researchers create distinct reward
computation methods tailored to specific domains. For instance, Li et al. (2025a) propose a hybrid
reward system that employs rule-based, sandbox-based, and LLM-as-a-Judge frameworks, customized
for different types of data. Another challenge lies in appropriately handling interactions among
multiple domains. Cheng et al. (2025) study the effects of single-domain training on other domains.
Li et al. (2025b) further examine interactions across several domains, including math, coding, and
puzzle solving. Existing approaches mainly rely on experimental and qualitative observations, while
a deeper understanding of cross-domain interactions remains largely unexplored.

Mitigating Gradient Conflicts. Gradient conflicts pose a major challenge in machine learning,
leading to slow learning and wasted computation (Chen et al., 2025b). Much work in multi-task
learning addresses this by balancing or projecting gradients to reduce interference, such as GradNorm
(Chen et al., 2018), which adjusts each task’s gradient according to its relative loss, PCGrad (Yu
et al., 2020), which projects away conflicting directions, MGDA (Sener & Koltun, 2018), which
seeks Pareto-optimal updates, and ConFIG (Liu et al., 2024) or CAGrad (Liu et al., 2021), which
optimize updates under constraints to ensure conflict-free directions. While effective in standard

3https://huggingface.co/AQuarterMile/WritingBench-Critic-Model-Qwen-7B
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MTL, these approaches face key limitations in RL for LLMs: they generally either require storing
all domain gradients on the GPU, which quickly becomes memory-intensive and can often cause
out-of-memory failures, or act reactively without leveraging the underlying geometry of the reward
landscape, which usually makes them prone to high variance on noisy, rollout-based gradients. These
challenges motivate scalable, memory-efficient methods that can mitigate cross-domain conflicts
while supporting multi-domain RL training, such as our proposed CGPO.

Second-Order Optimization Methods. The loss landscapes of deep neural networks are often
highly complex, posing significant challenges for first-order optimization algorithms, such as gradient
descent, which rely solely on local gradient information. Without insights into the geometric structure
of the landscape, first-order methods can easily get trapped in saddle points or narrow valleys,
making it difficult to reach better local optima. In contrast, second-order optimization methods,
such as Newton’s method, exploit geometric information like the Hessian matrix to precondition
gradients according to the local curvature, offering stronger theoretical guarantees. To mitigate the
computational cost of full Hessian computation, various approximate Newton methods have been
proposed, including AdaGrad, K-FAC, GGT, Shampoo, and SOAP (Duchi et al., 2011; Martens
& Grosse, 2015; Agarwal et al., 2018; Gupta et al., 2018; Vyas et al., 2025). Recent studies show
that Newton’s method and its approximate variant SOAP (Vyas et al., 2025) can alleviate gradient
conflicts in physics-informed neural networks (PINNs) (Wang et al., 2025), providing inspiration
for our approach. However, due to the massive parameter scale of large language models, directly
applying Newton-type methods or their approximations in RL for LLMs is infeasible. Motivated by
this, we distill the core idea of leveraging curvature information and develop CGPO, a principled and
scalable framework for multi-domain RL in LLMs.

E MORE DISCUSSIONS

E.1 APPLICABILITY OF CGPO TO MULTI-DOMAIN PRE-TRAINING

Although our experiments focus on the RL post-training stage, the underlying mechanism of CGPO
naturally extends to the multi-domain setting of LLM pre-training. Pre-training corpora are inherently
heterogeneous, and the aggregation of losses across diverse domains can lead to a complex optimiza-
tion landscape. Since CGPO is designed to alleviate such difficulty by leveraging curvature-informed
interactions induced by sequential updates, the framework is conceptually agnostic to the specific
form of the loss and can, in principle, be applied during pre-training without modification.

It is also worth noting that CGPO is developed to address challenges unique to RL for LLMs, many of
which are absent in the pre-training stage. As a result, the design space for multi-domain optimization
during pre-training is substantially broader. When the entire corpus is available offline, practitioners
may employ a wide range of well-established approaches, including data mixture and sampling
strategies (Shukor et al., 2025; Gu et al., 2024), continual or staged domain-specific pre-training
(Chen et al., 2025a), and retrieval-augmented pre-training (Izacard et al., 2023; Borgeaud et al.,
2022). These techniques are not directly applicable in RL4LLMs but can be highly effective during
pre-training, making the relative advantage of CGPO in this setting an open empirical question.

E.2 NON-UNIFORM DOMAIN IMPORTANCE IN MULTI-DOMAIN TRAINING

In practical multi-domain applications, different domains may carry different levels of importance.
While the main paper focuses on the uniform-weight objective

J (θ) = 1

K

K∑
k=1

Jk(θ),

this choice is primarily for conceptual clarity and to highlight the core contribution of CGPO—namely,
its ability to mitigate cross-domain optimization conflicts and improve multi-domain reasoning
performance.

