Under review as a conference paper at ICLR 2026

BOOSTING MULTI-DOMAIN REASONING OF LLMS
VIA CURVATURE-GUIDED PoOLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-domain reinforcement learning (RL) for large language models (LLMs)
involves highly intricate reward surfaces, posing significant challenges in finding
parameters that excel across all domains. Recent empirical studies have further
highlighted conflicts among domains, where gains in one capability often come at
the expense of another. However, approaches to mitigate such conflicts and enhance
multi-domain reasoning remain largely underexplored. To address this challenge,
we propose Curvature-Guided Policy Optimization (CGPO), a principled and scal-
able training framework to advance the multi-domain reasoning of LLMs. Inspired
by Newton’s method, CGPO exploits the geometric structure in the reward surface,
while sidestepping the prohibitive cost of Hessian computation. At each update,
CGPO processes domains in random order, preconditioning their gradients with
curvature information from other domains to foster richer cross-domain interac-
tions. This mechanism further promotes implicit gradient alignment by maximizing
inter-domain inner products in expectation, steering the parameters toward regions
that jointly enhance multi-domain performance. Extensive experiments on a mixed
dataset covering math, coding, science, and creative writing, evaluated across seven
widely-used benchmarks, show that CGPO significantly outperforms all baselines
in terms of faster reward improvement and stronger multi-domain capability.

1 INTRODUCTION

Large language models (LLMs) have recently achieved remarkable progress in complex reasoning
tasks, including mathematical problem solving (Yang et al.l 2024} Yu et al.|2025a)), code generation
(Ye et al.} 2025 |Zeng et al., 2025), and creative writing (Fein et al., 2025} |Carrera et al.| 2025). A
key driver behind these advances is reinforcement learning (RL), particularly policy optimization
methods such as PPO (Schulman et al., [2017) and GRPO (Shao et al., [2024). While earlier work
primarily focused on applying RL within single domains (Hu et al., [2025; |Yu et al.,|2025a), more
recent studies have moved toward multi-domain reasoning, constructing diverse datasets (Cheng
et al., 2025)), training general reward models (Ma et al.|[2025)), and empirically examining interactions
among different reasoning capabilities (Li et al., 2025bj |Cheng et al., 2025).

Despite these advances, multi-domain RL for LLMs still confronts significant challenges. The
coexistence of diverse data distributions and reward signals produces highly complex reward surfaces,
making it difficult to find parameters that excel across all domains simultaneously (Vithayathil Vargh;
ese & Mahmoud, [2020; (Crawshaw} 2020). Recent studies further show that, although multi-domain
RL can yield overall benefits, it is often hindered by cross-domain conflicts, where gains in one capa-
bility are accompanied by losses in another (Cheng et al., 2025; |Li et al.| 2025b). These difficulties
are further compounded by the nature of RL training: on one hand, online sampling (i.e., rollouts)
introduces unpredictable interactions among domain-specific samples; on the other hand, generating
rollouts is computationally expensive, and much of this effort is wasted when cross-domain conflicts
cancel out the contributions. These considerations make it crucial to develop RL frameworks that
fully exploit mixed datasets to enhance LLMs’ reasoning across diverse domains.

Cross-domain conflicts often manifest as gradient conflicts (Chen et al., 2025b)), yet widely-used
approaches for mitigating them face notable limitations in the context of RL for LLMs. Most existing
methods intervene during gradient aggregation once conflicts occur, aiming to balance updates across
domains. On the one hand, they do not leverage the underlying geometry of the reward surface or loss

Under review as a conference paper at ICLR 2026

landscape (Liu et al.| 2023} |Sener & Koltun, [2018). On noisy, rollout-based gradients, such purely
reactive strategies tend to amplify update variance and degrade both stability and performance. On the
other hand, many techniques require storing and manipulating all domain gradients simultaneously
on the GPU (Yu et al.| 2020; [Liu et al.,[2024;2021)). This incurs substantial memory overhead that
grows rapidly with the number of domains and can even result in out-of-memory failures, severely
limiting the scalability of multi-domain RL for LLMs. Alternatively, recent work suggests that
second-order methods such as Newton’s method and its approximation SOAP (Vyas et al.;[2025) can
mitigate gradient conflicts in PINNs (Wang et al., 2025), but their reliance on Hessian computations
renders them infeasible for the high-dimensional, rollout-heavy setting of RL for LLMs. These
limitations compellingly motivate the following question: How to mitigate cross-domain conflicts in
a manner that is both consistent with the nature of RL and efficient at scale, thereby enhancing
the multi-domain reasoning capabilities of LLMs?

In this paper, we propose CGPO, a principled and scalable policy optimization framework, to
enhance multi-domain reasoning for LLMﬂ CGPO draws inspiration from Newton’s method, while
incorporating a design specifically adapted to the distinct challenges of multi-domain RL for LLMs.
Newton’s method exploits the geometric structure of the loss landscape (i.e., the Hessian matrix)
to precondition gradients, correcting directional deviations induced by anisotropy and facilitating
efficient convergence. To retain these benefits while circumventing the computational burden of
full Hessian computation, we adapt the preconditioning step into a lightweight mechanism tailored
for efficient RL training of LLMs. Specifically, at each parameter update, domains are processed
in random order, with each domain’s gradient modulated by curvature information from others,
thereby inducing rich cross-domain interactions. Another appealing feature of this mechanism
is that it implicitly aligns domain gradients by maximizing their inner products in expectation,
guiding the parameters toward regions of high cross-domain consistency. We validate CGPO on
a diverse dataset of 20k samples spanning mathematical reasoning, code generation, scientific
QA, and creative writing using Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct, evaluated across
seven benchmarks. Our results demonstrate that CGPO consistently outperforms a broad spectrum
of baselines—including curriculum learning strategies, gradient balancing techniques, and joint
learning—achieving faster reward gains and markedly stronger multi-domain reasoning capabilities.

2 PRELIMINARIES

2.1 MULTI-DOMAIN LANGUAGE MODELING AS REINFORCEMENT LEARNING

An LLM 7y (with parameters #) defines a conditional probability distribution over output responses
. T

y = [y1,-..,yr] given a query x ~ D, represented as mo(y | x) = [[,_; (¢ | X, ¥1:4—1). To

align LLMs with desired behaviors, recent work formulates language generation as a reinforcement

learning (RL) problem. The model acts as a policy that interacts with an environment by generating

responses y to queries x, and each response receives a reward R(x,y) € R that reflects its quality.

In many real-world applications, LLMs are expected to perform well across multiple domains, each
corresponding to a distinct type of query or task. Formally, let there be K domains with query
distributions {Dy}_,. Each domain k defines its own reward function Ry, -), reflecting task-
specific quality criteria. Assuming equal importance for all domains, the multi-domain training
objective is to maximize the average expected reward (we abbreviate y ~ my(- | X) as y ~ mp):
JO) =+ Zlf:l Ti(0) = + Zle Ex~Dy,y~ms [Ri(X,y)]. We provide a discussion on extending
this formulation to non-uniform domain importance in Appendix

2.2 PoLICY OPTIMIZATION ALGORITHMS

The multi-domain formulation in Section [2.T|reduces to the standard RL objective when expressed
with a generic query distribution D and reward function R, i.e., J(0) = Exwp y~r, [R(X,¥)].

Directly optimizing 7(6) is challenging due to the discrete, variable-length output space and
the dependency of the distribution my on the parameters 6. Instead, the policy gradient the-
orem (Sutton et al., |1998) provides an unbiased estimator for the gradient, i.e., Vo J () =

! Additional discussion on the applicability of CGPO to LLM pre-training is provided in Appendix

Under review as a conference paper at ICLR 2026

Ex~p,y~r, [Vologm(y | x)A(x,y)], where A(x,y) = R(x,y) — b(x) denotes the advantage
of response y over a baseline b(x). In practice, the true advantage function is unknown and must be
estimated from rollouts. This is typically done by training a value function V4 (x) to approximate

the expected reward, and then computing an estimated advantage A(x,y) = R(x,y) — Vg (x). By
combining this estimator with importance sampling using rollouts from an old policy 7y,,,, one can

define a surrogate objective L(0; 0o1a, D) = ExD .y, y [%ﬁ(x, v)|.
© old

While the theoretical surrogate objective using the true advantage A has a gradient that coincides
exactly with V7 (0) at 6 = 614, practical objectives using the estimated advantage A serve as
a first-order approximation. This approximation is reliable as long as the updated policy my re-
mains close to mg_,,. Building on this, Proximal Policy Optimization (PPO) (Schulman et al.| [2017)
ensures stable policy updates by maximizing a clipped surrogate objective Lppo(0; 6014, D) =

Ex~D,y~m,,, {min (mﬁ(}g y),clip;*< (m) A(x, y))}, where ¢ is a small hyper-

o4 (¥1%) 70,4 ¥1%)
parameter and clip]®" (-) = clip(-, Yiow; Thign) is the clipping function.

However, the reliance of PPO on a separately trained critic model to estimate b(x) introduces
substantial memory and computational overhead. To address this, recent critic-free methods rep-
resented by GRPO (Shao et al., [2024) have emerged. GRPO estimates the baseline directly from
a group of sampled responses. Specifically, it samples G responses ~{y(i)}~ic';1 for each query x,
obtains their rewards {r(i) ¢ |, and then computes a normalized advantage for each response:

A®D = [r® —mean ({r@W}5,)] /std ({rP}§,). The overall GRPO surrogate objective is

Larpo(0;0o1a; D) = Exip (y}&
G

o my D %)) e (oy | x) > A(*)) (i)
— Y min | ——————AW clip, """ | ——————) AW) — 8Dy (7ol Tret) | 5 (1)
i=1 (77901d (y(z) | X) 1o TOo1a (y(l> | X) K

where €1ow, €nigh, and [are hyperparameters, .y is a reference policy (typically the initial model),

and Dgi(m; ||7rrer) is a sample-based KL divergence penalty. In this work, we adopt GRPO as our
base policy gradient algorithm due to its efficiency and scalability.

Surrogate Objectives as Faithful Gradient Approximators. While the policy gradient theorem
provides an unbiased gradient for the true advantage A, practical algorithms rely on estimated
advantages A, which introduce variance. Surrogate objectives like PPO and GRPO are designed to
stabilize these gradients: PPO uses clipping to enforce a trust region, making Vg Lppo (6; 0014, D) a
reliable approximation of V.7 (6), while GRPO’s combination of clipping and KL regularization
similarly produces a stable gradient Vo Lgrpo (0; 0014, D) that approximates the KL-regularized
objective Vo (j(é)) — ﬂ/DKL (7T9||7Trcf)).

2.3 NEWTON’S METHOD FOR GRADIENT PRECONDITIONING

Newton’s method is a classical second-order optimization algorithm that leverages the curvature of
the objective to accelerate convergence. Given a twice-differentiable loss L(6), the Newton update
is 0r41 = 0; — H(0;)"'g(6;), where g(0;) = Vo L(0;) and H(0;) = V2L(6;) is the Hessian. By
preconditioning the gradient with local curvature, Newton’s method corrects for anisotropy, producing
more direct steps toward an optimum. It is particularly effective in complex, conflicting landscapes;
e.g.,Wang et al.| (2025) shows that Newton’s method and its approximate variant SOAP (Vyas et al.,
2025) mitigate gradient conflicts in PINNs and accelerate convergence.

However, directly applying Newton’s method to RL for LLMs is impractical: the Hessian is high-
dimensional and costly to compute or invert, and rollout-based gradients are noisy. Still, the principle
of leveraging curvature to guide updates provides a valuable foundation for designing optimization
strategies that handle conflicting gradients and complex surfaces, as we explore in Section 3]

3 CURVATURE-GUIDED POLICY OPTIMIZATION

Building on the preliminaries, we seek to leverage the insight that Newton’s method couples gradients
with curvature information—a property that can be particularly valuable in multi-domain RL for

Under review as a conference paper at ICLR 2026

Query Response Reward Advantage Permutation Sequential Update Parameter Interpolation
L —J e} A 1 -
111 ‘ [19) A i %o Af = a(¢K - ¢0)
! ‘ Rl 3 a(1) 2
J 1 A
j — é1

1

K
an
= gr(¢0)

Single-Domain Gradient

o) ‘ +
9 K k-1

Lo |ar
o(K) K2 D0 How($0)850)(%0)

k=1 I=1

¢K Cross-Domain Interaction

(@]@) O(S o0 00
>> Bb DD Db

Figure 1: Illustration of CGPO (one update step). After generating responses, computing rewards,
and estimating advantages for each domain, CGPO randomly permutes the domain order and applies
updates sequentially, followed by interpolation with the original model. The parameter change
A0 can be approximately decomposed into a single-domain gradient term—capturing per-domain
learning—and a cross-domain interaction term that facilitates transfer across domains. Note that
CGPO introduces only negligible additional computation overhead (see Section [4.3|for details).

