

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BOOSTING MULTI-DOMAIN REASONING OF LLMs VIA CURVATURE-GUIDED POLICY OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Multi-domain reinforcement learning (RL) for large language models (LLMs) involves highly intricate reward surfaces, posing significant challenges in finding parameters that excel across all domains. Recent empirical studies have further highlighted conflicts among domains, where gains in one capability often come at the expense of another. However, approaches to mitigate such conflicts and enhance multi-domain reasoning remain largely underexplored. To address this challenge, we propose Curvature-Guided Policy Optimization (CGPO), a principled and scalable training framework to advance the multi-domain reasoning of LLMs. Inspired by Newton’s method, CGPO exploits the geometric structure in the reward surface, while sidestepping the prohibitive cost of Hessian computation. At each update, CGPO processes domains in random order, preconditioning their gradients with curvature information from other domains to foster richer cross-domain interactions. This mechanism further promotes implicit gradient alignment by maximizing inter-domain inner products in expectation, steering the parameters toward regions that jointly enhance multi-domain performance. Extensive experiments on a mixed dataset covering math, coding, science, and creative writing, evaluated across seven widely-used benchmarks, show that CGPO significantly outperforms all baselines in terms of faster reward improvement and stronger multi-domain capability.

1 INTRODUCTION

Large language models (LLMs) have recently achieved remarkable progress in complex reasoning tasks, including mathematical problem solving (Yang et al., 2024; Yu et al., 2025a), code generation (Ye et al., 2025; Zeng et al., 2025), and creative writing (Fein et al., 2025; Carrera et al., 2025). A key driver behind these advances is reinforcement learning (RL), particularly policy optimization methods such as PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024). While earlier work primarily focused on applying RL within single domains (Hu et al., 2025; Yu et al., 2025a), more recent studies have moved toward multi-domain reasoning, constructing diverse datasets (Cheng et al., 2025), training general reward models (Ma et al., 2025), and empirically examining interactions among different reasoning capabilities (Li et al., 2025b; Cheng et al., 2025).

Despite these advances, multi-domain RL for LLMs still confronts significant challenges. The coexistence of diverse data distributions and reward signals produces highly complex reward surfaces, making it difficult to find parameters that excel across all domains simultaneously (Vithayathil Varghese & Mahmoud, 2020; Crawshaw, 2020). Recent studies further show that, although multi-domain RL can yield overall benefits, it is often hindered by cross-domain conflicts, where gains in one capability are accompanied by losses in another (Cheng et al., 2025; Li et al., 2025b). These difficulties are further compounded by the nature of RL training: on one hand, online sampling (i.e., rollouts) introduces unpredictable interactions among domain-specific samples; on the other hand, generating rollouts is computationally expensive, and much of this effort is wasted when cross-domain conflicts cancel out the contributions. These considerations make it crucial to develop RL frameworks that fully exploit mixed datasets to enhance LLMs’ reasoning across diverse domains.

Cross-domain conflicts often manifest as gradient conflicts (Chen et al., 2025b), yet widely-used approaches for mitigating them face notable limitations in the context of RL for LLMs. Most existing methods intervene during gradient aggregation once conflicts occur, aiming to balance updates across domains. On the one hand, they do not leverage the underlying geometry of the reward surface or loss

054 landscape (Liu et al., 2023; Sener & Koltun, 2018). On noisy, rollout-based gradients, such purely
 055 reactive strategies tend to amplify update variance and degrade both stability and performance. On the
 056 other hand, many techniques require storing and manipulating all domain gradients simultaneously
 057 on the GPU (Yu et al., 2020; Liu et al., 2024; 2021). This incurs substantial memory overhead that
 058 grows rapidly with the number of domains and can even result in out-of-memory failures, severely
 059 limiting the scalability of multi-domain RL for LLMs. Alternatively, recent work suggests that
 060 second-order methods such as Newton’s method and its approximation SOAP (Vyas et al., 2025) can
 061 mitigate gradient conflicts in PINNs (Wang et al., 2025), but their reliance on Hessian computations
 062 renders them infeasible for the high-dimensional, rollout-heavy setting of RL for LLMs. These
 063 limitations compellingly motivate the following question: *How to mitigate cross-domain conflicts in
 064 a manner that is both consistent with the nature of RL and efficient at scale, thereby enhancing
 065 the multi-domain reasoning capabilities of LLMs?*

066 In this paper, we propose CGPO, a principled and scalable policy optimization framework, to
 067 enhance multi-domain reasoning for LLMs¹. CGPO draws inspiration from Newton’s method, while
 068 incorporating a design specifically adapted to the distinct challenges of multi-domain RL for LLMs.
 069 Newton’s method exploits the geometric structure of the loss landscape (i.e., the Hessian matrix)
 070 to precondition gradients, correcting directional deviations induced by anisotropy and facilitating
 071 efficient convergence. To retain these benefits while circumventing the computational burden of
 072 full Hessian computation, we adapt the preconditioning step into a lightweight mechanism tailored
 073 for efficient RL training of LLMs. Specifically, at each parameter update, domains are processed
 074 in random order, with each domain’s gradient modulated by curvature information from others,
 075 thereby inducing rich cross-domain interactions. Another appealing feature of this mechanism
 076 is that it implicitly aligns domain gradients by maximizing their inner products in expectation,
 077 guiding the parameters toward regions of high cross-domain consistency. We validate CGPO on
 078 a diverse dataset of 20k samples spanning **mathematical reasoning, code generation, scientific
 079 QA, and creative writing** using Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct, evaluated across
 080 **seven benchmarks**. Our results demonstrate that CGPO consistently outperforms a broad spectrum
 081 of baselines—including curriculum learning strategies, gradient balancing techniques, and joint
 082 learning—achieving faster reward gains and markedly stronger multi-domain reasoning capabilities.

083 2 PRELIMINARIES

085 2.1 MULTI-DOMAIN LANGUAGE MODELING AS REINFORCEMENT LEARNING

087 An LLM π_θ (with parameters θ) defines a conditional probability distribution over output responses
 088 $\mathbf{y} = [y_1, \dots, y_T]$ given a query $\mathbf{x} \sim \mathcal{D}$, represented as $\pi_\theta(\mathbf{y} \mid \mathbf{x}) = \prod_{t=1}^T \pi_\theta(y_t \mid \mathbf{x}, \mathbf{y}_{1:t-1})$. To
 089 align LLMs with desired behaviors, recent work formulates language generation as a reinforcement
 090 learning (RL) problem. The model acts as a policy that interacts with an environment by generating
 091 responses \mathbf{y} to queries \mathbf{x} , and each response receives a reward $R(\mathbf{x}, \mathbf{y}) \in \mathbb{R}$ that reflects its quality.

092 In many real-world applications, LLMs are expected to perform well across multiple domains, each
 093 corresponding to a distinct type of query or task. Formally, let there be K domains with query
 094 distributions $\{\mathcal{D}_k\}_{k=1}^K$. Each domain k defines its own reward function $R_k(\cdot, \cdot)$, reflecting task-
 095 specific quality criteria. Assuming equal importance for all domains, the multi-domain training
 096 objective is to maximize the average expected reward (we abbreviate $\mathbf{y} \sim \pi_\theta(\cdot \mid \mathbf{x})$ as $\mathbf{y} \sim \pi_\theta$):
 097 $\mathcal{J}(\theta) = \frac{1}{K} \sum_{k=1}^K \mathcal{J}_k(\theta) = \frac{1}{K} \sum_{k=1}^K \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_k, \mathbf{y} \sim \pi_\theta} [R_k(\mathbf{x}, \mathbf{y})]$. We provide a discussion on extending
 098 this formulation to non-uniform domain importance in Appendix E.2.

100 2.2 POLICY OPTIMIZATION ALGORITHMS

101 The multi-domain formulation in Section 2.1 reduces to the standard RL objective when expressed
 102 with a generic query distribution \mathcal{D} and reward function R , i.e., $\mathcal{J}(\theta) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_\theta} [R(\mathbf{x}, \mathbf{y})]$.

104 Directly optimizing $\mathcal{J}(\theta)$ is challenging due to the discrete, variable-length output space and
 105 the dependency of the distribution π_θ on the parameters θ . Instead, the *policy gradient theorem*
 106 (Sutton et al., 1998) provides an unbiased estimator for the gradient, i.e., $\nabla_\theta \mathcal{J}(\theta) =$

107 ¹Additional discussion on the applicability of CGPO to LLM pre-training is provided in Appendix E.1.

108 $\mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_\theta} [\nabla_\theta \log \pi_\theta(\mathbf{y} \mid \mathbf{x}) A(\mathbf{x}, \mathbf{y})]$, where $A(\mathbf{x}, \mathbf{y}) = R(\mathbf{x}, \mathbf{y}) - b(\mathbf{x})$ denotes the advantage
 109 of response \mathbf{y} over a baseline $b(\mathbf{x})$. In practice, the true advantage function is unknown and must be
 110 estimated from rollouts. This is typically done by training a value function $V_\phi(\mathbf{x})$ to approximate
 111 the expected reward, and then computing an *estimated advantage* $\hat{A}(\mathbf{x}, \mathbf{y}) = R(\mathbf{x}, \mathbf{y}) - V_\phi(\mathbf{x})$. By
 112 combining this estimator with importance sampling using rollouts from an old policy $\pi_{\theta_{\text{old}}}$, one can
 113 define a *surrogate objective* $L(\theta; \theta_{\text{old}}, \mathcal{D}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_{\theta_{\text{old}}}} \left[\frac{\pi_\theta(\mathbf{y} \mid \mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y} \mid \mathbf{x})} \hat{A}(\mathbf{x}, \mathbf{y}) \right]$.
 114

115 While the theoretical surrogate objective using the true advantage A has a gradient that coincides
 116 exactly with $\nabla_\theta \mathcal{J}(\theta)$ at $\theta = \theta_{\text{old}}$, practical objectives using the estimated advantage \hat{A} serve as
 117 a first-order approximation. This approximation is reliable as long as the updated policy π_θ re-
 118 mains close to $\pi_{\theta_{\text{old}}}$. Building on this, Proximal Policy Optimization (PPO) (Schulman et al., 2017)
 119 ensures stable policy updates by maximizing a clipped surrogate objective $L_{\text{PPO}}(\theta; \theta_{\text{old}}, \mathcal{D}) =$
 120 $\mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_{\theta_{\text{old}}}} \left[\min \left(\frac{\pi_\theta(\mathbf{y} \mid \mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y} \mid \mathbf{x})} \hat{A}(\mathbf{x}, \mathbf{y}), \text{clip}_{1-\varepsilon}^{1+\varepsilon} \left(\frac{\pi_\theta(\mathbf{y} \mid \mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y} \mid \mathbf{x})} \right) \hat{A}(\mathbf{x}, \mathbf{y}) \right) \right]$, where ε is a small hyper-
 121 parameter and $\text{clip}_{\gamma_{\text{low}}}^{\gamma_{\text{high}}}(\cdot) = \text{clip}(\cdot, \gamma_{\text{low}}, \gamma_{\text{high}})$ is the clipping function.
 122

123 However, the reliance of PPO on a separately trained critic model to estimate $b(\mathbf{x})$ introduces
 124 substantial memory and computational overhead. To address this, recent critic-free methods rep-
 125 resented by GRPO (Shao et al., 2024) have emerged. GRPO estimates the baseline directly from
 126 a group of sampled responses. Specifically, it samples G responses $\{\mathbf{y}^{(i)}\}_{i=1}^G$ for each query \mathbf{x} ,
 127 obtains their rewards $\{r^{(i)}\}_{i=1}^G$, and then computes a normalized advantage for each response:
 128 $\hat{A}^{(i)} = [r^{(i)} - \text{mean}(\{r^{(j)}\}_{j=1}^G)] / \text{std}(\{r^{(j)}\}_{j=1}^G)$. The overall GRPO surrogate objective is

$$129 \quad L_{\text{GRPO}}(\theta; \theta_{\text{old}}, \mathcal{D}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \{\mathbf{y}^{(i)}\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}} \\ 130 \quad \left[\frac{1}{G} \sum_{i=1}^G \min \left(\frac{\pi_\theta(\mathbf{y}^{(i)} \mid \mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}^{(i)} \mid \mathbf{x})} \hat{A}^{(i)}, \text{clip}_{1-\varepsilon_{\text{low}}}^{1+\varepsilon_{\text{high}}} \left(\frac{\pi_\theta(\mathbf{y}^{(i)} \mid \mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}^{(i)} \mid \mathbf{x})} \right) \hat{A}^{(i)} \right) - \beta \mathbb{D}_{\text{KL}}^{(i)}(\pi_\theta \parallel \pi_{\text{ref}}) \right], \quad (1)$$

131 where ε_{low} , $\varepsilon_{\text{high}}$, and β are hyperparameters, π_{ref} is a reference policy (typically the initial model),
 132 and $\mathbb{D}_{\text{KL}}^{(i)}(\pi_\theta \parallel \pi_{\text{ref}})$ is a sample-based KL divergence penalty. In this work, we adopt GRPO as our
 133 base policy gradient algorithm due to its efficiency and scalability.

134 **Surrogate Objectives as Faithful Gradient Approximators.** While the policy gradient theorem
 135 provides an unbiased gradient for the true advantage A , practical algorithms rely on estimated
 136 advantages \hat{A} , which introduce variance. Surrogate objectives like PPO and GRPO are designed to
 137 stabilize these gradients: PPO uses clipping to enforce a trust region, making $\nabla_\theta L_{\text{PPO}}(\theta; \theta_{\text{old}}, \mathcal{D})$ a
 138 reliable approximation of $\nabla_\theta \mathcal{J}(\theta)$, while GRPO’s combination of clipping and KL regularization
 139 similarly produces a stable gradient $\nabla_\theta L_{\text{GRPO}}(\theta; \theta_{\text{old}}, \mathcal{D})$ that approximates the KL-regularized
 140 objective $\nabla_\theta (\mathcal{J}(\theta) - \beta' \mathbb{D}_{\text{KL}}(\pi_\theta \parallel \pi_{\text{ref}}))$.
 141

142 2.3 NEWTON’S METHOD FOR GRADIENT PRECONDITIONING

143 Newton’s method is a classical second-order optimization algorithm that leverages the curvature of
 144 the objective to accelerate convergence. Given a twice-differentiable loss $L(\theta)$, the Newton update
 145 is $\theta_{t+1} = \theta_t - \mathbf{H}(\theta_t)^{-1} \mathbf{g}(\theta_t)$, where $\mathbf{g}(\theta_t) = \nabla_\theta L(\theta_t)$ and $\mathbf{H}(\theta_t) = \nabla_\theta^2 L(\theta_t)$ is the Hessian. By
 146 preconditioning the gradient with local curvature, Newton’s method corrects for anisotropy, producing
 147 more direct steps toward an optimum. It is particularly effective in complex, conflicting landscapes;
 148 e.g., Wang et al. (2025) shows that Newton’s method and its approximate variant SOAP (Vyas et al.,
 149 2025) mitigate gradient conflicts in PINNs and accelerate convergence.

150 However, directly applying Newton’s method to RL for LLMs is impractical: the Hessian is high-
 151 dimensional and costly to compute or invert, and rollout-based gradients are noisy. Still, the principle
 152 of leveraging curvature to guide updates provides a valuable foundation for designing optimization
 153 strategies that handle conflicting gradients and complex surfaces, as we explore in Section 3.

154 3 CURVATURE-GUIDED POLICY OPTIMIZATION

155 Building on the preliminaries, we seek to leverage the insight that Newton’s method couples gradients
 156 with curvature information—a property that can be particularly valuable in multi-domain RL for

Figure 1: Illustration of CGPO (one update step). After generating responses, computing rewards, and estimating advantages for each domain, CGPO randomly permutes the domain order and applies updates sequentially, followed by interpolation with the original model. The parameter change $\Delta\theta$ can be approximately decomposed into a single-domain gradient term—capturing per-domain learning—and a cross-domain interaction term that facilitates transfer across domains. **Note that CGPO introduces only negligible additional computation overhead** (see Section 4.3 for details).

LLMs, where interactions between domains are often complex and interdependent. Rather than directly approximating the Newton update, which would be computationally prohibitive in our setting, we distill its essential idea into a lightweight mechanism that induces cross-domain gradient-curvature interactions via sequential task updates. Our method unfolds in three parts: Section 3.1 motivates the design by analyzing the structure of the Newton update, Section 3.2 presents a simple perturbation-based procedure to capture the desired interactions, and Section 3.3 integrates these components into a practical algorithm, i.e., our proposed CGPO. An overview of CGPO is illustrated in Figure 1.

3.1 MOTIVATION: WHY HESSIAN-GRADIENT INTERACTIONS MATTER

The starting point of CGPO is an informal observation about Newton’s method. Although exact second-order updates are infeasible in large-scale RL for LLMs, the Newton term $\mathbf{H}\mathbf{g}$ (omitting θ_t) couples gradient and curvature, suggesting that such interactions may help reconcile conflicting gradients in multi-domain learning. To illustrate, consider a heuristic expansion: $\mathbf{H}^{-1}\mathbf{g} \approx (\mathbf{I} - (\mathbf{I} - \mathbf{H}))^{-1}\mathbf{g} \approx (\mathbf{I} + (\mathbf{I} - \mathbf{H}) + \mathcal{O}((\mathbf{I} - \mathbf{H})^2))\mathbf{g} \approx 2\mathbf{g} - \mathbf{H}\mathbf{g} + \mathcal{O}((\mathbf{I} - \mathbf{H})^2\mathbf{g})$, where the approximations are informal and serve to reveal the structure rather than provide a rigorous formula. In the multi-domain setting, where $\mathbf{g} = \sum_{k=1}^K \mathbf{g}_k$ and $\mathbf{H} = \sum_{k=1}^K \mathbf{H}_k$, the product $-\mathbf{H}\mathbf{g}$ then contains cross-domain terms $-\mathbf{H}_j\mathbf{g}_i$ ($i \neq j$), in which the curvature of domain j modulates the gradient of domain i .