The CGPO framework can be naturally extended to settings in which domains are assigned non-
uniform importance. Let each domain k be associated with a user-defined weight wk satisfying
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∑K
k=1 wk = 1. The training objective can then be written as

J (θ;w) =

K∑
k=1

wkJk(θ) =
1

K

K∑
k=1

(Kwk)Jk(θ). (26)

This formulation is equivalent to scaling each domain-specific loss and its corresponding gradient by
a factor proportional to its importance. Crucially, no modification to the CGPO algorithm is required:
the sequential updates, geometric interactions, and final interpolation behave identically as in the
uniform-weight case, with the only difference being the importance-adjusted gradient contributions.
This property allows CGPO to seamlessly accommodate prioritized tasks, enabling it to model
practical multi-domain scenarios in which some domains or skills must be emphasized more heavily
than others.

E.3 WHY JOINT LEARNING CANNOT REPRODUCE OUR CROSS-DOMAIN MECHANISM

In this section, we provide additional analysis comparing joint learning with the proposed sequential
mechanism, clarifying why joint learning cannot recover the same cross-domain Hessian–gradient
interactions.

E.3.1 SEQUENTIAL UPDATES INDUCE CLEAN CROSS-DOMAIN INTERACTIONS

As shown in Eq. (5) of the main paper, a single sequential pass over the domains—corresponding to
one parameter update—yields, up to O(η2),

ϕK − ϕ0 = − η

K

K∑
k=1

gk(ϕ0) +
η2

K2

K∑
k=1

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2). (27)

where σ is the random permutation sampled at this iteration.

Crucially, the expression above describes the update for a fixed permutation σ. Since our algorithm
re-samples σ independently at each iteration, the relevant quantity for understanding the behavior of
the sequential mechanism is the expectation over σ. Taking expectation symmetrizes the pairwise
interactions: each ordered pair (i, j) appears with equal probability. After symmetrization, we
have Hi(ϕ0)gj(ϕ0) + Hj(ϕ0)gi(ϕ0) = ∂

∂ϕ0

(
gi(ϕ0)

⊤gj(ϕ0)
)

(see Appendix B.4), yielding an
interpretable alignment effect across domains.

E.3.2 TWO-STEP JOINT LEARNING YIELDS MIXED SECOND-ORDER TERMS

To analyze why joint learning cannot replicate this mechanism, consider two consecutive joint-training
updates. Let

L(θ) = 1

K

K∑
k=1

Lk(θ), g(θ) = ∇L(θ) = 1

K

K∑
k=1

gk(θ), H(θ) = ∇2L(θ) = 1

K

K∑
k=1

Hk(θ).

Performing two gradient-descent steps with step size η—note that unlike the sequential pass above,
these constitute two separate parameter updates—and expanding up to second order gives

θt+2 − θt ≈ −2η g(θt) + η2 H(θt)g(θt)

= −2η

K

K∑
k=1

gk(θt) +
η2

K2

∑
1≤i̸=j≤K

Hi(θt)gj(θt) +
η2

K2

K∑
k=1

Hk(θt)gk(θt). (28)

This expression reveals three types of contributions:

1. Single-domain gradients gk(θt);

2. Cross-domain Hessian–gradient interactions Hi(θt)gj(θt) for i ̸= j;

3. Self-curvature terms Hk(θt)gk(θt).
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The presence of the self-curvature terms is the key structural difference from Eq. (27). Because both
updates in joint learning are taken with respect to the same aggregated loss, these self-curvature
components naturally arise and are typically of comparable magnitude to the cross-domain terms.
As a result, they can partially or fully cancel cross-domain contributions depending on curvature
structure. Thus, joint learning does not isolate cross-domain interactions. Its second-order structure
is an inseparable mixture of self- and cross-terms, lacking the clean symmetry and interpretability
obtained under the sequential scheme.

E.3.3 IMPLICATIONS FOR GRADIENT ALIGNMENT

Because joint learning yields both Higj and Hkgk terms, the effective update cannot be reduced to a
symmetric pairwise structure. In particular, it cannot be rewritten as the gradient of an inter-domain
alignment quantity such as g⊤

i gj . The self-curvature terms disrupt this symmetry, preventing the
simplification that underlies the alignment interpretation in our method.

By contrast, our sequential scheme avoids Hkgk entirely: each domain is updated once per sequential
pass, and its gradient is evaluated only after perturbations induced by other domains. Combined
with the expectation over random permutations, this yields a clean, symmetric second-order term
capturing cross-domain interactions.

E.4 WHY APPROXIMATE VARIANTS OF NEWTON’S METHOD ARE INFEASIBLE FOR RL
TRAINING OF LLMS

Second-order optimization methods broadly aim to exploit curvature information—typically through
matrix-based preconditioning—to enable more geometrically informed parameter updates. These ap-
proaches span a wide family of techniques, including Kronecker-factorized natural-gradient methods,
layer-wise matrix preconditioners, and approximate Newton-style updates. To illustrate why such
methods become impractical in RL training of LLMs, we examine three of the most representative
and advanced instances in this family—K-FAC (Martens & Grosse, 2015), Shampoo (Gupta et al.,
2018), and SOAP (Vyas et al., 2025)—and analyze the computational and memory implications of
applying their core mechanisms at LLM scale.