LLMs, where interactions between domains are often complex and interdependent. Rather than
directly approximating the Newton update, which would be computationally prohibitive in our setting,
we distill its essential idea into a lightweight mechanism that induces cross-domain gradient-curvature
interactions via sequential task updates. Our method unfolds in three parts: Section [3.I|motivates the
design by analyzing the structure of the Newton update, Section [3.2] presents a simple perturbation-
based procedure to capture the desired interactions, and Section [3.3|integrates these components into
a practical algorithm, i.e., our proposed CGPO. An overview of CGPO is illustrated in Figure I]

3.1 MOTIVATION: WHY HESSIAN-GRADIENT INTERACTIONS MATTER

The starting point of CGPO is an informal observation about Newton’s method. Although exact
second-order updates are infeasible in large-scale RL for LLMs, the Newton term Hg (omitting
;) couples gradient and curvature, suggesting that such interactions may help reconcile conflicting
gradients in multi-domain learning. To illustrate, consider a heuristic expansion: H= g ~ (I — (I —
H)) g~ (I+(I-H)+0((I-H)?))g ~ 2g—Hg+O((I-H)?g), where the approximations are
informal and serve to reveal the structure rather than provide a rigorous formula. In the multi-domain
setting, where g = Zszl grand H = Zle H;,, the product —Hg then contains cross-domain
terms —H;g; (¢ # j), in which the curvature of domain j modulates the gradient of domain 3.

These interactions effectively transmit curvature signals across tasks, amplifying, dampening, or
redirecting updates—capabilities absent in first-order methods. This motivates our key design
principle: instead of computing Hessians explicitly, we seek tractable mechanisms that induce such
cross-domain interactions to better align multi-domain optimization.

3.2 APPROXIMATE CROSS-DOMAIN INTERACTIONS VIA SEQUENTIAL UPDATES

Given the motivation above, the question is how to induce Hessian-gradient interactions without
explicitly computing Hessians. Our key idea is to approximate them by observing how the gradient
of one domain changes after parameter updates from another.

Consider two domains ¢ and j. Let domain ¢ updates the parameters from 6L pre tO o) Denoting the

post*
Hessian of domain j at Gpre by H; (Gpre), the gradient of domain j then shifts as

o (0.) - & (00) ~ 51, (02) (0 — 00) ~ ot (2) : (62) .

which corresponds to the cross-domain product H;g;. This approximation is derived from a first-
order Taylor expansion and policy gradient ascent (see Appendix for the detailed derivation).

Under review as a conference paper at ICLR 2026

Algorithm 1 CGPO (one epoch illustration)

1: Input: 7, ., reward functions { Ry }~_,, datasets { Dy } &=,

2: Hyperparameter: number of steps 7', M, learning rate 1, mixing coefficient o
3: Initialization: 7o < 7o, .., To,.., To
4: fort=1,...,T do

5: TYq < o

init

new ‘ ID .. ‘
6: Sample a batch D) 3, = {xgg k} o from Di for1 < k< K
b 7/=

NG ,
7: Generate responses {yg)”])c}j:1 ~ Ty (\ ngk) for1 <i<|Dyil, 1<k<K
NG NG
8: Compute rewards {rg)J,)c} and advantages {AEQ)J,)C} forl1<i<|Dgyil, 1<k<K
R) =1 F) =1

9: form=1,...,Mdo

10: Sample a mini-batch D ,,) x from Dy p for 1 <k < K
11: Leto(1),...,0(K) denote a random permutation of 1, ..., K
12: ¢0 — enew
13: fork=1,...,Kdo
14: Update parameters by maximizing Eq. @) with D4 m), () and associated responses:
D
Gk = Pr—1— 1" M - 8aRPO (Ph—1;0o1d, D(t,m).o(k))
2 k=1 [Dtm) k]

15: encw <~ d)O + a(d)K - ¢0)
16: Output: my

new

Thus, sequential updates naturally generate the desired interaction term. Further, to extend beyond
two domains, we randomize the order of domains at each iteration. Over time, this exposes every
pair of domains to such interactions, allowing curvature information to propagate across domains.
Intuitively, each domain feels the curvature of others: one nudges the parameters, another responds,
producing coordinated updates that help reconcile conflicting objectives.

3.3 FULL ALGORITHM: RANDOMIZED CROSS-TASK INTERACTIONS

Building on the insights above, we now introduce CGPO, a principled algorithm for multi-domain
policy optimization, illustrated in Figure[I] with pseudocode in Alg. [T} At each training step, we
sample batches from all domains and generate multiple candidate responses under the current policy
(Lines 6-7). These responses are evaluated by domain-specific reward functions to obtain rewards
and advantage estimates (Line 8). We then repeatedly draw mini-batches (Lines 9-10) and perform
a randomized sequential update: domains are visited according to a random permutation (Lines
11-13), and at each step the parameters are updated with respect to one domain, conditioned on
perturbations induced by previously visited domains (Line 14). Finally, the updated parameters are
interpolated with the original ones using a mixing coefficient o (Line 15), stabilizing training by
balancing curvature-informed exploration with retention of the base policy.

To understand how sequential updates induce cross-domain Hessian—gradient interactions, consider
Lines 11-15. Let the domain order be o(1), ..., o (K), and denote the loss, gradient, and Hessian of
domain k at parameter ¢ by Ly (¢), gk (¢), and Hy(¢). With ¢pg — ¢1 — -+ - — ¢k, the gradient of
domain o (k) at ¢;_; can be expanded (see Appendix[B.2) as

k—1

77|Da(l)|
o) (Br-1) = 8oy ($0) — > —p——
=1 Zs:l |D0(5)\

For simplicity, assume uniform batch sizes | D (;)|/ 25:1 |Dg(s)| = 1/K, then

H, (1) (¢0)8.1) (¢0) + O(n°). (3)

k—1

8o (k) (Pr-1) = 8o (k) (P0) — % > Ho()(¢0)8 1) (¢0) + O(1°). “)
=1

Under review as a conference paper at ICLR 2026

Aggregating over k, the overall parameter change after one sequential pass is (see Appendix [B.3)

K 9 K k—1
a(dx — d0) = =L D" Brl(d0) + o > D Hogr(90)8o) (00) + O (5)
k=1 k=11=1

The first term is the aggregated gradient; the second term contains cross-domain Hessian—gradient
products. Importantly, the expression above describes the update for a fixed permutation o. Because
our algorithm re-samples ¢ independently at every iteration, the quantity relevant for understanding
CGPO'’s behavior is the expectation over the random permutation o. Taking expectation over o
makes every ordered pair (i,) appear with equal probability; symmetrizing their contributions
then yields H; (¢0)g;(¢0) + H;(¢0)8g:i (o) = %0 (8i(¢0) "g;(d0)) (please see Appendixfor
details). This shows that the update encourages alignment of domain gradients. For an analysis of
why joint learning does not induce the same cross-domain effect, please see Appendix [E-3]

After illustrating how the parameter change encodes both aggregated gradients and cross-domain
interactions, it is helpful to clarify the role of the final interpolation step. The vector ¢ x — ¢ provides
a geometry-informed update direction enriched by these interactions. The mixing coefficient o then
controls how far we move along this direction (for ablations, see Section[F-3): a sufficiently large
« enables the method to benefit from curvature-informed coordination across domains, whereas an
excessively large value may push the update outside the locally smooth region where gradient-based
approximations remain reliable, potentially destabilizing training—analogous to taking an overly
large learning rate in standard optimization. Conversely, setting o too small would under-utilize the
information encoded in ¢ — ¢ and collapse the update to a near-identity update, losing the benefits
introduced sequential interactions. The interpolation therefore functions as a principled mechanism
that balances stability and effective use of cross-domain geometric information.

Crucially, this analysis is not restricted to surrogate losses Lj: as argued in Section 2.2} GRPO
surrogates provide faithful approximations of the true policy gradients within their trust regions.
Thus, the induced interactions improve alignment not only among surrogate gradients but also
among the true policy gradients Vy7;(0). In effect, randomized sequential updates encourage
cooperation across domains by introducing curvature—gradient couplings that steer optimization

toward coordinated improvements on the full multi-domain objective 25:1 T (0).

Discussion. We highlight two clarifications to better situate our approach.

* Sequential updates is a common technique across different learning paradigms. For example, in
meta-learning, Reptile (Nichol et al} 2018) adopts sequential updates to learn an initial model for
rapid adaptation to new tasks, while in federated learning, methods such as FedAvg
aggregate sequential client updates to improve global optimization. However, these
precedents do not diminish the novelty of our contributions. First, our sequential update originates
from our observation of Newton’s method and its capability to navigate complex landscapes, where
inherent curvature—gradient interactions naturally emerge across domains. Second, we adapt this
mechanism to the multi-domain RL for LLMs setting, where domain-specific rewards and surrogate
policy gradients pose unique challenges absent in meta-learning or federated learning. Finally,
we integrate randomized ordering, surrogate faithfulness (via GRPO), and stabilization through
interpolation into a unified algorithm tailored for large-scale RLHF. These innovations collectively
distinguish CGPO as a novel and practical solution for multi-domain policy optimization.

* A natural concern is that multiple updates per step could inflate the effective learning rate. To avoid
this, we scale each gradient proportionally to its mini-batch size and normalize by the total across
domains. This ensures that the overall update magnitude is consistent with that of using a single
aggregated batch, thereby preserving comparability with standard mini-batch optimization.

4 EXPERIMENTS
4.1 EXPERIMENTAL SETTINGS

Tasks and Datasets. We focus on enhancing the LLMs’ overall capabilities across four domains—
mathematical reasoning, code generation, scientific QA, and creative writing. These domains not
only represent core areas of current research interest but also span four distinct forms of reward
feedback, thereby ensuring both comprehensiveness and diversity. For mathematics, code, and
science, we construct subsets from the Guru dataset (Cheng et al.| 2025)) with attention to dataset

Under review as a conference paper at ICLR 2026

size and sample difficulty (as Guru poses non-trivial challenges for 7B-scale models): the math
subset contains 6,250 samples, consisting of the 5,000 easiest problems (ranked by the pass rate
of Qwen2.5-7B-Instruct) and 1,250 more challenging ones; the code subset totals 4,740 samples,
comprising all 3,791 problems with a Qwen2.5-7B-Instruct’s pass rate of at least 25% plus an
additional 949 randomly sampled from the remainder, ensuring a roughly 4:1 ratio between easier
and harder samples; and the scientific QA subset includes the entire STEM split of Guru, with
3,591 samples. For creative writing, we randomly sample 2,000 samples each from the three most
popular datasets available on Huggingface (LitBench (Fein et al., 2025)), Creative_Writing-ShareGPT
(Nitral-AlL [2024), and wildchat-creative-writing-3k-rft (kevinshin, [20235))), yielding a dataset of 6,000
samples. For details of the datasets, please see Appendix[C.1}

Baselines. We compare our CGPO with several representative baselines. For vanilla strategies, we
include joint learning, which directly trains on a multi-domain dataset without any special strategies.
For curriculum learning (CL), following the taxonomy in (Soviany et al., [2022), we include Omni-
Thinker (Li et al.,[2025a), a progressive CL method, and self-paced CL, which schedules training
from easier to harder examples based on task difficulty (measured by pass rate). For gradient
balancing, we include FAMO (Liu et al.| [2023)), categorized in (Chen et al., 2025b) as a representative
approach for balancing gradient magnitudes across domains. We also attempted to implement gradient
manipulation methods such as PCGrad (Yu et al.|[2020), but these require simultaneously storing and
operating on multiple per-domain gradients on GPUs, which leads to out-of-memory (OOM) issues
in the RL for LLM setting. For more details of baselines, please refer to Appendix

Training Details. We train Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on the multi-domain
dataset using the verl framework (Sheng et al., [2025). For the implementation of multi-domain
training in terms of data processing and reward design, we follow the codebases of (Cheng et al.|
2025)) and (Ma et al.| 2025). For math, we adopt rule-based rewards; for coding, we evaluate models’
outputs using unit test cases based on SandboxFusion (Bytedance-Seed-Foundation-Code-Team
et al., [2025)); for scientific QA, we use a 1.5B General-Verifier (Ma et al., 2025) to assess the
consistency between model outputs and groundtruth answers; and for creative writing, we compare
model responses with reference answers using Qwen2.5-72B-Instruct. Besides, we require the model
to enclose its reasoning process within <t hink></think> tags and penalize responses that violate
this format requirement, along with domain-specific constraints. Details of the reward functions
are provided in Appendix We use a learning rate of 1 x 107, a prompt batch size of 128, a
mini-batch size of 64, a group size of 8, a rollout temperature of 1.0, €15 = 0.2, epign = 0.28, and
B = 0.001 for CGPO and all baselines. We run all experiments for one epoch on 8 NVIDIA A100
GPUs (80GB). For more details of hyperparameters, please see Appendix

Evaluation. We evaluate our models on seven widely-used benchmarks: MATH500 (Hendrycks
et al.,[2021), AMC 2023 (MAA. 2023), HumanEval (Chen et al.,|2021), MBPP (Austin et al.,[2021)),
GPQA-diamond (Rein et al., [2023)), SuperGPQA (Team et al., 2025)), and WritingBench (Wu et al.,
2025)). To ensure consistent scaling across benchmarks, the scores on WritingBench are multiplied
by 10. We use vLLM (Kwon et al.,[2023)) for efficient inference, generating 4 responses per query
with a temperature of 0.6 and top-p sampling of 0.95. Further details can be found in Appendix

4.2 MAIN RESULTS

CGPO boosts the multi-domain reasoning of LLMs. Table [I] presents the results across different
methods. From the table we make the following observations: (1) CGPO achieves the highest average
performance for both model scales (3B and 7B), ranking either first or second in most individual
domains. This demonstrates its effectiveness in enhancing multi-domain reasoning capabilities
of LLMs. (2) For smaller models (3B), CGPO consistently outperforms other baselines on code
generation and creative writing, while maintaining competitive performance on math and scientific
QA. FAMO and Omni-Thinker also provide gains over joint learning, particularly in code generation
and scientific QA, but they lag behind CGPO in creative writing. Self-paced CL remains the weakest
overall, likely due to imbalanced domain difficulty and insufficient coverage of informative responses
at different training stages. (3) For larger models (7B), CGPO achieves clear improvements across
nearly all domains, with the largest gains on code generation and creative writing, highlighting that
its benefits scale with model capacity. Notably, FAMO shows competitive results, especially in math
and creative writing, confirming that gradient balancing can help, but it still falls short of CGPO in
aggregating multi-domain knowledge effectively. These results collectively indicate that curriculum
learning and gradient weighting methods can provide partial improvements, but their reliance on task

Under review as a conference paper at ICLR 2026

Table 1: Performance of models (Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct) trained on
the multi-domain dataset with different methods, evaluated on multiple benchmarks. The bold
font indicates the best result and an underline indicates the second-best result.