These interactions effectively transmit curvature signals across tasks, amplifying, dampening, or redirecting updates—capabilities absent in first-order methods. This motivates our key design principle: instead of computing Hessians explicitly, we seek tractable mechanisms that induce such cross-domain interactions to better align multi-domain optimization.

3.2 APPROXIMATE CROSS-DOMAIN INTERACTIONS VIA SEQUENTIAL UPDATES

Given the motivation above, the question is how to induce Hessian-gradient interactions without explicitly computing Hessians. Our key idea is to approximate them by observing how the gradient of one domain changes after parameter updates from another.

Consider two domains i and j . Let domain i updates the parameters from $\theta_{\text{pre}}^{(i)}$ to $\theta_{\text{post}}^{(i)}$. Denoting the Hessian of domain j at $\theta_{\text{pre}}^{(i)}$ by $\mathbf{H}_j(\theta_{\text{pre}}^{(i)})$, the gradient of domain j then shifts as

$$\mathbf{g}_j(\theta_{\text{post}}^{(i)}) - \mathbf{g}_j(\theta_{\text{pre}}^{(i)}) \approx \mathbf{H}_j(\theta_{\text{pre}}^{(i)}) (\theta_{\text{post}}^{(i)} - \theta_{\text{pre}}^{(i)}) \approx \eta \mathbf{H}_j(\theta_{\text{pre}}^{(i)}) \mathbf{g}_i(\theta_{\text{pre}}^{(i)}), \quad (2)$$

which corresponds to the cross-domain product $\mathbf{H}_{j,i}\mathbf{g}_i$. This approximation is derived from a first-order Taylor expansion and policy gradient ascent (see Appendix B.1 for the detailed derivation).

216 **Algorithm 1** CGPO (one epoch illustration)

217 1: **Input:** $\pi_{\theta_{\text{init}}}$, reward functions $\{R_k\}_{k=1}^K$, datasets $\{D_k\}_{k=1}^K$

218 2: **Hyperparameter:** number of steps T, M , learning rate η , mixing coefficient α

219 3: **Initialization:** $\pi_{\text{ref}} \leftarrow \pi_{\theta_{\text{init}}}, \pi_{\theta_{\text{new}}} \leftarrow \pi_{\theta_{\text{init}}}$

220 4: **for** $t = 1, \dots, T$ **do**

221 5: $\pi_{\theta_{\text{old}}} \leftarrow \pi_{\theta_{\text{new}}}$

222 6: Sample a batch $D_{(t),k} = \{\mathbf{x}_{(t),k}^{(i)}\}_{i=1}^{|D_{(t),k}|}$ from D_k for $1 \leq k \leq K$

223 7: Generate responses $\{\mathbf{y}_{(t),k}^{(i,j)}\}_{j=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | \mathbf{x}_{(t),k}^{(i)})$ for $1 \leq i \leq |D_{(t),k}|, 1 \leq k \leq K$

224 8: Compute rewards $\{r_{(t),k}^{(i,j)}\}_{j=1}^G$ and advantages $\{\hat{A}_{(t),k}^{(i,j)}\}_{j=1}^G$ for $1 \leq i \leq |D_{(t),k}|, 1 \leq k \leq K$

225 9: **for** $m = 1, \dots, M$ **do**

226 10: Sample a mini-batch $D_{(t,m),k}$ from $D_{(t),k}$ for $1 \leq k \leq K$

227 11: Let $\sigma(1), \dots, \sigma(K)$ denote a random permutation of $1, \dots, K$

228 12: $\phi_0 \leftarrow \theta_{\text{new}}$

229 13: **for** $k = 1, \dots, K$ **do**

230 14: Update parameters by maximizing Eq. (1) with $D_{(t,m),\sigma(k)}$ and associated responses:

231 235
$$\phi_k = \phi_{k-1} - \eta \cdot \frac{|D_{(t,m),\sigma(k)}|}{\sum_{k=1}^K |D_{(t,m),k}|} \cdot \mathbf{g}_{\text{GRPO}}(\phi_{k-1}; \theta_{\text{old}}, D_{(t,m),\sigma(k)})$$

232 15: $\theta_{\text{new}} \leftarrow \phi_0 + \alpha(\phi_K - \phi_0)$

233 16: **Output:** $\pi_{\theta_{\text{new}}}$

241
242 Thus, sequential updates naturally generate the desired interaction term. Further, to extend beyond
243 two domains, we randomize the order of domains at each iteration. Over time, this exposes every
244 pair of domains to such interactions, allowing curvature information to propagate across domains.
245 Intuitively, each domain *feels* the curvature of others: one nudges the parameters, another responds,
246 producing coordinated updates that help reconcile conflicting objectives.

247 3.3 FULL ALGORITHM: RANDOMIZED CROSS-TASK INTERACTIONS

248 Building on the insights above, we now introduce CGPO, a principled algorithm for multi-domain
249 policy optimization, illustrated in Figure 1, with pseudocode in Alg. 1. At each training step, we
250 sample batches from all domains and generate multiple candidate responses under the current policy
251 (Lines 6-7). These responses are evaluated by domain-specific reward functions to obtain rewards
252 and advantage estimates (Line 8). We then repeatedly draw mini-batches (Lines 9-10) and perform
253 a randomized sequential update: domains are visited according to a random permutation (Lines
254 11-13), and at each step the parameters are updated with respect to one domain, conditioned on
255 perturbations induced by previously visited domains (Line 14). Finally, the updated parameters are
256 interpolated with the original ones using a mixing coefficient α (Line 15), stabilizing training by
257 balancing curvature-informed exploration with retention of the base policy.

258 To understand how sequential updates induce cross-domain Hessian–gradient interactions, consider
259 Lines 11–15. Let the domain order be $\sigma(1), \dots, \sigma(K)$, and denote the loss, gradient, and Hessian of
260 domain k at parameter ϕ by $L_k(\phi)$, $\mathbf{g}_k(\phi)$, and $\mathbf{H}_k(\phi)$. With $\phi_0 \rightarrow \phi_1 \rightarrow \dots \rightarrow \phi_K$, the gradient of
261 domain $\sigma(k)$ at ϕ_{k-1} can be expanded (see Appendix B.2) as

262
263
$$\mathbf{g}_{\sigma(k)}(\phi_{k-1}) = \mathbf{g}_{\sigma(k)}(\phi_0) - \sum_{l=1}^{k-1} \frac{\eta |D_{\sigma(l)}|}{\sum_{s=1}^K |D_{\sigma(s)}|} \mathbf{H}_{\sigma(k)}(\phi_0) \mathbf{g}_{\sigma(l)}(\phi_0) + \mathcal{O}(\eta^2). \quad (3)$$

264 For simplicity, assume uniform batch sizes $|D_{\sigma(l)}| / \sum_{s=1}^K |D_{\sigma(s)}| = 1/K$, then

265
266
267
268
$$\mathbf{g}_{\sigma(k)}(\phi_{k-1}) = \mathbf{g}_{\sigma(k)}(\phi_0) - \frac{\eta}{K} \sum_{l=1}^{k-1} \mathbf{H}_{\sigma(k)}(\phi_0) \mathbf{g}_{\sigma(l)}(\phi_0) + \mathcal{O}(\eta^2). \quad (4)$$

270 Aggregating over k , the overall parameter change after one sequential pass is (see Appendix B.3)
 271

$$272 \quad 273 \quad 274 \quad \alpha(\phi_K - \phi_0) = -\frac{\alpha\eta}{K} \sum_{k=1}^K \mathbf{g}_k(\phi_0) + \frac{\alpha\eta^2}{K^2} \sum_{k=1}^K \sum_{l=1}^{k-1} \mathbf{H}_{\sigma(k)}(\phi_0) \mathbf{g}_{\sigma(l)}(\phi_0) + \mathcal{O}(\eta^2). \quad (5)$$

275 The first term is the aggregated gradient; the second term contains cross-domain Hessian–gradient
 276 products. Importantly, the expression above describes the update for a fixed permutation σ . Because
 277 our algorithm re-samples σ independently at every iteration, the quantity relevant for understanding
 278 CGPO’s behavior is the expectation over the random permutation σ . Taking expectation over σ
 279 makes every ordered pair (i, j) appear with equal probability; symmetrizing their contributions
 280 then yields $\mathbf{H}_i(\phi_0) \mathbf{g}_j(\phi_0) + \mathbf{H}_j(\phi_0) \mathbf{g}_i(\phi_0) = \frac{\partial}{\partial \phi_0} (\mathbf{g}_i(\phi_0)^\top \mathbf{g}_j(\phi_0))$ (please see Appendix B.4 for
 281 details). This shows that the update encourages alignment of domain gradients. For an analysis of
 282 why joint learning does not induce the same cross-domain effect, please see Appendix E.3.

283 After illustrating how the parameter change encodes both aggregated gradients and cross-domain
 284 interactions, it is helpful to clarify the role of the final interpolation step. The vector $\phi_K - \phi_0$ provides
 285 a geometry-informed update direction enriched by these interactions. The mixing coefficient α then
 286 controls how far we move along this direction (for ablations, see Section 4.3): a sufficiently large
 287 α enables the method to benefit from curvature-informed coordination across domains, whereas an
 288 excessively large value may push the update outside the locally smooth region where gradient-based
 289 approximations remain reliable, potentially destabilizing training—analogous to taking an overly
 290 large learning rate in standard optimization. Conversely, setting α too small would under-utilize the
 291 information encoded in $\phi_K - \phi_0$ and collapse the update to a near-identity update, losing the benefits
 292 introduced sequential interactions. The interpolation therefore functions as a principled mechanism
 293 that balances stability and effective use of cross-domain geometric information.

294 Crucially, this analysis is not restricted to surrogate losses L_k : as argued in Section 2.2, GRPO
 295 surrogates provide faithful approximations of the true policy gradients within their trust regions.
 296 Thus, the induced interactions improve alignment not only among surrogate gradients but also
 297 among the true policy gradients $\nabla_\theta \mathcal{J}_k(\theta)$. In effect, randomized sequential updates encourage
 298 cooperation across domains by introducing curvature–gradient couplings that steer optimization
 299 toward coordinated improvements on the full multi-domain objective $\sum_{k=1}^K \mathcal{J}_k(\theta)$.

300 **Discussion.** We highlight two clarifications to better situate our approach.

- 302 • Sequential updates is a common technique across different learning paradigms. For example, in
 303 meta-learning, Reptile (Nichol et al., 2018) adopts sequential updates to learn an initial model for
 304 rapid adaptation to new tasks, while in federated learning, methods such as FedAvg (McMahan
 305 et al., 2017) aggregate sequential client updates to improve global optimization. However, these
 306 precedents do not diminish the novelty of our contributions. First, our sequential update originates
 307 from our observation of Newton’s method and its capability to navigate complex landscapes, where
 308 inherent curvature–gradient interactions naturally emerge across domains. Second, we adapt this
 309 mechanism to the multi-domain RL for LLMs setting, where domain-specific rewards and surrogate
 310 policy gradients pose unique challenges absent in meta-learning or federated learning. Finally,
 311 we integrate randomized ordering, surrogate faithfulness (via GRPO), and stabilization through
 312 interpolation into a unified algorithm tailored for large-scale RLHF. These innovations collectively
 313 distinguish CGPO as a novel and practical solution for multi-domain policy optimization.
- 314 • A natural concern is that multiple updates per step could inflate the effective learning rate. To avoid
 315 this, we scale each gradient proportionally to its mini-batch size and normalize by the total across
 316 domains. This ensures that the overall update magnitude is consistent with that of using a single
 317 aggregated batch, thereby preserving comparability with standard mini-batch optimization.

318 4 EXPERIMENTS

319 4.1 EXPERIMENTAL SETTINGS

320 **Tasks and Datasets.** We focus on enhancing the LLMs’ overall capabilities across four domains—
 321 mathematical reasoning, code generation, scientific QA, and creative writing. These domains not
 322 only represent **core areas of current research interest** but also **span four distinct forms of reward**
 323 **feedback**, thereby ensuring both **comprehensiveness** and **diversity**. For mathematics, code, and
 science, we construct subsets from the Guru dataset (Cheng et al., 2025) with attention to dataset

size and sample difficulty (as Guru poses non-trivial challenges for 7B-scale models): the math subset contains 6,250 samples, consisting of the 5,000 easiest problems (ranked by the pass rate of Qwen2.5-7B-Instruct) and 1,250 more challenging ones; the code subset totals 4,740 samples, comprising all 3,791 problems with a Qwen2.5-7B-Instruct’s pass rate of at least 25% plus an additional 949 randomly sampled from the remainder, ensuring a roughly 4:1 ratio between easier and harder samples; and the scientific QA subset includes the entire STEM split of Guru, with 3,591 samples. For creative writing, we randomly sample 2,000 samples each from the three most popular datasets available on Huggingface (LitBench (Fein et al., 2025), Creative_Writing-ShareGPT (Nitral-AI, 2024), and wildchat-creative-writing-3k-rft (kevinshin, 2025)), yielding a dataset of 6,000 samples. For details of the datasets, please see Appendix C.1.

Baselines. We compare our CGPO with several representative baselines. For vanilla strategies, we include joint learning, which directly trains on a multi-domain dataset without any special strategies. For curriculum learning (CL), following the taxonomy in (Soviany et al., 2022), we include Omni-Thinker (Li et al., 2025a), a *progressive CL* method, and *self-paced CL*, which schedules training from easier to harder examples based on task difficulty (measured by pass rate). For gradient balancing, we include FAMO (Liu et al., 2023), categorized in (Chen et al., 2025b) as a representative approach for balancing gradient magnitudes across domains. We also attempted to implement gradient manipulation methods such as PCGrad (Yu et al., 2020), but these require simultaneously storing and operating on multiple per-domain gradients on GPUs, which leads to out-of-memory (OOM) issues in the RL for LLM setting. For more details of baselines, please refer to Appendix C.2.

Training Details. We train Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on the multi-domain dataset using the verl framework (Sheng et al., 2025). For the implementation of multi-domain training in terms of data processing and reward design, we follow the codebases of (Cheng et al., 2025) and (Ma et al., 2025). For math, we adopt rule-based rewards; for coding, we evaluate models’ outputs using unit test cases based on SandboxFusion (Bytedance-Seed-Foundation-Code-Team et al., 2025); for scientific QA, we use a 1.5B General-Verifier (Ma et al., 2025) to assess the consistency between model outputs and groundtruth answers; and for creative writing, we compare model responses with reference answers using Qwen2.5-7B-Instruct. Besides, we require the model to enclose its reasoning process within `<think></think>` tags and penalize responses that violate this format requirement, along with domain-specific constraints. Details of the reward functions are provided in Appendix C.3. We use a learning rate of 1×10^{-6} , a prompt batch size of 128, a mini-batch size of 64, a group size of 8, a rollout temperature of 1.0, $\varepsilon_{\text{low}} = 0.2$, $\varepsilon_{\text{high}} = 0.28$, and $\beta = 0.001$ for CGPO and all baselines. We run all experiments for one epoch on 8 NVIDIA A100 GPUs (80GB). For more details of hyperparameters, please see Appendix C.4.

Evaluation. We evaluate our models on seven widely-used benchmarks: MATH500 (Hendrycks et al., 2021), AMC 2023 (MAA, 2023), HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), GPQA-diamond (Rein et al., 2023), SuperGPQA (Team et al., 2025), and WritingBench (Wu et al., 2025). To ensure consistent scaling across benchmarks, the scores on WritingBench are multiplied by 10. We use vLLM (Kwon et al., 2023) for efficient inference, generating 4 responses per query with a temperature of 0.6 and top- p sampling of 0.95. Further details can be found in Appendix C.5.

4.2 MAIN RESULTS

CGPO boosts the multi-domain reasoning of LLMs. Table 1 presents the results across different methods. From the table we make the following observations: (1) CGPO achieves the **highest average performance** for both model scales (3B and 7B), ranking either first or second in most individual domains. This demonstrates its effectiveness in enhancing multi-domain reasoning capabilities of LLMs. (2) For smaller models (3B), CGPO consistently outperforms other baselines on *code generation* and *creative writing*, while maintaining competitive performance on *math* and *scientific QA*. FAMO and Omni-Thinker also provide gains over joint learning, particularly in *code generation* and *scientific QA*, but they lag behind CGPO in *creative writing*. Self-paced CL remains the weakest overall, likely due to imbalanced domain difficulty and insufficient coverage of informative responses at different training stages. (3) For larger models (7B), CGPO achieves **clear improvements across nearly all domains**, with the largest gains on *code generation* and *creative writing*, highlighting that its benefits scale with model capacity. Notably, FAMO shows competitive results, especially in *math* and *creative writing*, confirming that gradient balancing can help, but it still falls short of CGPO in aggregating multi-domain knowledge effectively. These results collectively indicate that curriculum learning and gradient weighting methods can provide partial improvements, but their reliance on task

378
 379 **Table 1: Performance of models (Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct) trained on**
 380 **the multi-domain dataset with different methods, evaluated on multiple benchmarks.** The bold
 381 **font indicates the best result and an underline indicates the second-best result.**

382 Methods	383 Math		383 Code Generation		383 Scientific QA		383 Creative Writing		383 AVG
	384 MATH500	384 AMC	384 HumanEval	384 MBPP	384 GPQA-diamond	384 SuperGPQA	384 WritingBench		
# Qwen2.5-3B-Instruct									
Joint Learning	64.50	39.38	72.39	<u>59.40</u>	24.87	24.12	<u>58.61</u>	49.04	
Omni-Thinker	65.65	41.50	71.95	58.80	21.34	26.75	57.90	<u>49.13</u>	
Self-paced CL	<u>65.30</u>	38.75	70.12	58.80	<u>24.37</u>	24.72	57.82	48.55	
FAMO	63.80	39.12	<u>72.48</u>	59.20	23.47	26.51	58.46	49.01	
CGPO	64.20	<u>39.71</u>	74.29	60.80	<u>24.37</u>	<u>26.63</u>	63.04	★50.42	
# Qwen2.5-7B-Instruct									
Joint Learning	76.00	<u>56.25</u>	79.88	68.60	19.70	32.75	63.15	56.62	
Omni-Thinker	75.10	53.75	<u>82.93</u>	68.60	<u>23.86</u>	30.63	62.35	56.75	
Self-paced CL	74.70	51.88	<u>82.93</u>	68.00	21.72	30.25	<u>63.68</u>	56.17	
FAMO	<u>75.65</u>	55.63	82.54	<u>68.80</u>	23.07	<u>31.49</u>	63.62	57.26	
CGPO	75.55	59.38	84.15	72.00	26.77	32.75	66.52	★59.59	

409
 410 **Figure 2: Training reward curves for Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on four domains**
 411 **(code, creative writing, math, and scientific QA), comparing CGPO and joint learning.**

412
 413
 414 difficulty, loss, or gradient magnitude alone is insufficient. In contrast, CGPO leverages geometric
 415 information via randomized sequential updates and interpolation, enabling coordinated multi-domain
 416 optimization and consistent performance gains across mathematical reasoning, code generation,
 417 scientific QA, and open-ended creative tasks.