E.4.1 K-FAC

K-FAC (Martens & Grosse, 2015) is a Kronecker-factored approximation to natural gradient descent.
For a fully-connected (or linear) layer with weight matrix W ∈ Rdout×din , input activations a ∈ Rdin ,
and backpropagated output gradients g ∈ Rdout , the gradient can be written (for a single sample)
as ∇WL = ga⊤. If we vectorize W into w = vec(W) ∈ Rdoutdin , the Fisher information block
corresponding to w is

Fw = E
[
∇wL∇wL⊤].

Under the standard K-FAC independence assumptions (approximately independent a and g and
certain factorization properties), this block is approximated as a Kronecker product

Fw ≈ A⊗G, A = E
[
aa⊤

]
, G = E

[
gg⊤], (29)

where A ∈ Rdin×din and G ∈ Rdout×dout are the Kronecker factors maintained as running (exponential
moving) averages over mini-batches.

Preconditioned update. Natural gradient descent would apply F−1
w to the gradient ∇wL. Using the

approximation in Eq. (29) and the Kronecker identity (A⊗G)−1 = A−1 ⊗G−1, one obtains the
K-FAC preconditioned update for the weight matrix:

∆W ≈ −η ·G−1 · ∇WL ·A−1, Wt+1 = Wt +∆W, (30)

where η is the learning rate. In practice, A−1 and G−1 are not formed explicitly: K-FAC performs
eigendecompositions

A = UAΛAU
⊤
A, G = UGΛGU

⊤
G,

and then applies inverse (or inverse square-root) scalings in these eigen-bases. This requires storing
the factors A,G (and often their eigenvectors UA,UG) and repeatedly computing or reusing their
eigendecompositions.
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Memory cost at LLM scale. Consider a typical transformer block with hidden size din ≈ dout ≈ d.
For modern LLMs, d is in the range [4096, 8192]. Each Kronecker factor A or G is then a dense
d× d matrix. It is important to note that, for numerical stability, K-FAC implementations typically
store curvature factors in at least FP32, even when the model itself uses FP16/BF16. A dense d× d
FP32 matrix requires 4d2 bytes. For d = 4096, d2 = 40962 = 16,777,216 entries, which leads to

size of one factor (A or G) ≈ 16,777,216× 4 bytes ≈ 64 MB.

Thus storing both A and G for one weight matrix consumes about 2 × 64 MB ≈ 128 MB. A
transformer block at this width typically has multiple large projection matrices, such as self-attention
projections WQ,WK ,WV ,WO plus two large feed-forward matrices. Even if we conservatively
apply K-FAC only to four matrices per block (e.g., WQ,WK ,WV ,WO) and ignore the FFN, the
curvature state per block is already

curvature per block ≈ 4× 128 MB = 512 MB.

For a 7B LLM with roughly L ≈ 80 transformer blocks, this yields

extra K-FAC curvature memory ≈ 512 MB× 80 ≈ 40 GB per GPU,

only for storing A and G in FP32, without caching eigenvectors.

In practice, many K-FAC variants also cache eigendecompositions, i.e., UA,UG for each factor.
Each eigenvector matrix UA or UG is again a d× d FP32 matrix (another ∼ 64MB for d = 4096),
effectively doubling the curvature state:

curvature per weight (A,G,UA,UG) ≈ 4× 64 MB = 256 MB,
curvature per block (4 weights) ≈ 4× 256 MB = 1 GB,

curvature for 80 blocks ≈ 80 GB per GPU.

Thus, for a realistic configuration (FP32 factors + cached eigen-bases), even a 7B model with
d = 4096 requires on the order of 40-80GB of additional curvature memory per GPU.

This curvature memory is replicated across data-parallel workers: each GPU maintains its own copy
of the K-FAC state and participates in all-reduce operations to aggregate the factors. The cost is
therefore not amortized across 8 GPUs; it is incurred independently on each device.

Interaction with A100 memory budget. On A100 GPUs (80GB), RL training of LLMs already
pushes device memory close to saturation due to:

• model parameters (for a 7B model in FP16, parameters alone occupy ∼14-16GB),

• optimizer states (Adam or AdamW typically add at least another ∼2-4× parameter size, though
sharding/ZeRO may partially mitigate this),

• activations and KV caches from long-context rollouts (often tens of GB for sequence lengths in the
thousands).

Even under optimistic assumptions with aggressive activation checkpointing and optimizer sharding,
reserving an extra 40-80GB purely for K-FAC curvature is incompatible with the 80GB memory
budget of A100s. There is simply no room left for long-context RL rollouts or for scaling to larger
models.

Moreover, this overhead scales quadratically with the hidden size d. If we increase to d = 8192
(typical of larger LLMs), then d2 = 81922 = 67,108,864 entries, which leads to

size of one FP32 factor ≈ 67,108,864× 4 bytes ≈ 256 MB.

