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ABSTRACT

Multi-domain reinforcement learning (RL) for large language models (LLMs)
involves highly intricate reward surfaces, posing significant challenges in finding
parameters that excel across all domains. Recent empirical studies have further
highlighted conflicts among domains, where gains in one capability often come at
the expense of another. However, approaches to mitigate such conflicts and enhance
multi-domain reasoning remain largely underexplored. To address this challenge,
we propose Curvature-Guided Policy Optimization (CGPO), a principled and scal-
able training framework to advance the multi-domain reasoning of LLMs. Inspired
by Newton’s method, CGPO exploits the geometric structure in the reward surface,
while sidestepping the prohibitive cost of Hessian computation. At each update,
CGPO processes domains in random order, preconditioning their gradients with
curvature information from other domains to foster richer cross-domain interac-
tions. This mechanism further promotes implicit gradient alignment by maximizing
inter-domain inner products in expectation, steering the parameters toward regions
that jointly enhance multi-domain performance. Extensive experiments on a mixed
dataset covering math, coding, science, and creative writing, evaluated across seven
widely-used benchmarks, show that CGPO significantly outperforms all baselines
in terms of faster reward improvement and stronger multi-domain capability.

1 INTRODUCTION

Large language models (LLMs) have recently achieved remarkable progress in complex reasoning
tasks, including mathematical problem solving (Yang et al., 2024; Yu et al., 2025a), code generation
(Ye et al., 2025; Zeng et al., 2025), and creative writing (Fein et al., 2025; Carrera et al., 2025). A
key driver behind these advances is reinforcement learning (RL), particularly policy optimization
methods such as PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024). While earlier work
primarily focused on applying RL within single domains (Hu et al., 2025; Yu et al., 2025a), more
recent studies have moved toward multi-domain reasoning, constructing diverse datasets (Cheng
et al., 2025), training general reward models (Ma et al., 2025), and empirically examining interactions
among different reasoning capabilities (Li et al., 2025b; Cheng et al., 2025).

Despite these advances, multi-domain RL for LLMs still confronts significant challenges. The
coexistence of diverse data distributions and reward signals produces highly complex reward surfaces,
making it difficult to find parameters that excel across all domains simultaneously (Vithayathil Vargh-
ese & Mahmoud, 2020; Crawshaw, 2020). Recent studies further show that, although multi-domain
RL can yield overall benefits, it is often hindered by cross-domain conflicts, where gains in one capa-
bility are accompanied by losses in another (Cheng et al., 2025; Li et al., 2025b). These difficulties
are further compounded by the nature of RL training: on one hand, online sampling (i.e., rollouts)
introduces unpredictable interactions among domain-specific samples; on the other hand, generating
rollouts is computationally expensive, and much of this effort is wasted when cross-domain conflicts
cancel out the contributions. These considerations make it crucial to develop RL frameworks that
fully exploit mixed datasets to enhance LLMs’ reasoning across diverse domains.

Cross-domain conflicts often manifest as gradient conflicts (Chen et al., 2025), yet widely-used
approaches for mitigating them face notable limitations in the context of RL for LLMs. Most existing
methods intervene during gradient aggregation once conflicts occur, aiming to balance updates across
domains. On the one hand, they do not leverage the underlying geometry of the reward surface or loss
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landscape (Liu et al., 2023; Sener & Koltun, 2018). On noisy, rollout-based gradients, such purely
reactive strategies tend to amplify update variance and degrade both stability and performance. On the
other hand, many techniques require storing and manipulating all domain gradients simultaneously
on the GPU (Yu et al., 2020; Liu et al., 2024; 2021). This incurs substantial memory overhead that
grows rapidly with the number of domains and can even result in out-of-memory failures, severely
limiting the scalability of multi-domain RL for LLMs. Alternatively, recent work suggests that
second-order methods such as Newton’s method and its approximation SOAP (Vyas et al., 2025) can
mitigate gradient conflicts in PINNs (Wang et al., 2025), but their reliance on Hessian computations
renders them infeasible for the high-dimensional, rollout-heavy setting of RL for LLMs. These
limitations compellingly motivate the following question: How to mitigate cross-domain conflicts in
a manner that is both consistent with the nature of RL and efficient at scale, thereby enhancing
the multi-domain reasoning capabilities of LLMs?

In this paper, we propose CGPO, a principled and scalable policy optimization framework, to
enhance multi-domain reasoning for LLMs. CGPO draws inspiration from Newton’s method, while
incorporating a design specifically adapted to the distinct challenges of multi-domain RL for LLMs.
Newton’s method exploits the geometric structure of the loss landscape (i.e., the Hessian matrix)
to precondition gradients, correcting directional deviations induced by anisotropy and facilitating
efficient convergence. To retain these benefits while circumventing the computational burden of
full Hessian computation, we adapt the preconditioning step into a lightweight mechanism tailored
for efficient RL training of LLMs. Specifically, at each parameter update, domains are processed
in random order, with each domain’s gradient modulated by curvature information from others,
thereby inducing rich cross-domain interactions. Another appealing feature of this mechanism
is that it implicitly aligns domain gradients by maximizing their inner products in expectation,
guiding the parameters toward regions of high cross-domain consistency. We validate CGPO on
a diverse dataset of 20k samples spanning mathematical reasoning, code generation, scientific
QA, and creative writing using Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct, evaluated across
seven benchmarks. Our results demonstrate that CGPO consistently outperforms a broad spectrum
of baselines—including curriculum learning strategies, gradient balancing techniques, and joint
learning—achieving faster reward gains and markedly stronger multi-domain reasoning capabilities.

2 PRELIMINARIES

2.1 MULTI-DOMAIN LANGUAGE MODELING AS REINFORCEMENT LEARNING

An LLM πθ (with parameters θ) defines a conditional probability distribution over output responses
y = [y1, . . . , yT ] given a query x ∼ D, represented as πθ(y | x) =

∏T
t=1 πθ(yt | x,y1:t−1). To

align LLMs with desired behaviors, recent work formulates language generation as a reinforcement
learning (RL) problem. The model acts as a policy that interacts with an environment by generating
responses y to queries x, and each response receives a reward R(x,y) ∈ R that reflects its quality.

In many real-world applications, LLMs are expected to perform well across multiple domains, each
corresponding to a distinct type of query or task. Formally, let there be K domains with query
distributions {Dk}Kk=1. Each domain k defines its own reward function Rk(·, ·), reflecting task-
specific quality criteria. Assuming equal importance for all domains, the multi-domain training
objective is to maximize the average expected reward (we abbreviate y ∼ πθ(· | x) as y ∼ πθ):
J (θ) = 1

K

∑K
k=1 Jk(θ) =

1
K

∑K
k=1 Ex∼Dk,y∼πθ

[Rk(x,y)].

