
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOOSTING MULTI-DOMAIN REASONING OF LLMS
VIA CURVATURE-GUIDED POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-domain reinforcement learning (RL) for large language models (LLMs)
involves highly intricate reward surfaces, posing significant challenges in finding
parameters that excel across all domains. Recent empirical studies have further
highlighted conflicts among domains, where gains in one capability often come at
the expense of another. However, approaches to mitigate such conflicts and enhance
multi-domain reasoning remain largely underexplored. To address this challenge,
we propose Curvature-Guided Policy Optimization (CGPO), a principled and scal-
able training framework to advance the multi-domain reasoning of LLMs. Inspired
by Newton’s method, CGPO exploits the geometric structure in the reward surface,
while sidestepping the prohibitive cost of Hessian computation. At each update,
CGPO processes domains in random order, preconditioning their gradients with
curvature information from other domains to foster richer cross-domain interac-
tions. This mechanism further promotes implicit gradient alignment by maximizing
inter-domain inner products in expectation, steering the parameters toward regions
that jointly enhance multi-domain performance. Extensive experiments on a mixed
dataset covering math, coding, science, and creative writing, evaluated across seven
widely-used benchmarks, show that CGPO significantly outperforms all baselines
in terms of faster reward improvement and stronger multi-domain capability.

1 INTRODUCTION

Large language models (LLMs) have recently achieved remarkable progress in complex reasoning
tasks, including mathematical problem solving (Yang et al., 2024; Yu et al., 2025a), code generation
(Ye et al., 2025; Zeng et al., 2025), and creative writing (Fein et al., 2025; Carrera et al., 2025). A
key driver behind these advances is reinforcement learning (RL), particularly policy optimization
methods such as PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024). While earlier work
primarily focused on applying RL within single domains (Hu et al., 2025; Yu et al., 2025a), more
recent studies have moved toward multi-domain reasoning, constructing diverse datasets (Cheng
et al., 2025), training general reward models (Ma et al., 2025), and empirically examining interactions
among different reasoning capabilities (Li et al., 2025b; Cheng et al., 2025).

Despite these advances, multi-domain RL for LLMs still confronts significant challenges. The
coexistence of diverse data distributions and reward signals produces highly complex reward surfaces,
making it difficult to find parameters that excel across all domains simultaneously (Vithayathil Vargh-
ese & Mahmoud, 2020; Crawshaw, 2020). Recent studies further show that, although multi-domain
RL can yield overall benefits, it is often hindered by cross-domain conflicts, where gains in one capa-
bility are accompanied by losses in another (Cheng et al., 2025; Li et al., 2025b). These difficulties
are further compounded by the nature of RL training: on one hand, online sampling (i.e., rollouts)
introduces unpredictable interactions among domain-specific samples; on the other hand, generating
rollouts is computationally expensive, and much of this effort is wasted when cross-domain conflicts
cancel out the contributions. These considerations make it crucial to develop RL frameworks that
fully exploit mixed datasets to enhance LLMs’ reasoning across diverse domains.

Cross-domain conflicts often manifest as gradient conflicts (Chen et al., 2025), yet widely-used
approaches for mitigating them face notable limitations in the context of RL for LLMs. Most existing
methods intervene during gradient aggregation once conflicts occur, aiming to balance updates across
domains. On the one hand, they do not leverage the underlying geometry of the reward surface or loss

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

landscape (Liu et al., 2023; Sener & Koltun, 2018). On noisy, rollout-based gradients, such purely
reactive strategies tend to amplify update variance and degrade both stability and performance. On the
other hand, many techniques require storing and manipulating all domain gradients simultaneously
on the GPU (Yu et al., 2020; Liu et al., 2024; 2021). This incurs substantial memory overhead that
grows rapidly with the number of domains and can even result in out-of-memory failures, severely
limiting the scalability of multi-domain RL for LLMs. Alternatively, recent work suggests that
second-order methods such as Newton’s method and its approximation SOAP (Vyas et al., 2025) can
mitigate gradient conflicts in PINNs (Wang et al., 2025), but their reliance on Hessian computations
renders them infeasible for the high-dimensional, rollout-heavy setting of RL for LLMs. These
limitations compellingly motivate the following question: How to mitigate cross-domain conflicts in
a manner that is both consistent with the nature of RL and efficient at scale, thereby enhancing
the multi-domain reasoning capabilities of LLMs?

In this paper, we propose CGPO, a principled and scalable policy optimization framework, to
enhance multi-domain reasoning for LLMs. CGPO draws inspiration from Newton’s method, while
incorporating a design specifically adapted to the distinct challenges of multi-domain RL for LLMs.
Newton’s method exploits the geometric structure of the loss landscape (i.e., the Hessian matrix)
to precondition gradients, correcting directional deviations induced by anisotropy and facilitating
efficient convergence. To retain these benefits while circumventing the computational burden of
full Hessian computation, we adapt the preconditioning step into a lightweight mechanism tailored
for efficient RL training of LLMs. Specifically, at each parameter update, domains are processed
in random order, with each domain’s gradient modulated by curvature information from others,
thereby inducing rich cross-domain interactions. Another appealing feature of this mechanism
is that it implicitly aligns domain gradients by maximizing their inner products in expectation,
guiding the parameters toward regions of high cross-domain consistency. We validate CGPO on
a diverse dataset of 20k samples spanning mathematical reasoning, code generation, scientific
QA, and creative writing using Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct, evaluated across
seven benchmarks. Our results demonstrate that CGPO consistently outperforms a broad spectrum
of baselines—including curriculum learning strategies, gradient balancing techniques, and joint
learning—achieving faster reward gains and markedly stronger multi-domain reasoning capabilities.

2 PRELIMINARIES

2.1 MULTI-DOMAIN LANGUAGE MODELING AS REINFORCEMENT LEARNING

An LLM πθ (with parameters θ) defines a conditional probability distribution over output responses
y = [y1, . . . , yT] given a query x ∼ D, represented as πθ(y | x) =

∏T
t=1 πθ(yt | x,y1:t−1). To

align LLMs with desired behaviors, recent work formulates language generation as a reinforcement
learning (RL) problem. The model acts as a policy that interacts with an environment by generating
responses y to queries x, and each response receives a reward R(x,y) ∈ R that reflects its quality.

In many real-world applications, LLMs are expected to perform well across multiple domains, each
corresponding to a distinct type of query or task. Formally, let there be K domains with query
distributions {Dk}Kk=1. Each domain k defines its own reward function Rk(·, ·), reflecting task-
specific quality criteria. Assuming equal importance for all domains, the multi-domain training
objective is to maximize the average expected reward (we abbreviate y ∼ πθ(· | x) as y ∼ πθ):
J (θ) = 1

K

∑K
k=1 Jk(θ) =

1
K

∑K
k=1 Ex∼Dk,y∼πθ

[Rk(x,y)].

2.2 POLICY OPTIMIZATION ALGORITHMS

The multi-domain formulation in Section 2.1 reduces to the standard RL objective when expressed
with a generic query distribution D and reward function R, i.e., J (θ) = Ex∼D,y∼πθ

[R(x,y)].