Repeating the above estimates, even storing only A and G (no eigenvectors) for four matrices per
block across L blocks yields

extra curvature memory ∼ O
(
L · 4 · 2d2

)
≈ tens to over 100 GB per GPU

for realistic depths and widths. Thus, at LLM scales, K-FAC curvature storage alone can easily
demand 50-100GB or more per GPU, making it infeasible on current 80GB accelerators, especially
in RL settings where rollout activations are also resident in memory.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Computation cost. K-FAC’s main computational bottleneck is computing and updating the eigende-
compositions of A and G for each layer. The complexity of eigendecomposition for a dense d× d
matrix is O(d3), and this dominates the cost of forming the inverse (or inverse square-root) factors.

For d = 4096, d3 = 40963 = 68,719,476,736 ≈ 6.9× 1010 FLOPs. Each K-FAC update of a single
factor (either A or G) therefore costs on the order of 1011 floating-point operations when accounting
for constant factors. For four large matrices per block and L ≈ 80 blocks, a full curvature refresh
(updating both A and G for all K-FAC blocks) involves on the order of

(2 factors)× (4 matrices)× 80︸ ︷︷ ︸
number of eigendecompositions

×6.9× 1010 ≈ 4.4× 1013 FLOPs

per curvature update.

In classical applications of K-FAC, these expensive updates are amortized by refreshing curvature
only every τ steps (e.g., τ ∈ [50, 200]) and reusing the same eigendecomposition in between. Even
with such amortization, empirical reports on convolutional and recurrent networks show that K-FAC
updates make each optimization step at least a few times more expensive than a first-order step when
curvature is refreshed regularly. At LLM scale, with many more and much wider layers, the O(d3)
factor makes this overhead more severe.

When we combine:

• the O(d3) eigendecompositions required for each K-FAC factor,

• the need to aggregate curvature statistics across data-parallel workers (extra communication),

• the already high per-step cost of LLM RL training (due to long-context rollouts and large models),

a realistic deployment of K-FAC at LLM scale would very plausibly induce a three- to five-fold
slowdown in effective optimization throughput compared to standard Adam or AdamW, even if
curvature is updated only every τ steps. Such a slowdown, on top of the massive memory overhead
outlined above, renders K-FAC effectively infeasible for RL training of modern LLMs.

E.4.2 SHAMPOO

Shampoo (Gupta et al., 2018) is a second-order preconditioning method that keeps Kronecker-factored
curvature statistics for each weight tensor, and then applies matrix inverse p-th roots of these statistics
to precondition the gradient. We focus on the matrix case, which already captures the scaling issues
at LLM widths.

Consider a matrix parameter Wt ∈ Rdout×din and its (per-minibatch) gradient

Gt ≜ ∇WLt ∈ Rdout×din .

Shampoo maintains two symmetric positive semidefinite (PSD) matrices per weight matrix,

Lt = ϵ Idout +

t∑
s=1

GsG
⊤
s ∈ Rdout×dout , (31)

Rt = ϵ Idin +

t∑
s=1

G⊤
s Gs ∈ Rdin×din , (32)

where ϵ > 0 is a small damping constant. In practice, Lt and Rt are updated by rank-din and rank-dout
increments of the form GtG

⊤
t and G⊤

t Gt on every optimization step.

The Shampoo update preconditions the gradient with inverse p-th powers of Lt and Rt. For a matrix
parameter (order-2 tensor), the original analysis leads to p = 4:

∇̃WLt = L
− 1

4
t Gt R

− 1
4

t , (33)

Wt+1 = Wt − η ∇̃WLt, (34)
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where η > 0 is the step size. The fractional powers are implemented via eigendecomposition: if
Lt = ULΛLU

⊤
L with ΛL = diag(λ1, . . . , λdout), then

L
− 1

4
t = UL Λ

− 1
4

L U⊤
L with Λ

− 1
4

L = diag
(
λ
− 1

4
1 , . . . , λ

− 1
4

dout

)
,

and similarly for R
− 1

4
t . For numerical stability, both the preconditioners and their eigen-

decompositions are typically kept in at least 32-bit floating point precision, even when Wt and
Gt are stored in FP16/BF16.

Memory cost at LLM scale. Assume a transformer block where all large matrices have approximately
square shape din ≈ dout ≈ d, with d ∈ [4096, 8192] typical for 7B-70B models. For each weight
matrix W, Shampoo maintains:

• Two curvature accumulators Lt,Rt ∈ Rd×d;

• In most practical implementations, the corresponding inverse fourth roots L
− 1

4
t ,R

− 1
4

t are also
stored, to avoid recomputing matrix roots every step.

Thus, per weight matrix we have roughly four dense d× d matrices in FP32:

#floats per curvature state ≈ 4d2,

memory per curvature state ≈ 4d2 × 4 bytes = 16d2 bytes.