2.2 POLICY OPTIMIZATION ALGORITHMS

The multi-domain formulation in Section 2.1 reduces to the standard RL objective when expressed
with a generic query distribution D and reward function R, i.e., J (θ) = Ex∼D,y∼πθ

[R(x,y)].

Directly optimizing J (θ) is challenging due to the discrete, variable-length output space and
the dependency of the distribution πθ on the parameters θ. Instead, the policy gradient the-
orem (Sutton et al., 1998) provides an unbiased estimator for the gradient, i.e., ∇θJ (θ) =
Ex∼D,y∼πθ

[∇θ log πθ(y | x)A(x,y)], where A(x,y) = R(x,y) − b(x) denotes the advantage
of response y over a baseline b(x). In practice, the true advantage function is unknown and must be
estimated from rollouts. This is typically done by training a value function Vϕ(x) to approximate
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the expected reward, and then computing an estimated advantage Â(x,y) = R(x,y)− Vϕ(x). By
combining this estimator with importance sampling using rollouts from an old policy πθold , one can
define a surrogate objective L(θ; θold,D) = Ex∼D,y∼πθold

[
πθ(y|x)

πθold
(y|x) Â(x,y)

]
.

While the theoretical surrogate objective using the true advantage A has a gradient that coincides
exactly with ∇θJ (θ) at θ = θold, practical objectives using the estimated advantage Â serve as
a first-order approximation. This approximation is reliable as long as the updated policy πθ re-
mains close to πθold . Building on this, Proximal Policy Optimization (PPO) (Schulman et al., 2017)
ensures stable policy updates by maximizing a clipped surrogate objective LPPO(θ; θold,D) =

Ex∼D,y∼πθold

[
min

(
πθ(y|x)

πθold
(y|x) Â(x,y), clip1+ε

1−ε

(
πθ(y|x)

πθold
(y|x)

)
Â(x,y)

)]
, where ε is a small hyper-

parameter and clipγhigh
γlow

(·) = clip(·, γlow, γhigh) is the clipping function.

However, the reliance of PPO on a separately trained critic model to estimate b(x) introduces
substantial memory and computational overhead. To address this, recent critic-free methods rep-
resented by GRPO (Shao et al., 2024) have emerged. GRPO estimates the baseline directly from
a group of sampled responses. Specifically, it samples G responses {y(i)}Gi=1 for each query x,
obtains their rewards {r(i)}Gi=1, and then computes a normalized advantage for each response:
Â(i) =

[
r(i) −mean

(
{r(j)}Gj=1

)] /
std
(
{r(j)}Gj=1

)
. The overall GRPO surrogate objective is

LGRPO(θ; θold,D) = Ex∼D,{y(i)}G
i=1∼πθold[

1

G

G∑
i=1

min

(
πθ(y

(i) | x)
πθold(y

(i) | x)
Â(i), clip

1+εhigh
1−εlow

(
πθ(y

(i) | x)
πθold(y

(i) | x)

)
Â(i)

)
− βD(i)

KL(πθ∥πref)

]
, (1)

where εlow, εhigh, and β are hyperparameters, πref is a reference policy (typically the initial model),
and D(i)

KL(πθ∥πref) is a sample-based KL divergence penalty. In this work, we adopt GRPO as our
base policy gradient algorithm due to its efficiency and scalability.

Surrogate Objectives as Faithful Gradient Approximators. While the policy gradient theorem
provides an unbiased gradient for the true advantage A, practical algorithms rely on estimated
advantages Â, which introduce variance. Surrogate objectives like PPO and GRPO are designed to
stabilize these gradients: PPO uses clipping to enforce a trust region, making ∇θLPPO(θ; θold,D) a
reliable approximation of ∇θJ (θ), while GRPO’s combination of clipping and KL regularization
similarly produces a stable gradient ∇θLGRPO(θ; θold,D) that approximates the KL-regularized
objective ∇θ (J (θ)− β′DKL(πθ∥πref)).

2.3 NEWTON’S METHOD FOR GRADIENT PRECONDITIONING

Newton’s method is a classical second-order optimization algorithm that leverages the curvature of
the objective to accelerate convergence. Given a twice-differentiable loss L(θ), the Newton update
is θt+1 = θt −H(θt)

−1g(θt), where g(θt) = ∇θL(θt) and H(θt) = ∇2
θL(θt) is the Hessian. By

preconditioning the gradient with local curvature, Newton’s method corrects for anisotropy, producing
more direct steps toward an optimum. It is particularly effective in complex, conflicting landscapes;
e.g., Wang et al. (2025) shows that Newton’s method and its approximate variant SOAP (Vyas et al.,
2025) mitigate gradient conflicts in PINNs and accelerate convergence.

However, directly applying Newton’s method to RL for LLMs is impractical: the Hessian is high-
dimensional and costly to compute or invert, and rollout-based gradients are noisy. Still, the principle
of leveraging curvature to guide updates provides a valuable foundation for designing optimization
strategies that handle conflicting gradients and complex surfaces, as we explore in Section 3.

3 CURVATURE-GUIDED POLICY OPTIMIZATION

Building on the preliminaries, we seek to leverage the insight that Newton’s method couples gradients
with curvature information—a property that can be particularly valuable in multi-domain RL for
LLMs, where interactions between domains are often complex and interdependent. Rather than
directly approximating the Newton update, which would be computationally prohibitive in our setting,
we distill its essential idea into a lightweight mechanism that induces cross-domain gradient-curvature
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Figure 1: Illustration of CGPO (one update step). After generating responses, computing rewards,
and estimating advantages for each domain, CGPO randomly permutes the domain order and applies
updates sequentially, followed by interpolation with the original model. The parameter change
∆θ can be approximately decomposed into a single-domain gradient term—capturing per-domain
learning—and a cross-domain interaction term that facilitates transfer across domains. Note that
CGPO introduces only negligible additional computation overhead (see Section 4.3 for details).

interactions via sequential task updates. Our method unfolds in three parts: Section 3.1 motivates the
design by analyzing the structure of the Newton update, Section 3.2 presents a simple perturbation-
based procedure to capture the desired interactions, and Section 3.3 integrates these components into
a practical algorithm, i.e., our proposed CGPO. An overview of CGPO is illustrated in Figure 1.

3.1 MOTIVATION: WHY HESSIAN-GRADIENT INTERACTIONS MATTER

The starting point of CGPO is an informal observation about Newton’s method. Although exact
second-order updates are infeasible in large-scale RL for LLMs, the Newton term Hg (omitting
θt) couples gradient and curvature, suggesting that such interactions may help reconcile conflicting
gradients in multi-domain learning. To illustrate, consider a heuristic expansion: H−1g ≈ (I− (I−
H))−1g ≈ (I+(I−H)+O((I−H)2))g ≈ 2g−Hg+O((I−H)2g), where the approximations are
informal and serve to reveal the structure rather than provide a rigorous formula. In the multi-domain
setting, where g =

∑K
k=1 gk and H =

∑K
k=1 Hk, the product −Hg then contains cross-domain

terms −Hjgi (i ̸= j), in which the curvature of domain j modulates the gradient of domain i.