418
 419 **CGPO achieves faster reward improvement across all domains.** Figure 2 presents the training
 420 reward curves of Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on the four domains, with all curves
 421 smoothed using EMA to clearly reveal trends. For both model sizes, the curves of CGPO consistently
 422 remain above those of joint learning. The advantage is particularly pronounced in *code generation*
 423 and *creative writing*, while in *math* and *scientific QA* the improvement is evident but less striking.
 424 Notably, compared with the other three domains, *creative writing* is more subjective, requiring the
 425 model to generate diverse and creative outputs rather than strictly structured or precise answers; this
 426 makes **potential conflicts with the other domains the largest**. The substantial advantage of CGPO
 427 in the reward curve for *creative writing* compared to joint learning provides **strong evidence that**
 428 **CGPO effectively mitigates cross-domain conflicts**. We also observe considerable differences in
 429 initial reward levels across domains. Taking Qwen2.5-7B-Instruct as an example, *creative writing*
 430 and *scientific QA* start near -0.4 and 0 , respectively, reflecting largely incorrect outputs, whereas
 431 *math* and especially *coding* begin from higher baselines (coding around 0.1). This indicates that
 432 the models enter RL training with uneven domain-specific capabilities. Importantly, CGPO delivers
 433 varying degrees of acceleration even for domains with comparable starting points, suggesting that

Table 3: **Ablation study on domain order randomization in CGPO with Qwen2.5-7B-Instruct.**
The bold font indicates the better result.

Methods	Math		Code Generation		Scientific QA		Creative Writing		AVG
	MATH500	AMC	HumanEval	MBPP	GPQA-diamond	SuperGPQA	WritingBench		
CGPO _{fix}	77.20	56.88	83.54	69.60	23.08	31.75	67.30	58.48	
CGPO	75.55	59.38	84.15	72.00	26.77	32.75	66.52	59.59	

Table 4: **Ablation study on the effect of the mixing coefficient α in CGPO with Qwen2.5-7B-Instruct.** The bold font indicates the best result and an underline indicates the second-best result.

α	Math		Code Generation		Scientific QA		Creative Writing		AVG
	MATH500	AMC	HumanEval	MBPP	GPQA-diamond	SuperGPQA	WritingBench		
0.9	75.85	<u>55.88</u>	84.15	71.20	21.72	32.25	66.01	<u>58.15</u>	
1.2	<u>75.55</u>	59.38	84.15	72.00	26.77	<u>32.75</u>	66.52	59.59	
1.5	<u>75.55</u>	55.25	<u>81.10</u>	69.20	<u>23.36</u>	35.37	<u>66.47</u>	58.04	

factors such as dataset difficulty or reward function design may influence the speedup. Investigating the underlying causes of these differences is left for future work.

4.3 ANALYSIS AND ABLATIONS

CGPO introduces only negligible additional computation overhead. In multi-domain RL for LLMs, the dominant computational bottleneck typically lies in generating responses and computing rewards—particularly in domains such as *coding* and *creative writing*—rather than in the forward and backward passes of the model itself. Against this backdrop, the additional operations introduced by CGPO are minimal. The sequential updates across domains are essentially equivalent to splitting a mini-batch into smaller chunks and processing them sequentially, which incurs almost the same computational cost as standard mini-batch training. Furthermore, the final interpolation with the mixing coefficient α amounts to a single vector operation, which is computationally negligible. Taken together, these factors ensure that the overall overhead of CGPO is practically insignificant, and the total training cost remains nearly identical to that of joint learning. As shown in Table 2, the per-step wall-clock time under CGPO is only slightly higher than joint learning, confirming that our method adds no meaningful overhead in practice. [For timing experiments on 32B and 72B models, please see Appendix F.1.](#)

Randomizing domain order is necessary for effective cross-domain interactions. We conduct ablations to examine the necessity of randomizing domain order. Specifically, we compare the standard randomized variant with a fixed-order variant (CGPO_{fix}), where the sequence of domains remains unchanged throughout training. As shown in Table 3, randomizing the order consistently leads to higher average performance across all benchmarks. This result highlights that randomization is essential: it ensures balanced sequential updates among domains, avoiding systematic bias in Hessian–gradient interactions. In contrast, fixed ordering allows earlier domains to dominate updates, while later domains can only adapt passively, reducing overall multi-domain coordination.

The mixing coefficient α plays a critical role in balancing stability and curvature exploitation. To study its effect, we experiment with $\alpha \in \{0.9, 1.2, 1.5\}$ and report the corresponding multi-domain performance in Table 4. Among these choices, $\alpha = 1.2$ achieves the best overall average, reflecting a favorable trade-off between retaining the base policy and incorporating curvature-informed updates. Notably, the average performance of all tested α values exceeds that of the strongest baseline, FAMO (57.26), indicating that CGPO is robust to the choice of α . The fact that all α values are close to 1.0 suggests that the interpolation does not substantially change the effective learning rate; the observed gains therefore arise from the curvature-aware sequential updates rather than step size adjustments.

Table 2: **Computation cost comparison between joint learning and CGPO (1 epoch).** Note that the units of total time and per-step time are different (hours vs. minutes).

Methods	Total (h)	Step (min)
<i># Qwen2.5-3B-Instruct</i>		
Joint Learning	14.8	5.58
CGPO	16.0	6.04
<i># Qwen2.5-7B-Instruct</i>		
Joint Learning	17.8	6.72
CGPO	18.6	7.02

486 5 RELATED WORK

488 **Multi-domain RL for LLMs.** RL has become central to post-training LLMs (Schulman et al., 2017;
 489 Shao et al., 2024; Yu et al., 2025a; Liu et al., 2025), yet achieving stable improvements across multiple
 490 domains remains challenging. One difficulty lies in designing reward functions that generalize across
 491 diverse tasks. Some works propose broadly applicable reward computation, such as simplifying
 492 binary rewards via ground-truth properties (Zhou et al., 2025) or using correctness likelihood (Yu
 493 et al., 2025b). Others adopt domain-specific reward designs, e.g., hybrid rule-based, sandbox, and
 494 LLM-as-a-judge systems (Li et al., 2025a). A second challenge is understanding cross-domain
 495 interactions: Cheng et al. (2025) analyze how single-domain training affects other skills, while
 496 Li et al. (2025b) extend this to math, coding, and puzzles. Most prior work relies on empirical
 497 observations, and a deeper understanding of multi-domain optimization dynamics remains limited.

498 **Mitigating Gradient Conflicts.** Gradient interference is a major obstacle in multi-task learning
 499 (Chen et al., 2025b). Approaches such as GradNorm (Chen et al., 2018), PCGrad (Yu et al., 2020),
 500 MGDA (Sener & Koltun, 2018), ConFIG (Liu et al., 2024), and CAGrad (Liu et al., 2021) resolve
 501 conflicts by balancing or projecting task gradients. While effective in standard MTL settings, they are
 502 difficult to scale to RL for LLMs: many require storing all task gradients on-device, causing memory
 503 bottlenecks, or operate reactively without leveraging reward-landscape geometry, leading to high
 504 variance under noisy rollout-based gradients. These limitations motivate scalable, memory-efficient
 505 mechanisms for mitigating cross-domain conflicts, as pursued by CGPO.

506 **Second-Order Optimization Methods.** The loss landscapes of deep neural networks are often
 507 highly complex, posing challenges for first-order optimization algorithms, such as gradient descent.
 508 Without insights into the geometric structure of the landscape, first-order methods can easily get
 509 trapped in saddle points or narrow valleys, making it difficult to reach better local optima. In contrast,
 510 second-order optimization methods, such as Newton’s method, exploit geometric information like the
 511 Hessian matrix to precondition gradients according to the local curvature, offering stronger theoretical
 512 guarantees. To mitigate the computational cost of full Hessian computation, various approximate
 513 Newton methods have been proposed, including AdaGrad (Duchi et al., 2011), K-FAC (Martens
 514 & Grosse, 2015), GGT (Agarwal et al., 2018), Shampoo (Gupta et al., 2018), and SOAP (Vyas
 515 et al., 2025). Recent studies show that Newton’s method and SOAP (Vyas et al., 2025) can alleviate
 516 gradient conflicts in PINNs (Wang et al., 2025), providing inspiration for our approach. However,
 517 due to the massive parameter scale of LLMs, directly applying approximate variants of Newton’s
 518 method in RL for LLMs is fundamentally infeasible ([we provide a detailed discussion in Appendix
 519 E.4](#)). Motivated by this, we distill the core idea of leveraging curvature information and develop
 520 CGPO, a principled and scalable framework for multi-domain RL in LLMs.

521 6 CONCLUSION AND LIMITATIONS

522 We present CGPO, a principled and scalable framework for multi-domain RL of LLMs. Inspired by
 523 Newton’s method, CGPO leverages the geometric structure of the reward surfaces to precondition
 524 gradients, while avoiding the cost of full Hessian computation. Through randomized sequential
 525 updates, each domain’s gradient is modulated by curvature information from other domains, fostering
 526 cross-domain interactions and implicitly aligning gradients. Experiments on a diverse multi-domain
 527 dataset covering mathematical reasoning, code generation, scientific QA, and creative writing show
 528 that CGPO outperforms all baselines, achieving faster reward improvement and stronger multi-domain
 529 reasoning across all benchmarks.

530 **Limitations.** Although CGPO demonstrates consistent performance improvements across multiple
 531 domains, several broader limitations remain. First, similar to existing multi-domain RL4LLMs
 532 approaches (Li et al., 2025a), we employ external reward models for certain domains, which may
 533 themselves be constrained by current LLM-based evaluation paradigms. For instance, in the creative
 534 writing domain, using a single LLM-as-a-judge may introduce stylistic biases that reflect the limits of
 535 automated evaluation. Second, similar to existing studies (Cheng et al., 2025; Li et al., 2025b), the
 536 overall effectiveness depends on the coverage and granularity of domain-specific rewards, and future
 537 advances in reward modeling may naturally enhance performance. Finally, while the randomized
 538 sequential update scheme encourages cross-domain interaction, exploring more elaborate scheduling
 539 strategies or structured coordination mechanisms remains an open direction for future work. We view
 540 these limitations as reflecting broader challenges shared across current RL4LLMs research, and we
 541 hope that our work can contribute to the community’s continued progress on addressing them.

540 **7 ETHICS STATEMENT**
 541

542 This work studies multi-domain reinforcement learning for LLMs using publicly available or appro-
 543 priately licensed datasets across domains such as mathematics, coding, scientific QA, and creative
 544 writing. No human subjects were directly involved. While our methods improve cross-domain
 545 optimization, models trained with them could be misused to produce plausible but incorrect or unsafe
 546 outputs. We strongly discourage any deployment outside research contexts and emphasize that reward
 547 functions and training setups are designed to encourage safe and aligned outputs. All research was
 548 conducted in accordance with the ICLR Code of Ethics, with no conflicts of interest or external
 549 influence on methodology or results.

550
 551 **8 REPRODUCIBILITY STATEMENT**
 552

553 To facilitate reproducibility, we provide detailed descriptions of our algorithm (CGPO) in Section 3.3
 554 and Algorithm 1, including pseudo-code and key hyperparameters. Experimental setups, including
 555 data processing, reward functions, and evaluation benchmarks, are described in Section 4 and
 556 Appendix C. Where applicable, we provide references to publicly available datasets. All derivations,
 557 approximations, and additional analyses supporting the method are included in Appendix B. Together,
 558 these materials provide sufficient information for replication of the reported results.

559
 560 **REFERENCES**
 561

562 Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
 563 The case for full-matrix adaptive regularization. [arXiv preprint arXiv:1806.02958](https://arxiv.org/abs/1806.02958), pp. 404–413,
 564 2018.

565 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 566 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
 567 language models, 2021. URL <https://arxiv.org/abs/2108.07732>.

568 Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
 569 lican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
 570 Diego De Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron
 571 Huang, Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Ge-
 572 offrey Irving, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack Rae, Erich Elsen, and
 573 Laurent Sifre. Improving language models by retrieving from trillions of tokens. In Kamalika
 574 Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
 575 (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of
 576 *Proceedings of Machine Learning Research*, pp. 2206–2240. PMLR, 17–23 Jul 2022. URL
 577 <https://proceedings.mlr.press/v162/borgeaud22a.html>.

578 Bytedance-Seed-Foundation-Code-Team, :, Yao Cheng, Jianfeng Chen, Jie Chen, Li Chen, Liyu
 579 Chen, Wentao Chen, Zhengyu Chen, Shijie Geng, Aoyan Li, Bo Li, Bowen Li, Linyi Li, Boyi
 580 Liu, Jiaheng Liu, Kaibo Liu, Qi Liu, Shukai Liu, Siyao Liu, Tianyi Liu, Tingkai Liu, Yongfei Liu,
 581 Rui Long, Jing Mai, Guanghan Ning, Z. Y. Peng, Kai Shen, Jiahao Su, Jing Su, Tao Sun, Yifan
 582 Sun, Yunzhe Tao, Guoyin Wang, Siwei Wang, Xuwu Wang, Yite Wang, Zihan Wang, Jinxiang Xia,
 583 Liang Xiang, Xia Xiao, Yongsheng Xiao, Chenguang Xi, Shulin Xin, Jingjing Xu, Shikun Xu,
 584 Hongxia Yang, Jack Yang, Yingxiang Yang, Jianbo Yuan, Jun Zhang, Yufeng Zhang, Yuyu Zhang,
 585 Shen Zheng, He Zhu, and Ming Zhu. Fullstack bench: Evaluating llms as full stack coders, 2025.
 586 URL <https://arxiv.org/abs/2412.00535>.

587 Dashiel Carrera, Zixin Zhao, Ashish Ajin Thomas, and Daniel Wigdor. Nabokov’s cards: An ai
 588 assisted prewriting system to support bottom-up creative writing. In *Proceedings of the 2025*
 589 *Conference on Creativity and Cognition*, pp. 546–559, 2025.

590 Jie Chen, Zhipeng Chen, Jiapeng Wang, Kun Zhou, Yutao Zhu, Jinhao Jiang, Yingqian Min, Xin
 591 Zhao, Zhicheng Dou, Jiaxin Mao, Yankai Lin, Ruihua Song, Jun Xu, Xu Chen, Rui Yan, Zhewei
 592 Wei, Di Hu, Wenbing Huang, and Ji-Rong Wen. Towards effective and efficient continual pre-
 593 training of large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and

594 Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for*
 595 *Computational Linguistics (Volume 1: Long Papers)*, pp. 5779–5795, Vienna, Austria, July 2025a.
 596 *Association for Computational Linguistics*. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.
 597 *acl-long.289*. URL <https://aclanthology.org/2025.acl-long.289/>.

598

599 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
 600 plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
 601 Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
 602 Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
 603 Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
 604 Elizabeth Barnes, Ariel Herbert-Voss, William Heben Guss, Alex Nichol, Alex Paino, Nikolas
 605 Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
 606 Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
 607 Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
 608 Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
 609 models trained on code, 2021. URL <https://arxiv.org/abs/2107.03374>.

610

611 Weiyu Chen, Baijiong Lin, Xiaoyuan Zhang, Xi Lin, Han Zhao, Qingfu Zhang, and James T Kwok.
 612 Gradient-based multi-objective deep learning: Algorithms, theories, applications, and beyond.
 613 *arXiv preprint arXiv:2501.10945*, 2025b.

614

615 Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
 616 normalization for adaptive loss balancing in deep multitask networks. In *International conference*
 617 *on machine learning*, pp. 794–803. PMLR, 2018.

618

619 Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia, Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang
 620 Lou, and Dongmei Zhang. Hitab: A hierarchical table dataset for question answering and
 621 natural language generation. In *Proceedings of the 60th annual meeting of the association for*
 622 *computational linguistics (volume 1: long papers)*, pp. 1094–1110, 2022.

623

624 Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao
 625 Zhuang, Nilabjo Dey, Yuheng Zha, et al. Revisiting reinforcement learning for llm reasoning from
 626 a cross-domain perspective. *arXiv preprint arXiv:2506.14965*, 2025.

627

628 Michael Crawshaw. Multi-task learning with deep neural networks: A survey. *arXiv preprint*
 629 *arXiv:2009.09796*, 2020.

630

631 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
 632 stochastic optimization. *Journal of machine learning research*, 12(7), 2011.

633

634 Daniel Fein, Sebastian Russo, Violet Xiang, Kabir Jolly, Rafael Rafailov, and Nick Haber. Litbench: A
 635 benchmark and dataset for reliable evaluation of creative writing. *arXiv preprint arXiv:2507.00769*,
 636 2025.