For d = 4096, we have

d2 = 40962 = 16,777,216 ≈ 1.68× 107,

16d2 ≈ 2.68× 108 bytes ≈ 256 MB.

So a single large weight matrix requires on the order of

Shampoo curvature memory per weight ≈ 256 MB.

A transformer block typically contains six large matrices (e.g., WQ,WK ,WV ,WO and two feed-
forward matrices), so per block we obtain

curvature memory per block ≈ 6× 256 MB = 1536 MB ≈ 1.5 GB.

For a 7B-scale model with d = 4096 and about Nblock = 40 transformer blocks, the total Shampoo
curvature memory on one GPU is

curvature memory per GPU ≈ 1.5 GB×Nblock ≈ 1.5 GB× 40 ≈ 60 GB. (35)

For a larger 13B-scale model with d ≈ 5120 and the same number of blocks, the d2 scaling yields

d = 5120 ⇒ curvature memory ≈ 90-100 GB per GPU,

and for even wider 70B-scale models with d ≈ 8192, the full-matrix Shampoo preconditioners alone
would require several hundred GB of memory.

Crucially, these curvature statistics are optimizer state: in a standard data-parallel RL fine-tuning
setup without dedicated sharding of optimizer states (such as Distributed Shampoo), each GPU
replica keeps its own copy of Lt,Rt and their inverse roots for its local shard of parameters. This
memory is in addition to:

• Model parameters (often stored in FP16/BF16 together with first/second-moment optimizer states),
• Activations and attention KV caches required both for backpropagation and for collecting long-

context trajectories,
• The auxiliary models typically involved in RLHF pipelines (e.g., reward/scoring models and

reference policies), even in setups that do not maintain an explicit critic network.

Empirically, even first-order RLHF baselines (Adam/AdamW) already bring a 7B policy close to
the 80 GB limit of an A100 GPU once the policy, reward/scoring model, and reference model are
all active, especially with sequence lengths ≥ 1024 and realistic batch sizes. Back-of-the-envelope
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estimates and open-source RLHF reports indicate that a 7B RLHF pipeline can easily consume ∼ 60-
70 GB of GPU memory on each A100 GPU without any second-order optimizer states. Combining
this with the ∼ 60 GB of additional curvature memory estimated in Eq. (35) would clearly exceed
the 80 GB device capacity. In other words, full-matrix Shampoo at LLM scale effectively leaves no
headroom for rollouts, auxiliary models, or even storing the policy itself on a single A100 (80GB).

Computation cost. The two main sources of extra compute in Shampoo are:

• Updating curvature accumulators Lt and Rt;

• Computing matrix inverse 1/4-powers L
− 1

4
t and R

− 1
4

t .

(1) Curvature updates. For each weight matrix,

Lt = Lt−1 +GtG
⊤
t , Rt = Rt−1 +G⊤

t Gt.

Forming the products GtG
⊤
t and G⊤

t Gt costs

O(d2outdin + d2indout) ≈ O(d3)

FLOPs when din ≈ dout ≈ d. For a transformer with Nblock blocks and roughly six large matrices per
block, the per-step curvature update cost scales as

FLOPscurv ≈ Ccurv Nblock d
3, (36)

for some modest constant Ccurv (approximately O(10) when counting all GG⊤ and G⊤G computa-
tions per block).

For d = 4096 and Nblock = 80:

d3 = 40963 = 68,719,476,736 ≈ 6.87× 1010,

so Eq. (36) gives

FLOPscurv ∼ 10× 80× 6.9× 1010 ≈ 5–7× 1013 FLOPs per optimization step,

just to update Shampoo’s second-moment statistics for the large matrices in the network.

(2) Inverse fourth roots. Computing L
− 1

4
t and R

− 1
4

t requires either:

• Eigendecomposition or SVD (apply −1/4 to eigenvalues), or

• Iterative inverse-square-root schemes (e.g., Newton–Schulz),

both of which cost O(d3) per factor. One transformer block with six large matrices has twelve such
factors (L and R for each weight), giving

FLOPsroots, per update ≈ Croot × 12× d3,

where Croot depends on solver details.

Root updates are typically amortized by refreshing them every τ optimizer steps. With Nblock blocks,

FLOPsroots, per step ≈
Croot × 12×Nblock × d3

τ
. (37)

For d = 4096, Nblock = 80, and τ = 100:

FLOPsroots, per step ≈
12× 80× 6.9× 1010

100
≈ 3× 1011 FLOPs per step.

The total extra work per optimization step is therefore

FLOPsShampoo extra ≈ FLOPscurv + FLOPsroots, per step

≈ 5× 1013 + 3× 1011 ≈ O(1013) FLOPs per step. (38)
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Relative slowdown from FLOPs. Large-scale RLHF pipelines for LLMs already require substantial
per-step compute due to multiple forward/backward passes (policy, reference, reward/scoring, etc.)
and long-context sequences. Eq. (38) shows that full-matrix Shampoo introduces an additional
O(1013) FLOPs per optimization step, which is typically comparable to—or larger than—the cost of
the remainder of the RL update.