Directly optimizing J (θ) is challenging due to the discrete, variable-length output space and
the dependency of the distribution πθ on the parameters θ. Instead, the policy gradient the-
orem (Sutton et al., 1998) provides an unbiased estimator for the gradient, i.e., ∇θJ (θ) =
Ex∼D,y∼πθ

[∇θ log πθ(y | x)A(x,y)], where A(x,y) = R(x,y) − b(x) denotes the advantage
of response y over a baseline b(x). In practice, the true advantage function is unknown and must be
estimated from rollouts. This is typically done by training a value function Vϕ(x) to approximate

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the expected reward, and then computing an estimated advantage Â(x,y) = R(x,y)− Vϕ(x). By
combining this estimator with importance sampling using rollouts from an old policy πθold , one can
define a surrogate objective L(θ; θold,D) = Ex∼D,y∼πθold

[
πθ(y|x)

πθold
(y|x) Â(x,y)

]
.

While the theoretical surrogate objective using the true advantage A has a gradient that coincides
exactly with ∇θJ (θ) at θ = θold, practical objectives using the estimated advantage Â serve as
a first-order approximation. This approximation is reliable as long as the updated policy πθ re-
mains close to πθold . Building on this, Proximal Policy Optimization (PPO) (Schulman et al., 2017)
ensures stable policy updates by maximizing a clipped surrogate objective LPPO(θ; θold,D) =

Ex∼D,y∼πθold

[
min

(
πθ(y|x)

πθold
(y|x) Â(x,y), clip1+ε

1−ε

(
πθ(y|x)

πθold
(y|x)

)
Â(x,y)

)]
, where ε is a small hyper-

parameter and clipγhigh
γlow

(·) = clip(·, γlow, γhigh) is the clipping function.

However, the reliance of PPO on a separately trained critic model to estimate b(x) introduces
substantial memory and computational overhead. To address this, recent critic-free methods rep-
resented by GRPO (Shao et al., 2024) have emerged. GRPO estimates the baseline directly from
a group of sampled responses. Specifically, it samples G responses {y(i)}Gi=1 for each query x,
obtains their rewards {r(i)}Gi=1, and then computes a normalized advantage for each response:
Â(i) =

[
r(i) −mean

(
{r(j)}Gj=1

)] /
std
(
{r(j)}Gj=1

)
. The overall GRPO surrogate objective is

LGRPO(θ; θold,D) = Ex∼D,{y(i)}G
i=1∼πθold[

1

G

G∑
i=1

min

(
πθ(y

(i) | x)
πθold(y

(i) | x)
Â(i), clip

1+εhigh
1−εlow

(
πθ(y

(i) | x)
πθold(y

(i) | x)

)
Â(i)

)
− βD(i)

KL(πθ∥πref)

]
, (1)

where εlow, εhigh, and β are hyperparameters, πref is a reference policy (typically the initial model),
and D(i)

KL(πθ∥πref) is a sample-based KL divergence penalty. In this work, we adopt GRPO as our
base policy gradient algorithm due to its efficiency and scalability.

Surrogate Objectives as Faithful Gradient Approximators. While the policy gradient theorem
provides an unbiased gradient for the true advantage A, practical algorithms rely on estimated
advantages Â, which introduce variance. Surrogate objectives like PPO and GRPO are designed to
stabilize these gradients: PPO uses clipping to enforce a trust region, making ∇θLPPO(θ; θold,D) a
reliable approximation of ∇θJ (θ), while GRPO’s combination of clipping and KL regularization
similarly produces a stable gradient ∇θLGRPO(θ; θold,D) that approximates the KL-regularized
objective ∇θ (J (θ)− β′DKL(πθ∥πref)).

2.3 NEWTON’S METHOD FOR GRADIENT PRECONDITIONING

Newton’s method is a classical second-order optimization algorithm that leverages the curvature of
the objective to accelerate convergence. Given a twice-differentiable loss L(θ), the Newton update
is θt+1 = θt −H(θt)

−1g(θt), where g(θt) = ∇θL(θt) and H(θt) = ∇2
θL(θt) is the Hessian. By

preconditioning the gradient with local curvature, Newton’s method corrects for anisotropy, producing
more direct steps toward an optimum. It is particularly effective in complex, conflicting landscapes;
e.g., Wang et al. (2025) shows that Newton’s method and its approximate variant SOAP (Vyas et al.,
2025) mitigate gradient conflicts in PINNs and accelerate convergence.

However, directly applying Newton’s method to RL for LLMs is impractical: the Hessian is high-
dimensional and costly to compute or invert, and rollout-based gradients are noisy. Still, the principle
of leveraging curvature to guide updates provides a valuable foundation for designing optimization
strategies that handle conflicting gradients and complex surfaces, as we explore in Section 3.

3 CURVATURE-GUIDED POLICY OPTIMIZATION

Building on the preliminaries, we seek to leverage the insight that Newton’s method couples gradients
with curvature information—a property that can be particularly valuable in multi-domain RL for
LLMs, where interactions between domains are often complex and interdependent. Rather than
directly approximating the Newton update, which would be computationally prohibitive in our setting,
we distill its essential idea into a lightweight mechanism that induces cross-domain gradient-curvature

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Illustration of CGPO (one update step). After generating responses, computing rewards,
and estimating advantages for each domain, CGPO randomly permutes the domain order and applies
updates sequentially, followed by interpolation with the original model. The parameter change
∆θ can be approximately decomposed into a single-domain gradient term—capturing per-domain
learning—and a cross-domain interaction term that facilitates transfer across domains. Note that
CGPO introduces only negligible additional computation overhead (see Section 4.3 for details).

interactions via sequential task updates. Our method unfolds in three parts: Section 3.1 motivates the
design by analyzing the structure of the Newton update, Section 3.2 presents a simple perturbation-
based procedure to capture the desired interactions, and Section 3.3 integrates these components into
a practical algorithm, i.e., our proposed CGPO. An overview of CGPO is illustrated in Figure 1.

3.1 MOTIVATION: WHY HESSIAN-GRADIENT INTERACTIONS MATTER

The starting point of CGPO is an informal observation about Newton’s method. Although exact
second-order updates are infeasible in large-scale RL for LLMs, the Newton term Hg (omitting
θt) couples gradient and curvature, suggesting that such interactions may help reconcile conflicting
gradients in multi-domain learning. To illustrate, consider a heuristic expansion: H−1g ≈ (I− (I−
H))−1g ≈ (I+(I−H)+O((I−H)2))g ≈ 2g−Hg+O((I−H)2g), where the approximations are
informal and serve to reveal the structure rather than provide a rigorous formula. In the multi-domain
setting, where g =

∑K
k=1 gk and H =

∑K
k=1 Hk, the product −Hg then contains cross-domain

terms −Hjgi (i ̸= j), in which the curvature of domain j modulates the gradient of domain i.