These interactions effectively transmit curvature signals across tasks, amplifying, dampening, or
redirecting updates—capabilities absent in first-order methods. This motivates our key design
principle: instead of computing Hessians explicitly, we seek tractable mechanisms that induce such
cross-domain interactions to better align multi-domain optimization.

3.2 APPROXIMATE CROSS-DOMAIN INTERACTIONS VIA SEQUENTIAL UPDATES

Given the motivation above, the question is how to induce Hessian-gradient interactions without
explicitly computing Hessians. Our key idea is to approximate them by observing how the gradient
of one domain changes after parameter updates from another.

Consider two domains i and j. Let domain i updates the parameters from θ
(i)
pre to θ

(i)
post. Denoting the

Hessian of domain j at θ(i)pre by Hj

(
θ
(i)
pre

)
, the gradient of domain j then shifts as

gj

(
θ
(i)
post

)
− gj

(
θ(i)pre

)
≈ Hj

(
θ(i)pre

)(
θ
(i)
post − θ(i)pre

)
≈ ηHj

(
θ(i)pre

)
gi

(
θ(i)pre

)
, (2)

which corresponds to the cross-domain product Hjgi. This approximation is derived from a first-
order Taylor expansion and policy gradient ascent (see Appendix B.1 for the detailed derivation).
Thus, sequential updates naturally generate the desired interaction term. Further, to extend beyond
two domains, we randomize the order of domains at each iteration. Over time, this exposes every
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Algorithm 1 CGPO (one epoch illustration)
1: Input: πθinit , reward functions {Rk}Kk=1, datasets {Dk}Kk=1
2: Hyperparameter: number of steps T,M , learning rate η, mixing coefficient α
3: Initialization: πref ← πθinit , πθnew ← πθinit
4: for t = 1, . . . , T do
5: πθold ← πθnew

6: Sample a batch D(t),k =
{
x
(i)
(t),k

}|D(t),k|

i=1
from Dk for 1 ≤ k ≤ K

7: Generate responses
{
y
(i,j)
(t),k

}G

j=1
∼ πθold

(
· | x(i)

(t),k

)
for 1 ≤ i ≤ |D(t),k|, 1 ≤ k ≤ K

8: Compute rewards
{
r
(i,j)
(t),k

}G

j=1
and advantages

{
Â

(i,j)
(t),k

}G

j=1
for 1 ≤ i ≤ |D(t),k|, 1 ≤ k ≤ K

9: for m = 1, . . . ,M do
10: Sample a mini-batch D(t,m),k from D(t),k for 1 ≤ k ≤ K
11: Let σ(1), . . . , σ(K) denote a random permutation of 1, . . . ,K
12: ϕ0 ← θnew
13: for k = 1, . . . ,K do
14: Update parameters by maximizing Eq. (1) with D(t,m),σ(k) and associated responses:

ϕk = ϕk−1 − η ·
|D(t,m),σ(k)|∑K
k=1 |D(t,m),k|

· gGRPO

(
ϕk−1; θold, D(t,m),σ(k)

)
15: θnew ← ϕ0 + α(ϕK − ϕ0)
16: Output: πθnew

pair of domains to such interactions, allowing curvature information to propagate across domains.
Intuitively, each domain feels the curvature of others: one nudges the parameters, another responds,
producing coordinated updates that help reconcile conflicting objectives.

3.3 FULL ALGORITHM: RANDOMIZED CROSS-TASK INTERACTIONS

Building on the insights above, we now introduce CGPO, a principled algorithm for multi-domain
policy optimization, illustrated in Figure 1, with pseudocode in Alg. 1. At each training step, we
sample batches from all domains and generate multiple candidate responses under the current policy
(Lines 6-7). These responses are evaluated by domain-specific reward functions to obtain rewards
and advantage estimates (Line 8). We then repeatedly draw mini-batches (Lines 9-10) and perform
a randomized sequential update: domains are visited according to a random permutation (Lines
11-13), and at each step the parameters are updated with respect to one domain, conditioned on
perturbations induced by previously visited domains (Line 14). Finally, the updated parameters are
interpolated with the original ones using a mixing coefficient α (Line 15), stabilizing training by
balancing curvature-informed exploration with retention of the base policy.

To understand how sequential updates induce cross-domain Hessian–gradient interactions, consider
Lines 11–15. Let the domain order be σ(1), . . . , σ(K), and denote the loss, gradient, and Hessian of
domain k at parameter ϕ by Lk(ϕ), gk(ϕ), and Hk(ϕ). With ϕ0 → ϕ1 → · · · → ϕK , the gradient of
domain σ(k) at ϕk−1 can be expanded (see Appendix B.2) as

gσ(k)(ϕk−1) = gσ(k)(ϕ0)−
k−1∑
l=1

η|Dσ(l)|∑K
s=1 |Dσ(s)|

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2). (3)

For simplicity, assume uniform batch sizes |Dσ(l)|/
∑K

s=1 |Dσ(s)| = 1/K, then

gσ(k)(ϕk−1) = gσ(k)(ϕ0)−
η

K

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2). (4)
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Aggregating over k, the overall parameter change after one sequential pass is (see Appendix B.3)

α(ϕK − ϕ0) = −
αη

K

K∑
k=1

gk(ϕ0) +
αη2

K2

K∑
k=1

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2). (5)

The first term is the aggregated gradient; the second term contains cross-domain Hessian–gradient
products. Since the order σ is randomized, in expectation every pair (i, j) contributes equally. Sym-
metrizing the pairwise contributions yields Hi(ϕ0)gj(ϕ0)+Hj(ϕ0)gi(ϕ0) =

∂
∂ϕ0

(
gi(ϕ0)

⊤gj(ϕ0)
)

(see Appendix B.4), showing that the update encourages alignment of domain gradients.

Crucially, this analysis is not restricted to surrogate losses Lk: as argued in Section 2.2, GRPO
surrogates provide faithful approximations of the true policy gradients within their trust regions.
Thus, the induced interactions improve alignment not only among surrogate gradients but also
among the true policy gradients ∇θJk(θ). In effect, randomized sequential updates encourage
cooperation across domains by introducing curvature–gradient couplings that steer optimization
toward coordinated improvements on the full multi-domain objective

∑K
k=1 Jk(θ).

Discussion. We highlight two clarifications to better situate our approach.