Thus, even without invoking any specific algorithmic details, full-matrix Shampoo is expected to
induce a multi-× reduction in optimization throughput solely from its second-order computations.

When combined with the∼ 60 GB curvature memory from Eq. (35), the method becomes impractical
for RL training of LLMs on A100 (80GB) systems:

• The curvature state alone exceeds the available memory once policy, reference, and reward models
are included;

• The extra O(1013) FLOPs per step impose a several-fold slowdown relative to standard first-order
optimizers.

In short, full-matrix Shampoo cannot be used for RL training of modern LLMs on currently available
hardware.

E.4.3 SOAP

SOAP (Vyas et al., 2025) is a second-order optimizer built on top of Shampoo. For a fully-connected
(or linear) layer with weight matrix W ∈ Rdout×din and gradient

G ≜ ∇WL ∈ Rdout×din ,

Shampoo maintains two curvature matrices that approximate second-moment information along the
output and input dimensions:

Lt = β2 Lt−1 + (1− β2)GtG
⊤
t , (39)

Rt = β2 Rt−1 + (1− β2)G
⊤
t Gt, (40)

where Lt ∈ Rdout×dout and Rt ∈ Rdin×din are updated as exponential moving averages, and β2 ∈ (0, 1)
is a decay coefficient.

Preconditioned update in the eigenbasis. SOAP periodically (every τ steps) computes eigendecom-
positions of the Shampoo preconditioners:

Lt = QL ΛL Q⊤
L , QL ∈ Rdout×dout , (41)

Rt = QR ΛR Q⊤
R, QR ∈ Rdin×din , (42)

where ΛL and ΛR are diagonal matrices of eigenvalues, and QL, QR collect the corresponding
eigenvectors. SOAP then rotates the gradient into this slowly changing eigenbasis:

G′
t = Q⊤

L Gt QR, (43)

and runs Adam-style first- and second-moment updates in the rotated coordinates:

M′
t = β1 M

′
t−1 + (1− β1)G

′
t, (44)

V′
t = β′

2 V
′
t−1 + (1− β′

2) (G
′
t ⊙G′

t), (45)

where M′
t,V

′
t ∈ Rdout×din , β1, β

′
2 ∈ (0, 1) are Adam-style coefficients, and ⊙ denotes element-wise

multiplication. The preconditioned update in the eigenbasis is

U′
t = M′

t ⊘
(√

V′
t + ε

)
, (46)

where ⊘ is element-wise division and ε > 0 is a small numerical constant. Finally, SOAP rotates this
update back to the original parameter space:

∆Wt = − ηQL U′
t Q

⊤
R, (47)

Wt+1 = Wt +∆Wt, (48)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

where η > 0 is the learning rate. Thus SOAP can be viewed as running Adam on a rotated version of
the gradient, where the rotation is given by the Shampoo preconditioner eigenbasis.

Optimizer state and memory cost at LLM scale. Consider a transformer block where dout ≈ din ≈ d
and the weight matrices are of size d× d. At SOAP scale, the optimizer state associated with a single
such matrix W includes:

• Shampoo curvature matrices Lt,Rt (each d× d),
• eigenvector matrices QL,QR (each d× d),
• rotated Adam moments M′

t,V
′
t (each d× d).

Altogether, this is six dense d× d matrices per weight matrix.

For numerical stability, these matrices are typically stored in at least FP32, even when the model
weights and activations are in BF16/FP16. A single dense d × d FP32 matrix requires 4d2 bytes.
Therefore, the SOAP-related optimizer state per weight matrix is

bytes per weight (SOAP state) = 6× 4d2 = 24d2 bytes. (49)

Let us instantiate this for a modern LLM width of d = 4096:

d2 = 40962 = 16,777,216,

24d2 = 24× 16,777,216 = 402,653,184 bytes.

Dividing by 10242 to convert to MiB, we have

SOAP state per weight ≈ 402,653,184

10242
≈ 384 MiB.

Thus, each single 4096× 4096 weight matrix carries roughly 384MiB of SOAP-specific state.

A typical transformer block at this width has at least four large projection matrices (for self-attention:
WQ,WK ,WV ,WO), not counting the feed-forward network. Even if we conservatively apply
SOAP only to these four matrices, the curvature and moment state per block is

SOAP state per block ≈ 4× 384 MiB = 1536 MiB ≈ 1.5 GB. (50)

For a 7B-parameter LLM with roughly L ≈ 80 transformer blocks, we obtain

total SOAP state ≈ 1.5 GB× 80 = 120 GB per GPU, (51)

only counting the FP32 matrices listed above, and ignoring any additional buffers or implementation
overhead.

Crucially, this optimizer state is replicated across data-parallel GPUs: each worker maintains its own
copy of Lt,Rt,QL,QR,M

′
t,V

′
t for its local parameters, and participates in all-reduce operations

for gradient aggregation. The 120 GB figure in Eq. (51) is therefore a per-device requirement; it is
not amortized across multiple GPUs.