Math Code Generation Scientific QA Creative Writing

Methods AVG
MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench
Qwen2.5-3B-Instruct
Joint Learning 64.50 39.38 72.39 59.40 24.87 24.12 58.61 49.04
Omni-Thinker 65.65 41.50 71.95 58.80 21.34 26.75 57.90 49.13
Self-paced CL 65.30 38.75 70.12 58.80 24.37 24.72 57.82 48.55
FAMO 63.80 39.12 72.48 59.20 23.47 26.51 58.46 49.01
CGPO 64.20 39.71 74.29 60.80 24.37 26.63 63.04 *50.42
Qwen2.5-7B-Instruct
Joint Learning 76.00 56.25 79.88 68.60 19.70 32.75 63.15 56.62
Omni-Thinker 75.10 53.75 82.93 68.60 23.86 30.63 62.35 56.75
Self-paced CL 74.70 51.88 82.93 68.00 21.72 30.25 63.68 56.17
FAMO 75.65 55.63 82.54 68.80 23.07 31.49 63.62 57.26
CGPO 75.55 59.38 84.15 72.00 26.77 32.75 66.52 *59.59
Code Generation (3B) Creative Writing (3B) 00 Math (3B) Scientific QA (3B)
02 Joint 06 Joint o1 Joint 0.125 Joint
— CGPO 0.4 — CGPO — CGPO — CGPO
—0.2 0.100
E 0.0 0.2 os 0.075
E —02 0.0 oa 0.050 M\,\/WWW
-0.2 N 0.025
o4 04 _Z Z 0.000
0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150
Step Step Step Step
Code Generation (7B) 08 Creative Writing (7B) Math (7B) Scientific QA (7B)
0.6 - 03 =
051 — JCGPtO 061 — JCGPto 03 JCGPtO — JCGPto
04 0.4 0.2 0.2
§ 0.3 0.2 01
&o2 0.0 0.0 01
-0.2 —01
- -
0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150
Step Step Step Step

Figure 2: Training reward curves for Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on four domains
(code, creative writing, math, and scientific QA), comparing CGPO and joint learning.

difficulty, loss, or gradient magnitude alone is insufficient. In contrast, CGPO leverages geometric
information via randomized sequential updates and interpolation, enabling coordinated multi-domain
optimization and consistent performance gains across mathematical reasoning, code generation,
scientific QA, and open-ended creative tasks.

CGPO achieves faster reward improvement across all domains. Figure [2] presents the training
reward curves of Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on the four domains, with all curves
smoothed using EMA to clearly reveal trends. For both model sizes, the curves of CGPO consistently
remain above those of joint learning. The advantage is particularly pronounced in code generation
and creative writing, while in math and scientific QA the improvement is evident but less striking.
Notably, compared with the other three domains, creative writing is more subjective, requiring the
model to generate diverse and creative outputs rather than strictly structured or precise answers; this
makes potential conflicts with the other domains the largest. The substantial advantage of CGPO
in the reward curve for creative writing compared to joint learning provides strong evidence that
CGPO effectively mitigates cross-domain conflicts. We also observe considerable differences in
initial reward levels across domains. Taking Qwen2.5-7B-Instruct as an example, creative writing
and scientific QA start near —0.4 and 0, respectively, reflecting largely incorrect outputs, whereas
math and especially coding begin from higher baselines (coding around 0.1). This indicates that
the models enter RL training with uneven domain-specific capabilities. Importantly, CGPO delivers
varing degrees of acceleration even for domains with comparable starting points, suggesting that

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on domain order randomization in CGPO with Qwen2.5-7B-Instruct.
The bold font indicates the better result.

Methods Math Code Generation Scientific QA Creative Writing AVG
MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench

CGPOgy 77.20 56.88 83.54 69.60 23.08 31.75 67.30 58.48

CGPO 75.55 59.38 84.15 72.00 26.77 32.75 66.52 59.59

Table 4: Ablation study on the effect of the mixing coefficient oo in CGPO with Qwen2.5-7B-
Instruct. The bold font indicates the best result and an underline indicates the second-best result.

o Math Code Generation Scientific QA Creative Writing AVG
MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench

0.9 75.85 55.88 84.15 71.20 21.72 32.25 66.01 58.15

1.2 75.55 59.38 84.15 72.00 26.77 32.75 66.52 59.59

1.5 75.55 55.25 81.10 69.20 23.36 35.37 66.47 58.04

factors such as dataset difficulty or reward function design may influence the speedup. Investigating
the underlying causes of these differences is left for future work.

4.3 ANALYSIS AND ABLATIONS

CGPO introduces only negligible additional com- Table 2: Computation cost comparison be-
putation overhead. In multi-domain RL for LLMs, tween joint learning and CGPO (1 epoch).
the dominant computational bottleneck typically lies Note that the units of total time and per-step
in generating responses and computing rewards— time are different (hours vs. minutes).
particularly in domains such as coding and creative Methods Total (h) Step (min)
writing—rather than in the forward and backward
passes of the model itself. Against this backdrop, # Qwen2.5-3B-Instruct

the additional operations introduced by CGPO are Joint Learning 14.8 5.58
minimal. The sequential updates across domains CGPO 16.0 6.04
are essentially equivalent to splitting a mini-batch # Qwen2.5-7B-Instruct

into smaller chunks and processing them sequentially, Joint Learning 17.8 6.72
which incurs almost the same computational cost as CGPO 18.6 702

standard mini-batch training. Furthermore, the final
interpolation with the mixing coefficient oz amounts
to a single vector operation, which is computationally negligible. Taken together, these factors ensure
that the overall overhead of CGPO is practically insignificant, and the total training cost remains
nearly identical to that of joint learning. As shown in Table [2} the per-step wall-clock time under
CGPO is only slightly higher than joint learning, confirming that our method adds no meaningful
overhead in practice. For timing experiments on 32B and 72B models, please see Appendix [F.I]

Randomizing domain order is necessary for effective cross-domain interactions. We conduct
ablations to examine the necessity of randomizing domain order. Specifically, we compare the
standard randomized variant with a fixed-order variant (CGPOygy), where the sequence of domains
remains unchanged throughout training. As shown in Table[3] randomizing the order consistently
leads to higher average performance across all benchmarks. This result highlights that randomization
is essential: it ensures balanced sequential updates among domains, avoiding systematic bias in
Hessian—gradient interactions. In contrast, fixed ordering allows earlier domains to dominate updates,
while later domains can only adapt passively, reducing overall multi-domain coordination.

The mixing coefficient o plays a critical role in balancing stability and curvature exploitation.
To study its effect, we experiment with € {0.9, 1.2, 1.5} and report the corresponding multi-domain
performance in Table[d] Among these choices, a = 1.2 achieves the best overall average, reflecting a
favorable trade-off between retaining the base policy and incorporating curvature-informed updates.
Notably, the average performance of all tested o values exceeds that of the strongest baseline, FAMO
(57.26), indicating that CGPO is robust to the choice of . The fact that all « values are close to 1.0
suggests that the interpolation does not substantially change the effective learning rate; the observed
gains therefore arise from the curvature-aware sequential updates rather than step size adjustments.

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Multi-domain RL for LLMs. RL has become central to post-training LLMs (Schulman et all, 2017}
[Shao et al} 2024} [Yu et al.| 20254} [Liu et al.} 2023)), yet achieving stable improvements across multiple
domains remains challenging. One difficulty lies in designing reward functions that generalize across
diverse tasks. Some works propose broadly applicable reward computation, such as simplifying
binary rewards via ground-truth properties or using correctness likelihood
[2025b)). Others adopt domain-specific reward designs, e.g., hybrid rule-based, sandbox, and
LLM-as-a-judge systems 2025a). A second challenge is understanding cross-domain
interactions: |Cheng et al.| (2025)) analyze how single-domain training affects other skills, while
extend this to math, coding, and puzzles. Most prior work relies on empirical
observations, and a deeper understanding of multi-domain optimization dynamics remains limited.

Mitigating Gradient Conflicts. Gradient interference is a major obstacle in multi-task learning
(Chen et al.l 2025b). Approaches such as GradNorm (Chen et al, 2018), PCGrad (Yu et al,[2020)),
MGDA (Sener & Koltun| [2018)), ConFIG (Liu et all,[2024)), and CAGrad (Liu et al.,[2021) resolve
conflicts by balancing or projecting task gradients. While effective in standard MTL settings, they are
difficult to scale to RL for LLMs: many require storing all task gradients on-device, causing memory
bottlenecks, or operate reactively without leveraging reward-landscape geometry, leading to high
variance under noisy rollout-based gradients. These limitations motivate scalable, memory-efficient
mechanisms for mitigating cross-domain conflicts, as pursued by CGPO.

Second-Order Optimization Methods. The loss landscapes of deep neural networks are often
highly complex, posing challenges for first-order optimization algorithms, such as gradient descent.
Without insights into the geometric structure of the landscape, first-order methods can easily get
trapped in saddle points or narrow valleys, making it difficult to reach better local optima. In contrast,
second-order optimization methods, such as Newton’s method, exploit geometric information like the
Hessian matrix to precondition gradients according to the local curvature, offering stronger theoretical
guarantees. To mitigate the computational cost of full Hessian computation, various approximate

Newton methods have been proposed, including AdaGrad (Duchi et al.| 2011}, K-FAC (Martens

& Grosse, [2015), GGT (Agarwal et al, [2018), Shampoo (Gupta et al., [2018), and SOAP (Vyas
et al., [2023). Recent studies show that Newton’s method and SOAP (Vyas et al.,[2025)) can alleviate

gradient conflicts in PINNs (Wang et all,[2025)), providing inspiration for our approach. However,
due to the massive parameter scale of LLMs, directly applying approximate variants of Newton’s
method in RL for LLMs is fundamentally infeasible (we provide a detailed discussion in Appendix
[E-4). Motivated by this, we distill the core idea of leveraging curvature information and develop
CGPO, a principled and scalable framework for multi-domain RL in LLMs.

6 CONCLUSION AND LIMITATIONS

We present CGPO, a principled and scalable framework for multi-domain RL of LLMs. Inspired by
Newton’s method, CGPO leverages the geometric structure of the reward surfaces to precondition
gradients, while avoiding the cost of full Hessian computation. Through randomized sequential
updates, each domain’s gradient is modulated by curvature information from other domains, fostering
cross-domain interactions and implicitly aligning gradients. Experiments on a diverse multi-domain
dataset covering mathematical reasoning, code generation, scientific QA, and creative writing show
that CGPO outperforms all baselines, achieving faster reward improvement and stronger multi-domain
reasoning across all benchmarks.

Limitations. Although CGPO demonstrates consistent performance improvements across multiple
domains, several broader limitations remain. First, similar to existing multi-domain RL4LLMs
approaches [20254), we employ external reward models for certain domains, which may
themselves be constrained by current LLM-based evaluation paradigms. For instance, in the creative
writing domain, using a single LLM-as-a-judge may introduce stylistic biases that reflect the limits of
automated evaluation. Second, similar to existing studies (Cheng et al} 2025} [Li et al] [2025b)), the
overall effectiveness depends on the coverage and granularity of domain-specific rewards, and future
advances in reward modeling may naturally enhance performance. Finally, while the randomized
sequential update scheme encourages cross-domain interaction, exploring more elaborate scheduling
strategies or structured coordination mechanisms remains an open direction for future work. We view
these limitations as reflecting broader challenges shared across current RLALLMsS research, and we
hope that our work can contribute to the community’s continued progress on addressing them.

10

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work studies multi-domain reinforcement learning for LLMs using publicly available or appro-
priately licensed datasets across domains such as mathematics, coding, scientific QA, and creative
writing. No human subjects were directly involved. While our methods improve cross-domain
optimization, models trained with them could be misused to produce plausible but incorrect or unsafe
outputs. We strongly discourage any deployment outside research contexts and emphasize that reward
functions and training setups are designed to encourage safe and aligned outputs. All research was
conducted in accordance with the ICLR Code of Ethics, with no conflicts of interest or external
influence on methodology or results.

8 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed descriptions of our algorithm (CGPO) in Section [3.3]
and Algorithm [T} including pseudo-code and key hyperparameters. Experimental setups, including
data processing, reward functions, and evaluation benchmarks, are described in Section |4 and
Appendix [C| Where applicable, we provide references to publicly available datasets. All derivations,
approximations, and additional analyses supporting the method are included in Appendix [B] Together,
these materials provide sufficient information for replication of the reported results.