637

638 Jiawei Gu, Zacc Yang, Chuanghao Ding, Rui Zhao, and Fei Tan. CMR scaling law: Predicting
 639 critical mixture ratios for continual pre-training of language models. In Yaser Al-Onaizan,
 640 Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical*
 641 *Methods in Natural Language Processing*, pp. 16143–16162, Miami, Florida, USA, November
 642 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.903. URL
 643 <https://aclanthology.org/2024.emnlp-main.903/>.

644

645 Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
 646 tion. In *International Conference on Machine Learning*, pp. 1842–1850. PMLR, 2018.

647

648 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 649 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
 650 2021.

651

652 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 653 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
 654 model. *arXiv preprint arXiv:2503.24290*, 2025.

648 Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
 649 Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: few-shot learning
 650 with retrieval augmented language models. *J. Mach. Learn. Res.*, 24(1), January 2023. ISSN
 651 1532-4435.

652 kevinshin. wildchat-creative-writing-3k-rft, 2025. URL <https://huggingface.co/datasets/kevinshin/wildchat-creative-writing-3k-rft>.

653 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 654 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 655 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 656 Systems Principles*, 2023.

657 Derek Li, Jiaming Zhou, Amirreza Kazemi, Qianyi Sun, Abbas Ghaddar, Mohammad Ali Alomrani,
 658 Liheng Ma, Yu Luo, Dong Li, Feng Wen, et al. Omni-thinker: Scaling cross-domain generalization
 659 in llms via multi-task rl with hybrid rewards. *arXiv preprint arXiv:2507.14783*, 2025a.

660 Yu Li, Zhuoshi Pan, Honglin Lin, Mengyuan Sun, Conghui He, and Lijun Wu. Can one domain help
 661 others? a data-centric study on multi-domain reasoning via reinforcement learning. *arXiv preprint
 662 arXiv:2507.17512*, 2025b.

663 Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter Clark,
 664 and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning. In *Forty-second
 665 International Conference on Machine Learning*.

666 Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
 667 for multi-task learning. *Advances in Neural Information Processing Systems*, 34:18878–18890,
 668 2021.

669 Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimization.
 670 *Advances in Neural Information Processing Systems*, 36:57226–57243, 2023.

671 Qiang Liu, Mengyu Chu, and Nils Thuerey. Config: Towards conflict-free training of physics
 672 informed neural networks. *arXiv preprint arXiv:2408.11104*, 2024.

673 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 674 Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*,
 675 2025.

676 Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhui Chen. General-reasoner:
 677 Advancing llm reasoning across all domains. *arXiv preprint arXiv:2505.14652*, 2025.

678 MAA. American mathematics competitions, 2023. URL <https://maa.org/student-programs/amc/>.

679 James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
 680 curvature. In *International conference on machine learning*, pp. 2408–2417. PMLR, 2015.

681 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguer y Ar-
 682 cas. Communication-efficient learning of deep networks from decentralized data. In *Artificial
 683 intelligence and statistics*, pp. 1273–1282. PMLR, 2017.

684 Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. *arXiv
 685 preprint arXiv:1803.02999*, 2018.

686 Niteral-AI. Creative_writing-sharegpt, 2024. URL https://huggingface.co/datasets/Niteral-AI/Creative_Writing-ShareGPT.

687 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 688 Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof qa benchmark,
 689 2023. URL <https://arxiv.org/abs/2311.12022>.

690 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 691 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

702 Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. *Advances in*
 703 *neural information processing systems*, 31, 2018.

704

705 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 706 Mingchuan Zhang, YK Li, et al. Deepseekmath: Pushing the limits of mathematical reason-
 707 ing in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

708

709 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 710 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings*
 711 *of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.

712

713 Mustafa Shukor, Louis Bethune, Dan Busbridge, David Grangier, Enrico Fini, Alaaeldin El-Nouby,
 714 and Pierre Ablin. Scaling laws for optimal data mixtures. In *NeurIPS*, 2025. URL <https://arxiv.org/abs/2507.09404>.

715

716 Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
 717 *International Journal of Computer Vision*, 130(6):1526–1565, 2022.

718

719 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 720 press Cambridge, 1998.

721

722 P Team, Xinrun Du, Yifan Yao, Kajijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu,
 723 Yiming Liang, Xiaolong Jin, Zhenlin Wei, Chujie Zheng, Kaixin Deng, Shawn Gavin, Shian Jia,
 724 Sichao Jiang, Yiyuan Liao, Rui Li, Qinrui Li, Sirun Li, Yizhi Li, Yunwen Li, David Ma, Yuansheng
 725 Ni, Haoran Que, Qiyao Wang, Zhoufutu Wen, Siwei Wu, Tyshawn Hsing, Ming Xu, Zhenzhu Yang,
 726 Zekun Moore Wang, Junting Zhou, Yuelin Bai, Xingyuan Bu, Chenglin Cai, Liang Chen, Yifan
 727 Chen, Chengtuo Cheng, Tianhao Cheng, Keyi Ding, Siming Huang, Yun Huang, Yaoru Li, Yizhe
 728 Li, Zhaoqun Li, Tianhao Liang, Chengdong Lin, Hongquan Lin, Yinghao Ma, Tianyang Pang,
 729 Zhongyuan Peng, Zifan Peng, Qige Qi, Shi Qiu, Xingwei Qu, Shanghaoran Quan, Yizhou Tan, Zili
 730 Wang, Chenqing Wang, Hao Wang, Yiya Wang, Yubo Wang, Jiajun Xu, Kexin Yang, Ruibin Yuan,
 731 Yuanhao Yue, Tianyang Zhan, Chun Zhang, Jinyang Zhang, Xiyue Zhang, Xingjian Zhang, Yue
 732 Zhang, Yongchi Zhao, Xiangyu Zheng, Chenghua Zhong, Yang Gao, Zhoujun Li, Dayiheng Liu,
 733 Qian Liu, Tianyu Liu, Shiwen Ni, Junran Peng, Yujia Qin, Wenbo Su, Guoyin Wang, Shi Wang,
 734 Jian Yang, Min Yang, Meng Cao, Xiang Yue, Zhaoxiang Zhang, Wangchunshu Zhou, Jiaheng
 735 Liu, Qunshu Lin, Wenhao Huang, and Ge Zhang. Supergpqa: Scaling llm evaluation across 285
 736 graduate disciplines, 2025. URL <https://arxiv.org/abs/2502.14739>.

737

738 Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement
 739 learning. *Electronics*, 9(9):1363, 2020.

740

741 Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and
 742 Sham M Kakade. Soap: Improving and stabilizing shampoo using adam for language modeling.
 743 In *The Thirteenth International Conference on Learning Representations*, 2025.

744

745 Sifan Wang, Ananyae Kumar Bhartari, Bowen Li, and Paris Perdikaris. Gradient alignment in
 746 physics-informed neural networks: A second-order optimization perspective. *arXiv preprint*
 747 *arXiv:2502.00604*, 2025.

748

749 Yuning Wu, Jiahao Mei, Ming Yan, Chenliang Li, Shaopeng Lai, Yuran Ren, Zijia Wang, Ji Zhang,
 750 Mengyue Wu, Qin Jin, and Fei Huang. Writingbench: A comprehensive benchmark for generative
 751 writing, 2025. URL <https://arxiv.org/abs/2503.05244>.

752

753 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 754 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 755 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.

756

757 Yufan Ye, Ting Zhang, Wenbin Jiang, and Hua Huang. Process-supervised reinforcement learning
 758 for code generation. *arXiv preprint arXiv:2502.01715*, 2025.

759

760 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 761 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
 762 scale. *arXiv preprint arXiv:2503.14476*, 2025a.

756 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
757 Gradient surgery for multi-task learning. *Advances in neural information processing systems*, 33:
758 5824–5836, 2020.

759 Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan Yao,
760 Zhiyuan Liu, et al. Rlpr: Extrapolating rlvr to general domains without verifiers. *arXiv preprint*
761 [arXiv:2506.18254](https://arxiv.org/abs/2506.18254), 2025b.

762 Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhui Chen. Acecoder:
763 Acing coder rl via automated test-case synthesis. *arXiv preprint arXiv:2502.01718*, 2025.

764 Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
765 Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. *arXiv preprint*
766 [arXiv:2505.21493](https://arxiv.org/abs/2505.21493), 2025.

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811

A LLM USAGE STATEMENT

812
813
814
815
816
In preparing this manuscript, we used a large language model (LLM) in two distinct ways. First, we
employed LLMs as an assistive tool for text refinement, including improving grammar, wording, and
clarity. Second, LLMs themselves are the primary subject of this research: we study reinforcement
learning (RL) training for LLMs. Accordingly, all experiments involve using large models for training,
inference, and scoring, as part of the methodology under investigation.817
818
819
820
All scientific content, including problem formulation, methodology, experiments, and conclusions,
was developed and verified entirely by the authors. The authors take full responsibility for the integrity
and accuracy of the manuscript. No LLM was credited as an author, and all substantive research
contributions are attributable exclusively to the human authors.821
822

B MATHEMATICAL DERIVATIONS

823
824

B.1 DETAILED DERIVATION OF EQ. (2)

825
826
Eq. (2) in Section 3.2 states:

827
828
$$\mathbf{g}_j(\theta_{\text{post}}^{(i)}) - \mathbf{g}_j(\theta_{\text{pre}}^{(i)}) \approx \mathbf{H}_j(\theta_{\text{pre}}^{(i)}) (\theta_{\text{post}}^{(i)} - \theta_{\text{pre}}^{(i)}) \approx \eta \mathbf{H}_j(\theta_{\text{pre}}^{(i)}) \mathbf{g}_i(\theta_{\text{pre}}^{(i)}). \quad (6)$$

829
830
831
Derivation: Assuming the gradient function $\mathbf{g}_j(\theta)$ is smooth, we apply a first-order Taylor expansion
around $\theta_{\text{pre}}^{(i)}$:

832
833
$$\mathbf{g}_j(\theta_{\text{post}}^{(i)}) \approx \mathbf{g}_j(\theta_{\text{pre}}^{(i)}) + \mathbf{H}_j(\theta_{\text{pre}}^{(i)}) (\theta_{\text{post}}^{(i)} - \theta_{\text{pre}}^{(i)}) + \mathcal{O}(\|\Delta\theta\|^2), \quad (7)$$

834
835
836
where $\mathbf{H}_j(\theta) = \nabla_\theta^2 L_j(\theta)$ is the Hessian matrix for domain j , and $\Delta\theta = \theta_{\text{post}}^{(i)} - \theta_{\text{pre}}^{(i)}$. Neglecting
higher-order terms and rearranging gives:

837
838
$$\mathbf{g}_j(\theta_{\text{post}}^{(i)}) - \mathbf{g}_j(\theta_{\text{pre}}^{(i)}) \approx \mathbf{H}_j(\theta_{\text{pre}}^{(i)}) (\theta_{\text{post}}^{(i)} - \theta_{\text{pre}}^{(i)}). \quad (8)$$

839
840
In policy optimization, parameters are updated via gradient ascent (maximizing rewards):

841
842
$$\theta_{\text{post}}^{(i)} = \theta_{\text{pre}}^{(i)} + \eta \mathbf{g}_i(\theta_{\text{pre}}^{(i)}), \quad (9)$$

843
844
where η is the learning rate. Substituting this into the previous equation yields:

845
846
$$\theta_{\text{post}}^{(i)} - \theta_{\text{pre}}^{(i)} = \eta \mathbf{g}_i(\theta_{\text{pre}}^{(i)}), \quad (10)$$

847
848
and therefore,

849
850
$$\mathbf{g}_j(\theta_{\text{post}}^{(i)}) - \mathbf{g}_j(\theta_{\text{pre}}^{(i)}) \approx \eta \mathbf{H}_j(\theta_{\text{pre}}^{(i)}) \mathbf{g}_i(\theta_{\text{pre}}^{(i)}), \quad (11)$$

851
852
which is Eq. (2). This approximation shows that the gradient update from domain i influences the
gradient of domain j through the curvature of domain j .853
854

B.2 DETAILED DERIVATION OF EQ. (3) AND EQ. (4)

855
856
Eq. (3) and Eq. (4) in Section 3.3 state:

857
858
$$\mathbf{g}_{\sigma(k)}(\phi_{k-1}) = \mathbf{g}_{\sigma(k)}(\phi_0) - \sum_{l=1}^{k-1} \frac{\eta |D_{\sigma(l)}|}{\sum_{s=1}^K |D_{\sigma(s)}|} \mathbf{H}_{\sigma(k)}(\phi_0) \mathbf{g}_{\sigma(l)}(\phi_0) + \mathcal{O}(\eta^2) \quad (12)$$

859
860
$$\mathbf{g}_{\sigma(k)}(\phi_{k-1}) = \mathbf{g}_{\sigma(k)}(\phi_0) - \frac{\eta}{K} \sum_{l=1}^{k-1} \mathbf{H}_{\sigma(k)}(\phi_0) \mathbf{g}_{\sigma(l)}(\phi_0) + \mathcal{O}(\eta^2) \quad (13)$$

861
862
Derivation: Consider the randomized sequential update: domains are processed in the order
 $\sigma(1), \dots, \sigma(K)$. The parameter update for each domain (using gradient ascent) is:

863
$$\phi_k = \phi_{k-1} + \eta_k \mathbf{g}_{\sigma(k)}(\phi_{k-1}), \quad (14)$$

864 where $\eta_k = \eta |D_{\sigma(k)}| / \sum_{s=1}^K |D_{\sigma(s)}|$ is the scaled learning rate.
 865

866 For domain $\sigma(k)$, its gradient is evaluated at ϕ_{k-1} . Using a Taylor expansion around ϕ_0 :

$$867 \quad \mathbf{g}_{\sigma(k)}(\phi_{k-1}) = \mathbf{g}_{\sigma(k)}(\phi_0) + \mathbf{H}_{\sigma(k)}(\phi_0)(\phi_{k-1} - \phi_0) + \mathcal{O}(\eta^2). \quad (15)$$

869 Now compute $\phi_{k-1} - \phi_0$. Note that:
 870

$$871 \quad \phi_{k-1} = \phi_0 + \sum_{l=1}^{k-1} (\phi_l - \phi_{l-1}) = \phi_0 + \sum_{l=1}^{k-1} \eta_l \mathbf{g}_{\sigma(l)}(\phi_{l-1}). \quad (16)$$

874 To first order, we approximate $\mathbf{g}_{\sigma(l)}(\phi_{l-1}) \approx \mathbf{g}_{\sigma(l)}(\phi_0)$ (error $\mathcal{O}(\eta^2)$):
 875

$$876 \quad \phi_{k-1} - \phi_0 \approx \sum_{l=1}^{k-1} \eta_l \mathbf{g}_{\sigma(l)}(\phi_0). \quad (17)$$

879 Substituting into the Taylor expansion:
 880

$$881 \quad \mathbf{g}_{\sigma(k)}(\phi_{k-1}) \approx \mathbf{g}_{\sigma(k)}(\phi_0) + \mathbf{H}_{\sigma(k)}(\phi_0) \left(\sum_{l=1}^{k-1} \eta_l \mathbf{g}_{\sigma(l)}(\phi_0) \right) + \mathcal{O}(\eta^2). \quad (18)$$

884 Substituting $\eta_l = \eta |D_{\sigma(l)}| / \sum_{s=1}^K |D_{\sigma(s)}|$ gives Eq. (3).
 885

886 If we assume uniform batch sizes, i.e., $|D_{\sigma(l)}| / \sum_{s=1}^K |D_{\sigma(s)}| = 1/K$, then $\eta_l = \eta/K$, which
 887 simplifies to Eq. (4).

888 B.3 DETAILED DERIVATION OF EQ. (5)

890 Eq. (5) in Section 3.3 states:
 891

$$892 \quad \alpha(\phi_K - \phi_0) = -\frac{\alpha\eta}{K} \sum_{k=1}^K \mathbf{g}_k(\phi_0) + \frac{\alpha\eta^2}{K^2} \sum_{k=1}^K \sum_{l=1}^{k-1} \mathbf{H}_{\sigma(k)}(\phi_0) \mathbf{g}_{\sigma(l)}(\phi_0) + \mathcal{O}(\eta^2). \quad (19)$$

895 **Derivation:** The total parameter change is:
 896

$$897 \quad \phi_K - \phi_0 = \sum_{k=1}^K (\phi_k - \phi_{k-1}) = \sum_{k=1}^K \eta_k \mathbf{g}_{\sigma(k)}(\phi_{k-1}). \quad (20)$$

900 Using the approximation from Eq. (4) (uniform batch sizes):
 901

$$902 \quad \mathbf{g}_{\sigma(k)}(\phi_{k-1}) \approx \mathbf{g}_{\sigma(k)}(\phi_0) - \frac{\eta}{K} \sum_{l=1}^{k-1} \mathbf{H}_{\sigma(k)}(\phi_0) \mathbf{g}_{\sigma(l)}(\phi_0), \quad (21)$$

905 and substituting $\eta_k = \eta/K$:

$$906 \quad \begin{aligned} \phi_K - \phi_0 &\approx \sum_{k=1}^K \frac{\eta}{K} \left[\mathbf{g}_{\sigma(k)}(\phi_0) - \frac{\eta}{K} \sum_{l=1}^{k-1} \mathbf{H}_{\sigma(k)}(\phi_0) \mathbf{g}_{\sigma(l)}(\phi_0) \right] \\ &= \frac{\eta}{K} \sum_{k=1}^K \mathbf{g}_{\sigma(k)}(\phi_0) - \frac{\eta^2}{K^2} \sum_{k=1}^K \sum_{l=1}^{k-1} \mathbf{H}_{\sigma(k)}(\phi_0) \mathbf{g}_{\sigma(l)}(\phi_0). \end{aligned} \quad (22)$$

913 Multiplying by the mixing coefficient α :

$$914 \quad \alpha(\phi_K - \phi_0) \approx \frac{\alpha\eta}{K} \sum_{k=1}^K \mathbf{g}_{\sigma(k)}(\phi_0) - \frac{\alpha\eta^2}{K^2} \sum_{k=1}^K \sum_{l=1}^{k-1} \mathbf{H}_{\sigma(k)}(\phi_0) \mathbf{g}_{\sigma(l)}(\phi_0). \quad (23)$$

917 Note that $\sum_{k=1}^K \mathbf{g}_{\sigma(k)}(\phi_0) = \sum_{k=1}^K \mathbf{g}_k(\phi_0)$ (permutation invariant), yielding Eq. (5).