• Sequential updates is a common technique across different learning paradigms. For example, in
meta-learning, Reptile (Nichol et al., 2018) adopts sequential updates to learn an initial model for
rapid adaptation to new tasks, while in federated learning, methods such as FedAvg (McMahan
et al., 2017) aggregate sequential client updates to improve global optimization. However, these
precedents do not diminish the novelty of our contributions. First, our sequential update originates
from our observation of Newton’s method and its capability to navigate complex landscapes, where
inherent curvature–gradient interactions naturally emerge across domains. Second, we adapt this
mechanism to the multi-domain RL for LLMs setting, where domain-specific rewards and surrogate
policy gradients pose unique challenges absent in meta-learning or federated learning. Finally,
we integrate randomized ordering, surrogate faithfulness (via GRPO), and stabilization through
interpolation into a unified algorithm tailored for large-scale RLHF. These innovations collectively
distinguish CGPO as a novel and practical solution for multi-domain policy optimization.

• A natural concern is that multiple updates per step could inflate the effective learning rate. To avoid
this, we scale each gradient proportionally to its mini-batch size and normalize by the total across
domains. This ensures that the overall update magnitude is consistent with that of using a single
aggregated batch, thereby preserving comparability with standard mini-batch optimization.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Tasks and Datasets. We focus on enhancing the LLMs’ overall capabilities across four domains—
mathematical reasoning, code generation, scientific QA, and creative writing. These domains not
only represent core areas of current research interest but also span four distinct forms of reward
feedback, thereby ensuring both comprehensiveness and diversity. For mathematics, code, and
science, we construct subsets from the Guru dataset (Cheng et al., 2025) with attention to dataset
size and sample difficulty (as Guru poses non-trivial challenges for 7B-scale models): the math
subset contains 6,250 samples, consisting of the 5,000 easiest problems (ranked by the pass rate
of Qwen2.5-7B-Instruct) and 1,250 more challenging ones; the code subset totals 4,740 samples,
comprising all 3,791 problems with a Qwen2.5-7B-Instruct’s pass rate of at least 25% plus an
additional 949 randomly sampled from the remainder, ensuring a roughly 4:1 ratio between easier
and harder samples; and the scientific QA subset includes the entire STEM split of Guru, with
3,591 samples. For creative writing, we randomly sample 2,000 samples each from the three most
popular datasets available on Huggingface (LitBench (Fein et al., 2025), Creative Writing-ShareGPT
(Nitral-AI, 2024), and wildchat-creative-writing-3k-rft (kevinshin, 2025)), yielding a dataset of 6,000
samples. For details of the datasets, please see Appendix C.1.

Baselines. We compare our CGPO with several representative baselines. For vanilla strategies, we
include joint learning, which directly trains on a multi-domain dataset without any special strategies.
For curriculum learning (CL), following the taxonomy in (Soviany et al., 2022), we include Omni-
Thinker (Li et al., 2025a), a progressive CL method, and self-paced CL, which schedules training
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Table 1: Performance of models (Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct) trained on
the multi-domain dataset with different methods, evaluated on multiple benchmarks. The bold
font indicates the best result and an underline indicates the second-best result.

Methods Math Code Generation Scientific QA Creative Writing AVG
MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench

# Qwen2.5-3B-Instruct
Joint Learning 64.50 39.38 72.39 59.40 24.87 24.12 58.61 49.04
Omni-Thinker 65.65 41.50 71.95 58.80 21.34 26.75 57.90 49.13
Self-paced CL 65.30 38.75 70.12 58.80 24.37 24.72 57.82 48.55
FAMO 63.80 39.12 72.48 59.20 23.47 26.51 58.46 49.01
CGPO 64.20 39.71 74.29 60.80 24.37 26.63 63.04 ⋆50.42

# Qwen2.5-7B-Instruct
Joint Learning 76.00 56.25 79.88 68.60 19.70 32.75 63.15 56.62
Omni-Thinker 75.10 53.75 82.93 68.60 23.86 30.63 62.35 56.75
Self-paced CL 74.70 51.88 82.93 68.00 21.72 30.25 63.68 56.17
FAMO 75.65 55.63 82.54 68.80 23.07 31.49 63.62 57.26
CGPO 75.55 59.38 84.15 72.00 26.77 32.75 66.52 ⋆59.59

from easier to harder examples based on task difficulty (measured by pass rate). For gradient
balancing, we include FAMO (Liu et al., 2023), categorized in (Chen et al., 2025) as a representative
approach for balancing gradient magnitudes across domains. We also attempted to implement gradient
manipulation methods such as PCGrad (Yu et al., 2020), but these require simultaneously storing and
operating on multiple per-domain gradients on GPUs, which leads to out-of-memory (OOM) issues
in the RL for LLM setting. For more details of baselines, please refer to Appendix C.2.

Training Details. We train Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on the multi-domain
dataset using the verl framework (Sheng et al., 2025). For the implementation of multi-domain
training in terms of data processing and reward design, we follow the codebases of (Cheng et al.,
2025) and (Ma et al., 2025). For math, we adopt rule-based rewards; for coding, we evaluate models’
outputs using unit test cases based on SandboxFusion (Bytedance-Seed-Foundation-Code-Team
et al., 2025); for scientific QA, we use a 1.5B General-Verifier (Ma et al., 2025) to assess the
consistency between model outputs and groundtruth answers; and for creative writing, we compare
model responses with reference answers using Qwen2.5-72B-Instruct. Besides, we require the model
to enclose its reasoning process within <think></think> tags and penalize responses that violate
this format requirement, along with domain-specific constraints. Details of the reward functions
are provided in Appendix C.3. We use a learning rate of 1 × 10−6, a prompt batch size of 128, a
mini-batch size of 64, a group size of 8, a rollout temperature of 1.0, εlow = 0.2, εhigh = 0.28, and
β = 0.001 for CGPO and all baselines. We run all experiments for one epoch on 8 NVIDIA A100
GPUs (80GB). For more details of hyperparameters, please see Appendix C.4.

Evaluation. We evaluate our models on seven widely-used benchmarks: MATH500 (Hendrycks
et al., 2021), AMC 2023 (MAA, 2023), HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021),
GPQA-diamond (Rein et al., 2023), SuperGPQA (Team et al., 2025), and WritingBench (Wu et al.,
2025). To ensure consistent scaling across benchmarks, the scores on WritingBench are multiplied
by 10. We use vLLM (Kwon et al., 2023) for efficient inference, generating 4 responses per query
with a temperature of 0.6 and top-p sampling of 0.95. Further details can be found in Appendix C.5.