These interactions effectively transmit curvature signals across tasks, amplifying, dampening, or
redirecting updates—capabilities absent in first-order methods. This motivates our key design
principle: instead of computing Hessians explicitly, we seek tractable mechanisms that induce such
cross-domain interactions to better align multi-domain optimization.

3.2 APPROXIMATE CROSS-DOMAIN INTERACTIONS VIA SEQUENTIAL UPDATES

Given the motivation above, the question is how to induce Hessian-gradient interactions without
explicitly computing Hessians. Our key idea is to approximate them by observing how the gradient
of one domain changes after parameter updates from another.

Consider two domains i and j. Let domain i updates the parameters from θ
(i)
pre to θ

(i)
post. Denoting the

Hessian of domain j at θ(i)pre by Hj

(
θ
(i)
pre

)
, the gradient of domain j then shifts as

gj

(
θ
(i)
post

)
− gj

(
θ(i)pre

)
≈ Hj

(
θ(i)pre

)(
θ
(i)
post − θ(i)pre

)
≈ ηHj

(
θ(i)pre

)
gi

(
θ(i)pre

)
, (2)

which corresponds to the cross-domain product Hjgi. This approximation is derived from a first-
order Taylor expansion and policy gradient ascent (see Appendix B.1 for the detailed derivation).
Thus, sequential updates naturally generate the desired interaction term. Further, to extend beyond
two domains, we randomize the order of domains at each iteration. Over time, this exposes every

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 CGPO (one epoch illustration)
1: Input: πθinit , reward functions {Rk}Kk=1, datasets {Dk}Kk=1
2: Hyperparameter: number of steps T,M , learning rate η, mixing coefficient α
3: Initialization: πref ← πθinit , πθnew ← πθinit
4: for t = 1, . . . , T do
5: πθold ← πθnew

6: Sample a batch D(t),k =
{
x
(i)
(t),k

}|D(t),k|

i=1
from Dk for 1 ≤ k ≤ K

7: Generate responses
{
y
(i,j)
(t),k

}G

j=1
∼ πθold

(
· | x(i)

(t),k

)
for 1 ≤ i ≤ |D(t),k|, 1 ≤ k ≤ K

8: Compute rewards
{
r
(i,j)
(t),k

}G

j=1
and advantages

{
Â

(i,j)
(t),k

}G

j=1
for 1 ≤ i ≤ |D(t),k|, 1 ≤ k ≤ K

9: for m = 1, . . . ,M do
10: Sample a mini-batch D(t,m),k from D(t),k for 1 ≤ k ≤ K
11: Let σ(1), . . . , σ(K) denote a random permutation of 1, . . . ,K
12: ϕ0 ← θnew
13: for k = 1, . . . ,K do
14: Update parameters by maximizing Eq. (1) with D(t,m),σ(k) and associated responses:

ϕk = ϕk−1 − η ·
|D(t,m),σ(k)|∑K
k=1 |D(t,m),k|

· gGRPO

(
ϕk−1; θold, D(t,m),σ(k)

)
15: θnew ← ϕ0 + α(ϕK − ϕ0)
16: Output: πθnew

pair of domains to such interactions, allowing curvature information to propagate across domains.
Intuitively, each domain feels the curvature of others: one nudges the parameters, another responds,
producing coordinated updates that help reconcile conflicting objectives.

3.3 FULL ALGORITHM: RANDOMIZED CROSS-TASK INTERACTIONS

Building on the insights above, we now introduce CGPO, a principled algorithm for multi-domain
policy optimization, illustrated in Figure 1, with pseudocode in Alg. 1. At each training step, we
sample batches from all domains and generate multiple candidate responses under the current policy
(Lines 6-7). These responses are evaluated by domain-specific reward functions to obtain rewards
and advantage estimates (Line 8). We then repeatedly draw mini-batches (Lines 9-10) and perform
a randomized sequential update: domains are visited according to a random permutation (Lines
11-13), and at each step the parameters are updated with respect to one domain, conditioned on
perturbations induced by previously visited domains (Line 14). Finally, the updated parameters are
interpolated with the original ones using a mixing coefficient α (Line 15), stabilizing training by
balancing curvature-informed exploration with retention of the base policy.

To understand how sequential updates induce cross-domain Hessian–gradient interactions, consider
Lines 11–15. Let the domain order be σ(1), . . . , σ(K), and denote the loss, gradient, and Hessian of
domain k at parameter ϕ by Lk(ϕ), gk(ϕ), and Hk(ϕ). With ϕ0 → ϕ1 → · · · → ϕK , the gradient of
domain σ(k) at ϕk−1 can be expanded (see Appendix B.2) as

gσ(k)(ϕk−1) = gσ(k)(ϕ0)−
k−1∑
l=1

η|Dσ(l)|∑K
s=1 |Dσ(s)|

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2). (3)

For simplicity, assume uniform batch sizes |Dσ(l)|/
∑K

s=1 |Dσ(s)| = 1/K, then

gσ(k)(ϕk−1) = gσ(k)(ϕ0)−
η

K

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2). (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Aggregating over k, the overall parameter change after one sequential pass is (see Appendix B.3)

α(ϕK − ϕ0) = −
αη

K

K∑
k=1

gk(ϕ0) +
αη2

K2

K∑
k=1

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2). (5)

The first term is the aggregated gradient; the second term contains cross-domain Hessian–gradient
products. Since the order σ is randomized, in expectation every pair (i, j) contributes equally. Sym-
metrizing the pairwise contributions yields Hi(ϕ0)gj(ϕ0)+Hj(ϕ0)gi(ϕ0) =

∂
∂ϕ0

(
gi(ϕ0)

⊤gj(ϕ0)
)

(see Appendix B.4), showing that the update encourages alignment of domain gradients.

Crucially, this analysis is not restricted to surrogate losses Lk: as argued in Section 2.2, GRPO
surrogates provide faithful approximations of the true policy gradients within their trust regions.
Thus, the induced interactions improve alignment not only among surrogate gradients but also
among the true policy gradients ∇θJk(θ). In effect, randomized sequential updates encourage
cooperation across domains by introducing curvature–gradient couplings that steer optimization
toward coordinated improvements on the full multi-domain objective

∑K
k=1 Jk(θ).

Discussion. We highlight two clarifications to better situate our approach.

• Sequential updates is a common technique across different learning paradigms. For example, in
meta-learning, Reptile (Nichol et al., 2018) adopts sequential updates to learn an initial model for
rapid adaptation to new tasks, while in federated learning, methods such as FedAvg (McMahan
et al., 2017) aggregate sequential client updates to improve global optimization. However, these
precedents do not diminish the novelty of our contributions. First, our sequential update originates
from our observation of Newton’s method and its capability to navigate complex landscapes, where
inherent curvature–gradient interactions naturally emerge across domains. Second, we adapt this
mechanism to the multi-domain RL for LLMs setting, where domain-specific rewards and surrogate
policy gradients pose unique challenges absent in meta-learning or federated learning. Finally,
we integrate randomized ordering, surrogate faithfulness (via GRPO), and stabilization through
interpolation into a unified algorithm tailored for large-scale RLHF. These innovations collectively
distinguish CGPO as a novel and practical solution for multi-domain policy optimization.