918 B.4 DERIVATION OF GRADIENT ALIGNMENT SYMMETRIZATION
919920 In Section 3.3, it is mentioned that after randomization, the cross-term expectation symmetrizes as:
921

922
$$\mathbf{H}_i(\phi_0)\mathbf{g}_j(\phi_0) + \mathbf{H}_j(\phi_0)\mathbf{g}_i(\phi_0) = \frac{\partial}{\partial\phi_0} (\mathbf{g}_i(\phi_0)^\top \mathbf{g}_j(\phi_0)). \quad (24)$$

923

924 **Derivation:** The key mathematical insight is the following identity concerning the gradient of the
925 inner product between two gradients.
926927 Consider the inner product $S(\phi_0) = \mathbf{g}_i(\phi_0)^\top \mathbf{g}_j(\phi_0)$. The gradient of this scalar function S with
928 respect to ϕ_0 is given by:
929

930
$$\nabla_{\phi_0} S = \nabla_{\phi_0} (\mathbf{g}_i(\phi_0)^\top \mathbf{g}_j(\phi_0)) = \mathbf{H}_i(\phi_0)\mathbf{g}_j(\phi_0) + \mathbf{H}_j(\phi_0)\mathbf{g}_i(\phi_0), \quad (25)$$

931 where we have used the product rule and the symmetry of the Hessian matrices, $\mathbf{H}_j = \mathbf{H}_j^\top$. This
932 result can be seen by noting that the derivative of $\mathbf{g}_i^\top \mathbf{g}_j$ w.r.t. ϕ_0 is $(\partial \mathbf{g}_i / \partial \phi_0)^\top \mathbf{g}_j + \mathbf{g}_i^\top (\partial \mathbf{g}_j / \partial \phi_0) =$
933 $\mathbf{H}_i \mathbf{g}_j + \mathbf{g}_i^\top \mathbf{H}_j$. Since $\mathbf{g}_i^\top \mathbf{H}_j$ is a row vector, its transpose is $\mathbf{H}_j \mathbf{g}_i$. The gradient (as a column vector)
934 is therefore $\mathbf{H}_i \mathbf{g}_j + \mathbf{H}_j \mathbf{g}_i$.
935Under a randomized ordering σ , the expectation of the cross-term involving $\mathbf{H}_{\sigma(k)} \mathbf{g}_{\sigma(l)}$ for $k > l$
936 will involve pairs (i, j) symmetrically. The update term derived from the second-order expansion
937 is proportional to $\mathbf{H}_i \mathbf{g}_j$. The symmetric form $\mathbf{H}_i \mathbf{g}_j + \mathbf{H}_j \mathbf{g}_i$ appearing in the gradient of the inner
938 product $\nabla_{\phi_0} (\mathbf{g}_i^\top \mathbf{g}_j)$ indicates that, in expectation, the update encourages an increase in the inner
939 product between the gradients of different domains, thus promoting their alignment.
940941 **Remark.** We would like to clarify the intended meaning of Eq. (5) and the role of the expectation
942 over permutations, in order to avoid possible ambiguities and to keep the presentation self-contained.
943944 **(1) Interpretation of Eq. (5).** Eq. (5) is obtained from a deterministic Taylor expansion of one
945 sequential update pass conditioned on a fixed permutation σ . The resulting parameter change
946 decomposes into: (i) a first-order term corresponding to aggregated gradients, and (ii) a second-order
947 interaction term involving Hessian-gradient products. These Hessian-gradient interaction terms arise
948 deterministically from executing a sequential update under a specific ordering; they do not rely on
949 randomness or averaging. The expression makes explicit the structural cross-domain second-order
950 interactions induced by sequential updates.
951952 **(2) Role of the expectation over σ .** The expectation over permutations is used to express a sym-
953 metry property. To make this more concrete, imagine that at the same parameter θ_t , we were
954 able—*hypothetically, since the algorithm does not actually do this*—to sample M independent
955 permutations $\{\sigma_t^{(m)}\}_{m=1}^M$, each corresponding to an ordering $\tau_t^{(m)} = (\sigma_t^{(m)}(k))_{k=1}^K$. In this hy-
956 pothetical scenario, as $M \rightarrow \infty$, the events “ i appears before j ” and “ j appears before i ” would
957 occur with essentially equal frequency for every pair (i, j) . This limiting symmetry is exactly what
958 our expectation argument is intended to express, and it is what leads to the symmetric combination
959 $\mathbf{H}_i \mathbf{g}_j + \mathbf{H}_j \mathbf{g}_i$ in the discussion following Eq. (5).
960961 In the actual algorithm, of course, we sample **only one** permutation at each iteration. This introduces
962 sampling **error**—but not **bias in the expectation sense**—because we do not average over multiple
963 permutations.
964965 Importantly, this sampling error does not accumulate in a harmful way in practice. A helpful way to
966 view this is through **an analogy with standard SGD**: each stochastic gradient is, in expectation, equal
967 to the true gradient (just as the contributions of $\mathbf{H}_i \mathbf{g}_j$ and $\mathbf{H}_j \mathbf{g}_i$ are symmetric in expectation), yet in
968 practice we use only one stochastic gradient per step rather than averaging many samples—just as our
969 algorithm samples only one permutation per iteration rather than averaging over many permutations
970 at the same parameter. This practice in SGD does introduce variance and error, but it does not
971 undermine either the effectiveness of SGD or the usefulness of the statement that “the stochastic
972 gradient equals the true gradient in expectation”. The same phenomenon appears in our algorithm.
973974 Therefore, when we refer to an expectation, we mean the conditional expectation taken at a fixed θ_t ,
975 i.e., conditional on the past history \mathcal{F}_{t-1} —just as the expectation of a stochastic gradient in SGD is
976 interpreted conditional on the current parameter value.
977

972 C MORE DETAILS OF EXPERIMENTS
973974 C.1 TASKS AND DATASETS
975976 We focus on enhancing LLMs’ overall capabilities across four domains—mathematical reasoning,
977 code generation, scientific QA, and creative writing. These domains not only represent **core areas of**
978 **current research interest** but also **span four distinct forms of reward feedback**, thereby ensuring
979 both **comprehensiveness** and **diversity**.
980981 • **Mathematics**: we construct a subset of 6,250 samples from the Guru dataset (Cheng et al., 2025).
982 This includes the 5,000 easiest problems (ranked by the pass rate of Qwen2.5-7B-Instruct) and
983 1,250 more challenging ones, ensuring a balance between accessible and difficult problems.
984 • **Code generation**: we select a total of 4,740 samples from Guru. Specifically, we take all 3,791
985 problems with a Qwen2.5-7B-Instruct’s pass rate of at least 25% and add 949 problems randomly
986 sampled from the remainder, yielding an approximate 4:1 ratio between easier and harder samples.
987 • **Scientific QA**: we include the entire STEM split of Guru, resulting in 3,591 samples. This
988 preserves the full coverage of science-related reasoning tasks while maintaining consistency with
989 prior benchmarks.
990 • **Creative writing**: we randomly sample 2,000 samples each from three popular Hugging-
991 face datasets—LitBench (Fein et al., 2025), Creative_Writing-ShareGPT (Nitral-AI, 2024), and
992 wildchat-creative-writing-3k-rft (kevinshin, 2025)—to construct a dataset of 6,000 samples, ensur-
993 ing stylistic variety and broad coverage of open-ended writing abilities.
994995 C.2 BASELINES
996997 We compare our CGPO against four representative baselines: joint learning, Omni-Thinker (Li et al.,
998 2025a), Self-Paced CL, and FAMO (Liu et al., 2023).
9991000 • **Joint learning.** Joint learning is the most basic paradigm in MTL. It aggregates the loss functions
1001 of all tasks into a single objective, enabling simultaneous optimization. As a straightforward
1002 training strategy without any task-specific adjustments, joint learning serves as a reference point
1003 for evaluating improvements brought by more advanced methods.
1004 • **Omni-Thinker.** Omni-Thinker belongs to *progressive CL* methods as categorized in (Soviany et al.,
1005 2022). It introduces the backward transfer (BWT) metric to quantify the extent of catastrophic
1006 forgetting across domains. Based on BWT analysis, Li et al. (2025a) proposes a fixed training
1007 order—*code* → *math* → *scientific QA* → *creative writing*—with the goal of minimizing forgetting
1008 induced by multi-domain learning.
1009 • **Self-paced CL.** Self-paced CL enables the model to adaptively select training samples according
1010 to its learning state. In our implementation, we employ Qwen2.5-7B-Instruct to rank samples by
1011 winrate from easy to difficult, and train sequentially following this order. This curriculum reduces
1012 the risk of being misled by difficult samples in the early stages, thereby improving stability and
1013 promoting better generalization.
1014 • **FAMO.** FAMO is a gradient-balancing approach for MTL. It adjusts loss weights to maximize
1015 the improvement rate of the task that progresses the slowest, ensuring that all tasks advance at
1016 a comparable pace. This balanced optimization strategy suppresses task dominance and guides
1017 the model toward solutions that are both fairer across tasks and stronger in overall performance.
1018 FAMO approximates weight updates using historical loss values instead of explicitly computing
1019 multi-task gradients, reducing per-iteration time and memory complexity to $\mathcal{O}(1)$. This efficiency
1020 makes it particularly suitable for large-scale LLM training.
10211022 C.3 REWARD FUNCTIONS
10231024 For all domains, we require the model to enclose its reasoning process within `<think></think>`
1025 tags. The reward functions for the four domains are as follows.

1026 • **Math.** We adopt a rule-based reward function:
 1027

$$1028 r_{\text{math}}(o, a) = \begin{cases} 1.0, & \text{if } o \text{ has a valid format and } \text{verify}_{\text{math}}(o_{\text{ans}}, a) = \text{true}, \\ 1029 -0.5, & \text{if } o \text{ has a valid format but } \text{verify}_{\text{math}}(o_{\text{ans}}, a) = \text{false}, \\ 1030 -1.0, & \text{if } o \text{ has an invalid format,} \end{cases}$$

1031 where o_{ans} denotes the predicted answer extracted from structured tags (e.g.,
 1032 `<answer></answer>`) in the model output o , and $\text{verify}_{\text{math}}(\cdot, \cdot)$ checks symbolic equivalence
 1033 between o_{ans} and the ground-truth answer a via a deterministic parser (e.g., handling equivalent
 1034 forms of expressions or equations).

1035 • **Code generation.** We adopt a sandbox-based unit test reward:
 1036

$$1037 r_{\text{code}}(o, \text{test_case}) = \begin{cases} 1.0, & \text{if } o \text{ has a valid format and } \text{exec}(o_{\text{ans}}) \models \text{unittest}(o_{\text{ans}}, \text{test_case}), \\ 1038 -0.5, & \text{if } o \text{ has a valid format but } \text{exec}(o_{\text{ans}}) \not\models \text{unittest}(o_{\text{ans}}, \text{test_case}), \\ 1039 -1.0, & \text{if } o \text{ has an invalid format (syntactically invalid),} \end{cases}$$

1040 where o_{ans} is the generated code, executed in a sandbox and validated against the unit tests
 1041 associated with the sample; \models denotes logical satisfaction.

1042 • **Scientific QA.** We employ a 1.5B General-Verifier² (Cheng et al., 2025) to assess consistency
 1043 between the model’s output and the ground-truth answer:
 1044

$$1045 r_{\text{qa}}(o, a) = \begin{cases} 1.0 - 0.05 \cdot \min(|o_{\text{ans}}| - |a|, 10), & \text{if } o \text{ has a valid format and } o_{\text{ans}} = a, \\ 1046 0, & \text{if } o \text{ has a valid format but } o_{\text{ans}} \neq a, \\ 1047 -1.0, & \text{if } o \text{ has an invalid format,} \end{cases}$$

1048 where o_{ans} is the extracted answer content. Here, “valid format” means the response adheres to QA
 1049 conventions (e.g., no garbled text, complete sentences).

1050 • **Creative writing.** We adopt an LLM-as-a-Judge strategy, scoring the model’s output o against a
 1051 reference o_{ref} via pairwise comparison:
 1052

$$1053 r_{\text{writing}}(o, o_{\text{ref}}) = \begin{cases} 1.0, & \text{if } o \text{ has a valid format and } o \succ o_{\text{ref}}, \\ 1054 0.25, & \text{if } o \text{ has a valid format and } o \sim o_{\text{ref}}, \\ 1055 -0.5, & \text{if } o \text{ has a valid format and } o \prec o_{\text{ref}}, \\ 1056 -1.0, & \text{if } o \text{ has an invalid format,} \end{cases}$$

1057 where $o \succ o_{\text{ref}}$ (preferred), $o \sim o_{\text{ref}}$ (tie), and $o \prec o_{\text{ref}}$ (worse) are determined by a fixed evaluator
 1058 (Qwen2.5-72B-Instruct) serving as the judge.

1061 C.4 HYPERPARAMTERS

1062 We use a learning rate of 1×10^{-6} , a prompt batch size of 128, a mini-batch size of 64, a group
 1063 size of 8, a rollout temperature of 1.0, $\varepsilon_{\text{low}} = 0.2$, $\varepsilon_{\text{high}} = 0.28$, and $\beta = 0.001$ for CGPO and all
 1064 baselines. All methods are trained for one epoch. For the mixing coefficient α , we tune it within the
 1065 range of 0.5-1.5, and provide an ablation study on α in Section 4.3.

1066 C.5 EVALUATION

1067 To comprehensively evaluate cross-domain capabilities, we adopt authoritative benchmarks spanning
 1068 four domains: **Math**, **Coding**, **Scientific QA**, and **Creative Writing**. The evaluation settings are
 1069 detailed below:

1070 • **Math domain**

1071 – **MATH500** (Hendrycks et al., 2021): A set of 500 challenging problems sampled from the
 1072 full MATH dataset, covering seven areas: elementary algebra, algebra, geometry, number
 1073 theory, combinatorics, probability, and calculus. Problems are presented in open-ended
 1074 form and require precise solutions. This benchmark is widely adopted for assessing LLMs’
 1075 mathematical reasoning and problem-solving abilities.

1076
 1077
 1078
 1079
 2²<https://huggingface.co/TIGER-Lab/general-verifier>

1080 - **AMC 2023** (MAA, 2023): A set of 50 questions taken from the AMC 12A and 12B (2023)
 1081 contests, spanning algebra, geometry, number theory, combinatorics, and probability. Multiple-
 1082 choice options are removed, requiring models to directly output the final answer. This
 1083 benchmark focuses on higher-order reasoning, problem analysis, and accurate calculation.

1084 • **Coding domain**

1086 - **HumanEval** (Chen et al., 2021): Consisting of 164 human-written Python programming
 1087 tasks, ranging from basic algorithms to medium-level function implementations. It evaluates
 1088 whether models can generate correct and executable code from natural language descriptions.
 1089 - **MBPP** (Austin et al., 2021): A collection of 974 beginner-level Python problems designed
 1090 to test the ability to synthesize short programs from natural language instructions. It is a
 1091 standard benchmark for fundamental code generation.

1092 • **Scientific QA domain**

1093 - **GPQA (diamond split)** (Rein et al., 2023): Graduate-level QA items written and verified
 1094 by domain experts across physics, chemistry, biology, and earth sciences. The diamond split
 1095 represents the most difficult and highest-quality subset, specifically constructed to prevent
 1096 shallow memorization or pattern matching. To ensure consistent evaluation, we reconstruct
 1097 ordered option lists using randomized indexing.
 1098 - **SuperGPQA** (Team et al., 2025): Comprising 285 interdisciplinary graduate-level reasoning
 1099 problems, curated to prevent direct solutions via search engines. To reduce computational
 1100 cost, we use random seed 42 to sample 200 problems, ensuring both representativeness and
 1101 reliable measurement of deep reasoning ability.

1102 • **Creative Writing domain**

1103 - **WritingBench** (Wu et al., 2025): A benchmark of 1000 real-world writing tasks spanning
 1104 6 domains and 100 sub-themes, covering diverse styles, task types, and difficulty levels.
 1105 It evaluates generated text on quality, coherence, creativity, and task alignment through a
 1106 structured scoring framework. For efficiency, we sample 200 requests using random seed
 1107 42, and apply the official critic model `WritingBench-Critic-Model-Qwen-7B`³ for
 1108 automated scoring, striking a balance between evaluation cost and representativeness.

1109
 1110 D RELATED WORK
 1111

1112 **Multi-domain RL for LLMs.** The application of RL in LLMs receives widespread attention
 1113 (Schulman et al., 2017; Shao et al., 2024; Yu et al., 2025a; Liu et al., 2025). However, RL strategies
 1114 that simultaneously and steadily enhance the capabilities of LLMs across multiple domains remain an
 1115 open challenge. A key difficulty in this area lies in designing reward functions that work effectively
 1116 across diverse domains. Some researchers develop reward computation methods that are broadly
 1117 applicable across multiple domains. For example, Zhou et al. (2025) simplify the binary reward
 1118 function by leveraging properties of the ground truth. RLPR (Yu et al., 2025b) constructs its reward
 1119 based on the probability of generating correct outputs. Other researchers create distinct reward
 1120 computation methods tailored to specific domains. For instance, Li et al. (2025a) propose a hybrid
 1121 reward system that employs rule-based, sandbox-based, and LLM-as-a-Judge frameworks, customized
 1122 for different types of data. Another challenge lies in appropriately handling interactions among
 1123 multiple domains. Cheng et al. (2025) study the effects of single-domain training on other domains.
 1124 Li et al. (2025b) further examine interactions across several domains, including math, coding, and
 1125 puzzle solving. Existing approaches mainly rely on experimental and qualitative observations, while
 1126 a deeper understanding of cross-domain interactions remains largely unexplored.