4.2 MAIN RESULTS

CGPO boosts the multi-domain reasoning of LLMs. Table 1 presents the results across different
methods. From the table we make the following observations: (1) CGPO achieves the highest average
performance for both model scales (3B and 7B), ranking either first or second in most individual
domains. This demonstrates its effectiveness in enhancing multi-domain reasoning capabilities
of LLMs. (2) For smaller models (3B), CGPO consistently outperforms other baselines on code
generation and creative writing, while maintaining competitive performance on math and scientific
QA. FAMO and Omni-Thinker also provide gains over joint learning, particularly in code generation
and scientific QA, but they lag behind CGPO in creative writing. Self-paced CL remains the weakest
overall, likely due to imbalanced domain difficulty and insufficient coverage of informative responses
at different training stages. (3) For larger models (7B), CGPO achieves clear improvements across
nearly all domains, with the largest gains on code generation and creative writing, highlighting that
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Figure 2: Training reward curves for Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on four domains
(code, creative writing, math, and scientific QA), comparing CGPO and joint learning.

its benefits scale with model capacity. Notably, FAMO shows competitive results, especially in math
and creative writing, confirming that gradient balancing can help, but it still falls short of CGPO in
aggregating multi-domain knowledge effectively. These results collectively indicate that curriculum
learning and gradient weighting methods can provide partial improvements, but their reliance on task
difficulty, loss, or gradient magnitude alone is insufficient. In contrast, CGPO leverages geometric
information via randomized sequential updates and interpolation, enabling coordinated multi-domain
optimization and consistent performance gains across mathematical reasoning, code generation,
scientific QA, and open-ended creative tasks.

CGPO achieves faster reward improvement across all domains. Figure 2 presents the training
reward curves of Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on the four domains, with all curves
smoothed using EMA to clearly reveal trends. For both model sizes, the curves of CGPO consistently
remain above those of joint learning. The advantage is particularly pronounced in code generation
and creative writing, while in math and scientific QA the improvement is evident but less striking.
Notably, compared with the other three domains, creative writing is more subjective, requiring the
model to generate diverse and creative outputs rather than strictly structured or precise answers; this
makes potential conflicts with the other domains the largest. The substantial advantage of CGPO
in the reward curve for creative writing compared to joint learning provides strong evidence that
CGPO effectively mitigates cross-domain conflicts. We also observe considerable differences in
initial reward levels across domains. Taking Qwen2.5-7B-Instruct as an example, creative writing
and scientific QA start near −0.4 and 0, respectively, reflecting largely incorrect outputs, whereas
math and especially coding begin from higher baselines (coding around 0.1). This indicates that
the models enter RL training with uneven domain-specific capabilities. Importantly, CGPO delivers
varing degrees of acceleration even for domains with comparable starting points, suggesting that
factors such as dataset difficulty or reward function design may influence the speedup. Investigating
the underlying causes of these differences is left for future work.

4.3 ANALYSIS AND ABLATIONS Table 2: Computation cost comparison be-
tween joint learning and CGPO (1 epoch).
Note that the units of total time and per-step
time are different (hours vs. minutes).

Methods Total (h) Step (min)
# Qwen2.5-3B-Instruct
Joint Learning 14.8 5.58
CGPO 16.0 6.04

# Qwen2.5-7B-Instruct
Joint Learning 17.8 6.72
CGPO 18.6 7.02

CGPO introduces only negligible additional com-
putation overhead. In multi-domain RL for LLMs,
the dominant computational bottleneck typically lies
in generating responses and computing rewards—
particularly in domains such as coding and creative
writing—rather than in the forward and backward
passes of the model itself. Against this backdrop,
the additional operations introduced by CGPO are
minimal. The sequential updates across domains
are essentially equivalent to splitting a mini-batch
into smaller chunks and processing them sequentially,
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Table 3: Ablation study on domain order randomization in CGPO with Qwen2.5-7B-Instruct.
The bold font indicates the better result.

Methods Math Code Generation Scientific QA Creative Writing AVG
MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench

CGPOfix 77.20 56.88 83.54 69.60 23.08 31.75 67.30 58.48
CGPO 75.55 59.38 84.15 72.00 26.77 32.75 66.52 59.59

Table 4: Ablation study on the effect of the mixing coefficient α in CGPO with Qwen2.5-7B-
Instruct. The bold font indicates the best result and an underline indicates the second-best result.

α
Math Code Generation Scientific QA Creative Writing AVG

MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench

0.9 75.85 55.88 84.15 71.20 21.72 32.25 66.01 58.15
1.2 75.55 59.38 84.15 72.00 26.77 32.75 66.52 59.59
1.5 75.55 55.25 81.10 69.20 23.36 35.37 66.47 58.04

which incurs almost the same computational cost as
standard mini-batch training. Furthermore, the final interpolation with the mixing coefficient α
amounts to a single vector operation, which is computationally negligible. Taken together, these
factors ensure that the overall overhead of CGPO is practically insignificant, and the total training
cost remains nearly identical to that of joint learning. As shown in Table 2, the per-step wall-clock
time under CGPO is only slightly higher than joint learning, confirming that our method adds no
meaningful overhead in practice.

Randomizing domain order is necessary for effective cross-domain interactions. We conduct
ablations to examine the necessity of randomizing domain order. Specifically, we compare the
standard randomized variant with a fixed-order variant (CGPOfix), where the sequence of domains
remains unchanged throughout training. As shown in Table 3, randomizing the order consistently
leads to higher average performance across all benchmarks. This result highlights that randomization
is essential: it ensures balanced sequential updates among domains, avoiding systematic bias in
Hessian–gradient interactions. In contrast, fixed ordering allows earlier domains to dominate updates,
while later domains can only adapt passively, reducing overall multi-domain coordination.

The mixing coefficient α plays a critical role in balancing stability and curvature exploitation.
To study its effect, we experiment with α ∈ {0.9, 1.2, 1.5} and report the corresponding multi-domain
performance in Table 4. Among these choices, α = 1.2 achieves the best overall average, reflecting a
favorable trade-off between retaining the base policy and incorporating curvature-informed updates.
Notably, the average performance of all tested α values exceeds that of the strongest baseline, FAMO
(57.26), indicating that CGPO is robust to the choice of α. The fact that all α values are close to 1.0
suggests that the interpolation does not substantially change the effective learning rate; the observed
gains therefore arise from the curvature-aware sequential updates rather than step size adjustments.

5 RELATED WORK

Due to the page limit on the main text at submission (9 pages), we have placed the related work in
Appendix D. If this paper is accepted, the page limit for the main text will increase to 10 pages, at
which point we will move the related work into the main body.

6 CONCLUSION

We present CGPO, a principled and scalable framework for multi-domain RL of LLMs. Inspired by
Newton’s method, CGPO leverages the geometric structure of the reward surfaces to precondition
gradients, while avoiding the cost of full Hessian computation. Through randomized sequential
updates, each domain’s gradient is modulated by curvature information from other domains, fostering
cross-domain interactions and implicitly aligning gradients. Experiments on a diverse multi-domain
dataset covering mathematical reasoning, code generation, scientific QA, and creative writing show
that CGPO outperforms all baselines, achieving faster reward improvement and stronger multi-domain
reasoning across all benchmarks.
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7 ETHICS STATEMENT

This work studies multi-domain reinforcement learning for LLMs using publicly available or appro-
priately licensed datasets across domains such as mathematics, coding, scientific QA, and creative
writing. No human subjects were directly involved. While our methods improve cross-domain
optimization, models trained with them could be misused to produce plausible but incorrect or unsafe
outputs. We strongly discourage any deployment outside research contexts and emphasize that reward
functions and training setups are designed to encourage safe and aligned outputs. All research was
conducted in accordance with the ICLR Code of Ethics, with no conflicts of interest or external
influence on methodology or results.