• A natural concern is that multiple updates per step could inflate the effective learning rate. To avoid
this, we scale each gradient proportionally to its mini-batch size and normalize by the total across
domains. This ensures that the overall update magnitude is consistent with that of using a single
aggregated batch, thereby preserving comparability with standard mini-batch optimization.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Tasks and Datasets. We focus on enhancing the LLMs’ overall capabilities across four domains—
mathematical reasoning, code generation, scientific QA, and creative writing. These domains not
only represent core areas of current research interest but also span four distinct forms of reward
feedback, thereby ensuring both comprehensiveness and diversity. For mathematics, code, and
science, we construct subsets from the Guru dataset (Cheng et al., 2025) with attention to dataset
size and sample difficulty (as Guru poses non-trivial challenges for 7B-scale models): the math
subset contains 6,250 samples, consisting of the 5,000 easiest problems (ranked by the pass rate
of Qwen2.5-7B-Instruct) and 1,250 more challenging ones; the code subset totals 4,740 samples,
comprising all 3,791 problems with a Qwen2.5-7B-Instruct’s pass rate of at least 25% plus an
additional 949 randomly sampled from the remainder, ensuring a roughly 4:1 ratio between easier
and harder samples; and the scientific QA subset includes the entire STEM split of Guru, with
3,591 samples. For creative writing, we randomly sample 2,000 samples each from the three most
popular datasets available on Huggingface (LitBench (Fein et al., 2025), Creative Writing-ShareGPT
(Nitral-AI, 2024), and wildchat-creative-writing-3k-rft (kevinshin, 2025)), yielding a dataset of 6,000
samples. For details of the datasets, please see Appendix C.1.

Baselines. We compare our CGPO with several representative baselines. For vanilla strategies, we
include joint learning, which directly trains on a multi-domain dataset without any special strategies.
For curriculum learning (CL), following the taxonomy in (Soviany et al., 2022), we include Omni-
Thinker (Li et al., 2025a), a progressive CL method, and self-paced CL, which schedules training

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance of models (Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct) trained on
the multi-domain dataset with different methods, evaluated on multiple benchmarks. The bold
font indicates the best result and an underline indicates the second-best result.

Methods Math Code Generation Scientific QA Creative Writing AVG
MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench

Qwen2.5-3B-Instruct
Joint Learning 64.50 39.38 72.39 59.40 24.87 24.12 58.61 49.04
Omni-Thinker 65.65 41.50 71.95 58.80 21.34 26.75 57.90 49.13
Self-paced CL 65.30 38.75 70.12 58.80 24.37 24.72 57.82 48.55
FAMO 63.80 39.12 72.48 59.20 23.47 26.51 58.46 49.01
CGPO 64.20 39.71 74.29 60.80 24.37 26.63 63.04 ⋆50.42

Qwen2.5-7B-Instruct
Joint Learning 76.00 56.25 79.88 68.60 19.70 32.75 63.15 56.62
Omni-Thinker 75.10 53.75 82.93 68.60 23.86 30.63 62.35 56.75
Self-paced CL 74.70 51.88 82.93 68.00 21.72 30.25 63.68 56.17
FAMO 75.65 55.63 82.54 68.80 23.07 31.49 63.62 57.26
CGPO 75.55 59.38 84.15 72.00 26.77 32.75 66.52 ⋆59.59

from easier to harder examples based on task difficulty (measured by pass rate). For gradient
balancing, we include FAMO (Liu et al., 2023), categorized in (Chen et al., 2025) as a representative
approach for balancing gradient magnitudes across domains. We also attempted to implement gradient
manipulation methods such as PCGrad (Yu et al., 2020), but these require simultaneously storing and
operating on multiple per-domain gradients on GPUs, which leads to out-of-memory (OOM) issues
in the RL for LLM setting. For more details of baselines, please refer to Appendix C.2.

Training Details. We train Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on the multi-domain
dataset using the verl framework (Sheng et al., 2025). For the implementation of multi-domain
training in terms of data processing and reward design, we follow the codebases of (Cheng et al.,
2025) and (Ma et al., 2025). For math, we adopt rule-based rewards; for coding, we evaluate models’
outputs using unit test cases based on SandboxFusion (Bytedance-Seed-Foundation-Code-Team
et al., 2025); for scientific QA, we use a 1.5B General-Verifier (Ma et al., 2025) to assess the
consistency between model outputs and groundtruth answers; and for creative writing, we compare
model responses with reference answers using Qwen2.5-72B-Instruct. Besides, we require the model
to enclose its reasoning process within <think></think> tags and penalize responses that violate
this format requirement, along with domain-specific constraints. Details of the reward functions
are provided in Appendix C.3. We use a learning rate of 1 × 10−6, a prompt batch size of 128, a
mini-batch size of 64, a group size of 8, a rollout temperature of 1.0, εlow = 0.2, εhigh = 0.28, and
β = 0.001 for CGPO and all baselines. We run all experiments for one epoch on 8 NVIDIA A100
GPUs (80GB). For more details of hyperparameters, please see Appendix C.4.

Evaluation. We evaluate our models on seven widely-used benchmarks: MATH500 (Hendrycks
et al., 2021), AMC 2023 (MAA, 2023), HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021),
GPQA-diamond (Rein et al., 2023), SuperGPQA (Team et al., 2025), and WritingBench (Wu et al.,
2025). To ensure consistent scaling across benchmarks, the scores on WritingBench are multiplied
by 10. We use vLLM (Kwon et al., 2023) for efficient inference, generating 4 responses per query
with a temperature of 0.6 and top-p sampling of 0.95. Further details can be found in Appendix C.5.

4.2 MAIN RESULTS

CGPO boosts the multi-domain reasoning of LLMs. Table 1 presents the results across different
methods. From the table we make the following observations: (1) CGPO achieves the highest average
performance for both model scales (3B and 7B), ranking either first or second in most individual
domains. This demonstrates its effectiveness in enhancing multi-domain reasoning capabilities
of LLMs. (2) For smaller models (3B), CGPO consistently outperforms other baselines on code
generation and creative writing, while maintaining competitive performance on math and scientific
QA. FAMO and Omni-Thinker also provide gains over joint learning, particularly in code generation
and scientific QA, but they lag behind CGPO in creative writing. Self-paced CL remains the weakest
overall, likely due to imbalanced domain difficulty and insufficient coverage of informative responses
at different training stages. (3) For larger models (7B), CGPO achieves clear improvements across
nearly all domains, with the largest gains on code generation and creative writing, highlighting that

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150
Step

0.4

0.2

0.0

0.2

Re
wa

rd

Code Generation (3B)
Joint
CGPO

0 25 50 75 100 125 150
Step

0.4

0.2

0.0

0.2

0.4

0.6
Creative Writing (3B)

Joint
CGPO

0 25 50 75 100 125 150
Step

0.6

0.5

0.4

0.3

0.2

0.1

0.0 Math (3B)
Joint
CGPO

0 25 50 75 100 125 150
Step

0.000

0.025

0.050

0.075

0.100

0.125

Scientific QA (3B)
Joint
CGPO

0 25 50 75 100 125 150
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
wa

rd

Code Generation (7B)
Joint
CGPO

0 25 50 75 100 125 150
Step

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Creative Writing (7B)