Interaction with A100 memory budget in RL training. On A100 GPUs (80GB), RL training of
LLMs already pushes device memory close to saturation due to:

• model parameters (for a 7B model in FP16, parameters alone occupy ∼14-16GB),
• optimizer states (Adam or AdamW typically add at least another ∼2-4× parameter size, though

sharding/ZeRO may partially mitigate this),
• activations and KV caches from long-context rollouts (often tens of GB for sequence lengths in the

thousands).

Even under optimistic assumptions with aggressive activation checkpointing and optimizer sharding,
it is common to consume on the order of 60–70GB out of the 80GB budget on A100.

Adding the SOAP state from Eq. (51) would require around 120GB per GPU purely for curvature
and moment information, i.e.,

60–70 GB︸ ︷︷ ︸
existing RL pipeline

+ 120 GB︸ ︷︷ ︸
SOAP state

≳ 180 GB per GPU.
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This exceeds the A100 80 GB memory capacity by more than a factor of two, even before accounting
for safety margins and additional framework overhead. In practice, there is simply no configuration
(batch size, sequence length, or number of rollout trajectories) that allows both realistic RL training
of a 7B LLM and full SOAP optimizer state to coexist on an 80 GB device.

Moreover, the SOAP memory overhead scales quadratically with the hidden size d. If we increase to
d = 8192 (typical for larger LLMs), then

d2 = 81922 = 67,108,864,

24d2 = 24× 67,108,864 = 1,610,612,736 bytes ≈ 1536 MiB.
Thus, one 8192× 8192 weight would carry about 1.5GB of SOAP state, and four such matrices per
block over many blocks would push the per-GPU optimizer state well beyond 200GB. Therefore, at
realistic LLM widths and depths, the SOAP memory requirements are incompatible with the fixed
80 GB budget of A100 GPUs in RL settings.

Computation cost and slowdown in RL. SOAP inherits two major computational overheads:

• periodic eigendecompositions of Lt and Rt (every τ steps), and
• per-step rotations of gradients and updates into and out of the preconditioner eigenbasis.

The eigendecomposition of a dense d× d matrix has complexity O(d3). For d = 4096,

d3 = 40963 = 68,719,476,736 ≈ 6.9× 1010 FLOPs.
Each SOAP curvature refresh requires two such eigendecompositions per weight (for Lt and Rt), so
the cost per weight matrix is on the order of

FLOPs per weight (eigs) ≈ 2× 6.9× 1010 ≈ 1.4× 1011.

With four large matrices per block and L ≈ 80 blocks, a full curvature refresh involves
FLOPs per SOAP refresh ≈ (4 matrices)× (80 blocks)× 1.4× 1011

≈ 4.5× 1013 FLOPs. (52)
Even if this cost is amortized by updating the eigenbasis only every τ = 100 steps, the amortized
overhead is on the order of 4.5× 1011 FLOPs per training step, comparable to or exceeding the cost
of the forward-backward pass itself for a 7B model at moderate sequence lengths.

In addition, at every step (not just every τ steps), SOAP performs the rotations

G′
t = Q⊤

LGtQR, (53)

Ut = QLU
′
tQ

⊤
R, (54)

which each involve two dense d×d matrix multiplications (left and right multiplication) and therefore
have complexityO(d3) per large weight matrix. For d = 4096, these rotations add another substantial
multiple of 6.9× 1010 FLOPs per weight per step.

When combined across all large matrices and blocks, these extra O(d3) operations typically make
each SOAP step several times more expensive than a standard Adam/AdamW step. At LLM scale,
and especially in RL-style fine-tuning where:

• rollouts require long sequences and sufficiently large batch sizes for stable training,
• multiple model passes (policy, reference, reward/scoring, etc.) are performed per update,
• environment interaction and cross-device communication already contribute substantially to the

per-step cost,

this optimizer overhead becomes a dominant bottleneck. A conservative estimate is that SOAP would
induce at least a 3-5× slowdown relative to AdamW; for long-context RL training of large LLMs
with many wide layers, the combined effect of repeated eigendecompositions and per-step rotations
can easily push this into the 5-10× range in terms of effective tokens-per-second throughput.

Therefore, although SOAP is an attractive optimizer at moderate scales, its quadratic memory footprint
and cubic-time eigen-computation render it infeasible for RL training of modern LLMs on current
A100-class hardware.
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Table 5: Wall-clock time comparison between joint learning and CGPO on extremely large LLMs.
Model Device Method 50 steps (hours) Per step (min)

Qwen2.5-32B-Instruct 16 H200 GPUs Joint Learning 7.1 8.52
16 H200 GPUs CGPO 7.5 9.00

Qwen2.5-72B-Instruct 32 H200 GPUs Joint Learning 12.6 15.12
32 H200 GPUs CGPO 12.8 15.36

F MORE EXPERIMENTS

F.1 TIMING EXPERIMENTS ON 32B AND 72B MODELS

Extremely large LLMs place substantial computational demand on rollout generation, since the cost
of producing each token grows with model size. As model scale increases, rollout generation becomes
the dominant component of end-to-end training time, while variations in gradient-update scheduling
(e.g., sequential updates vs. a single aggregated update) account for only a small fraction of the total
compute.