8 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed descriptions of our algorithm (CGPO) in Section 3.3
and Algorithm 1, including pseudo-code and key hyperparameters. Experimental setups, including
data processing, reward functions, and evaluation benchmarks, are described in Section 4 and
Appendix C. Where applicable, we provide references to publicly available datasets. All derivations,
approximations, and additional analyses supporting the method are included in Appendix B. Together,
these materials provide sufficient information for replication of the reported results.
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A LLM USAGE STATEMENT

In preparing this manuscript, we used a large language model (LLM) in two distinct ways. First, we
employed LLMs as an assistive tool for text refinement, including improving grammar, wording, and
clarity. Second, LLMs themselves are the primary subject of this research: we study reinforcement
learning (RL) training for LLMs. Accordingly, all experiments involve using large models for training,
inference, and scoring, as part of the methodology under investigation.

All scientific content, including problem formulation, methodology, experiments, and conclusions,
was developed and verified entirely by the authors. The authors take full responsibility for the integrity
and accuracy of the manuscript. No LLM was credited as an author, and all substantive research
contributions are attributable exclusively to the human authors.

B MATHEMATICAL DERIVATIONS

B.1 DETAILED DERIVATION OF EQ. (2)

Eq. (2) in Section 3.2 states:

gj

(
θ
(i)
post

)
− gj

(
θ(i)pre

)
≈ Hj

(
θ(i)pre

)(
θ
(i)
post − θ(i)pre

)
≈ ηHj

(
θ(i)pre

)
gi

(
θ(i)pre

)
. (6)

Derivation: Assuming the gradient function gj(θ) is smooth, we apply a first-order Taylor expansion
around θ

(i)
pre :

gj

(
θ
(i)
post

)
≈ gj

(
θ(i)pre

)
+Hj

(
θ(i)pre

)(
θ
(i)
post − θ(i)pre

)
+O(∥∆θ∥2), (7)

where Hj(θ) = ∇2
θLj(θ) is the Hessian matrix for domain j, and ∆θ = θ

(i)
post − θ

(i)
pre . Neglecting

higher-order terms and rearranging gives:

gj

(
θ
(i)
post

)
− gj

(
θ(i)pre

)
≈ Hj

(
θ(i)pre

)(
θ
(i)
post − θ(i)pre

)
. (8)

In policy optimization, parameters are updated via gradient ascent (maximizing rewards):

θ
(i)
post = θ(i)pre + ηgi

(
θ(i)pre

)
, (9)

where η is the learning rate. Substituting this into the previous equation yields:

θ
(i)
post − θ(i)pre = ηgi

(
θ(i)pre

)
, (10)

and therefore,

gj

(
θ
(i)
post

)
− gj

(
θ(i)pre

)
≈ ηHj

(
θ(i)pre

)
gi

(
θ(i)pre

)
, (11)

which is Eq. (2). This approximation shows that the gradient update from domain i influences the
gradient of domain j through the curvature of domain j.

B.2 DETAILED DERIVATION OF EQ. (3) AND EQ. (4)

Eq. (3) and Eq. (4) in Section 3.3 state:

gσ(k)(ϕk−1) = gσ(k)(ϕ0)−
k−1∑
l=1

η|Dσ(l)|∑K
s=1 |Dσ(s)|

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2) (12)

gσ(k)(ϕk−1) = gσ(k)(ϕ0)−
η

K

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2) (13)

Derivation: Consider the randomized sequential update: domains are processed in the order
σ(1), . . . , σ(K). The parameter update for each domain (using gradient ascent) is:

ϕk = ϕk−1 + ηkgσ(k)(ϕk−1), (14)
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where ηk = η|Dσ(k)|/
∑K

s=1 |Dσ(s)| is the scaled learning rate.

For domain σ(k), its gradient is evaluated at ϕk−1. Using a Taylor expansion around ϕ0:

gσ(k)(ϕk−1) = gσ(k)(ϕ0) +Hσ(k)(ϕ0)(ϕk−1 − ϕ0) +O(η2). (15)

Now compute ϕk−1 − ϕ0. Note that:

ϕk−1 = ϕ0 +

k−1∑
l=1

(ϕl − ϕl−1) = ϕ0 +

k−1∑
l=1

ηlgσ(l)(ϕl−1). (16)

To first order, we approximate gσ(l)(ϕl−1) ≈ gσ(l)(ϕ0) (error O(η2)):

ϕk−1 − ϕ0 ≈
k−1∑
l=1

ηlgσ(l)(ϕ0). (17)

Substituting into the Taylor expansion:

gσ(k)(ϕk−1) ≈ gσ(k)(ϕ0) +Hσ(k)(ϕ0)

(
k−1∑
l=1

ηlgσ(l)(ϕ0)

)
+O(η2). (18)

Substituting ηl = η|Dσ(l)|/
∑K

s=1 |Dσ(s)| gives Eq. (3).

If we assume uniform batch sizes, i.e., |Dσ(l)|/
∑K

s=1 |Dσ(s)| = 1/K, then ηl = η/K, which
simplifies to Eq. (4).

B.3 DETAILED DERIVATION OF EQ. (5)

Eq. (5) in Section 3.3 states:

α(ϕK − ϕ0) = −
αη

K

K∑
k=1

gk(ϕ0) +
αη2

K2

K∑
k=1

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2). (19)

Derivation: The total parameter change is:

ϕK − ϕ0 =

K∑
k=1

(ϕk − ϕk−1) =

K∑
k=1

ηkgσ(k)(ϕk−1). (20)

Using the approximation from Eq. (4) (uniform batch sizes):

gσ(k)(ϕk−1) ≈ gσ(k)(ϕ0)−
η

K

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0), (21)

and substituting ηk = η/K:

ϕK − ϕ0 ≈
K∑

k=1

η

K

[
gσ(k)(ϕ0)−

η

K

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0)

]

=
η

K

K∑
k=1

gσ(k)(ϕ0)−
η2

K2

K∑
k=1

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0). (22)

Multiplying by the mixing coefficient α:

α(ϕK − ϕ0) ≈
αη

K

K∑
k=1

gσ(k)(ϕ0)−
αη2

K2

K∑
k=1

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0). (23)

Note that
∑K

k=1 gσ(k)(ϕ0) =
∑K

k=1 gk(ϕ0) (permutation invariant), yielding Eq. (5).
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B.4 DERIVATION OF GRADIENT ALIGNMENT SYMMETRIZATION

In Section 3.3, it is mentioned that after randomization, the cross-term expectation symmetrizes as:

Hi(ϕ0)gj(ϕ0) +Hj(ϕ0)gi(ϕ0) =
∂

∂ϕ0

(
gi(ϕ0)

⊤gj(ϕ0)
)
. (24)

Derivation: The key mathematical insight is the following identity concerning the gradient of the
inner product between two gradients.