Joint
CGPO

0 25 50 75 100 125 150
Step

0.2

0.1

0.0

0.1

0.2

0.3

Math (7B)
Joint
CGPO

0 25 50 75 100 125 150
Step

0.0

0.1

0.2

0.3
Scientific QA (7B)
Joint
CGPO

Figure 2: Training reward curves for Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on four domains
(code, creative writing, math, and scientific QA), comparing CGPO and joint learning.

its benefits scale with model capacity. Notably, FAMO shows competitive results, especially in math
and creative writing, confirming that gradient balancing can help, but it still falls short of CGPO in
aggregating multi-domain knowledge effectively. These results collectively indicate that curriculum
learning and gradient weighting methods can provide partial improvements, but their reliance on task
difficulty, loss, or gradient magnitude alone is insufficient. In contrast, CGPO leverages geometric
information via randomized sequential updates and interpolation, enabling coordinated multi-domain
optimization and consistent performance gains across mathematical reasoning, code generation,
scientific QA, and open-ended creative tasks.

CGPO achieves faster reward improvement across all domains. Figure 2 presents the training
reward curves of Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct on the four domains, with all curves
smoothed using EMA to clearly reveal trends. For both model sizes, the curves of CGPO consistently
remain above those of joint learning. The advantage is particularly pronounced in code generation
and creative writing, while in math and scientific QA the improvement is evident but less striking.
Notably, compared with the other three domains, creative writing is more subjective, requiring the
model to generate diverse and creative outputs rather than strictly structured or precise answers; this
makes potential conflicts with the other domains the largest. The substantial advantage of CGPO
in the reward curve for creative writing compared to joint learning provides strong evidence that
CGPO effectively mitigates cross-domain conflicts. We also observe considerable differences in
initial reward levels across domains. Taking Qwen2.5-7B-Instruct as an example, creative writing
and scientific QA start near −0.4 and 0, respectively, reflecting largely incorrect outputs, whereas
math and especially coding begin from higher baselines (coding around 0.1). This indicates that
the models enter RL training with uneven domain-specific capabilities. Importantly, CGPO delivers
varing degrees of acceleration even for domains with comparable starting points, suggesting that
factors such as dataset difficulty or reward function design may influence the speedup. Investigating
the underlying causes of these differences is left for future work.

4.3 ANALYSIS AND ABLATIONS Table 2: Computation cost comparison be-
tween joint learning and CGPO (1 epoch).
Note that the units of total time and per-step
time are different (hours vs. minutes).

Methods Total (h) Step (min)
Qwen2.5-3B-Instruct
Joint Learning 14.8 5.58
CGPO 16.0 6.04

Qwen2.5-7B-Instruct
Joint Learning 17.8 6.72
CGPO 18.6 7.02

CGPO introduces only negligible additional com-
putation overhead. In multi-domain RL for LLMs,
the dominant computational bottleneck typically lies
in generating responses and computing rewards—
particularly in domains such as coding and creative
writing—rather than in the forward and backward
passes of the model itself. Against this backdrop,
the additional operations introduced by CGPO are
minimal. The sequential updates across domains
are essentially equivalent to splitting a mini-batch
into smaller chunks and processing them sequentially,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on domain order randomization in CGPO with Qwen2.5-7B-Instruct.
The bold font indicates the better result.

Methods Math Code Generation Scientific QA Creative Writing AVG
MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench

CGPOfix 77.20 56.88 83.54 69.60 23.08 31.75 67.30 58.48
CGPO 75.55 59.38 84.15 72.00 26.77 32.75 66.52 59.59

Table 4: Ablation study on the effect of the mixing coefficient α in CGPO with Qwen2.5-7B-
Instruct. The bold font indicates the best result and an underline indicates the second-best result.

α
Math Code Generation Scientific QA Creative Writing AVG

MATH500 AMC HumanEval MBPP GPQA-diamond SuperGPQA WritingBench

0.9 75.85 55.88 84.15 71.20 21.72 32.25 66.01 58.15
1.2 75.55 59.38 84.15 72.00 26.77 32.75 66.52 59.59
1.5 75.55 55.25 81.10 69.20 23.36 35.37 66.47 58.04

which incurs almost the same computational cost as
standard mini-batch training. Furthermore, the final interpolation with the mixing coefficient α
amounts to a single vector operation, which is computationally negligible. Taken together, these
factors ensure that the overall overhead of CGPO is practically insignificant, and the total training
cost remains nearly identical to that of joint learning. As shown in Table 2, the per-step wall-clock
time under CGPO is only slightly higher than joint learning, confirming that our method adds no
meaningful overhead in practice.

Randomizing domain order is necessary for effective cross-domain interactions. We conduct
ablations to examine the necessity of randomizing domain order. Specifically, we compare the
standard randomized variant with a fixed-order variant (CGPOfix), where the sequence of domains
remains unchanged throughout training. As shown in Table 3, randomizing the order consistently
leads to higher average performance across all benchmarks. This result highlights that randomization
is essential: it ensures balanced sequential updates among domains, avoiding systematic bias in
Hessian–gradient interactions. In contrast, fixed ordering allows earlier domains to dominate updates,
while later domains can only adapt passively, reducing overall multi-domain coordination.

The mixing coefficient α plays a critical role in balancing stability and curvature exploitation.
To study its effect, we experiment with α ∈ {0.9, 1.2, 1.5} and report the corresponding multi-domain
performance in Table 4. Among these choices, α = 1.2 achieves the best overall average, reflecting a
favorable trade-off between retaining the base policy and incorporating curvature-informed updates.
Notably, the average performance of all tested α values exceeds that of the strongest baseline, FAMO
(57.26), indicating that CGPO is robust to the choice of α. The fact that all α values are close to 1.0
suggests that the interpolation does not substantially change the effective learning rate; the observed
gains therefore arise from the curvature-aware sequential updates rather than step size adjustments.

5 RELATED WORK

Due to the page limit on the main text at submission (9 pages), we have placed the related work in
Appendix D. If this paper is accepted, the page limit for the main text will increase to 10 pages, at
which point we will move the related work into the main body.

6 CONCLUSION

We present CGPO, a principled and scalable framework for multi-domain RL of LLMs. Inspired by
Newton’s method, CGPO leverages the geometric structure of the reward surfaces to precondition
gradients, while avoiding the cost of full Hessian computation. Through randomized sequential
updates, each domain’s gradient is modulated by curvature information from other domains, fostering
cross-domain interactions and implicitly aligning gradients. Experiments on a diverse multi-domain
dataset covering mathematical reasoning, code generation, scientific QA, and creative writing show
that CGPO outperforms all baselines, achieving faster reward improvement and stronger multi-domain
reasoning across all benchmarks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work studies multi-domain reinforcement learning for LLMs using publicly available or appro-
priately licensed datasets across domains such as mathematics, coding, scientific QA, and creative
writing. No human subjects were directly involved. While our methods improve cross-domain
optimization, models trained with them could be misused to produce plausible but incorrect or unsafe
outputs. We strongly discourage any deployment outside research contexts and emphasize that reward
functions and training setups are designed to encourage safe and aligned outputs. All research was
conducted in accordance with the ICLR Code of Ethics, with no conflicts of interest or external
influence on methodology or results.