REFERENCES

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
The case for full-matrix adaptive regularization. arXiv preprint arXiv:1806.02958, pp. 404413,
2018.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732,

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
Diego De Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron
Huang, Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Ge-
offrey Irving, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack Rae, Erich Elsen, and
Laurent Sifre. Improving language models by retrieving from trillions of tokens. In Kama-
lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 2206-2240. PMLR, 17-23 Jul 2022. URL
https://proceedings.mlr.press/v162/borgeaud22a.htmll

Bytedance-Seed-Foundation-Code-Team, :, Yao Cheng, Jianfeng Chen, Jie Chen, Li Chen, Liyu
Chen, Wentao Chen, Zhengyu Chen, Shijie Geng, Aoyan Li, Bo Li, Bowen Li, Linyi Li, Boyi
Liu, Jiaheng Liu, Kaibo Liu, Qi Liu, Shukai Liu, Siyao Liu, Tianyi Liu, Tingkai Liu, Yongfei Liu,
Rui Long, Jing Mai, Guanghan Ning, Z. Y. Peng, Kai Shen, Jiahao Su, Jing Su, Tao Sun, Yifan
Sun, Yunzhe Tao, Guoyin Wang, Siwei Wang, Xuwu Wang, Yite Wang, Zihan Wang, Jinxiang Xia,
Liang Xiang, Xia Xiao, Yongsheng Xiao, Chenguang Xi, Shulin Xin, Jingjing Xu, Shikun Xu,
Hongxia Yang, Jack Yang, Yingxiang Yang, Jianbo Yuan, Jun Zhang, Yufeng Zhang, Yuyu Zhang,
Shen Zheng, He Zhu, and Ming Zhu. Fullstack bench: Evaluating llms as full stack coders, 2025.
URLhttps://arxiv.org/abs/2412.00535.

Dashiel Carrera, Zixin Zhao, Ashish Ajin Thomas, and Daniel Wigdor. Nabokov’s cards: An ai
assisted prewriting system to support bottom-up creative writing. In Proceedings of the 2025
Conference on Creativity and Cognition, pp. 546-559, 2025.

Jie Chen, Zhipeng Chen, Jiapeng Wang, Kun Zhou, Yutao Zhu, Jinhao Jiang, Yinggian Min, Xin
Zhao, Zhicheng Dou, Jiaxin Mao, Yankai Lin, Ruihua Song, Jun Xu, Xu Chen, Rui Yan, Zhewei
Wei, Di Hu, Wenbing Huang, and Ji-Rong Wen. Towards effective and efficient continual pre-
training of large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and

11

https://arxiv.org/abs/2108.07732
https://proceedings.mlr.press/v162/borgeaud22a.html
https://arxiv.org/abs/2412.00535

Under review as a conference paper at ICLR 2026

Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 5779-5795, Vienna, Austria, July 2025a.
Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.
acl-long.289. URL https://aclanthology.org/2025.acl-1long.289/|

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Weiyu Chen, Baijiong Lin, Xiaoyuan Zhang, Xi Lin, Han Zhao, Qingfu Zhang, and James T Kwok.
Gradient-based multi-objective deep learning: Algorithms, theories, applications, and beyond.
arXiv preprint arXiv:2501.10945, 2025b.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pp. 794-803. PMLR, 2018.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia, Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang
Lou, and Dongmei Zhang. Hitab: A hierarchical table dataset for question answering and
natural language generation. In Proceedings of the 60th annual meeting of the association for
computational linguistics (volume 1: long papers), pp. 1094-1110, 2022.

Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao
Zhuang, Nilabjo Dey, Yuheng Zha, et al. Revisiting reinforcement learning for 1lm reasoning from
a cross-domain perspective. arXiv preprint arXiv:2506.14965, 2025.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv preprint
arXiv:2009.09796, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Daniel Fein, Sebastian Russo, Violet Xiang, Kabir Jolly, Rafael Rafailov, and Nick Haber. Litbench: A
benchmark and dataset for reliable evaluation of creative writing. arXiv preprint arXiv:2507.00769,
2025.

Jiawei Gu, Zacc Yang, Chuanghao Ding, Rui Zhao, and Fei Tan. CMR scaling law: Predict-
ing critical mixture ratios for continual pre-training of language models. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 16143-16162, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.903. URL
https://aclanthology.org/2024.emnlp—-main. 903/l

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842-1850. PMLR, 2018.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

12

https://aclanthology.org/2025.acl-long.289/
https://arxiv.org/abs/2107.03374
https://aclanthology.org/2024.emnlp-main.903/

Under review as a conference paper at ICLR 2026

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: few-shot learning
with retrieval augmented language models. J. Mach. Learn. Res., 24(1), January 2023. ISSN
1532-4435.

kevinshin. wildchat-creative-writing-3k-rft, 2025. URL https://huggingface.co/
datasets/kevinshin/wildchat—-creative-writing—-3k-rft.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Derek Li, Jiaming Zhou, Amirreza Kazemi, Qianyi Sun, Abbas Ghaddar, Mohammad Ali Alomrani,
Liheng Ma, Yu Luo, Dong Li, Feng Wen, et al. Omni-thinker: Scaling cross-domain generalization
in 1lms via multi-task rl with hybrid rewards. arXiv preprint arXiv:2507.14783, 2025a.

Yu Li, Zhuoshi Pan, Honglin Lin, Mengyuan Sun, Conghui He, and Lijun Wu. Can one domain help
others? a data-centric study on multi-domain reasoning via reinforcement learning. arXiv preprint
arXiv:2507.17512, 2025b.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter Clark,
and Yejin Choi. Zebralogic: On the scaling limits of 1lms for logical reasoning. In Forty-second
International Conference on Machine Learning.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Information Processing Systems, 34:18878-18890,
2021.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimization.
Advances in Neural Information Processing Systems, 36:57226-57243, 2023.

Qiang Liu, Mengyu Chu, and Nils Thuerey. Config: Towards conflict-free training of physics
informed neural networks. arXiv preprint arXiv:2408.11104, 2024.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains. arXiv preprint arXiv:2505.14652, 2025.

MAA. American mathematics competitions, 2023. URL |https://maa.org/
student-programs/amc/.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408-2417. PMLR, 2015.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pp. 1273-1282. PMLR, 2017.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Nitral-Al. Creative_writing-sharegpt, 2024. URL https://huggingface.co/datasets/
Nitral-AI/Creative_Writing—ShareGPT.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof qa benchmark,
2023. URL https://arxiv.org/abs/2311.12022

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

13

https://huggingface.co/datasets/kevinshin/wildchat-creative-writing-3k-rft
https://huggingface.co/datasets/kevinshin/wildchat-creative-writing-3k-rft
https://maa.org/student-programs/amc/
https://maa.org/student-programs/amc/
https://huggingface.co/datasets/Nitral-AI/Creative_Writing-ShareGPT
https://huggingface.co/datasets/Nitral-AI/Creative_Writing-ShareGPT
https://arxiv.org/abs/2311.12022

Under review as a conference paper at ICLR 2026

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, et al. Deepseekmath: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279-1297, 2025.

Mustafa Shukor, Louis Bethune, Dan Busbridge, David Grangier, Enrico Fini, Alaaeldin El-Nouby,
and Pierre Ablin. Scaling laws for optimal data mixtures. In NeurIPS, 2025. URL https:
//arxiv.org/abs/2507.09404.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
International Journal of Computer Vision, 130(6):1526—1565, 2022.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

P Team, Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu,
Yiming Liang, Xiaolong Jin, Zhenlin Wei, Chujie Zheng, Kaixin Deng, Shawn Gavin, Shian Jia,
Sichao Jiang, Yiyan Liao, Rui Li, Qinrui Li, Sirun Li, Yizhi Li, Yunwen Li, David Ma, Yuansheng
Ni, Haoran Que, Qiyao Wang, Zhoufutu Wen, Siwei Wu, Tyshawn Hsing, Ming Xu, Zhenzhu Yang,
Zekun Moore Wang, Junting Zhou, Yuelin Bai, Xingyuan Bu, Chenglin Cai, Liang Chen, Yifan
Chen, Chengtuo Cheng, Tianhao Cheng, Keyi Ding, Siming Huang, Yun Huang, Yaoru Li, Yizhe
Li, Zhaoqun Li, Tianhao Liang, Chengdong Lin, Hongquan Lin, Yinghao Ma, Tianyang Pang,
Zhongyuan Peng, Zifan Peng, Qige Qi, Shi Qiu, Xingwei Qu, Shanghaoran Quan, Yizhou Tan, Zili
Wang, Chenqging Wang, Hao Wang, Yiya Wang, Yubo Wang, Jiajun Xu, Kexin Yang, Ruibin Yuan,
Yuanhao Yue, Tianyang Zhan, Chun Zhang, Jinyang Zhang, Xiyue Zhang, Xingjian Zhang, Yue
Zhang, Yongchi Zhao, Xiangyu Zheng, Chenghua Zhong, Yang Gao, Zhoujun Li, Dayiheng Liu,
Qian Liu, Tianyu Liu, Shiwen Ni, Junran Peng, Yujia Qin, Wenbo Su, Guoyin Wang, Shi Wang,
Jian Yang, Min Yang, Meng Cao, Xiang Yue, Zhaoxiang Zhang, Wangchunshu Zhou, Jiaheng
Liu, Qunshu Lin, Wenhao Huang, and Ge Zhang. Supergpqa: Scaling llm evaluation across 285
graduate disciplines, 2025. URL https://arxiv.org/abs/2502.14739.

Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement
learning. Electronics, 9(9):1363, 2020.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and
Sham M Kakade. Soap: Improving and stabilizing shampoo using adam for language modeling.
In The Thirteenth International Conference on Learning Representations, 2025.

Sifan Wang, Ananyae Kumar Bhartari, Bowen Li, and Paris Perdikaris. Gradient alignment in
physics-informed neural networks: A second-order optimization perspective. arXiv preprint
arXiv:2502.00604, 2025.

Yuning Wu, Jiahao Mei, Ming Yan, Chenliang Li, Shaopeng Lai, Yuran Ren, Zijia Wang, Ji Zhang,
Mengyue Wu, Qin Jin, and Fei Huang. Writingbench: A comprehensive benchmark for generative
writing, 2025. URL https://arxiv.org/abs/2503.05244,

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Yufan Ye, Ting Zhang, Wenbin Jiang, and Hua Huang. Process-supervised reinforcement learning
for code generation. arXiv preprint arXiv:2502.01715, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025a.

14

https://arxiv.org/abs/2507.09404
https://arxiv.org/abs/2507.09404
https://arxiv.org/abs/2502.14739
https://arxiv.org/abs/2503.05244

Under review as a conference paper at ICLR 2026

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.

Gradient surgery for multi-task learning. Advances in neural information processing systems, 33:
5824-5836, 2020.

Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan Yao,

Zhiyuan Liu, et al. Rlpr: Extrapolating rlvr to general domains without verifiers. arXiv preprint
arXiv:2506.18254, 2025b.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. Acecoder:
Acing coder rl via automated test-case synthesis. arXiv preprint arXiv:2502.01718, 2025.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang

Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025.

15

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

In preparing this manuscript, we used a large language model (LLM) in two distinct ways. First, we
employed LLMs as an assistive tool for text refinement, including improving grammar, wording, and
clarity. Second, LLMs themselves are the primary subject of this research: we study reinforcement
learning (RL) training for LLMs. Accordingly, all experiments involve using large models for training,
inference, and scoring, as part of the methodology under investigation.

All scientific content, including problem formulation, methodology, experiments, and conclusions,
was developed and verified entirely by the authors. The authors take full responsibility for the integrity
and accuracy of the manuscript. No LLM was credited as an author, and all substantive research
contributions are attributable exclusively to the human authors.

B MATHEMATICAL DERIVATIONS

B.1 DETAILED DERIVATION OF EQ.
Eq. (@) in Section [3.2] states:

g (o) — & (002) ~ B, (2) (e — 62) ~nH, (62) & (62) ©
Derivation: Assuming the gradient function g;(6) is smooth, we apply a first-order Taylor expansion
around Héﬁzz

g (o) ~ &5 (002) + H; (602) (60 — 052) + O(11A0]), ™)

where H; (0) = VZL;(0) is the Hessian matrix for domain j, and Af = egfgt - GI(,Q,. Neglecting
higher-order terms and rearranging gives:

g (9;%) —gj (932) ~ H; (9;()?2) (9éézt - 9&2) : ®)
In policy optimization, parameters are updated via gradient ascent (maximizing rewards):
o = 055 + g (652) ©)
where 7 is the learning rate. Substituting this into the previous equation yields:
Oponc = 02 = mgi (950 - (10)
and therefore,
g (0k) — &5 (602) ~ kL, (002) & (652) (an

which is Eq. (). This approximation shows that the gradient update from domain ¢ influences the
gradient of domain j through the curvature of domain j.

B.2 DETAILED DERIVATION OF EQ. (3) AND EQ. (@)

Eq. (B) and Eq. (@) in Section state:
k—1

DU
o (k) (Bh—1) = ok (P0) — Y Dyl

—e———H, (1) (¢0)8 1) (%0) + O(n*) (12)
=1 Zf:HDU(S)' W W

k—1
n
8o (k) (Pk-1) = 8o k) (P0) — X Z H, (1) (60)8-1) (¢0) + O(n?) (13)
=1
Derivation: Consider the randomized sequential update: domains are processed in the order
o(1),...,0(K). The parameter update for each domain (using gradient ascent) is:
Ok = Ph—1 + Mo (k) (Pr—1), (14)

16

Under review as a conference paper at ICLR 2026

where 1), = 1| Dy)|/ Zle | Dy (s)| is the scaled learning rate.