Consider the inner product S(ϕ0) = gi(ϕ0)
⊤gj(ϕ0). The gradient of this scalar function S with

respect to ϕ0 is given by:

∇ϕ0
S = ∇ϕ0

(
gi(ϕ0)

⊤gj(ϕ0)
)
= Hi(ϕ0)gj(ϕ0) +Hj(ϕ0)gi(ϕ0), (25)

where we have used the product rule and the symmetry of the Hessian matrices, Hj = H⊤
j . This

result can be seen by noting that the derivative of g⊤
i gj w.r.t. ϕ0 is (∂gi/∂ϕ0)

⊤gj+g⊤
i (∂gj/∂ϕ0) =

Higj +g⊤
i Hj . Since g⊤

i Hj is a row vector, its transpose is Hjgi. The gradient (as a column vector)
is therefore Higj +Hjgi.

Under a randomized ordering σ, the expectation of the cross-term involving Hσ(k)gσ(l) for k > l
will involve pairs (i, j) symmetrically. The update term derived from the second-order expansion
is proportional to Higj . The symmetric form Higj +Hjgi appearing in the gradient of the inner
product ∇ϕ0

(g⊤
i gj) indicates that, in expectation, the update encourages an increase in the inner

product between the gradients of different domains, thus promoting their alignment.

C MORE DETAILS OF EXPERIMENTS

C.1 TASKS AND DATASETS

We focus on enhancing LLMs’ overall capabilities across four domains—mathematical reasoning,
code generation, scientific QA, and creative writing. These domains not only represent core areas of
current research interest but also span four distinct forms of reward feedback, thereby ensuring
both comprehensiveness and diversity.

• Mathematics: we construct a subset of 6,250 samples from the Guru dataset (Cheng et al., 2025).
This includes the 5,000 easiest problems (ranked by the pass rate of Qwen2.5-7B-Instruct) and
1,250 more challenging ones, ensuring a balance between accessible and difficult problems.

• Code generation: we select a total of 4,740 samples from Guru. Specifically, we take all 3,791
problems with a Qwen2.5-7B-Instruct’s pass rate of at least 25% and add 949 problems randomly
sampled from the remainder, yielding an approximate 4:1 ratio between easier and harder samples.

• Scientific QA: we include the entire STEM split of Guru, resulting in 3,591 samples. This
preserves the full coverage of science-related reasoning tasks while maintaining consistency with
prior benchmarks.

• Creative writing: we randomly sample 2,000 samples each from three popular Hugging-
face datasets—LitBench (Fein et al., 2025), Creative Writing-ShareGPT (Nitral-AI, 2024), and
wildchat-creative-writing-3k-rft (kevinshin, 2025)—to construct a dataset of 6,000 samples, ensur-
ing stylistic variety and broad coverage of open-ended writing abilities.

C.2 BASELINES

We compare our CGPO against four representative baselines: joint learning, Omni-Thinker (Li et al.,
2025a), Self-Paced CL, and FAMO (Liu et al., 2023).

• Joint learning. Joint learning is the most basic paradigm in MTL. It aggregates the loss functions
of all tasks into a single objective, enabling simultaneous optimization. As a straightforward
training strategy without any task-specific adjustments, joint learning serves as a reference point
for evaluating improvements brought by more advanced methods.
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• Omni-Thinker. Omni-Thinker belongs to progressive CL methods as categorized in (Soviany et al.,
2022). It introduces the backward transfer (BWT) metric to quantify the extent of catastrophic
forgetting across domains. Based on BWT analysis, Li et al. (2025a) proposes a fixed training
order—code→ math→ scientific QA→ creative writing—with the goal of minimizing forgetting
induced by multi-domain learning.

• Self-paced CL. Self-paced CL enables the model to adaptively select training samples according
to its learning state. In our implementation, we employ Qwen2.5-7B-Instruct to rank samples by
winrate from easy to difficult, and train sequentially following this order. This curriculum reduces
the risk of being misled by difficult samples in the early stages, thereby improving stability and
promoting better generalization.

• FAMO. FAMO is a gradient-balancing approach for MTL. It adjusts loss weights to maximize
the improvement rate of the task that progresses the slowest, ensuring that all tasks advance at
a comparable pace. This balanced optimization strategy suppresses task dominance and guides
the model toward solutions that are both fairer across tasks and stronger in overall performance.
FAMO approximates weight updates using historical loss values instead of explicitly computing
multi-task gradients, reducing per-iteration time and memory complexity to O(1). This efficiency
makes it particularly suitable for large-scale LLM training.

C.3 REWARD FUNCTIONS

For all domains, we require the model to enclose its reasoning process within <think></think>
tags. The reward functions for the four domains are as follows.

• Math. We adopt a rule-based reward function:

rmath(o, a) =


1.0, if o has a valid format and verifymath(oans, a) = true,
−0.5, if o has a valid format but verifymath(oans, a) = false,
−1.0, if o has an invalid format,

where oans denotes the predicted answer extracted from structured tags (e.g.,
<answer></answer>) in the model output o, and verifymath(·, ·) checks symbolic equivalence
between oans and the ground-truth answer a via a deterministic parser (e.g., handling equivalent
forms of expressions or equations).

• Code generation. We adopt a sandbox-based unit test reward:

rcode(o, test case) =


1.0, if o has a valid format and exec(oans) |= unittest(oans, test case),
−0.5, if o has a valid format but exec(oans) ̸|= unittest(oans, test case),
−1.0, if o has an invalid format (syntactically invalid),

where oans is the generated code, executed in a sandbox and validated against the unit tests
associated with the sample; |= denotes logical satisfaction.

• Scientific QA. We employ a 1.5B General-Verifier1 (Cheng et al., 2025) to assess consistency
between the model’s output and the ground-truth answer:

rqa(o, a) =


1.0− 0.05 ·min(||oans| − |a|| , 10) , if o has a valid format and oans = a,

0, if o has a valid format but oans ̸= a,

−1.0, if o has an invalid format,
where oans is the extracted answer content. Here, “valid format” means the response adheres to QA
conventions (e.g., no garbled text, complete sentences).

• Creative writing. We adopt an LLM-as-a-Judge strategy, scoring the model’s output o against a
reference oref via pairwise comparison:

rwriting(o, oref) =


1.0, if o has a valid format and o ≻ oref,

0.25, if o has a valid format and o ∼ oref,

−0.5, if o has a valid format and o ≺ oref,

−1.0, if o has an invalid format,
where o ≻ oref (preferred), o ∼ oref (tie), and o ≺ oref (worse) are determined by a fixed evaluator
(Qwen2.5-72B-Instruct) serving as the judge.