8 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed descriptions of our algorithm (CGPO) in Section 3.3
and Algorithm 1, including pseudo-code and key hyperparameters. Experimental setups, including
data processing, reward functions, and evaluation benchmarks, are described in Section 4 and
Appendix C. Where applicable, we provide references to publicly available datasets. All derivations,
approximations, and additional analyses supporting the method are included in Appendix B. Together,
these materials provide sufficient information for replication of the reported results.

REFERENCES

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
The case for full-matrix adaptive regularization. arXiv preprint arXiv:1806.02958, pp. 404–413,
2018.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Bytedance-Seed-Foundation-Code-Team, :, Yao Cheng, Jianfeng Chen, Jie Chen, Li Chen, Liyu
Chen, Wentao Chen, Zhengyu Chen, Shijie Geng, Aoyan Li, Bo Li, Bowen Li, Linyi Li, Boyi
Liu, Jiaheng Liu, Kaibo Liu, Qi Liu, Shukai Liu, Siyao Liu, Tianyi Liu, Tingkai Liu, Yongfei Liu,
Rui Long, Jing Mai, Guanghan Ning, Z. Y. Peng, Kai Shen, Jiahao Su, Jing Su, Tao Sun, Yifan
Sun, Yunzhe Tao, Guoyin Wang, Siwei Wang, Xuwu Wang, Yite Wang, Zihan Wang, Jinxiang Xia,
Liang Xiang, Xia Xiao, Yongsheng Xiao, Chenguang Xi, Shulin Xin, Jingjing Xu, Shikun Xu,
Hongxia Yang, Jack Yang, Yingxiang Yang, Jianbo Yuan, Jun Zhang, Yufeng Zhang, Yuyu Zhang,
Shen Zheng, He Zhu, and Ming Zhu. Fullstack bench: Evaluating llms as full stack coders, 2025.
URL https://arxiv.org/abs/2412.00535.

Dashiel Carrera, Zixin Zhao, Ashish Ajin Thomas, and Daniel Wigdor. Nabokov’s cards: An ai
assisted prewriting system to support bottom-up creative writing. In Proceedings of the 2025
Conference on Creativity and Cognition, pp. 546–559, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Weiyu Chen, Baijiong Lin, Xiaoyuan Zhang, Xi Lin, Han Zhao, Qingfu Zhang, and James T Kwok.
Gradient-based multi-objective deep learning: Algorithms, theories, applications, and beyond.
arXiv preprint arXiv:2501.10945, 2025.

10

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2412.00535
https://arxiv.org/abs/2107.03374

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pp. 794–803. PMLR, 2018.

Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao
Zhuang, Nilabjo Dey, Yuheng Zha, et al. Revisiting reinforcement learning for llm reasoning from
a cross-domain perspective. arXiv preprint arXiv:2506.14965, 2025.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv preprint
arXiv:2009.09796, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Daniel Fein, Sebastian Russo, Violet Xiang, Kabir Jolly, Rafael Rafailov, and Nick Haber. Litbench: A
benchmark and dataset for reliable evaluation of creative writing. arXiv preprint arXiv:2507.00769,
2025.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

kevinshin. wildchat-creative-writing-3k-rft, 2025. URL https://huggingface.co/
datasets/kevinshin/wildchat-creative-writing-3k-rft.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Derek Li, Jiaming Zhou, Amirreza Kazemi, Qianyi Sun, Abbas Ghaddar, Mohammad Ali Alomrani,
Liheng Ma, Yu Luo, Dong Li, Feng Wen, et al. Omni-thinker: Scaling cross-domain generalization
in llms via multi-task rl with hybrid rewards. arXiv preprint arXiv:2507.14783, 2025a.

Yu Li, Zhuoshi Pan, Honglin Lin, Mengyuan Sun, Conghui He, and Lijun Wu. Can one domain help
others? a data-centric study on multi-domain reasoning via reinforcement learning. arXiv preprint
arXiv:2507.17512, 2025b.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Information Processing Systems, 34:18878–18890,
2021.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimization.
Advances in Neural Information Processing Systems, 36:57226–57243, 2023.

Qiang Liu, Mengyu Chu, and Nils Thuerey. Config: Towards conflict-free training of physics
informed neural networks. arXiv preprint arXiv:2408.11104, 2024.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains. arXiv preprint arXiv:2505.14652, 2025.

MAA. American mathematics competitions, 2023. URL https://maa.org/
student-programs/amc/.

11

https://huggingface.co/datasets/kevinshin/wildchat-creative-writing-3k-rft
https://huggingface.co/datasets/kevinshin/wildchat-creative-writing-3k-rft
https://maa.org/student-programs/amc/
https://maa.org/student-programs/amc/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pp. 1273–1282. PMLR, 2017.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Nitral-AI. Creative writing-sharegpt, 2024. URL https://huggingface.co/datasets/
Nitral-AI/Creative_Writing-ShareGPT.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof qa benchmark,
2023. URL https://arxiv.org/abs/2311.12022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, et al. Deepseekmath: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
International Journal of Computer Vision, 130(6):1526–1565, 2022.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

P Team, Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu,
Yiming Liang, Xiaolong Jin, Zhenlin Wei, Chujie Zheng, Kaixin Deng, Shawn Gavin, Shian Jia,
Sichao Jiang, Yiyan Liao, Rui Li, Qinrui Li, Sirun Li, Yizhi Li, Yunwen Li, David Ma, Yuansheng
Ni, Haoran Que, Qiyao Wang, Zhoufutu Wen, Siwei Wu, Tyshawn Hsing, Ming Xu, Zhenzhu Yang,
Zekun Moore Wang, Junting Zhou, Yuelin Bai, Xingyuan Bu, Chenglin Cai, Liang Chen, Yifan
Chen, Chengtuo Cheng, Tianhao Cheng, Keyi Ding, Siming Huang, Yun Huang, Yaoru Li, Yizhe
Li, Zhaoqun Li, Tianhao Liang, Chengdong Lin, Hongquan Lin, Yinghao Ma, Tianyang Pang,
Zhongyuan Peng, Zifan Peng, Qige Qi, Shi Qiu, Xingwei Qu, Shanghaoran Quan, Yizhou Tan, Zili
Wang, Chenqing Wang, Hao Wang, Yiya Wang, Yubo Wang, Jiajun Xu, Kexin Yang, Ruibin Yuan,
Yuanhao Yue, Tianyang Zhan, Chun Zhang, Jinyang Zhang, Xiyue Zhang, Xingjian Zhang, Yue
Zhang, Yongchi Zhao, Xiangyu Zheng, Chenghua Zhong, Yang Gao, Zhoujun Li, Dayiheng Liu,
Qian Liu, Tianyu Liu, Shiwen Ni, Junran Peng, Yujia Qin, Wenbo Su, Guoyin Wang, Shi Wang,
Jian Yang, Min Yang, Meng Cao, Xiang Yue, Zhaoxiang Zhang, Wangchunshu Zhou, Jiaheng
Liu, Qunshu Lin, Wenhao Huang, and Ge Zhang. Supergpqa: Scaling llm evaluation across 285
graduate disciplines, 2025. URL https://arxiv.org/abs/2502.14739.

Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement
learning. Electronics, 9(9):1363, 2020.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and
Sham M Kakade. Soap: Improving and stabilizing shampoo using adam for language modeling.
In The Thirteenth International Conference on Learning Representations, 2025.

Sifan Wang, Ananyae Kumar Bhartari, Bowen Li, and Paris Perdikaris. Gradient alignment in
physics-informed neural networks: A second-order optimization perspective. arXiv preprint
arXiv:2502.00604, 2025.

12

https://huggingface.co/datasets/Nitral-AI/Creative_Writing-ShareGPT
https://huggingface.co/datasets/Nitral-AI/Creative_Writing-ShareGPT
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2502.14739

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuning Wu, Jiahao Mei, Ming Yan, Chenliang Li, Shaopeng Lai, Yuran Ren, Zijia Wang, Ji Zhang,
Mengyue Wu, Qin Jin, and Fei Huang. Writingbench: A comprehensive benchmark for generative
writing, 2025. URL https://arxiv.org/abs/2503.05244.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Yufan Ye, Ting Zhang, Wenbin Jiang, and Hua Huang. Process-supervised reinforcement learning
for code generation. arXiv preprint arXiv:2502.01715, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025a.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in neural information processing systems, 33:
5824–5836, 2020.

Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan Yao,
Zhiyuan Liu, et al. Rlpr: Extrapolating rlvr to general domains without verifiers. arXiv preprint
arXiv:2506.18254, 2025b.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. Acecoder:
Acing coder rl via automated test-case synthesis. arXiv preprint arXiv:2502.01718, 2025.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025.

13

https://arxiv.org/abs/2503.05244

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

In preparing this manuscript, we used a large language model (LLM) in two distinct ways. First, we
employed LLMs as an assistive tool for text refinement, including improving grammar, wording, and
clarity. Second, LLMs themselves are the primary subject of this research: we study reinforcement
learning (RL) training for LLMs. Accordingly, all experiments involve using large models for training,
inference, and scoring, as part of the methodology under investigation.

All scientific content, including problem formulation, methodology, experiments, and conclusions,
was developed and verified entirely by the authors. The authors take full responsibility for the integrity
and accuracy of the manuscript. No LLM was credited as an author, and all substantive research
contributions are attributable exclusively to the human authors.

B MATHEMATICAL DERIVATIONS

B.1 DETAILED DERIVATION OF EQ. (2)

Eq. (2) in Section 3.2 states:

gj

(
θ
(i)
post

)
− gj

(
θ(i)pre

)
≈ Hj

(
θ(i)pre

)(
θ
(i)
post − θ(i)pre

)
≈ ηHj

(
θ(i)pre

)
gi

(
θ(i)pre

)
. (6)

Derivation: Assuming the gradient function gj(θ) is smooth, we apply a first-order Taylor expansion
around θ

(i)
pre :

gj

(
θ
(i)
post

)
≈ gj

(
θ(i)pre

)
+Hj

(
θ(i)pre

)(
θ
(i)
post − θ(i)pre

)
+O(∥∆θ∥2), (7)

where Hj(θ) = ∇2
θLj(θ) is the Hessian matrix for domain j, and ∆θ = θ

(i)
post − θ

(i)
pre . Neglecting

higher-order terms and rearranging gives:

gj

(
θ
(i)
post

)
− gj

(
θ(i)pre

)
≈ Hj

(
θ(i)pre

)(
θ
(i)
post − θ(i)pre

)
. (8)

In policy optimization, parameters are updated via gradient ascent (maximizing rewards):

θ
(i)
post = θ(i)pre + ηgi

(
θ(i)pre

)
, (9)

where η is the learning rate. Substituting this into the previous equation yields:

θ
(i)
post − θ(i)pre = ηgi

(
θ(i)pre

)
, (10)

and therefore,

gj

(
θ
(i)
post

)
− gj

(
θ(i)pre

)
≈ ηHj

(
θ(i)pre

)
gi

(
θ(i)pre

)
, (11)

which is Eq. (2). This approximation shows that the gradient update from domain i influences the
gradient of domain j through the curvature of domain j.

B.2 DETAILED DERIVATION OF EQ. (3) AND EQ. (4)

Eq. (3) and Eq. (4) in Section 3.3 state:

gσ(k)(ϕk−1) = gσ(k)(ϕ0)−
k−1∑
l=1

η|Dσ(l)|∑K
s=1 |Dσ(s)|

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2) (12)

gσ(k)(ϕk−1) = gσ(k)(ϕ0)−
η

K

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2) (13)

Derivation: Consider the randomized sequential update: domains are processed in the order
σ(1), . . . , σ(K). The parameter update for each domain (using gradient ascent) is:

ϕk = ϕk−1 + ηkgσ(k)(ϕk−1), (14)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where ηk = η|Dσ(k)|/
∑K

s=1 |Dσ(s)| is the scaled learning rate.

For domain σ(k), its gradient is evaluated at ϕk−1. Using a Taylor expansion around ϕ0:

gσ(k)(ϕk−1) = gσ(k)(ϕ0) +Hσ(k)(ϕ0)(ϕk−1 − ϕ0) +O(η2). (15)

Now compute ϕk−1 − ϕ0. Note that:

ϕk−1 = ϕ0 +

k−1∑
l=1

(ϕl − ϕl−1) = ϕ0 +

k−1∑
l=1

ηlgσ(l)(ϕl−1). (16)

To first order, we approximate gσ(l)(ϕl−1) ≈ gσ(l)(ϕ0) (error O(η2)):

ϕk−1 − ϕ0 ≈
k−1∑
l=1

ηlgσ(l)(ϕ0). (17)

Substituting into the Taylor expansion:

gσ(k)(ϕk−1) ≈ gσ(k)(ϕ0) +Hσ(k)(ϕ0)

(
k−1∑
l=1

ηlgσ(l)(ϕ0)

)
+O(η2). (18)

Substituting ηl = η|Dσ(l)|/
∑K

s=1 |Dσ(s)| gives Eq. (3).

If we assume uniform batch sizes, i.e., |Dσ(l)|/
∑K

s=1 |Dσ(s)| = 1/K, then ηl = η/K, which
simplifies to Eq. (4).