For domain o (k), its gradient is evaluated at ¢, 1. Using a Taylor expansion around ¢y:
1) (r—1) = 8o(k) (B0) + Ho() (d0) (dr—1 — o) + O(n°). (15)

Now compute ¢y_1 — ¢g. Note that:

k—1 k—1
Gro1 =0+ Y (¢ — dim1) = do + >_ mBo(n) (h1-1)- (16)
=1 =1
To first order, we approximate g, ;) (¢1-1) ~ go(1)(¢0) (error O(n?)):
k—1
Gr—1— ¢o = anga(l)(¢o)~ (17
1=1
Substituting into the Taylor expansion:
8o (k) (Pr—1) = 8o () (P0) + Ho () (P0) (Z Mm8o(1) (o > O(n?). (18)

Substituting 7; = 1|Dy(|/ Zf_l |Dy(s)| gives Eq. .

If we assume uniform batch sizes, i.e., [Dy() |/ZS 1 1Do(syl = 1/K, then n = n/K, which
simplifies to Eq. ().

B.3 DETAILED DERIVATION OF EQ. @

Eq. (B) in Section 3.3 states:

K 9 K k—1
an 0”7

aldx — o) = —4~ Z + =5 Y Y Hyy(00)8ew) (d0) + O(). (19)

k=1 k=1 1=1

Derivation: The total parameter change is:

K K
bk —do =Y (k= Ir1) = > MhBo(k)(Pr—1)- (20)

k=1 k=1

Using the approximation from Eq. (@) (uniform batch sizes):

k) (Pr—1) = 8ok (P0) — — ZHa(k) $0)8(1)(¢0), (21)

and substituting n, = n/K:

k—1

K
¢k —do~ Y % 8o (k) (¢0) — % Ho (1) (¢0)80(1)(00)
k=1 1

9 K k-1
= % Zga(k)(%) - % > Ho) (60)80) (00)- (22)
k=1 k=11=1
Multiplying by the mixing coefficient a:
n? K k—1
(oK — do) ~ Zgg Z > Ho () (60)80)(¢0)- (23)
k=1 I=1

Note that Zle o (k) (P0) = Eszl gr(¢o) (permutation invariant), yielding Eq. .

17

Under review as a conference paper at ICLR 2026

B.4 DERIVATION OF GRADIENT ALIGNMENT SYMMETRIZATION

In Section[3.3] it is mentioned that after randomization, the cross-term expectation symmetrizes as:
0
H;(¢0)g;(¢0) +H;(do)gi(do) = 900 (gi(¢0) g (¢0)) - (24)

Derivation: The key mathematical insight is the following identity concerning the gradient of the
inner product between two gradients.

Consider the inner product S(¢o) = g;(¢o) " g;(¢o). The gradient of this scalar function S with
respect to ¢ is given by:

VoS = Vi, (8i(¢0) 'gj(¢0)) = Hi(do)g; (o) + H;(¢o)gi(d0), (25)

where we have used the product rule and the symmetry of the Hessian matrices, H; = H;r This
result can be seen by noting that the derivative of g; g; w.r.t. ¢ is (9g:/0¢0) ' g;+&; (0g;/0d0) =
H;g; + g/ H;. Since g; H is a row vector, its transpose is H;g;. The gradient (as a column vector)
is therefore H;g; + H;g;.

Under a randomized ordering o, the expectation of the cross-term involving H, ()8, () for k > [
will involve pairs (¢, 7) symmetrically. The update term derived from the second-order expansion
is proportional to H;g;. The symmetric form H;g; + H;g; appearing in the gradient of the inner
product Vg, (g] g;) indicates that, in expectation, the update encourages an increase in the inner
product between the gradients of different domains, thus promoting their alignment.

Remark. We would like to clarify the intended meaning of Eq. (E[) and the role of the expectation
over permutations, in order to avoid possible ambiguities and to keep the presentation self-contained.

(1) Interpretation of Eq. (§). Eq. (3) is obtained from a deterministic Taylor expansion of one
sequential update pass conditioned on a fixed permutation o. The resulting parameter change
decomposes into: (i) a first-order term corresponding to aggregated gradients, and (ii) a second-order
interaction term involving Hessian-gradient products. These Hessian-gradient interaction terms arise
deterministically from executing a sequential update under a specific ordering; they do not rely on
randomness or averaging. The expression makes explicit the structural cross-domain second-order
interactions induced by sequential updates.

(2) Role of the expectation over o. The expectation over permutations is used to express a sym-

metry property. To make this more concrete, imagine that at the same parameter 0;, we were

able—hypothetically, since the algorithm does not actually do this—to sample M independent
M K

i - In this hy-

permutations {a , each corresponding to an ordering Tt(m) = (oﬁm) (k:))

m=1
pothetical scenario, as M — oo, the events “7 appears before ;7 and *“j appears before 7 would

occur with essentially equal frequency for every pair (7, j). This limiting symmetry is exactly what
our expectation argument is intended to express, and it is what leads to the symmetric combination
H;g; + H,g; in the discussion following Eq. (EI)

In the actual algorithm, of course, we sample only one permutation at each iteration. This introduces
sampling error—but not bias in the expectation sense—because we do not average over multiple
permutations.

Importantly, this sampling error does not accumulate in a harmful way in practice. A helpful way to
view this is through an analogy with standard SGD: each stochastic gradient is, in expectation, equal
to the true gradient (just as the contributions of H;g; and H;g; are symmetric in expectation), yet in
practice we use only one stochastic gradient per step rather than averaging many samples—just as our
algorithm samples only one permutation per iteration rather than averaging over many permutations
at the same parameter. This practice in SGD does introduce variance and error, but it does not
undermine either the effectiveness of SGD or the usefulness of the statement that “the stochastic
gradient equals the true gradient in expectation”. The same phenomenon appears in our algorithm.

Therefore, when we refer to an expectation, we mean the conditional expectation taken at a fixed 6,
i.e., conditional on the past history JF;_1—just as the expectation of a stochastic gradient in SGD is
interpreted conditional on the current parameter value.

18

Under review as a conference paper at ICLR 2026

C MORE DETAILS OF EXPERIMENTS

C.1 TASKS AND DATASETS

We focus on enhancing LLMs’ overall capabilities across four domains—mathematical reasoning,
code generation, scientific QA, and creative writing. These domains not only represent core areas of
current research interest but also span four distinct forms of reward feedback, thereby ensuring
both comprehensiveness and diversity.

* Mathematics: we construct a subset of 6,250 samples from the Guru dataset (Cheng et al., 2025).
This includes the 5,000 easiest problems (ranked by the pass rate of Qwen2.5-7B-Instruct) and
1,250 more challenging ones, ensuring a balance between accessible and difficult problems.

* Code generation: we select a total of 4,740 samples from Guru. Specifically, we take all 3,791
problems with a Qwen2.5-7B-Instruct’s pass rate of at least 25% and add 949 problems randomly
sampled from the remainder, yielding an approximate 4:1 ratio between easier and harder samples.

* Scientific QA: we include the entire STEM split of Guru, resulting in 3,591 samples. This
preserves the full coverage of science-related reasoning tasks while maintaining consistency with
prior benchmarks.

* Creative writing: we randomly sample 2,000 samples each from three popular Hugging-
face datasets—LitBench (Fein et al.,2025), Creative_Writing-ShareGPT (Nitral-All 2024), and
wildchat-creative-writing-3k-rft (kevinshin, |2025)—to construct a dataset of 6,000 samples, ensur-
ing stylistic variety and broad coverage of open-ended writing abilities.

C.2 BASELINES

We compare our CGPO against four representative baselines: joint learning, Omni-Thinker (L1 et al.|
20254d), Self-Paced CL, and FAMO (Liu et al., [2023).

¢ Joint learning. Joint learning is the most basic paradigm in MTL. It aggregates the loss functions
of all tasks into a single objective, enabling simultaneous optimization. As a straightforward
training strategy without any task-specific adjustments, joint learning serves as a reference point
for evaluating improvements brought by more advanced methods.

* Omni-Thinker. Omni-Thinker belongs to progressive CL methods as categorized in (Soviany et al.;
2022). It introduces the backward transfer (BWT) metric to quantify the extent of catastrophic
forgetting across domains. Based on BWT analysis, [Li et al.| (2025a) proposes a fixed training
order—code — math — scientific QA — creative writing—with the goal of minimizing forgetting
induced by multi-domain learning.

* Self-paced CL. Self-paced CL enables the model to adaptively select training samples according
to its learning state. In our implementation, we employ Qwen2.5-7B-Instruct to rank samples by
winrate from easy to difficult, and train sequentially following this order. This curriculum reduces
the risk of being misled by difficult samples in the early stages, thereby improving stability and
promoting better generalization.

* FAMO. FAMO is a gradient-balancing approach for MTL. It adjusts loss weights to maximize
the improvement rate of the task that progresses the slowest, ensuring that all tasks advance at
a comparable pace. This balanced optimization strategy suppresses task dominance and guides
the model toward solutions that are both fairer across tasks and stronger in overall performance.
FAMO approximates weight updates using historical loss values instead of explicitly computing
multi-task gradients, reducing per-iteration time and memory complexity to O(1). This efficiency
makes it particularly suitable for large-scale LLM training.

C.3 REWARD FUNCTIONS

For all domains, we require the model to enclose its reasoning process within <think></think>
tags. The reward functions for the four domains are as follows.

19

Under review as a conference paper at ICLR 2026

* Math. We adopt a rule-based reward function:

1.0, if o has a valid format and verify,,, (0ans, @) = true,
Tmath (0, @) = < —0.5, if o has a valid format but verify,,,, (0ans, a) = false,
—1.0, if o has an invalid format,

where o0, denotes the predicted answer extracted from structured tags (e.g.,
<answer></answer>) in the model output o, and verify, . (-, -) checks symbolic equivalence
between 0,5 and the ground-truth answer a via a deterministic parser (e.g., handling equivalent
forms of expressions or equations).

* Code generation. We adopt a sandbox-based unit test reward:

1.0, if o has a valid format and exec(0u,s) [E unittest(o,,s, test_case),
Teode (0, test_case) = ¢ —0.5, if o has a valid format but exec(0,ys) K~ unittest(o,,s, test_case),
—1.0, if o has an invalid format (syntactically invalid),

where o,y is the generated code, executed in a sandbox and validated against the unit tests
associated with the sample; = denotes logical satisfaction.

* Scientific QA. We employ a 1.5B General-Veriﬁe (Cheng et al., [2025)) to assess consistency
between the model’s output and the ground-truth answer:

1.0 — 0.05 - min(||oas| — |a||,10), if o has a valid format and 0,5 = a,
rqa(0,a) = 1 0, if o0 has a valid format but 0,,, # a,
—1.0, if o has an invalid format,

where o,y is the extracted answer content. Here, “valid format” means the response adheres to QA
conventions (e.g., no garbled text, complete sentences).

* Creative writing. We adopt an LLM-as-a-Judge strategy, scoring the model’s output o against a
reference oy¢ via pairwise comparison:

1.0, if o has a valid format and 0 > 0O,
0.25, if o has a valid format and 0 ~ 0,
—0.5, if o has a valid format and 0 < 0O,
—1.0, if o has an invalid format,

Twriting (0; Oref) =

where 0 > ot (preferred), o ~ o (tie), and 0 < ors (Worse) are determined by a fixed evaluator
(Qwen2.5-72B-Instruct) serving as the judge.

C.4 HYPERPARAMTERS

We use a learning rate of 1 x 10~%, a prompt batch size of 128, a mini-batch size of 64, a group
size of 8, a rollout temperature of 1.0, €1ow = 0.2, enigh = 0.28, and 8 = 0.001 for CGPO and all
baselines. All methods are trained for one epoch. For the mixing coefficient v, we tune it within the
range of 0.5-1.5, and provide an ablation study on « in Section 4.3

C.5 EVALUATION

To comprehensively evaluate cross-domain capabilities, we adopt authoritative benchmarks spanning
four domains: Math, Coding, Scientific QA, and Creative Writing. The evaluation settings are
detailed below:

¢ Math domain

— MATHS00 (Hendrycks et al.,[2021): A set of 500 challenging problems sampled from the
full MATH dataset, covering seven areas: elementary algebra, algebra, geometry, number
theory, combinatorics, probability, and calculus. Problems are presented in open-ended
form and require precise solutions. This benchmark is widely adopted for assessing LLMs’
mathematical reasoning and problem-solving abilities.

https://huggingface.co/TIGER-Lab/general-verifier

20

https://huggingface.co/TIGER-Lab/general-verifier

Under review as a conference paper at ICLR 2026

— AMC 2023 (MAA] 2023): A set of 50 questions taken from the AMC 12A and 12B (2023)
contests, spanning algebra, geometry, number theory, combinatorics, and probability. Multiple-
choice options are removed, requiring models to directly output the final answer. This
benchmark focuses on higher-order reasoning, problem analysis, and accurate calculation.

* Coding domain

— HumanEval (Chen et al., 2021): Consisting of 164 human-written Python programming
tasks, ranging from basic algorithms to medium-level function implementations. It evaluates
whether models can generate correct and executable code from natural language descriptions.

— MBPP (Austin et al.,[2021)): A collection of 974 beginner-level Python problems designed
to test the ability to synthesize short programs from natural language instructions. It is a
standard benchmark for fundamental code generation.

 Scientific QA domain

— GPQA (diamond split) (Rein et al., 2023): Graduate-level QA items written and verified
by domain experts across physics, chemistry, biology, and earth sciences. The diamond split
represents the most difficult and highest-quality subset, specifically constructed to prevent
shallow memorization or pattern matching. To ensure consistent evaluation, we reconstruct
ordered option lists using randomized indexing.