1127 **Mitigating Gradient Conflicts.** Gradient conflicts pose a major challenge in machine learning,
 1128 leading to slow learning and wasted computation (Chen et al., 2025b). Much work in multi-task
 1129 learning addresses this by balancing or projecting gradients to reduce interference, such as GradNorm
 1130 (Chen et al., 2018), which adjusts each task’s gradient according to its relative loss, PCGrad (Yu
 1131 et al., 2020), which projects away conflicting directions, MGDA (Sener & Koltun, 2018), which
 1132 seeks Pareto-optimal updates, and ConFIG (Liu et al., 2024) or CAGrad (Liu et al., 2021), which
 1133 optimize updates under constraints to ensure conflict-free directions. While effective in standard

³<https://huggingface.co/AQuarterMile/WritingBench-Critic-Model-Qwen-7B>

1134 MTL, these approaches face key limitations in RL for LLMs: they generally either require storing
 1135 all domain gradients on the GPU, which quickly becomes memory-intensive and can often cause
 1136 out-of-memory failures, or act reactively without leveraging the underlying geometry of the reward
 1137 landscape, which usually makes them prone to high variance on noisy, rollout-based gradients. These
 1138 challenges motivate scalable, memory-efficient methods that can mitigate cross-domain conflicts
 1139 while supporting multi-domain RL training, such as our proposed CGPO.

1140 **Second-Order Optimization Methods.** The loss landscapes of deep neural networks are often
 1141 highly complex, posing significant challenges for first-order optimization algorithms, such as gradient
 1142 descent, which rely solely on local gradient information. Without insights into the geometric structure
 1143 of the landscape, first-order methods can easily get trapped in saddle points or narrow valleys,
 1144 making it difficult to reach better local optima. In contrast, second-order optimization methods,
 1145 such as Newton’s method, exploit geometric information like the Hessian matrix to precondition
 1146 gradients according to the local curvature, offering stronger theoretical guarantees. To mitigate the
 1147 computational cost of full Hessian computation, various approximate Newton methods have been
 1148 proposed, including AdaGrad, K-FAC, GGT, Shampoo, and SOAP (Duchi et al., 2011; Martens
 1149 & Grosse, 2015; Agarwal et al., 2018; Gupta et al., 2018; Vyas et al., 2025). Recent studies show
 1150 that Newton’s method and its approximate variant SOAP (Vyas et al., 2025) can alleviate gradient
 1151 conflicts in physics-informed neural networks (PINNs) (Wang et al., 2025), providing inspiration
 1152 for our approach. However, due to the massive parameter scale of large language models, directly
 1153 applying Newton-type methods or their approximations in RL for LLMs is infeasible. Motivated by
 1154 this, we distill the core idea of leveraging curvature information and develop CGPO, a principled and
 1155 scalable framework for multi-domain RL in LLMs.

E MORE DISCUSSIONS

E.1 APPLICABILITY OF CGPO TO MULTI-DOMAIN PRE-TRAINING

1161 Although our experiments focus on the RL post-training stage, the underlying mechanism of CGPO
 1162 naturally extends to the multi-domain setting of LLM pre-training. Pre-training corpora are inherently
 1163 heterogeneous, and the aggregation of losses across diverse domains can lead to a complex optimiza-
 1164 tion landscape. Since CGPO is designed to alleviate such difficulty by leveraging curvature-informed
 1165 interactions induced by sequential updates, the framework is conceptually agnostic to the specific
 1166 form of the loss and can, in principle, be applied during pre-training without modification.

1167 It is also worth noting that CGPO is developed to address challenges unique to RL for LLMs, many of
 1168 which are absent in the pre-training stage. As a result, the design space for multi-domain optimization
 1169 during pre-training is substantially broader. When the entire corpus is available offline, practitioners
 1170 may employ a wide range of well-established approaches, including data mixture and sampling
 1171 strategies (Shukor et al., 2025; Gu et al., 2024), continual or staged domain-specific pre-training
 1172 (Chen et al., 2025a), and retrieval-augmented pre-training (Izacard et al., 2023; Borgeaud et al.,
 1173 2022). These techniques are not directly applicable in RL4LLMs but can be highly effective during
 1174 pre-training, making the relative advantage of CGPO in this setting an open empirical question.

E.2 NON-UNIFORM DOMAIN IMPORTANCE IN MULTI-DOMAIN TRAINING

1175 In practical multi-domain applications, different domains may carry different levels of importance.
 1176 While the main paper focuses on the uniform-weight objective

$$1177 \mathcal{J}(\theta) = \frac{1}{K} \sum_{k=1}^K \mathcal{J}_k(\theta),$$

1178 this choice is primarily for conceptual clarity and to highlight the core contribution of CGPO—namely,
 1179 its ability to mitigate cross-domain optimization conflicts and improve multi-domain reasoning
 1180 performance.

1181 The CGPO framework can be naturally extended to settings in which domains are assigned non-
 1182 uniform importance. Let each domain k be associated with a user-defined weight w_k satisfying

1188 $\sum_{k=1}^K w_k = 1$. The training objective can then be written as
 1189

$$1190 \quad \mathcal{J}(\theta; \mathbf{w}) = \sum_{k=1}^K w_k \mathcal{J}_k(\theta) = \frac{1}{K} \sum_{k=1}^K (K w_k) \mathcal{J}_k(\theta). \quad (26)$$

$$1191$$

$$1192$$

1193 This formulation is equivalent to scaling each domain-specific loss and its corresponding gradient by
 1194 a factor proportional to its importance. Crucially, no modification to the CGPO algorithm is required:
 1195 the sequential updates, geometric interactions, and final interpolation behave identically as in the
 1196 uniform-weight case, with the only difference being the importance-adjusted gradient contributions.
 1197 This property allows CGPO to seamlessly accommodate prioritized tasks, enabling it to model
 1198 practical multi-domain scenarios in which some domains or skills must be emphasized more heavily
 1199 than others.

1200 E.3 WHY JOINT LEARNING CANNOT REPRODUCE OUR CROSS-DOMAIN MECHANISM

1201 In this section, we provide additional analysis comparing joint learning with the proposed sequential
 1202 mechanism, clarifying why joint learning cannot recover the same cross-domain Hessian–gradient
 1203 interactions.

1204 E.3.1 SEQUENTIAL UPDATES INDUCE CLEAN CROSS-DOMAIN INTERACTIONS

1205 As shown in Eq. (5) of the main paper, a *single* sequential pass over the domains—corresponding to
 1206 *one parameter update*—yields, up to $\mathcal{O}(\eta^2)$,

$$1207 \quad \phi_K - \phi_0 = -\frac{\eta}{K} \sum_{k=1}^K \mathbf{g}_k(\phi_0) + \frac{\eta^2}{K^2} \sum_{k=1}^K \sum_{l=1}^{k-1} \mathbf{H}_{\sigma(k)}(\phi_0) \mathbf{g}_{\sigma(l)}(\phi_0) + \mathcal{O}(\eta^2). \quad (27)$$

$$1208$$

$$1209$$

$$1210$$

1211 where σ is the random permutation sampled at this iteration.

1212 Crucially, the expression above describes the update for a fixed permutation σ . Since our algorithm
 1213 re-samples σ independently at each iteration, the relevant quantity for understanding the behavior of
 1214 the sequential mechanism is the *expectation over σ* . Taking expectation symmetrizes the pairwise
 1215 interactions: each ordered pair (i, j) appears with equal probability. After symmetrization, we
 1216 have $\mathbf{H}_i(\phi_0) \mathbf{g}_j(\phi_0) + \mathbf{H}_j(\phi_0) \mathbf{g}_i(\phi_0) = \frac{\partial}{\partial \phi_0} (\mathbf{g}_i(\phi_0)^\top \mathbf{g}_j(\phi_0))$ (see Appendix B.4), yielding an
 1217 interpretable alignment effect across domains.

1218 E.3.2 TWO-STEP JOINT LEARNING YIELDS MIXED SECOND-ORDER TERMS

1219 To analyze why joint learning cannot replicate this mechanism, consider two consecutive joint-training
 1220 updates. Let

$$1221 \quad \mathcal{L}(\theta) = \frac{1}{K} \sum_{k=1}^K \mathcal{L}_k(\theta), \quad \mathbf{g}(\theta) = \nabla \mathcal{L}(\theta) = \frac{1}{K} \sum_{k=1}^K \mathbf{g}_k(\theta), \quad \mathbf{H}(\theta) = \nabla^2 \mathcal{L}(\theta) = \frac{1}{K} \sum_{k=1}^K \mathbf{H}_k(\theta).$$

$$1222$$

$$1223$$

$$1224$$

1225 Performing two gradient-descent steps with step size η —note that unlike the sequential pass above,
 1226 these constitute *two separate parameter updates*—and expanding up to second order gives

$$1227 \quad \theta_{t+2} - \theta_t \approx -2\eta \mathbf{g}(\theta_t) + \eta^2 \mathbf{H}(\theta_t) \mathbf{g}(\theta_t)$$

$$1228 \quad = -\frac{2\eta}{K} \sum_{k=1}^K \mathbf{g}_k(\theta_t) + \frac{\eta^2}{K^2} \sum_{1 \leq i \neq j \leq K} \mathbf{H}_i(\theta_t) \mathbf{g}_j(\theta_t) + \frac{\eta^2}{K^2} \sum_{k=1}^K \mathbf{H}_k(\theta_t) \mathbf{g}_k(\theta_t). \quad (28)$$

$$1229$$

$$1230$$

$$1231$$

$$1232$$

$$1233$$

$$1234$$

$$1235$$

$$1236$$

1237 This expression reveals three types of contributions:

- 1238 1. **Single-domain gradients** $\mathbf{g}_k(\theta_t)$;
- 1239 2. **Cross-domain Hessian–gradient interactions** $\mathbf{H}_i(\theta_t) \mathbf{g}_j(\theta_t)$ for $i \neq j$;
- 1240 3. **Self-curvature terms** $\mathbf{H}_k(\theta_t) \mathbf{g}_k(\theta_t)$.

$$1241$$

The presence of the self-curvature terms is the key structural difference from Eq. (27). Because both updates in joint learning are taken with respect to the *same aggregated loss*, these self-curvature components naturally arise and are typically of comparable magnitude to the cross-domain terms. As a result, they can *partially or fully cancel* cross-domain contributions depending on curvature structure. Thus, joint learning does not isolate cross-domain interactions. Its second-order structure is an inseparable mixture of self- and cross-terms, lacking the clean symmetry and interpretability obtained under the sequential scheme.

E.3.3 IMPLICATIONS FOR GRADIENT ALIGNMENT

Because joint learning yields both $\mathbf{H}_i \mathbf{g}_j$ and $\mathbf{H}_k \mathbf{g}_k$ terms, the effective update cannot be reduced to a symmetric pairwise structure. In particular, it cannot be rewritten as the gradient of an inter-domain alignment quantity such as $\mathbf{g}_i^\top \mathbf{g}_j$. The self-curvature terms disrupt this symmetry, preventing the simplification that underlies the alignment interpretation in our method.

By contrast, our sequential scheme avoids $\mathbf{H}_k \mathbf{g}_k$ entirely: each domain is updated once per sequential pass, and its gradient is evaluated only after perturbations induced by *other* domains. Combined with the expectation over random permutations, this yields a clean, symmetric second-order term capturing cross-domain interactions.

E.4 WHY APPROXIMATE VARIANTS OF NEWTON’S METHOD ARE INFEASIBLE FOR RL TRAINING OF LLMs

Second-order optimization methods broadly aim to exploit curvature information—typically through matrix-based preconditioning—to enable more geometrically informed parameter updates. These approaches span a wide family of techniques, including Kronecker-factorized natural-gradient methods, layer-wise matrix preconditioners, and approximate Newton-style updates. To illustrate why such methods become impractical in RL training of LLMs, we examine three of the most representative and advanced instances in this family—K-FAC (Martens & Grosse, 2015), Shampoo (Gupta et al., 2018), and SOAP (Vyas et al., 2025)—and analyze the computational and memory implications of applying their core mechanisms at LLM scale.

E.4.1 K-FAC

K-FAC (Martens & Grosse, 2015) is a Kronecker-factored approximation to natural gradient descent. For a fully-connected (or linear) layer with weight matrix $\mathbf{W} \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$, input activations $\mathbf{a} \in \mathbb{R}^{d_{\text{in}}}$, and backpropagated output gradients $\mathbf{g} \in \mathbb{R}^{d_{\text{out}}}$, the gradient can be written (for a single sample) as $\nabla_{\mathbf{W}} \mathcal{L} = \mathbf{g} \mathbf{a}^\top$. If we vectorize \mathbf{W} into $\mathbf{w} = \text{vec}(\mathbf{W}) \in \mathbb{R}^{d_{\text{out}} d_{\text{in}}}$, the Fisher information block corresponding to \mathbf{w} is

$$\mathbf{F}_{\mathbf{w}} = \mathbb{E}[\nabla_{\mathbf{w}} \mathcal{L} \nabla_{\mathbf{w}} \mathcal{L}^\top].$$

Under the standard K-FAC independence assumptions (approximately independent \mathbf{a} and \mathbf{g} and certain factorization properties), this block is approximated as a Kronecker product

$$\mathbf{F}_{\mathbf{w}} \approx \mathbf{A} \otimes \mathbf{G}, \quad \mathbf{A} = \mathbb{E}[\mathbf{a} \mathbf{a}^\top], \quad \mathbf{G} = \mathbb{E}[\mathbf{g} \mathbf{g}^\top], \quad (29)$$

where $\mathbf{A} \in \mathbb{R}^{d_{\text{in}} \times d_{\text{in}}}$ and $\mathbf{G} \in \mathbb{R}^{d_{\text{out}} \times d_{\text{out}}}$ are the Kronecker factors maintained as running (exponential moving) averages over mini-batches.

Preconditioned update. Natural gradient descent would apply $\mathbf{F}_{\mathbf{w}}^{-1}$ to the gradient $\nabla_{\mathbf{w}} \mathcal{L}$. Using the approximation in Eq. (29) and the Kronecker identity $(\mathbf{A} \otimes \mathbf{G})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{G}^{-1}$, one obtains the K-FAC preconditioned update for the weight matrix:

$$\Delta \mathbf{W} \approx -\eta \cdot \mathbf{G}^{-1} \cdot \nabla_{\mathbf{w}} \mathcal{L} \cdot \mathbf{A}^{-1}, \quad \mathbf{W}_{t+1} = \mathbf{W}_t + \Delta \mathbf{W}, \quad (30)$$

where η is the learning rate. In practice, \mathbf{A}^{-1} and \mathbf{G}^{-1} are not formed explicitly: K-FAC performs eigendecompositions

$$\mathbf{A} = \mathbf{U}_A \mathbf{\Lambda}_A \mathbf{U}_A^\top, \quad \mathbf{G} = \mathbf{U}_G \mathbf{\Lambda}_G \mathbf{U}_G^\top,$$

and then applies inverse (or inverse square-root) scalings in these eigen-bases. This requires storing the factors \mathbf{A} , \mathbf{G} (and often their eigenvectors \mathbf{U}_A , \mathbf{U}_G) and repeatedly computing or reusing their eigendecompositions.

1296 **Memory cost at LLM scale.** Consider a typical transformer block with hidden size $d_{\text{in}} \approx d_{\text{out}} \approx d$.
 1297 For modern LLMs, d is in the range [4096, 8192]. Each Kronecker factor \mathbf{A} or \mathbf{G} is then a dense
 1298 $d \times d$ matrix. It is important to note that, for numerical stability, K-FAC implementations typically
 1299 store curvature factors in at least FP32, even when the model itself uses FP16/BF16. A dense $d \times d$
 1300 FP32 matrix requires $4d^2$ bytes. For $d = 4096$, $d^2 = 4096^2 = 16,777,216$ entries, which leads to

$$1301 \quad \text{size of one factor } (\mathbf{A} \text{ or } \mathbf{G}) \approx 16,777,216 \times 4 \text{ bytes} \approx 64 \text{ MB.}$$

1303 Thus storing both \mathbf{A} and \mathbf{G} for *one* weight matrix consumes about $2 \times 64 \text{ MB} \approx 128 \text{ MB}$. A
 1304 transformer block at this width typically has multiple large projection matrices, such as self-attention
 1305 projections $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V, \mathbf{W}_O$ plus two large feed-forward matrices. Even if we conservatively
 1306 apply K-FAC only to four matrices per block (e.g., $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V, \mathbf{W}_O$) and ignore the FFN, the
 1307 curvature state per block is already

$$1308 \quad \text{curvature per block} \approx 4 \times 128 \text{ MB} = 512 \text{ MB.}$$

1310 For a 7B LLM with roughly $L \approx 80$ transformer blocks, this yields

$$1311 \quad \text{extra K-FAC curvature memory} \approx 512 \text{ MB} \times 80 \approx 40 \text{ GB per GPU,}$$

1313 **only** for storing \mathbf{A} and \mathbf{G} in FP32, without caching eigenvectors.