To quantify this effect, we conduct timing experiments on two large models, Qwen2.5-32B-Instruct
and Qwen2.5-72B-Instruct. The 32B and 72B experiments are run on clusters of 16 and 32 H200
(140GB) GPUs, respectively. For both models, we measure the total wall-clock time and average per-
step time over the first 50 steps. These results provide a representative comparison of computational
overhead under realistic large-scale RL training conditions.

As shown in Table 5, across both model scales, the difference between joint learning and CGPO
remains marginal relative to the overall training time. This supports the observation that, at extremely
large scales, rollout generation dominates end-to-end runtime, and the additional gradient steps used
in CGPO do not introduce a meaningful computational bottleneck.

F.2 DISCUSSION ON THE SENSITIVITY TO THE NUMBER OF DOMAINS K

In this section, we provide additional analysis and experiments regarding how CGPO behaves as the
number of K increases. As discussed in the main paper, CGPO’s effectiveness is driven primarily by
the degree of cross-domain conflict, rather than by K itself. Here, we elaborate on this claim and
present new experimental evidence.

Key Observation. CGPO’s sequential curvature-informed mechanism is designed to mitigate cross-
domain conflicts. Therefore, its benefit scales with how much the domains disagree. Across all
experiments conducted—including those with substantially heterogeneous domain mixtures—we did
not observe any evidence of performance plateau or degradation as K increases.

Experimental Settings. To empirically verify this, we conducted three groups of experiments,
varying either the number of domains or the strength of cross-domain conflict:

1. Math + Code (moderate conflict): The datasets and evaluation benchmarks are identical to
those used in the main experiments.

2. Math + Creative Writing (high conflict): The datasets and evaluation benchmarks are
identical to those used in the main experiments.

3. Math + Code + Scientific QA + Creative Writing + Logic + Tabular: The datasets and
evaluation benchmarks for math, code, scientific QA, and creative writing follow the same
setup as in the main experiments. For the logic domain, we train on Zebra Puzzle (1.3k
samples) (Lin et al.) and Ordering Puzzle (1.9k samples), and evaluate on the test set of
Zebra Puzzle. For the tabular domain, we train on HiTab (4.3k samples) (Cheng et al., 2022)
and evaluate on its test set. Both the logic and tabular training and test splits use the filtered
versions provided by (Cheng et al., 2025). The reward functions for the logic and tabular
domains are rule-based.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 6: Performance of models (Qwen2.5-7B-Instruct) trained on the multi-domain dataset
(math + code) with different methods, evaluated on multiple benchmarks. The bold font indicates
the best result.

Methods Math Code Generation AVG
MATH500 AMC HumanEval MBPP

FAMO 76.25 57.37 84.01 71.40 72.26
CGPO 76.15 60.81 84.66 72.60 ⋆73.56

Table 7: Performance of models (Qwen2.5-7B-Instruct) trained on the multi-domain dataset
(math + creative writing) with different methods, evaluated on multiple benchmarks. The bold
font indicates the best result.

Methods Math Creative Writing AVG
MATH500 AMC WritingBench

FAMO 74.85 54.72 64.35 64.64
CGPO 75.10 58.94 67.01 ⋆67.02

Table 8: Performance of models (Qwen2.5-7B-Instruct) trained on the multi-domain dataset
(math + code + scientific QA + creative writing + logic + tabular) with different methods,
evaluated on multiple benchmarks. The bold font indicates the best result.

Methods Math Code Generation Scientific QA Creative Writing Logic Tabular AVG
MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench Zebra HiTab

FAMO 75.30 55.02 82.93 68.60 22.64 31.58 63.09 36.84 68.71 56.08
CGPO 74.90 59.84 83.88 70.80 26.91 31.72 65.08 37.63 69.57 ⋆57.81

We select FAMO for comparison in these experiments because it is the best-performing baseline at
the 7B scale in our main experiments. All other training details, reward functions, and evaluation
protocols follow the same setup as in the main paper.

Results. Across all configurations, CGPO remains stable and effective, as shown in Tables 6-8.
Importantly:

• The performance improvement in the math + creative writing setting (high conflict) is noticeably
larger than in the math + code setting (moderate conflict), confirming our claim that CGPO’s
advantage grows as cross-domain conflict increases.

• In the six-domain experiment, CGPO continues to deliver clear, consistent gains, showing that its
benefits persist even when K becomes large and the domain mixture is highly heterogeneous.

These results confirm that CGPO’s performance does not degrade as the number of domains increases.
Instead, its effectiveness is governed by the level of cross-domain conflict, and CGPO remains robust
even in large, diverse multi-domain training scenarios.
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