— SuperGPQA (Team et al., [2025)): Comprising 285 interdisciplinary graduate-level reasoning
problems, curated to prevent direct solutions via search engines. To reduce computational
cost, we use random seed 42 to sample 200 problems, ensuring both representativeness and
reliable measurement of deep reasoning ability.

* Creative Writing domain

— WritingBench (Wu et al., [2025): A benchmark of 1000 real-world writing tasks spanning
6 domains and 100 sub-themes, covering diverse styles, task types, and difficulty levels.
It evaluates generated text on quality, coherence, creativity, and task alignment through a
structured scoring framework. For efficiency, we sample 200 requests using random seed
42, and apply the official critic model WritingBench—Critic—Model—Qwen—7for
automated scoring, striking a balance between evaluation cost and representativeness.

D RELATED WORK

Multi-domain RL for LLMs. The application of RL in LLMs receives widespread attention
(Schulman et al.l 2017;Shao et al.l 20245 [Yu et al.|, 20254} [Liu et al., [2025)). However, RL strategies
that simultaneously and steadily enhance the capabilities of LLMs across multiple domains remain an
open challenge. A key difficulty in this area lies in designing reward functions that work effectively
across diverse domains. Some researchers develop reward computation methods that are broadly
applicable across multiple domains. For example, Zhou et al.| (2025) simplify the binary reward
function by leveraging properties of the ground truth. RLPR (Yu et al.,2025b) constructs its reward
based on the probability of generating correct outputs. Other researchers create distinct reward
computation methods tailored to specific domains. For instance, |Li et al.[(2025a) propose a hybrid
reward system that employs rule-based, sandbox-based, and LLM-as-a-Judge frameworks, customized
for different types of data. Another challenge lies in appropriately handling interactions among
multiple domains. (Cheng et al.| (2025)) study the effects of single-domain training on other domains.
L1 et al.| (2025b)) further examine interactions across several domains, including math, coding, and
puzzle solving. Existing approaches mainly rely on experimental and qualitative observations, while
a deeper understanding of cross-domain interactions remains largely unexplored.

Mitigating Gradient Conflicts. Gradient conflicts pose a major challenge in machine learning,
leading to slow learning and wasted computation (Chen et al.,|2025b). Much work in multi-task
learning addresses this by balancing or projecting gradients to reduce interference, such as GradNorm
(Chen et al., 2018), which adjusts each task’s gradient according to its relative loss, PCGrad (Yu
et al., |2020), which projects away conflicting directions, MGDA (Sener & Koltun| 2018)), which
seeks Pareto-optimal updates, and ConFIG (Liu et al., [2024) or CAGrad (Liu et al., 2021}, which
optimize updates under constraints to ensure conflict-free directions. While effective in standard

Shttps://huggingface.co/AQuarterMile/WritingBench-Critic-Model-Qwen-7B

21

https://huggingface.co/AQuarterMile/WritingBench-Critic-Model-Qwen-7B

Under review as a conference paper at ICLR 2026

MTL, these approaches face key limitations in RL for LLMs: they generally either require storing
all domain gradients on the GPU, which quickly becomes memory-intensive and can often cause
out-of-memory failures, or act reactively without leveraging the underlying geometry of the reward
landscape, which usually makes them prone to high variance on noisy, rollout-based gradients. These
challenges motivate scalable, memory-efficient methods that can mitigate cross-domain conflicts
while supporting multi-domain RL training, such as our proposed CGPO.

Second-Order Optimization Methods. The loss landscapes of deep neural networks are often
highly complex, posing significant challenges for first-order optimization algorithms, such as gradient
descent, which rely solely on local gradient information. Without insights into the geometric structure
of the landscape, first-order methods can easily get trapped in saddle points or narrow valleys,
making it difficult to reach better local optima. In contrast, second-order optimization methods,
such as Newton’s method, exploit geometric information like the Hessian matrix to precondition
gradients according to the local curvature, offering stronger theoretical guarantees. To mitigate the
computational cost of full Hessian computation, various approximate Newton methods have been
proposed, including AdaGrad, K-FAC, GGT, Shampoo, and SOAP (Duchi et al.| 2011} [Martens|
& Grossel, 2015} [Agarwal et all 2018} [Gupta et al.| 2018 [Vyas et al},[2025)). Recent studies show
that Newton’s method and its approximate variant SOAP (Vyas et al.,[2025) can alleviate gradient
conflicts in physics-informed neural networks (PINNs) (Wang et al.}[2025), providing inspiration
for our approach. However, due to the massive parameter scale of large language models, directly
applying Newton-type methods or their approximations in RL for LLMs is infeasible. Motivated by
this, we distill the core idea of leveraging curvature information and develop CGPO, a principled and
scalable framework for multi-domain RL in LLMs.

E MORE DISCUSSIONS

E.1 APPLICABILITY OF CGPO TO MULTI-DOMAIN PRE-TRAINING

Although our experiments focus on the RL post-training stage, the underlying mechanism of CGPO
naturally extends to the multi-domain setting of LLM pre-training. Pre-training corpora are inherently
heterogeneous, and the aggregation of losses across diverse domains can lead to a complex optimiza-
tion landscape. Since CGPO is designed to alleviate such difficulty by leveraging curvature-informed
interactions induced by sequential updates, the framework is conceptually agnostic to the specific
form of the loss and can, in principle, be applied during pre-training without modification.

It is also worth noting that CGPO is developed to address challenges unique to RL for LLMs, many of
which are absent in the pre-training stage. As a result, the design space for multi-domain optimization
during pre-training is substantially broader. When the entire corpus is available offline, practitioners
may employ a wide range of well-established approaches, including data mixture and sampling
strategies (Shukor et al| 2025} [Gu et al} [2024)), continual or staged domain-specific pre-training
(Chen et al| [2025a)), and retrieval-augmented pre-training ([zacard et al| 2023} [Borgeaud et al]
2022). These techniques are not directly applicable in RLALLMs but can be highly effective during
pre-training, making the relative advantage of CGPO in this setting an open empirical question.

E.2 NON-UNIFORM DOMAIN IMPORTANCE IN MULTI-DOMAIN TRAINING

In practical multi-domain applications, different domains may carry different levels of importance.
While the main paper focuses on the uniform-weight objective

LXK
J(0) = ?ij:(e)v
k=1

this choice is primarily for conceptual clarity and to highlight the core contribution of CGPO—namely,
its ability to mitigate cross-domain optimization conflicts and improve multi-domain reasoning
performance.

The CGPO framework can be naturally extended to settings in which domains are assigned non-
uniform importance. Let each domain & be associated with a user-defined weight wy, satisfying

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Z,If:l wy, = 1. The training objective can then be written as

TO:w) = wndil6) = 1o S (Kuwi) Fi(6). 26)
k=1 k=1

This formulation is equivalent to scaling each domain-specific loss and its corresponding gradient by
a factor proportional to its importance. Crucially, no modification to the CGPO algorithm is required:
the sequential updates, geometric interactions, and final interpolation behave identically as in the
uniform-weight case, with the only difference being the importance-adjusted gradient contributions.
This property allows CGPO to seamlessly accommodate prioritized tasks, enabling it to model
practical multi-domain scenarios in which some domains or skills must be emphasized more heavily
than others.

E.3 WHY JOINT LEARNING CANNOT REPRODUCE OUR CROSS-DOMAIN MECHANISM

In this section, we provide additional analysis comparing joint learning with the proposed sequential
mechanism, clarifying why joint learning cannot recover the same cross-domain Hessian—gradient
interactions.

E.3.1 SEQUENTIAL UPDATES INDUCE CLEAN CROSS-DOMAIN INTERACTIONS

As shown in Eq. (5) of the main paper, a single sequential pass over the domains—corresponding to
one parameter update—yields, up to O(n?),

K 5 K k-1
oK — ¢o = —% > grldo) + % D0 Ho)(60)8a0)(60) + O, 27)
k=1 k=1 1=1

where o is the random permutation sampled at this iteration.

Crucially, the expression above describes the update for a fixed permutation ¢. Since our algorithm
re-samples ¢ independently at each iteration, the relevant quantity for understanding the behavior of
the sequential mechanism is the expectation over o. Taking expectation symmetrizes the pairwise
interactions: each ordered pair (7, j) appears with equal probability. After symmetrization, we

have H;(¢0)g;(d0) + H;(do)gi(¢0) = 8%50 (gi(d0) "gj(d0)) (see Appendix , yielding an
interpretable alignment effect across domains.

E.3.2 TWO-STEP JOINT LEARNING YIELDS MIXED SECOND-ORDER TERMS

To analyze why joint learning cannot replicate this mechanism, consider two consecutive joint-training
updates. Let

1 & 1 & 1 &
L) = 2 D Lu(0), 8(0) = VLO) = = D gi(0), HE) = TL0) = - > H(0)

Performing two gradient-descent steps with step size n—mnote that unlike the sequential pass above,
these constitute two separate parameter updates—and expanding up to second order gives

Orpo — 0 = —2ng(0:) + n* H(0,) g(6;)
5 K

K
9 2
_ _?”E g (60) + % S Hi(00)g;(0,) + —;7{2 > Hi(6)gr(0:). (28)
k=1 1<i£j<K k=1

This expression reveals three types of contributions:
1. Single-domain gradients gj, (0;);

2. Cross-domain Hessian—gradient interactions H, (6,)g; (0;) for i # j;

3. Self-curvature terms Hy (6;)g (0;).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The presence of the self-curvature terms is the key structural difference from Eq. (27). Because both
updates in joint learning are taken with respect to the same aggregated loss, these self-curvature
components naturally arise and are typically of comparable magnitude to the cross-domain terms.
As a result, they can partially or fully cancel cross-domain contributions depending on curvature
structure. Thus, joint learning does not isolate cross-domain interactions. Its second-order structure
is an inseparable mixture of self- and cross-terms, lacking the clean symmetry and interpretability
obtained under the sequential scheme.

E.3.3 IMPLICATIONS FOR GRADIENT ALIGNMENT

Because joint learning yields both H;g; and Hj.g;, terms, the effective update cannot be reduced to a
symmetric pairwise structure. In particular, it cannot be rewritten as the gradient of an inter-domain
alignment quantity such as g, g;. The self-curvature terms disrupt this symmetry, preventing the
simplification that underlies the alignment interpretation in our method.

By contrast, our sequential scheme avoids Hy gy, entirely: each domain is updated once per sequential
pass, and its gradient is evaluated only after perturbations induced by other domains. Combined
with the expectation over random permutations, this yields a clean, symmetric second-order term
capturing cross-domain interactions.

E.4 WHY APPROXIMATE VARIANTS OF NEWTON’S METHOD ARE INFEASIBLE FOR RL
TRAINING OF LLMS

Second-order optimization methods broadly aim to exploit curvature information—typically through
matrix-based preconditioning—to enable more geometrically informed parameter updates. These ap-
proaches span a wide family of techniques, including Kronecker-factorized natural-gradient methods,
layer-wise matrix preconditioners, and approximate Newton-style updates. To illustrate why such
methods become impractical in RL training of LLMs, we examine three of the most representative
and advanced instances in this family—K-FAC (Martens & Grosse} [2015), Shampoo
[2018), and SOAP [2025))—and analyze the computational and memory implications of

applying their core mechanisms at LLM scale.

E.4.1 K-FAC

K-FAC (Martens & Grosse}, 2013)) is a Kronecker-factored approximation to natural gradient descent.
For a fully-connected (or linear) layer with weight matrix W € R ou X in input activations a € R
and backpropagated output gradients g € R%u, the gradient can be written (for a single sample)
as VwL = ga'. If we vectorize W into w = vec(W) € R%udn_ the Fisher information block
corresponding to w is

Fw=E[VWLVsL"].

Under the standard K-FAC independence assumptions (approximately independent a and g and
certain factorization properties), this block is approximated as a Kronecker product

Fw~A®G, A=Eaa'], G=Egg'], (29)

where A € R%*dn and G € R%u*dou are the Kronecker factors maintained as running (exponential
moving) averages over mini-batches.

Preconditioned update. Natural gradient descent would apply F,! to the gradient V £. Using the
approximation in Eq. and the Kronecker identity (A ® G)~! = A=! @ G~1, one obtains the
K-FAC preconditioned update for the weight matrix:

AW~ —n-G™1. Vwl- AL Wi =W, + AW, (30)

where 7 is the learning rate. In practice, A~! and G~ are not formed explicitly: K-FAC performs
eigendecompositions

A=U,A,U}, G=UgAU/,

and then applies inverse (or inverse square-root) scalings in these eigen-bases. This requires storing
the factors A, G (and often their eigenvectors U 4, Ug) and repeatedly computing or reusing their
eigendecompositions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Memory cost at LLM scale. Consider a typical transformer block with hidden size di, ~ dy ~ d.
For modern LLMs, d is in the range [4096, 8192]. Each Kronecker factor A or G is then a dense
d x d matrix. It is important to note that, for numerical stability, K-FAC implementations typically
store curvature factors in at least FP32, even when the model itself uses FP16/BF16. A dense d X d
FP32 matrix requires 4d? bytes. For d = 4096, d?> = 40962 = 16,777,216 entries, which leads to

size of one factor (A or G) = 16,777,216 x 4 bytes ~ 64 MB.