1https://huggingface.co/TIGER-Lab/general-verifier
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C.4 HYPERPARAMTERS

We use a learning rate of 1 × 10−6, a prompt batch size of 128, a mini-batch size of 64, a group
size of 8, a rollout temperature of 1.0, εlow = 0.2, εhigh = 0.28, and β = 0.001 for CGPO and all
baselines. All methods are trained for one epoch. For the mixing coefficient α, we tune it within the
range of 0.5–1.5, and provide an ablation study on α in Section 4.3.

C.5 EVALUATION

To comprehensively evaluate cross-domain capabilities, we adopt authoritative benchmarks spanning
four domains: Math, Coding, Scientific QA, and Creative Writing. The evaluation settings are
detailed below:

• Math domain
– MATH500 (Hendrycks et al., 2021): A set of 500 challenging problems sampled from the

full MATH dataset, covering seven areas: elementary algebra, algebra, geometry, number
theory, combinatorics, probability, and calculus. Problems are presented in open-ended
form and require precise solutions. This benchmark is widely adopted for assessing LLMs’
mathematical reasoning and problem-solving abilities.

– AMC 2023 (MAA, 2023): A set of 50 questions taken from the AMC 12A and 12B (2023)
contests, spanning algebra, geometry, number theory, combinatorics, and probability. Multiple-
choice options are removed, requiring models to directly output the final answer. This
benchmark focuses on higher-order reasoning, problem analysis, and accurate calculation.

• Coding domain
– HumanEval (Chen et al., 2021): Consisting of 164 human-written Python programming

tasks, ranging from basic algorithms to medium-level function implementations. It evaluates
whether models can generate correct and executable code from natural language descriptions.

– MBPP (Austin et al., 2021): A collection of 974 beginner-level Python problems designed
to test the ability to synthesize short programs from natural language instructions. It is a
standard benchmark for fundamental code generation.

• Scientific QA domain
– GPQA (diamond split) (Rein et al., 2023): Graduate-level QA items written and verified

by domain experts across physics, chemistry, biology, and earth sciences. The diamond split
represents the most difficult and highest-quality subset, specifically constructed to prevent
shallow memorization or pattern matching. To ensure consistent evaluation, we reconstruct
ordered option lists using randomized indexing.

– SuperGPQA (Team et al., 2025): Comprising 285 interdisciplinary graduate-level reasoning
problems, curated to prevent direct solutions via search engines. To reduce computational
cost, we use random seed 42 to sample 200 problems, ensuring both representativeness and
reliable measurement of deep reasoning ability.

• Creative Writing domain
– WritingBench (Wu et al., 2025): A benchmark of 1000 real-world writing tasks spanning

6 domains and 100 sub-themes, covering diverse styles, task types, and difficulty levels.
It evaluates generated text on quality, coherence, creativity, and task alignment through a
structured scoring framework. For efficiency, we sample 200 requests using random seed
42, and apply the official critic model WritingBench-Critic-Model-Qwen-7B2 for
automated scoring, striking a balance between evaluation cost and representativeness.

D RELATED WORK

Multi-domain RL for LLMs. The application of RL in LLMs receives widespread attention
(Schulman et al., 2017; Shao et al., 2024; Yu et al., 2025a; Liu et al., 2025). However, RL strategies
that simultaneously and steadily enhance the capabilities of LLMs across multiple domains remain an

2https://huggingface.co/AQuarterMile/WritingBench-Critic-Model-Qwen-7B
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open challenge. A key difficulty in this area lies in designing reward functions that work effectively
across diverse domains. Some researchers develop reward computation methods that are broadly
applicable across multiple domains. For example, Zhou et al. (2025) simplify the binary reward
function by leveraging properties of the ground truth. RLPR (Yu et al., 2025b) constructs its reward
based on the probability of generating correct outputs. Other researchers create distinct reward
computation methods tailored to specific domains. For instance, Li et al. (2025a) propose a hybrid
reward system that employs rule-based, sandbox-based, and LLM-as-a-Judge frameworks, customized
for different types of data. Another challenge lies in appropriately handling interactions among
multiple domains. Cheng et al. (2025) study the effects of single-domain training on other domains.
Li et al. (2025b) further examine interactions across several domains, including math, coding, and
puzzle solving. Existing approaches mainly rely on experimental and qualitative observations, while
a deeper understanding of cross-domain interactions remains largely unexplored.

Mitigating Gradient Conflicts. Gradient conflicts pose a major challenge in machine learning,
leading to slow learning and wasted computation (Chen et al., 2025). Much work in multi-task
learning addresses this by balancing or projecting gradients to reduce interference, such as GradNorm
(Chen et al., 2018), which adjusts each task’s gradient according to its relative loss, PCGrad (Yu
et al., 2020), which projects away conflicting directions, MGDA (Sener & Koltun, 2018), which
seeks Pareto-optimal updates, and ConFIG (Liu et al., 2024) or CAGrad (Liu et al., 2021), which
optimize updates under constraints to ensure conflict-free directions. While effective in standard
MTL, these approaches face key limitations in RL for LLMs: they generally either require storing
all domain gradients on the GPU, which quickly becomes memory-intensive and can often cause
out-of-memory failures, or act reactively without leveraging the underlying geometry of the reward
landscape, which usually makes them prone to high variance on noisy, rollout-based gradients. These
challenges motivate scalable, memory-efficient methods that can mitigate cross-domain conflicts
while supporting multi-domain RL training, such as our proposed CGPO.

Second-Order Optimization Methods. The loss landscapes of deep neural networks are often
highly complex, posing significant challenges for first-order optimization algorithms, such as gradient
descent, which rely solely on local gradient information. Without insights into the geometric structure
of the landscape, first-order methods can easily get trapped in saddle points or narrow valleys,
making it difficult to reach better local optima. In contrast, second-order optimization methods,
such as Newton’s method, exploit geometric information like the Hessian matrix to precondition
gradients according to the local curvature, offering stronger theoretical guarantees. To mitigate the
computational cost of full Hessian computation, various approximate Newton methods have been
proposed, including AdaGrad, K-FAC, GGT, Shampoo, and SOAP (Duchi et al., 2011; Martens
& Grosse, 2015; Agarwal et al., 2018; Gupta et al., 2018; Vyas et al., 2025). Recent studies show
that Newton’s method and its approximate variant SOAP (Vyas et al., 2025) can alleviate gradient
conflicts in physics-informed neural networks (PINNs) (Wang et al., 2025), providing inspiration
for our approach. However, due to the massive parameter scale of large language models, directly
applying Newton-type methods or their approximations in RL for LLMs is infeasible. Motivated by
this, we distill the core idea of leveraging curvature information and develop CGPO, a principled and
scalable framework for multi-domain RL in LLMs.
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