1314 In practice, many K-FAC variants also cache eigendecompositions, i.e., $\mathbf{U}_A, \mathbf{U}_G$ for each factor.
 1315 Each eigenvector matrix \mathbf{U}_A or \mathbf{U}_G is again a $d \times d$ FP32 matrix (another $\sim 64\text{MB}$ for $d = 4096$),
 1316 effectively doubling the curvature state:

$$1317 \quad \text{curvature per weight } (\mathbf{A}, \mathbf{G}, \mathbf{U}_A, \mathbf{U}_G) \approx 4 \times 64 \text{ MB} = 256 \text{ MB,}$$

$$1318 \quad \text{curvature per block (4 weights)} \approx 4 \times 256 \text{ MB} = 1 \text{ GB,}$$

$$1319 \quad \text{curvature for 80 blocks} \approx 80 \text{ GB per GPU.}$$

1321 Thus, for a realistic configuration (FP32 factors + cached eigen-bases), even a 7B model with
 1322 $d = 4096$ requires on the order of 40-80GB of **additional** curvature memory **per GPU**.

1324 This curvature memory is replicated across data-parallel workers: each GPU maintains its own copy
 1325 of the K-FAC state and participates in all-reduce operations to aggregate the factors. The cost is
 1326 therefore **not** amortized across 8 GPUs; it is incurred independently on each device.

1327 **Interaction with A100 memory budget.** On A100 GPUs (80GB), RL training of LLMs already
 1328 pushes device memory close to saturation due to:

- 1329 • model parameters (for a 7B model in FP16, parameters alone occupy $\sim 14\text{-}16\text{GB}$),
- 1330 • optimizer states (Adam or AdamW typically add at least another $\sim 2\text{-}4\times$ parameter size, though
 1331 sharding/ZeRO may partially mitigate this),
- 1332 • activations and KV caches from long-context rollouts (often tens of GB for sequence lengths in the
 1333 thousands).

1335 Even under optimistic assumptions with aggressive activation checkpointing and optimizer sharding,
 1336 reserving an extra 40-80GB purely for K-FAC curvature is incompatible with the 80GB memory
 1337 budget of A100s. There is simply no room left for long-context RL rollouts or for scaling to larger
 1338 models.

1340 Moreover, this overhead **scales quadratically** with the hidden size d . If we increase to $d = 8192$
 1341 (typical of larger LLMs), then $d^2 = 8192^2 = 67,108,864$ entries, which leads to

$$1342 \quad \text{size of one FP32 factor} \approx 67,108,864 \times 4 \text{ bytes} \approx 256 \text{ MB.}$$

1344 Repeating the above estimates, even storing only \mathbf{A} and \mathbf{G} (no eigenvectors) for four matrices per
 1345 block across L blocks yields

$$1346 \quad \text{extra curvature memory} \sim \mathcal{O}(L \cdot 4 \cdot 2d^2) \approx \text{tens to over 100 GB per GPU}$$

1348 for realistic depths and widths. Thus, at LLM scales, K-FAC curvature storage alone can easily
 1349 demand 50-100GB or more per GPU, making it infeasible on current 80GB accelerators, especially
 in RL settings where rollout activations are also resident in memory.

1350
Computation cost. K-FAC’s main computational bottleneck is computing and updating the eigende-
 1351 compositions of \mathbf{A} and \mathbf{G} for each layer. The complexity of eigendecomposition for a dense $d \times d$
 1352 matrix is $\mathcal{O}(d^3)$, and this dominates the cost of forming the inverse (or inverse square-root) factors.
 1353

1354 For $d = 4096$, $d^3 = 4096^3 = 68,719,476,736 \approx 6.9 \times 10^{10}$ FLOPs. Each K-FAC update of a single
 1355 factor (either \mathbf{A} or \mathbf{G}) therefore costs on the order of 10^{11} floating-point operations when accounting
 1356 for constant factors. For four large matrices per block and $L \approx 80$ blocks, a full curvature refresh
 1357 (updating both \mathbf{A} and \mathbf{G} for all K-FAC blocks) involves on the order of

$$1358 \underbrace{(2 \text{ factors}) \times (4 \text{ matrices}) \times 80}_{\text{number of eigendecompositions}} \times 6.9 \times 10^{10} \approx 4.4 \times 10^{13} \text{ FLOPs}$$

1360 per curvature update.

1361 In classical applications of K-FAC, these expensive updates are amortized by refreshing curvature
 1362 only every τ steps (e.g., $\tau \in [50, 200]$) and reusing the same eigendecomposition in between. Even
 1363 with such amortization, empirical reports on convolutional and recurrent networks show that K-FAC
 1364 updates make each optimization step *at least* a few times more expensive than a first-order step when
 1365 curvature is refreshed regularly. At LLM scale, with many more and much wider layers, the $\mathcal{O}(d^3)$
 1366 factor makes this overhead more severe.

1367 When we combine:

1368 • the $\mathcal{O}(d^3)$ eigendecompositions required for each K-FAC factor,
 1369 • the need to aggregate curvature statistics across data-parallel workers (extra communication),
 1370 • the already high per-step cost of LLM RL training (due to long-context rollouts and large models),

1371 a realistic deployment of K-FAC at LLM scale would very plausibly induce a *three- to five-fold*
 1372 *slowdown* in effective optimization throughput compared to standard Adam or AdamW, even if
 1373 curvature is updated only every τ steps. Such a slowdown, on top of the massive memory overhead
 1374 outlined above, renders K-FAC effectively infeasible for RL training of modern LLMs.

1375 E.4.2 SHAMPOO

1376 Shampoo (Gupta et al., 2018) is a second-order preconditioning method that keeps Kronecker-factored
 1377 curvature statistics for each weight tensor, and then applies matrix inverse p -th roots of these statistics
 1378 to precondition the gradient. We focus on the matrix case, which already captures the scaling issues
 1379 at LLM widths.

1380 Consider a matrix parameter $\mathbf{W}_t \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$ and its (per-minibatch) gradient

$$1381 \mathbf{G}_t \triangleq \nabla_{\mathbf{W}} \mathcal{L}_t \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}.$$

1382 Shampoo maintains two symmetric positive semidefinite (PSD) matrices *per weight matrix*,

$$1383 \mathbf{L}_t = \epsilon \mathbf{I}_{d_{\text{out}}} + \sum_{s=1}^t \mathbf{G}_s \mathbf{G}_s^\top \in \mathbb{R}^{d_{\text{out}} \times d_{\text{out}}}, \quad (31)$$

$$1384 \mathbf{R}_t = \epsilon \mathbf{I}_{d_{\text{in}}} + \sum_{s=1}^t \mathbf{G}_s^\top \mathbf{G}_s \in \mathbb{R}^{d_{\text{in}} \times d_{\text{in}}}, \quad (32)$$

1385 where $\epsilon > 0$ is a small damping constant. In practice, \mathbf{L}_t and \mathbf{R}_t are updated by rank- d_{in} and rank- d_{out}
 1386 increments of the form $\mathbf{G}_t \mathbf{G}_t^\top$ and $\mathbf{G}_t^\top \mathbf{G}_t$ on every optimization step.

1387 The Shampoo update preconditions the gradient with inverse p -th powers of \mathbf{L}_t and \mathbf{R}_t . For a matrix
 1388 parameter (order-2 tensor), the original analysis leads to $p = 4$:

$$1389 \widetilde{\nabla_{\mathbf{W}} \mathcal{L}_t} = \mathbf{L}_t^{-\frac{1}{4}} \mathbf{G}_t \mathbf{R}_t^{-\frac{1}{4}}, \quad (33)$$

$$1390 \mathbf{W}_{t+1} = \mathbf{W}_t - \eta \widetilde{\nabla_{\mathbf{W}} \mathcal{L}_t}, \quad (34)$$

1404 where $\eta > 0$ is the step size. The fractional powers are implemented via eigendecomposition: if
 1405 $\mathbf{L}_t = \mathbf{U}_L \mathbf{\Lambda}_L \mathbf{U}_L^\top$ with $\mathbf{\Lambda}_L = \text{diag}(\lambda_1, \dots, \lambda_{d_{\text{out}}})$, then
 1406

$$1407 \mathbf{L}_t^{-\frac{1}{4}} = \mathbf{U}_L \mathbf{\Lambda}_L^{-\frac{1}{4}} \mathbf{U}_L^\top \quad \text{with} \quad \mathbf{\Lambda}_L^{-\frac{1}{4}} = \text{diag}(\lambda_1^{-\frac{1}{4}}, \dots, \lambda_{d_{\text{out}}}^{-\frac{1}{4}}),$$

1409 and similarly for $\mathbf{R}_t^{-\frac{1}{4}}$. For numerical stability, both the preconditioners and their eigen-
 1410 decompositions are typically kept in at least 32-bit floating point precision, even when \mathbf{W}_t and
 1411 \mathbf{G}_t are stored in FP16/BF16.
 1412

1413 **Memory cost at LLM scale.** Assume a transformer block where all large matrices have approximately
 1414 square shape $d_{\text{in}} \approx d_{\text{out}} \approx d$, with $d \in [4096, 8192]$ typical for 7B-70B models. For each weight
 1415 matrix \mathbf{W} , Shampoo maintains:

- 1416 • Two curvature accumulators $\mathbf{L}_t, \mathbf{R}_t \in \mathbb{R}^{d \times d}$;
 1417
- 1418 • In most practical implementations, the corresponding inverse fourth roots $\mathbf{L}_t^{-\frac{1}{4}}, \mathbf{R}_t^{-\frac{1}{4}}$ are also
 1419 stored, to avoid recomputing matrix roots every step.
 1420

1421 Thus, per weight matrix we have roughly four dense $d \times d$ matrices in FP32:

$$1422 \begin{aligned} \text{#floats per curvature state} &\approx 4d^2, \\ 1423 \text{memory per curvature state} &\approx 4d^2 \times 4 \text{ bytes} = 16d^2 \text{ bytes.} \end{aligned}$$

1425 For $d = 4096$, we have

$$1426 \begin{aligned} d^2 &= 4096^2 = 16,777,216 \approx 1.68 \times 10^7, \\ 1427 16d^2 &\approx 2.68 \times 10^8 \text{ bytes} \approx 256 \text{ MB.} \end{aligned}$$

1429 So a *single* large weight matrix requires on the order of
 1430

$$1431 \text{Shampoo curvature memory per weight} \approx 256 \text{ MB.}$$

1432 A transformer block typically contains six large matrices (e.g., $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V, \mathbf{W}_O$ and two feed-
 1433 forward matrices), so per block we obtain
 1434

$$1435 \text{curvature memory per block} \approx 6 \times 256 \text{ MB} = 1536 \text{ MB} \approx 1.5 \text{ GB.}$$

1436 For a 7B-scale model with $d = 4096$ and about $N_{\text{block}} = 40$ transformer blocks, the total Shampoo
 1437 curvature memory on *one GPU* is
 1438

$$1439 \text{curvature memory per GPU} \approx 1.5 \text{ GB} \times N_{\text{block}} \approx 1.5 \text{ GB} \times 40 \approx 60 \text{ GB.} \quad (35)$$

1440 For a larger 13B-scale model with $d \approx 5120$ and the same number of blocks, the d^2 scaling yields
 1441

$$1442 d = 5120 \Rightarrow \text{curvature memory} \approx 90\text{-}100 \text{ GB per GPU,}$$

1443 and for even wider 70B-scale models with $d \approx 8192$, the full-matrix Shampoo preconditioners alone
 1444 would require several hundred GB of memory.
 1445

Crucially, these curvature statistics are optimizer state: in a standard data-parallel RL fine-tuning
 1446 setup without dedicated sharding of optimizer states (such as Distributed Shampoo), each GPU
 1447 replica keeps its own copy of $\mathbf{L}_t, \mathbf{R}_t$ and their inverse roots for its local shard of parameters. This
 1448 memory is *in addition* to:

- 1450 • Model parameters (often stored in FP16/BF16 together with first/second-moment optimizer states),
 1451
- 1452 • Activations and attention KV caches required both for backpropagation and for collecting long-
 1453 context trajectories,
 1454
- 1455 • The auxiliary models typically involved in RLHF pipelines (e.g., reward/scoring models and
 1456 reference policies), even in setups that do not maintain an explicit critic network.

1456 Empirically, even first-order RLHF baselines (Adam/AdamW) already bring a 7B policy close to
 1457 the 80 GB limit of an A100 GPU once the policy, reward/scoring model, and reference model are
 1458 all active, especially with sequence lengths ≥ 1024 and realistic batch sizes. Back-of-the-envelope

estimates and open-source RLHF reports indicate that a 7B RLHF pipeline can easily consume ~ 60 - 70 GB of GPU memory on each A100 GPU *without* any second-order optimizer states. Combining this with the ~ 60 GB of additional curvature memory estimated in Eq. (35) would clearly exceed the 80 GB device capacity. In other words, full-matrix Shampoo at LLM scale effectively leaves no headroom for rollouts, auxiliary models, or even storing the policy itself on a single A100 (80GB).

Computation cost. The two main sources of extra compute in Shampoo are:

- Updating curvature accumulators \mathbf{L}_t and \mathbf{R}_t ;
- Computing matrix inverse 1/4-powers $\mathbf{L}_t^{-\frac{1}{4}}$ and $\mathbf{R}_t^{-\frac{1}{4}}$.

(1) Curvature updates. For each weight matrix,

$$\mathbf{L}_t = \mathbf{L}_{t-1} + \mathbf{G}_t \mathbf{G}_t^\top, \quad \mathbf{R}_t = \mathbf{R}_{t-1} + \mathbf{G}_t^\top \mathbf{G}_t.$$

Forming the products $\mathbf{G}_t \mathbf{G}_t^\top$ and $\mathbf{G}_t^\top \mathbf{G}_t$ costs

$$\mathcal{O}(d_{\text{out}}^2 d_{\text{in}} + d_{\text{in}}^2 d_{\text{out}}) \approx \mathcal{O}(d^3)$$

FLOPs when $d_{\text{in}} \approx d_{\text{out}} \approx d$. For a transformer with N_{block} blocks and roughly six large matrices per block, the per-step curvature update cost scales as

$$\text{FLOPs}_{\text{curv}} \approx C_{\text{curv}} N_{\text{block}} d^3, \quad (36)$$

for some modest constant C_{curv} (approximately $\mathcal{O}(10)$ when counting all $\mathbf{G}\mathbf{G}^\top$ and $\mathbf{G}^\top\mathbf{G}$ computations per block).

For $d = 4096$ and $N_{\text{block}} = 80$:

$$d^3 = 4096^3 = 68,719,476,736 \approx 6.87 \times 10^{10},$$

so Eq. (36) gives

$$\text{FLOPs}_{\text{curv}} \sim 10 \times 80 \times 6.9 \times 10^{10} \approx 5-7 \times 10^{13} \text{ FLOPs per optimization step},$$

just to update Shampoo’s second-moment statistics for the large matrices in the network.

(2) Inverse fourth roots. Computing $\mathbf{L}_t^{-\frac{1}{4}}$ and $\mathbf{R}_t^{-\frac{1}{4}}$ requires either:

- Eigendecomposition or SVD (apply $-1/4$ to eigenvalues), or
- Iterative inverse-square-root schemes (e.g., Newton–Schulz),

both of which cost $\mathcal{O}(d^3)$ per factor. One transformer block with six large matrices has twelve such factors (\mathbf{L} and \mathbf{R} for each weight), giving

$$\text{FLOPs}_{\text{roots, per update}} \approx C_{\text{root}} \times 12 \times d^3,$$

where C_{root} depends on solver details.

Root updates are typically amortized by refreshing them every τ optimizer steps. With N_{block} blocks,

$$\text{FLOPs}_{\text{roots, per step}} \approx \frac{C_{\text{root}} \times 12 \times N_{\text{block}} \times d^3}{\tau}. \quad (37)$$

For $d = 4096$, $N_{\text{block}} = 80$, and $\tau = 100$:

$$\text{FLOPs}_{\text{roots, per step}} \approx \frac{12 \times 80 \times 6.9 \times 10^{10}}{100} \approx 3 \times 10^{11} \text{ FLOPs per step.}$$

The total extra work per optimization step is therefore

$$\begin{aligned} \text{FLOPs}_{\text{Shampoo extra}} &\approx \text{FLOPs}_{\text{curv}} + \text{FLOPs}_{\text{roots, per step}} \\ &\approx 5 \times 10^{13} + 3 \times 10^{11} \approx \mathcal{O}(10^{13}) \text{ FLOPs per step.} \end{aligned} \quad (38)$$

1512 **Relative slowdown from FLOPs.** Large-scale RLHF pipelines for LLMs already require substantial
 1513 per-step compute due to multiple forward/backward passes (policy, reference, reward/scoring, etc.)
 1514 and long-context sequences. Eq. (38) shows that full-matrix Shampoo introduces an additional
 1515 $\mathcal{O}(10^{13})$ FLOPs *per optimization step*, which is typically comparable to—or larger than—the cost of
 1516 the remainder of the RL update.

1517 Thus, even without invoking any specific algorithmic details, full-matrix Shampoo is expected to
 1518 induce a multi- \times reduction in optimization throughput solely from its second-order computations.
 1519

1520 When combined with the ~ 60 GB curvature memory from Eq. (35), the method becomes impractical
 1521 for RL training of LLMs on A100 (80GB) systems:

- 1522 • The curvature state alone exceeds the available memory once policy, reference, and reward models
 1523 are included;
- 1524 • The extra $\mathcal{O}(10^{13})$ FLOPs per step impose a several-fold slowdown relative to standard first-order
 1525 optimizers.

1527 In short, full-matrix Shampoo cannot be used for RL training of modern LLMs on currently available
 1528 hardware.

1529 E.4.3 SOAP

1531 SOAP (Vyas et al., 2025) is a second-order optimizer built on top of Shampoo. For a fully-connected
 1532 (or linear) layer with weight matrix $\mathbf{W} \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$ and gradient
 1533

$$1534 \mathbf{G} \triangleq \nabla_{\mathbf{W}} \mathcal{L} \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}},$$

1535 Shampoo maintains two curvature matrices that approximate second-moment information along the
 1536 output and input dimensions:

$$1538 \mathbf{L}_t = \beta_2 \mathbf{L}_{t-1} + (1 - \beta_2) \mathbf{G}_t \mathbf{G}_t^\top, \quad (39)$$

$$1540 \mathbf{R}_t = \beta_2 \mathbf{R}_{t-1} + (1 - \beta_2) \mathbf{G}_t^\top \mathbf{G}_t, \quad (40)$$

1541 where $\mathbf{L}_t \in \mathbb{R}^{d_{\text{out}} \times d_{\text{out}}}$ and $\mathbf{R}_t \in \mathbb{R}^{d_{\text{in}} \times d_{\text{in}}}$ are updated as exponential moving averages, and $\beta_2 \in (0, 1)$
 1542 is a decay coefficient.