Thus storing both A and G for one weight matrix consumes about 2 x 64 MB ~ 128 MB. A
transformer block at this width typically has multiple large projection matrices, such as self-attention
projections Wqo, W, Wy, W plus two large feed-forward matrices. Even if we conservatively
apply K-FAC only to four matrices per block (e.g., W, W, Wy, W) and ignore the FFN, the
curvature state per block is already

curvature per block ~ 4 x 128 MB = 512 MB.
For a 7B LLM with roughly L ~ 80 transformer blocks, this yields
extra K-FAC curvature memory ~ 512 MB x 80 ~ 40 GB per GPU,
only for storing A and G in FP32, without caching eigenvectors.

In practice, many K-FAC variants also cache eigendecompositions, i.e., U 4, Ug for each factor.
Each eigenvector matrix U 4 or Ug is again a d x d FP32 matrix (another ~ 64MB for d = 4096),
effectively doubling the curvature state:
curvature per weight (A, G, U4, Ug) ~ 4 x 64 MB = 256 MB,
curvature per block (4 weights) ~ 4 x 256 MB = 1 GB,
curvature for 80 blocks ~ 80 GB per GPU.

Thus, for a realistic configuration (FP32 factors + cached eigen-bases), even a 7B model with
d = 4096 requires on the order of 40-80GB of additional curvature memory per GPU.

This curvature memory is replicated across data-parallel workers: each GPU maintains its own copy
of the K-FAC state and participates in all-reduce operations to aggregate the factors. The cost is
therefore not amortized across 8 GPUs; it is incurred independently on each device.

Interaction with A100 memory budget. On A100 GPUs (80GB), RL training of LLMs already
pushes device memory close to saturation due to:

e model parameters (for a 7B model in FP16, parameters alone occupy ~14-16GB),

e optimizer states (Adam or AdamW typically add at least another ~2-4 x parameter size, though
sharding/ZeRO may partially mitigate this),

* activations and KV caches from long-context rollouts (often tens of GB for sequence lengths in the
thousands).

Even under optimistic assumptions with aggressive activation checkpointing and optimizer sharding,
reserving an extra 40-80GB purely for K-FAC curvature is incompatible with the 80GB memory
budget of A100s. There is simply no room left for long-context RL rollouts or for scaling to larger
models.

Moreover, this overhead scales quadratically with the hidden size d. If we increase to d = 8192
(typical of larger LLMs), then d? = 81922 = 67,108,864 entries, which leads to

size of one FP32 factor ~ 67,108,864 x 4 bytes ~ 256 MB.

Repeating the above estimates, even storing only A and G (no eigenvectors) for four matrices per
block across L blocks yields

extra curvature memory ~ O(L -4 2d2) ~ tens to over 100 GB per GPU

for realistic depths and widths. Thus, at LLM scales, K-FAC curvature storage alone can easily
demand 50-100GB or more per GPU, making it infeasible on current 80GB accelerators, especially
in RL settings where rollout activations are also resident in memory.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Computation cost. K-FAC’s main computational bottleneck is computing and updating the eigende-
compositions of A and G for each layer. The complexity of eigendecomposition for a dense d x d
matrix is O(d?), and this dominates the cost of forming the inverse (or inverse square-root) factors.

For d = 4096, d> = 4096° = 68,719,476,736 ~ 6.9 x 10'° FLOPs. Each K-FAC update of a single
factor (either A or G) therefore costs on the order of 10'! floating-point operations when accounting
for constant factors. For four large matrices per block and L ~ 80 blocks, a full curvature refresh
(updating both A and G for all K-FAC blocks) involves on the order of

(2 factors) x (4 matrices) x 80 x6.9 x 10'° =~ 4.4 x 10'3 FLOPs

number of eigendecompositions

per curvature update.

In classical applications of K-FAC, these expensive updates are amortized by refreshing curvature
only every 7 steps (e.g., 7 € [50,200]) and reusing the same eigendecomposition in between. Even
with such amortization, empirical reports on convolutional and recurrent networks show that K-FAC
updates make each optimization step at least a few times more expensive than a first-order step when
curvature is refreshed regularly. At LLM scale, with many more and much wider layers, the O(d?)
factor makes this overhead more severe.

‘When we combine:

s the O(d?) eigendecompositions required for each K-FAC factor,

* the need to aggregate curvature statistics across data-parallel workers (extra communication),

e the already high per-step cost of LLM RL training (due to long-context rollouts and large models),
a realistic deployment of K-FAC at LLLM scale would very plausibly induce a three- to five-fold
slowdown in effective optimization throughput compared to standard Adam or AdamW, even if

curvature is updated only every 7 steps. Such a slowdown, on top of the massive memory overhead
outlined above, renders K-FAC effectively infeasible for RL training of modern LLMs.

E.4.2 SHAMPOO

Shampoo is a second-order preconditioning method that keeps Kronecker-factored
curvature statistics for each weight tensor, and then applies matrix inverse p-th roots of these statistics
to precondition the gradient. We focus on the matrix case, which already captures the scaling issues
at LLM widths.

Consider a matrix parameter W, € R%u«*dn and its (per-minibatch) gradient
G £ VwLy € R,

Shampoo maintains two symmetric positive semidefinite (PSD) matrices per weight matrix,

t
L, =¢€l;, + Z GG, € Rbowxdou (31)
s=1
t
R, =l + Z G] G, € RInxdn (32)
s=1

where € > (is a small damping constant. In practice, L; and R are updated by rank-d;, and rank-d,y,
increments of the form G;G, and G/ G; on every optimization step.

The Shampoo update preconditions the gradient with inverse p-th powers of L; and R;. For a matrix
parameter (order-2 tensor), the original analysis leads to p = 4:

1 1
Vwil: =L, 1GR, 1, (33)
W1 =W, —nVwiL,, (34)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

where 7 > 0 is the step size. The fractional powers are implemented via eigendecomposition: if
L, = ULALU—lL— with A, = diag()\l, ey)\dom), then

—_

1 1 1 1

L, ' =U,A, " U] with A,*%=diag\ %, A1),

out

—

and similarly for R, 4. For numerical stability, both the preconditioners and their eigen-
decompositions are typically kept in at least 32-bit floating point precision, even when W, and
G, are stored in FP16/BF16.

Memory cost at LL.M scale. Assume a transformer block where all large matrices have approximately
square shape di, = doy ~ d, with d € [4096, 8192] typical for 7B-70B models. For each weight
matrix W, Shampoo maintains:

 Two curvature accumulators L;, R, € R4¥4;

—
—

+ In most practical implementations, the corresponding inverse fourth roots L, 4, R, 1 are also
stored, to avoid recomputing matrix roots every step.

Thus, per weight matrix we have roughly four dense d x d matrices in FP32:
#floats per curvature state ~ 4d°,
memory per curvature state ~ 4d> x 4 bytes = 16d* bytes.
For d = 4096, we have
d? = 40962 = 16,777,216 ~ 1.68 x 107,
16d* ~ 2.68 x 10° bytes ~ 256 MB.

So a single large weight matrix requires on the order of

Shampoo curvature memory per weight ~ 256 MB.

A transformer block typically contains six large matrices (e.g., Wg, Wx, Wy, W and two feed-
forward matrices), so per block we obtain

curvature memory per block ~ 6 x 256 MB = 1536 MB ~ 1.5 GB.

For a 7B-scale model with d = 4096 and about Nyj,.x = 40 transformer blocks, the total Shampoo
curvature memory on orne GPU is

curvature memory per GPU ~ 1.5 GB X Nyjocx = 1.5 GB x 40 ~ 60 GB. (35)
For a larger 13B-scale model with d ~ 5120 and the same number of blocks, the d? scaling yields
d = 5120 = curvature memory ~ 90-100 GB per GPU,

and for even wider 70B-scale models with d ~ 8192, the full-matrix Shampoo preconditioners alone
would require several hundred GB of memory.

Crucially, these curvature statistics are optimizer state: in a standard data-parallel RL fine-tuning
setup without dedicated sharding of optimizer states (such as Distributed Shampoo), each GPU
replica keeps its own copy of L;, R; and their inverse roots for its local shard of parameters. This
memory is in addition to:

* Model parameters (often stored in FP16/BF16 together with first/second-moment optimizer states),

 Activations and attention KV caches required both for backpropagation and for collecting long-
context trajectories,

* The auxiliary models typically involved in RLHF pipelines (e.g., reward/scoring models and
reference policies), even in setups that do not maintain an explicit critic network.

Empirically, even first-order RLHF baselines (Adam/AdamW) already bring a 7B policy close to
the 80 GB limit of an A100 GPU once the policy, reward/scoring model, and reference model are
all active, especially with sequence lengths > 1024 and realistic batch sizes. Back-of-the-envelope

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

estimates and open-source RLHF reports indicate that a 7B RLHF pipeline can easily consume ~ 60-
70 GB of GPU memory on each A100 GPU without any second-order optimizer states. Combining
this with the ~ 60 GB of additional curvature memory estimated in Eq. (33) would clearly exceed
the 80 GB device capacity. In other words, full-matrix Shampoo at LLM scale effectively leaves no
headroom for rollouts, auxiliary models, or even storing the policy itself on a single A100 (80GB).

Computation cost. The two main sources of extra compute in Shampoo are:

e Updating curvature accumulators L; and Ry;
1 _1
« Computing matrix inverse 1/4-powers L, 4 and R, 4.

(1) Curvature updates. For each weight matrix,
Li=L; 1 +GG/, R;=R;;+G/ G,
Forming the products G;G, and G, G, costs
O(daytlin + diydow) ~ O(d”)

FLOPs when di, ~ doy = d. For a transformer with Vyjocx blocks and roughly six large matrices per
block, the per-step curvature update cost scales as

FLOPScurV ~ C’(:urv Nblock d37 (36)

for some modest constant Cy (approximately O(10) when counting all GG " and G " G computa-
tions per block).

For d = 4096 and Nyjoex = 80:
d® = 4096° = 68,719,476,736 ~ 6.87 x 107,
so Eq. (36) gives
FLOPsqyy ~ 10 x 80 x 6.9 x 10'° ~ 5-7 x 10'® FLOPs per optimization step,

just to update Shampoo’s second-moment statistics for the large matrices in the network.

1 1
(2) Inverse fourth roots. Computing L, and R, # requires either:

* Eigendecomposition or SVD (apply —1/4 to eigenvalues), or
e Jterative inverse-square-root schemes (e.g., Newton—Schulz),

both of which cost O(d?) per factor. One transformer block with six large matrices has twelve such
factors (L and R for each weight), giving

FLOPSrools, per update ~ CVroot x 12 x d3’
where C'o depends on solver details.
Root updates are typically amortized by refreshing them every 7 optimizer steps. With Npjock blocks,

Croot x 12 x Nblock X d3
. .

FLOPSroo[s, per step ~ (37)

For d = 4096, Npjock = 80, and 7 = 100:

12 x 80 x 6.9 x 1010
100

FLOPSrools, per step ~ ~ 3 X].011 FLOPs per step.

The total extra work per optimization step is therefore

FLOPSShampoo extra ~ FLOPScurv + FLOPSrootS, per step
~5x 10 + 3 x 10" ~ O(10'®) FLOPs per step. (38)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Relative slowdown from FLOPs. Large-scale RLHF pipelines for LLMs already require substantial
per-step compute due to multiple forward/backward passes (policy, reference, reward/scoring, etc.)
and long-context sequences. Eq. (38) shows that full-matrix Shampoo introduces an additional
O(10'3) FLOPs per optimization step, which is typically comparable to—or larger than—the cost of
the remainder of the RL update.

Thus, even without invoking any specific algorithmic details, full-matrix Shampoo is expected to
induce a multi- x reduction in optimization throughput solely from its second-order computations.

When combined with the ~ 60 GB curvature memory from Eq. (33), the method becomes impractical
for RL training of LLMs on A100 (80GB) systems:

* The curvature state alone exceeds the available memory once policy, reference, and reward models
are included;

e The extra O(10*?) FLOPs per step impose a several-fold slowdown relative to standard first-order
optimizers.

In short, full-matrix Shampoo cannot be used for RL training of modern LLMs on currently available
hardware.

E.4.3 SOAP

SOAP (Vyas et al | [2025) is a second-order optimizer built on top of Shampoo. For a fully-connected
(or linear) layer with weight matrix W € Rd%u*dn and gradient

A dout X din
G=VwLER s s

Shampoo maintains two curvature matrices that approximate second-moment information along the
output and input dimensions:

L= B2 Li1 + (1 - 32) GG/, (39)
R; = Ri1 + (1 - B2) G/ Gy, (40)

where L; € R%u>do and R, € R% <4 are updated as exponential moving averages, and 35 € (0,1)
is a decay coefficient.

Preconditioned update in the eigenbasis. SOAP periodically (every 7 steps) computes eigendecom-
positions of the Shampoo preconditioners:

Li=QrArQ[, Q€ Rbwxdu 1)
R:=QrArQp, Qg€ RWxd (42)

where A, and A g are diagonal matrices of eigenvalues, and Qr, Qg collect the corresponding
eigenvectors. SOAP then rotates the gradient into this slowly changing eigenbasis:

G = Q G/ Qg (43)

and runs Adam-style first- and second-moment updates in the rotated coordinates:
M; =i M + (1= 1) Gy, (44)
Vi=8 Vi +(1-5) (G oGy, (45)

where M}, V), € Rduxdn 3, 3! € (0,1) are Adam-style coefficients, and ® denotes element-wise
multiplication. The preconditioned update in the eigenbasis is

U, = M, o (VV;+e), (46)

where © is element-wise division and € > 0 is a small numerical constant. Finally, SOAP rotates this
update back to the original parameter space:

AW, = —1Q. U} Qp, (47)
Wi =W, + AW, (48)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

where 17 > 0 is the learning rate. Thus SOAP can be viewed as running Adam on a rotated version of
the gradient, where the rotation is given by the Shampoo preconditioner eigenbasis.

Optimizer state and memory cost at LLM scale. Consider a transformer block where dyy ~ d;, ~ d
and the weight matrices are of size d x d. At SOAP scale, the optimizer state associated with a single
such matrix W includes:

e Shampoo curvature matrices L;, R; (each d x d),

* eigenvector matrices Qr, Qg (each d x d),
* rotated Adam moments M}, V} (each d x d).

Altogether, this is six dense d x d matrices per weight matrix.

For numerical stability, these matrices are typically stored in at least FP32, even when the model
weights and activations are in BF16/FP16. A single dense d x d FP32 matrix requires 4d? bytes.
Therefore, the SOAP-related optimizer state per weight matrix is

bytes per weight (SOAP state) = 6 x 4d* = 24d” bytes. (49)

Let us instantiate this for a modern LLM width of d = 4096:
d? = 40962 = 16,777,216,

24d? = 24 x 16,777,216 = 402,653,184 bytes.

Dividing by 10242 to convert to MiB, we have
402,653,184

10242
Thus, each single 4096 x 4096 weight matrix carries roughly 384 MiB of SOAP-specific state.

SOAP state per weight ~ ~ 384 MiB.

A typical transformer block at this width has at least four large projection matrices (for self-attention:
Wo, Wi, Wy, Wp), not counting the feed-forward network. Even if we conservatively apply
SOAP only to these four matrices, the curvature and moment state per block is

SOAP state per block ~ 4 x 384 MiB = 1536 MiB ~ 1.5 GB. (50)

For a 7B-parameter LLM with roughly L ~ 80 transformer blocks, we obtain

total SOAP state ~ 1.5 GB x 80 = 120 GB per GPU, (&28)
only counting the FP32 matrices listed above, and ignoring any additional buffers or implementation
overhead.

Crucially, this optimizer state is replicated across data-parallel GPUs: each worker maintains its own
copy of Ly, Ry, Qr, Qr, M}, V] for its local parameters, and participates in all-reduce operations
for gradient aggregation. The 120 GB figure in Eq. is therefore a per-device requirement; it is
not amortized across multiple GPUs.

Interaction with A100 memory budget in RL training. On A100 GPUs (80GB), RL training of
LLMs already pushes device memory close to saturation due to:
* model parameters (for a 7B model in FP16, parameters alone occupy ~14-16GB),

e optimizer states (Adam or AdamW typically add at least another ~2-4 x parameter size, though
sharding/ZeRO may partially mitigate this),

e activations and KV caches from long-context rollouts (often tens of GB for sequence lengths in the
thousands).

Even under optimistic assumptions with aggressive activation checkpointing and optimizer sharding,
it is common to consume on the order of 60—70 GB out of the 80 GB budget on A100.

Adding the SOAP state from Eq. (51 would require around 120 GB per GPU purely for curvature
and moment information, i.e.,

60-70 GB + 120 GB = 180 GB per GPU.
—— S——
existing RL pipeline SOAP state

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

This exceeds the A100 80 GB memory capacity by more than a factor of two, even before accounting
for safety margins and additional framework overhead. In practice, there is simply no configuration
(batch size, sequence length, or number of rollout trajectories) that allows both realistic RL training
of a 7B LLM and full SOAP optimizer state to coexist on an 80 GB device.

Moreover, the SOAP memory overhead scales quadratically with the hidden size d. If we increase to
d = 8192 (typical for larger LLMs), then

d* = 8192? = 67,108,864,

24d? = 24 x 67,108,864 = 1,610,612,736 bytes ~ 1536 MiB.

Thus, one 8192 x 8192 weight would carry about 1.5 GB of SOAP state, and four such matrices per
block over many blocks would push the per-GPU optimizer state well beyond 200 GB. Therefore, at
realistic LLM widths and depths, the SOAP memory requirements are incompatible with the fixed
80 GB budget of A100 GPUs in RL settings.

Computation cost and slowdown in RL. SOAP inherits two major computational overheads:

e periodic eigendecompositions of L; and R; (every 7 steps), and
* per-step rotations of gradients and updates into and out of the preconditioner eigenbasis.

The eigendecomposition of a dense d x d matrix has complexity O(d?*). For d = 4096,
d® = 4096° = 68,719,476,736 ~ 6.9 x 10'° FLOPs.

Each SOAP curvature refresh requires two such eigendecompositions per weight (for L; and Ry), so
the cost per weight matrix is on the order of

FLOPs per weight (eigs) ~ 2 x 6.9 x 10'1° ~ 1.4 x 101,
With four large matrices per block and L ~ 80 blocks, a full curvature refresh involves
FLOPs per SOAP refresh ~ (4 matrices) x (80 blocks) x 1.4 x 10!

~ 4.5 x 10'® FLOPs. (52)

Even if this cost is amortized by updating the eigenbasis only every 7 = 100 steps, the amortized
overhead is on the order of 4.5 x 10'* FLOPs per training step, comparable to or exceeding the cost
of the forward-backward pass itself for a 7B model at moderate sequence lengths.

In addition, at every step (not just every 7 steps), SOAP performs the rotations
G = Q[G/Qr, (53)

U, = QLUQp, (54)
which each involve two dense d x d matrix multiplications (left and right multiplication) and therefore
have complexity O(d?) per large weight matrix. For d = 4096, these rotations add another substantial
multiple of 6.9 x 10'Y FLOPs per weight per step.

When combined across all large matrices and blocks, these extra O(d?) operations typically make
each SOAP step several times more expensive than a standard Adam/AdamW step. At LLM scale,
and especially in RL-style fine-tuning where:

* rollouts require long sequences and sufficiently large batch sizes for stable training,
» multiple model passes (policy, reference, reward/scoring, etc.) are performed per update,

 environment interaction and cross-device communication already contribute substantially to the
per-step cost,

this optimizer overhead becomes a dominant bottleneck. A conservative estimate is that SOAP would
induce at least a 3-5x slowdown relative to AdamW; for long-context RL training of large LLMs
with many wide layers, the combined effect of repeated eigendecompositions and per-step rotations
can easily push this into the 5-10 x range in terms of effective tokens-per-second throughput.

Therefore, although SOAP is an attractive optimizer at moderate scales, its quadratic memory footprint
and cubic-time eigen-computation render it infeasible for RL training of modern LLMs on current
A100-class hardware.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 5: Wall-clock time comparison between joint learning and CGPO on extremely large LLMs.

Model Device Method 50 steps (hours) Per step (min)
16 H200 GPUs Joint Learning 7.1 8.52
Qwen2.5-32B-Instruct ¢ 1yo60 GpUS CGPO 75 9.00
32 H200 GPUs Joint Learning 12.6 15.12
Qwen2.5-72B-Instruct 3, 1o60 GpUS CGPO 12.8 15.36

F MORE EXPERIMENTS

F.1 TIMING EXPERIMENTS ON 32B AND 72B MODELS

Extremely large LLMs place substantial computational demand on rollout generation, since the cost
of producing each token grows with model size. As model scale increases, rollout generation becomes
the dominant component of end-to-end training time, while variations in gradient-update scheduling
(e.g., sequential updates vs. a single aggregated update) account for only a small fraction of the total
compute.

To quantify this effect, we conduct timing experiments on two large models, Qwen2.5-32B-Instruct
and Qwen2.5-72B-Instruct. The 32B and 72B experiments are run on clusters of 16 and 32 H200
(140GB) GPUs, respectively. For both models, we measure the total wall-clock time and average per-
step time over the first 50 steps. These results provide a representative comparison of computational
overhead under realistic large-scale RL training conditions.

As shown in Table 3} across both model scales, the difference between joint learning and CGPO
remains marginal relative to the overall training time. This supports the observation that, at extremely
large scales, rollout generation dominates end-to-end runtime, and the additional gradient steps used
in CGPO do not introduce a meaningful computational bottleneck.

F.2 DISCUSSION ON THE SENSITIVITY TO THE NUMBER OF DOMAINS K

In this section, we provide additional analysis and experiments regarding how CGPO behaves as the
number of K increases. As discussed in the main paper, CGPO’s effectiveness is driven primarily by
the degree of cross-domain conflict, rather than by K itself. Here, we elaborate on this claim and
present new experimental evidence.

Key Observation. CGPO’s sequential curvature-informed mechanism is designed to mitigate cross-
domain conflicts. Therefore, its benefit scales with how much the domains disagree. Across all
experiments conducted—including those with substantially heterogeneous domain mixtures—we did
not observe any evidence of performance plateau or degradation as K increases.

Experimental Settings. To empirically verify this, we conducted three groups of experiments,
varying either the number of domains or the strength of cross-domain conflict:

1. Math + Code (moderate conflict): The datasets and evaluation benchmarks are identical to
those used in the main experiments.

2. Math + Creative Writing (high conflict): The datasets and evaluation benchmarks are
identical to those used in the main experiments.

3. Math + Code + Scientific QA + Creative Writing + Logic + Tabular: The datasets and
evaluation benchmarks for math, code, scientific QA, and creative writing follow the same
setup as in the main experiments. For the logic domain, we train on Zebra Puzzle (1.3k
samples) and Ordering Puzzle (1.9k samples), and evaluate on the test set of
Zebra Puzzle. For the tabular domain, we train on HiTab (4.3k samples) (Cheng et al} [2022)
and evaluate on its test set. Both the logic and tabular training and test splits use the filtered
versions provided by (Cheng et al] 2023)). The reward functions for the logic and tabular
domains are rule-based.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 6: Performance of models (Qwen2.5-7B-Instruct) trained on the multi-domain dataset
(math + code) with different methods, evaluated on multiple benchmarks. The bold font indicates
the best result.

Methods Math Code Generation AVG
MATH500 AMC HumanEval MBPP
FAMO 76.25 57.37 84.01 71.40 72.26

CGPO 76.15 60.81 84.66 72.60 *73.56

Table 7: Performance of models (Qwen2.5-7B-Instruct) trained on the multi-domain dataset
(math + creative writing) with different methods, evaluated on multiple benchmarks. The bold
font indicates the best result.

Math Creative Writing

Methods AVG
MATH500 AMC WritingBench

FAMO 74.85 54.72 64.35 64.64

CGPO 75.10 58.94 67.01 *67.02

Table 8: Performance of models (Qwen2.5-7B-Instruct) trained on the multi-domain dataset
(math + code + scientific QA + creative writing + logic + tabular) with different methods,
evaluated on multiple benchmarks. The bold font indicates the best result.

Math Code Generation Scientific QA Creative Writing Logic Tabular

Methods AVG
MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench Zebra HiTab

FAMO 75.30 55.02 82.93 68.60 22.64 31.58 63.09 36.84 68.71 56.08

CGPO 74.90 59.84 83.88 70.80 26.91 31.72 65.08 37.63 69.57 *57.81

We select FAMO for comparison in these experiments because it is the best-performing baseline at
the 7B scale in our main experiments. All other training details, reward functions, and evaluation
protocols follow the same setup as in the main paper.

Results. Across all configurations, CGPO remains stable and effective, as shown in Tables |§H§l
Importantly:

 The performance improvement in the math + creative writing setting (high conflict) is noticeably
larger than in the math + code setting (moderate conflict), confirming our claim that CGPO’s
advantage grows as cross-domain conflict increases.

* In the six-domain experiment, CGPO continues to deliver clear, consistent gains, showing that its
benefits persist even when K becomes large and the domain mixture is highly heterogeneous.

These results confirm that CGPO’s performance does not degrade as the number of domains increases.
Instead, its effectiveness is governed by the level of cross-domain conflict, and CGPO remains robust
even in large, diverse multi-domain training scenarios.

33

	Introduction
	Preliminaries
	Multi-domain Language Modeling as Reinforcement Learning
	Policy Optimization Algorithms
	Newton's Method for Gradient Preconditioning

	Curvature-Guided Policy Optimization
	Motivation: Why Hessian-gradient interactions matter
	Approximate Cross-Domain Interactions via Sequential Updates
	Full Algorithm: Randomized Cross-task Interactions

	Experiments
	Experimental Settings
	Main Results
	Analysis and Ablations

	Related Work
	Conclusion and Limitations
	Ethics Statement
	Reproducibility Statement
	LLM Usage Statement
	Mathematical Derivations
	Detailed Derivation of Eq. (2)
	Detailed Derivation of Eq. (3) and Eq. (4)
	Detailed Derivation of Eq. (5)
	Derivation of Gradient Alignment Symmetrization

	More Details of Experiments
	Tasks and Datasets
	Baselines
	Reward Functions
	Hyperparamters
	Evaluation

	Related Work
	More Discussions
	Applicability of CGPO to Multi-Domain Pre-Training
	Non-Uniform Domain Importance in Multi-Domain Training
	Why Joint Learning Cannot Reproduce Our Cross-Domain Mechanism
	Sequential Updates Induce Clean Cross-Domain Interactions
	Two-Step Joint Learning Yields Mixed Second-Order Terms
	Implications for Gradient Alignment

	Why Approximate Variants of Newton's Method Are Infeasible for RL Training of LLMs
	K-FAC
	Shampoo
	SOAP

	More Experiments
	Timing Experiments on 32B and 72B Models
	Discussion on the Sensitivity to the Number of Domains K