1543 **Preconditioned update in the eigenbasis.** SOAP periodically (every τ steps) computes eigendecom-
 1544 positions of the Shampoo preconditioners:

$$1546 \mathbf{L}_t = \mathbf{Q}_L \boldsymbol{\Lambda}_L \mathbf{Q}_L^\top, \quad \mathbf{Q}_L \in \mathbb{R}^{d_{\text{out}} \times d_{\text{out}}}, \quad (41)$$

$$1548 \mathbf{R}_t = \mathbf{Q}_R \boldsymbol{\Lambda}_R \mathbf{Q}_R^\top, \quad \mathbf{Q}_R \in \mathbb{R}^{d_{\text{in}} \times d_{\text{in}}}, \quad (42)$$

1549 where $\boldsymbol{\Lambda}_L$ and $\boldsymbol{\Lambda}_R$ are diagonal matrices of eigenvalues, and $\mathbf{Q}_L, \mathbf{Q}_R$ collect the corresponding
 1550 eigenvectors. SOAP then rotates the gradient into this slowly changing eigenbasis:

$$1551 \mathbf{G}'_t = \mathbf{Q}_L^\top \mathbf{G}_t \mathbf{Q}_R, \quad (43)$$

1553 and runs Adam-style first- and second-moment updates in the rotated coordinates:

$$1554 \mathbf{M}'_t = \beta_1 \mathbf{M}'_{t-1} + (1 - \beta_1) \mathbf{G}'_t, \quad (44)$$

$$1556 \mathbf{V}'_t = \beta'_2 \mathbf{V}'_{t-1} + (1 - \beta'_2) (\mathbf{G}'_t \odot \mathbf{G}'_t), \quad (45)$$

1557 where $\mathbf{M}'_t, \mathbf{V}'_t \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$, $\beta_1, \beta'_2 \in (0, 1)$ are Adam-style coefficients, and \odot denotes element-wise
 1558 multiplication. The preconditioned update in the eigenbasis is
 1559

$$1560 \mathbf{U}'_t = \mathbf{M}'_t \oslash (\sqrt{\mathbf{V}'_t} + \varepsilon), \quad (46)$$

1561 where \oslash is element-wise division and $\varepsilon > 0$ is a small numerical constant. Finally, SOAP rotates this
 1562 update back to the original parameter space:

$$1564 \Delta \mathbf{W}_t = -\eta \mathbf{Q}_L \mathbf{U}'_t \mathbf{Q}_R^\top, \quad (47)$$

$$1565 \mathbf{W}_{t+1} = \mathbf{W}_t + \Delta \mathbf{W}_t, \quad (48)$$

1566 where $\eta > 0$ is the learning rate. Thus SOAP can be viewed as running Adam on a rotated version of
 1567 the gradient, where the rotation is given by the Shampoo preconditioner eigenbasis.
 1568

1569 **Optimizer state and memory cost at LLM scale.** Consider a transformer block where $d_{\text{out}} \approx d_{\text{in}} \approx d$
 1570 and the weight matrices are of size $d \times d$. At SOAP scale, the optimizer state associated with a single
 1571 such matrix \mathbf{W} includes:

- 1572 • Shampoo curvature matrices $\mathbf{L}_t, \mathbf{R}_t$ (each $d \times d$),
 1573 • eigenvector matrices $\mathbf{Q}_L, \mathbf{Q}_R$ (each $d \times d$),
 1574 • rotated Adam moments $\mathbf{M}'_t, \mathbf{V}'_t$ (each $d \times d$).

1575 Altogether, this is six dense $d \times d$ matrices per weight matrix.
 1576

1577 For numerical stability, these matrices are typically stored in at least FP32, even when the model
 1579 weights and activations are in BF16/FP16. A single dense $d \times d$ FP32 matrix requires $4d^2$ bytes.
 1580 Therefore, the SOAP-related optimizer state per weight matrix is

$$1581 \text{bytes per weight (SOAP state)} = 6 \times 4d^2 = 24d^2 \text{ bytes.} \quad (49)$$

1582 Let us instantiate this for a modern LLM width of $d = 4096$:

$$1583 d^2 = 4096^2 = 16,777,216,$$

$$1585 24d^2 = 24 \times 16,777,216 = 402,653,184 \text{ bytes.}$$

1586 Dividing by 1024² to convert to MiB, we have
 1587

$$1588 \text{SOAP state per weight} \approx \frac{402,653,184}{1024^2} \approx 384 \text{ MiB.}$$

1590 Thus, each *single* 4096×4096 weight matrix carries roughly 384 MiB of SOAP-specific state.
 1591

1592 A typical transformer block at this width has at least four large projection matrices (for self-attention:
 1593 $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V, \mathbf{W}_O$), not counting the feed-forward network. Even if we conservatively apply
 1594 SOAP only to these four matrices, the curvature and moment state per block is

$$1595 \text{SOAP state per block} \approx 4 \times 384 \text{ MiB} = 1536 \text{ MiB} \approx 1.5 \text{ GB.} \quad (50)$$

1596 For a 7B-parameter LLM with roughly $L \approx 80$ transformer blocks, we obtain
 1597

$$1598 \text{total SOAP state} \approx 1.5 \text{ GB} \times 80 = 120 \text{ GB *per GPU*,} \quad (51)$$

1599 **only** counting the FP32 matrices listed above, and ignoring any additional buffers or implementation
 1600 overhead.

1601 Crucially, this optimizer state is *replicated* across data-parallel GPUs: each worker maintains its own
 1602 copy of $\mathbf{L}_t, \mathbf{R}_t, \mathbf{Q}_L, \mathbf{Q}_R, \mathbf{M}'_t, \mathbf{V}'_t$ for its local parameters, and participates in all-reduce operations
 1603 for gradient aggregation. The 120 GB figure in Eq. (51) is therefore a *per-device requirement*; it is
 1604 not amortized across multiple GPUs.

1605 **Interaction with A100 memory budget in RL training.** On A100 GPUs (80GB), RL training of
 1606 LLMs already pushes device memory close to saturation due to:

- 1608 • model parameters (for a 7B model in FP16, parameters alone occupy $\sim 14\text{-}16\text{GB}$),
 1609 • optimizer states (Adam or AdamW typically add at least another $\sim 2\text{-}4\times$ parameter size, though
 1610 sharding/ZeRO may partially mitigate this),
 1611 • activations and KV caches from long-context rollouts (often tens of GB for sequence lengths in the
 1612 thousands).

1613 Even under optimistic assumptions with aggressive activation checkpointing and optimizer sharding,
 1614 it is common to consume on the order of 60–70 GB out of the 80 GB budget on A100.

1616 Adding the SOAP state from Eq. (51) would require around 120 GB *per GPU* purely for curvature
 1617 and moment information, i.e.,

$$1618 \underbrace{60\text{--}70 \text{ GB}}_{\text{existing RL pipeline}} + \underbrace{120 \text{ GB}}_{\text{SOAP state}} \gtrsim 180 \text{ GB per GPU.}$$

1620 This exceeds the A100 80 GB memory capacity by more than a factor of two, even before accounting
 1621 for safety margins and additional framework overhead. In practice, there is simply no configuration
 1622 (batch size, sequence length, or number of rollout trajectories) that allows both realistic RL training
 1623 of a 7B LLM and full SOAP optimizer state to coexist on an 80 GB device.

1624 Moreover, the SOAP memory overhead scales quadratically with the hidden size d . If we increase to
 1625 $d = 8192$ (typical for larger LLMs), then

$$1627 \quad d^2 = 8192^2 = 67,108,864,$$

$$1628 \quad 24d^2 = 24 \times 67,108,864 = 1,610,612,736 \text{ bytes} \approx 1536 \text{ MiB.}$$

1629 Thus, **one** 8192×8192 weight would carry about 1.5 GB of SOAP state, and four such matrices per
 1630 block over many blocks would push the per-GPU optimizer state well beyond 200 GB. Therefore, at
 1631 realistic LLM widths and depths, the SOAP memory requirements are incompatible with the fixed
 1632 80 GB budget of A100 GPUs in RL settings.

1633 **Computation cost and slowdown in RL.** SOAP inherits two major computational overheads:

- 1635 • periodic eigendecompositions of \mathbf{L}_t and \mathbf{R}_t (every τ steps), and
- 1636 • per-step rotations of gradients and updates into and out of the preconditioner eigenbasis.

1638 The eigendecomposition of a dense $d \times d$ matrix has complexity $\mathcal{O}(d^3)$. For $d = 4096$,

$$1640 \quad d^3 = 4096^3 = 68,719,476,736 \approx 6.9 \times 10^{10} \text{ FLOPs.}$$

1641 Each SOAP curvature refresh requires two such eigendecompositions per weight (for \mathbf{L}_t and \mathbf{R}_t), so
 1642 the cost per weight matrix is on the order of

$$1643 \quad \text{FLOPs per weight (eigs)} \approx 2 \times 6.9 \times 10^{10} \approx 1.4 \times 10^{11}.$$

1644 With four large matrices per block and $L \approx 80$ blocks, a full curvature refresh involves

$$1645 \quad \text{FLOPs per SOAP refresh} \approx (4 \text{ matrices}) \times (80 \text{ blocks}) \times 1.4 \times 10^{11}$$

$$1647 \quad \approx 4.5 \times 10^{13} \text{ FLOPs.} \quad (52)$$

1648 Even if this cost is amortized by updating the eigenbasis only every $\tau = 100$ steps, the amortized
 1649 overhead is on the order of 4.5×10^{11} FLOPs **per training step**, comparable to or exceeding the cost
 1650 of the forward-backward pass itself for a 7B model at moderate sequence lengths.

1651 In addition, at every step (not just every τ steps), SOAP performs the rotations

$$1653 \quad \mathbf{G}'_t = \mathbf{Q}_L^\top \mathbf{G}_t \mathbf{Q}_R, \quad (53)$$

$$1655 \quad \mathbf{U}_t = \mathbf{Q}_L \mathbf{U}'_t \mathbf{Q}_R^\top, \quad (54)$$

1656 which each involve two dense $d \times d$ matrix multiplications (left and right multiplication) and therefore
 1657 have complexity $\mathcal{O}(d^3)$ per large weight matrix. For $d = 4096$, these rotations add another substantial
 1658 multiple of 6.9×10^{10} FLOPs per weight per step.

1659 When combined across all large matrices and blocks, these extra $\mathcal{O}(d^3)$ operations typically make
 1660 each SOAP step several times more expensive than a standard Adam/AdamW step. At LLM scale,
 1661 and especially in RL-style fine-tuning where:

- 1662 • rollouts require long sequences and sufficiently large batch sizes for stable training,
- 1663 • multiple model passes (policy, reference, reward/scoring, etc.) are performed per update,
- 1664 • environment interaction and cross-device communication already contribute substantially to the
 1665 per-step cost,

1667 this optimizer overhead becomes a dominant bottleneck. A conservative estimate is that SOAP would
 1668 induce at least a **3-5**× slowdown relative to AdamW; for long-context RL training of large LLMs
 1669 with many wide layers, the combined effect of repeated eigendecompositions and per-step rotations
 1670 can easily push this into the **5-10**× range in terms of effective tokens-per-second throughput.

1672 Therefore, although SOAP is an attractive optimizer at moderate scales, its quadratic memory footprint
 1673 and cubic-time eigen-computation render it infeasible for RL training of modern LLMs on current
 A100-class hardware.

1674

1675

Table 5: Wall-clock time comparison between joint learning and CGPO on extremely large LLMs.

1676

1677

Model	Device	Method	50 steps (hours)	Per step (min)
Qwen2.5-32B-Instruct	16 H200 GPUs	Joint Learning	7.1	8.52
	16 H200 GPUs	CGPO	7.5	9.00
Qwen2.5-72B-Instruct	32 H200 GPUs	Joint Learning	12.6	15.12
	32 H200 GPUs	CGPO	12.8	15.36

1682

1683

F MORE EXPERIMENTS

1684

F.1 TIMING EXPERIMENTS ON 32B AND 72B MODELS

1685

1686

Extremely large LLMs place substantial computational demand on rollout generation, since the cost of producing each token grows with model size. As model scale increases, rollout generation becomes the dominant component of end-to-end training time, while variations in gradient-update scheduling (e.g., sequential updates vs. a single aggregated update) account for only a small fraction of the total compute.

1687

1688

To quantify this effect, we conduct timing experiments on two large models, Qwen2.5-32B-Instruct and Qwen2.5-72B-Instruct. The 32B and 72B experiments are run on clusters of 16 and 32 H200 (140GB) GPUs, respectively. For both models, we measure the total wall-clock time and average per-step time over the first 50 steps. These results provide a representative comparison of computational overhead under realistic large-scale RL training conditions.

1689

1690

As shown in Table 5, across both model scales, the difference between joint learning and CGPO remains marginal relative to the overall training time. This supports the observation that, at extremely large scales, rollout generation dominates end-to-end runtime, and the additional gradient steps used in CGPO do not introduce a meaningful computational bottleneck.

1691

1692

F.2 DISCUSSION ON THE SENSITIVITY TO THE NUMBER OF DOMAINS K

1693

1694

In this section, we provide additional analysis and experiments regarding how CGPO behaves as the number of K increases. As discussed in the main paper, CGPO’s effectiveness is driven primarily by the degree of cross-domain conflict, rather than by K itself. Here, we elaborate on this claim and present new experimental evidence.

1695

1696

Key Observation. CGPO’s sequential curvature-informed mechanism is designed to mitigate cross-domain conflicts. Therefore, its benefit scales with how much the domains disagree. Across all experiments conducted—including those with substantially heterogeneous domain mixtures—we did not observe any evidence of performance plateau or degradation as K increases.

1697

1698

Experimental Settings. To empirically verify this, we conducted three groups of experiments, varying either the number of domains or the strength of cross-domain conflict:

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1. **Math + Code (moderate conflict):** The datasets and evaluation benchmarks are identical to those used in the main experiments.
2. **Math + Creative Writing (high conflict):** The datasets and evaluation benchmarks are identical to those used in the main experiments.
3. **Math + Code + Scientific QA + Creative Writing + Logic + Tabular:** The datasets and evaluation benchmarks for math, code, scientific QA, and creative writing follow the same setup as in the main experiments. For the logic domain, we train on Zebra Puzzle (1.3k samples) (Lin et al.) and Ordering Puzzle (1.9k samples), and evaluate on the test set of Zebra Puzzle. For the tabular domain, we train on HiTab (4.3k samples) (Cheng et al., 2022) and evaluate on its test set. Both the logic and tabular training and test splits use the filtered versions provided by (Cheng et al., 2025). The reward functions for the logic and tabular domains are rule-based.

1728
 1729 **Table 6: Performance of models (Qwen2.5-7B-Instruct) trained on the multi-domain dataset**
 1730 **(math + code) with different methods, evaluated on multiple benchmarks.** The bold font indicates
 1731 the best result.

Methods	Math		Code Generation		AVG
	MATH500	AMC	HumanEval	MBPP	
FAMO	76.25	57.37	84.01	71.40	72.26
CGPO	76.15	60.81	84.66	72.60	*73.56

1736
 1737 **Table 7: Performance of models (Qwen2.5-7B-Instruct) trained on the multi-domain dataset**
 1738 **(math + creative writing) with different methods, evaluated on multiple benchmarks.** The bold
 1739 font indicates the best result.

Methods	Math		Creative Writing		AVG
	MATH500	AMC	WritingBench		
FAMO	74.85	54.72	64.35	64.64	
CGPO	75.10	58.94	67.01	*67.02	

1744
 1745 **Table 8: Performance of models (Qwen2.5-7B-Instruct) trained on the multi-domain dataset**
 1746 **(math + code + scientific QA + creative writing + logic + tabular) with different methods,**
 1747 **evaluated on multiple benchmarks.** The bold font indicates the best result.

Methods	Math		Code Generation		Scientific QA		Creative Writing		Logic	Tabular	AVG
	MATH500	AMC	HumanEval	MBPP	GPQA-diamond	SuperGPQA	WritingBench	Zebra	HiTab		
FAMO	75.30	55.02	82.93	68.60	22.64	31.58	63.09	36.84	68.71	56.08	
CGPO	74.90	59.84	83.88	70.80	26.91	31.72	65.08	37.63	69.57	*57.81	

1752
 1753 We select FAMO for comparison in these experiments because it is the best-performing baseline at
 1754 the 7B scale in our main experiments. All other training details, reward functions, and evaluation
 1755 protocols follow the same setup as in the main paper.

1756 **Results.** Across all configurations, CGPO remains stable and effective, as shown in Tables 6-8.
 1757 Importantly:

1758

- 1759 • The performance improvement in the math + creative writing setting (high conflict) is noticeably
 1760 larger than in the math + code setting (moderate conflict), confirming our claim that CGPO’s
 1761 advantage grows as cross-domain conflict increases.
- 1762 • In the six-domain experiment, CGPO continues to deliver clear, consistent gains, showing that its
 1763 benefits persist even when K becomes large and the domain mixture is highly heterogeneous.

1764
 1765 These results confirm that CGPO’s performance does not degrade as the number of domains increases.
 1766 Instead, its effectiveness is governed by the level of cross-domain conflict, and CGPO remains robust
 1767 even in large, diverse multi-domain training scenarios.