B.3 DETAILED DERIVATION OF EQ. (5)

Eq. (5) in Section 3.3 states:

α(ϕK − ϕ0) = −
αη

K

K∑
k=1

gk(ϕ0) +
αη2

K2

K∑
k=1

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0) +O(η2). (19)

Derivation: The total parameter change is:

ϕK − ϕ0 =

K∑
k=1

(ϕk − ϕk−1) =

K∑
k=1

ηkgσ(k)(ϕk−1). (20)

Using the approximation from Eq. (4) (uniform batch sizes):

gσ(k)(ϕk−1) ≈ gσ(k)(ϕ0)−
η

K

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0), (21)

and substituting ηk = η/K:

ϕK − ϕ0 ≈
K∑

k=1

η

K

[
gσ(k)(ϕ0)−

η

K

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0)

]

=
η

K

K∑
k=1

gσ(k)(ϕ0)−
η2

K2

K∑
k=1

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0). (22)

Multiplying by the mixing coefficient α:

α(ϕK − ϕ0) ≈
αη

K

K∑
k=1

gσ(k)(ϕ0)−
αη2

K2

K∑
k=1

k−1∑
l=1

Hσ(k)(ϕ0)gσ(l)(ϕ0). (23)

Note that
∑K

k=1 gσ(k)(ϕ0) =
∑K

k=1 gk(ϕ0) (permutation invariant), yielding Eq. (5).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.4 DERIVATION OF GRADIENT ALIGNMENT SYMMETRIZATION

In Section 3.3, it is mentioned that after randomization, the cross-term expectation symmetrizes as:

Hi(ϕ0)gj(ϕ0) +Hj(ϕ0)gi(ϕ0) =
∂

∂ϕ0

(
gi(ϕ0)

⊤gj(ϕ0)
)
. (24)

Derivation: The key mathematical insight is the following identity concerning the gradient of the
inner product between two gradients.

Consider the inner product S(ϕ0) = gi(ϕ0)
⊤gj(ϕ0). The gradient of this scalar function S with

respect to ϕ0 is given by:

∇ϕ0
S = ∇ϕ0

(
gi(ϕ0)

⊤gj(ϕ0)
)
= Hi(ϕ0)gj(ϕ0) +Hj(ϕ0)gi(ϕ0), (25)

where we have used the product rule and the symmetry of the Hessian matrices, Hj = H⊤
j . This

result can be seen by noting that the derivative of g⊤
i gj w.r.t. ϕ0 is (∂gi/∂ϕ0)

⊤gj+g⊤
i (∂gj/∂ϕ0) =

Higj +g⊤
i Hj . Since g⊤

i Hj is a row vector, its transpose is Hjgi. The gradient (as a column vector)
is therefore Higj +Hjgi.

Under a randomized ordering σ, the expectation of the cross-term involving Hσ(k)gσ(l) for k > l
will involve pairs (i, j) symmetrically. The update term derived from the second-order expansion
is proportional to Higj . The symmetric form Higj +Hjgi appearing in the gradient of the inner
product ∇ϕ0

(g⊤
i gj) indicates that, in expectation, the update encourages an increase in the inner

product between the gradients of different domains, thus promoting their alignment.

C MORE DETAILS OF EXPERIMENTS

C.1 TASKS AND DATASETS

We focus on enhancing LLMs’ overall capabilities across four domains—mathematical reasoning,
code generation, scientific QA, and creative writing. These domains not only represent core areas of
current research interest but also span four distinct forms of reward feedback, thereby ensuring
both comprehensiveness and diversity.

• Mathematics: we construct a subset of 6,250 samples from the Guru dataset (Cheng et al., 2025).
This includes the 5,000 easiest problems (ranked by the pass rate of Qwen2.5-7B-Instruct) and
1,250 more challenging ones, ensuring a balance between accessible and difficult problems.

• Code generation: we select a total of 4,740 samples from Guru. Specifically, we take all 3,791
problems with a Qwen2.5-7B-Instruct’s pass rate of at least 25% and add 949 problems randomly
sampled from the remainder, yielding an approximate 4:1 ratio between easier and harder samples.

• Scientific QA: we include the entire STEM split of Guru, resulting in 3,591 samples. This
preserves the full coverage of science-related reasoning tasks while maintaining consistency with
prior benchmarks.

• Creative writing: we randomly sample 2,000 samples each from three popular Hugging-
face datasets—LitBench (Fein et al., 2025), Creative Writing-ShareGPT (Nitral-AI, 2024), and
wildchat-creative-writing-3k-rft (kevinshin, 2025)—to construct a dataset of 6,000 samples, ensur-
ing stylistic variety and broad coverage of open-ended writing abilities.

C.2 BASELINES

We compare our CGPO against four representative baselines: joint learning, Omni-Thinker (Li et al.,
2025a), Self-Paced CL, and FAMO (Liu et al., 2023).

• Joint learning. Joint learning is the most basic paradigm in MTL. It aggregates the loss functions
of all tasks into a single objective, enabling simultaneous optimization. As a straightforward
training strategy without any task-specific adjustments, joint learning serves as a reference point
for evaluating improvements brought by more advanced methods.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Omni-Thinker. Omni-Thinker belongs to progressive CL methods as categorized in (Soviany et al.,
2022). It introduces the backward transfer (BWT) metric to quantify the extent of catastrophic
forgetting across domains. Based on BWT analysis, Li et al. (2025a) proposes a fixed training
order—code→ math→ scientific QA→ creative writing—with the goal of minimizing forgetting
induced by multi-domain learning.

• Self-paced CL. Self-paced CL enables the model to adaptively select training samples according
to its learning state. In our implementation, we employ Qwen2.5-7B-Instruct to rank samples by
winrate from easy to difficult, and train sequentially following this order. This curriculum reduces
the risk of being misled by difficult samples in the early stages, thereby improving stability and
promoting better generalization.

• FAMO. FAMO is a gradient-balancing approach for MTL. It adjusts loss weights to maximize
the improvement rate of the task that progresses the slowest, ensuring that all tasks advance at
a comparable pace. This balanced optimization strategy suppresses task dominance and guides
the model toward solutions that are both fairer across tasks and stronger in overall performance.
FAMO approximates weight updates using historical loss values instead of explicitly computing
multi-task gradients, reducing per-iteration time and memory complexity to O(1). This efficiency
makes it particularly suitable for large-scale LLM training.

C.3 REWARD FUNCTIONS

For all domains, we require the model to enclose its reasoning process within <think></think>
tags. The reward functions for the four domains are as follows.

• Math. We adopt a rule-based reward function:

rmath(o, a) =


1.0, if o has a valid format and verifymath(oans, a) = true,
−0.5, if o has a valid format but verifymath(oans, a) = false,
−1.0, if o has an invalid format,

where oans denotes the predicted answer extracted from structured tags (e.g.,
<answer></answer>) in the model output o, and verifymath(·, ·) checks symbolic equivalence
between oans and the ground-truth answer a via a deterministic parser (e.g., handling equivalent
forms of expressions or equations).

• Code generation. We adopt a sandbox-based unit test reward:

rcode(o, test case) =


1.0, if o has a valid format and exec(oans) |= unittest(oans, test case),
−0.5, if o has a valid format but exec(oans) ̸|= unittest(oans, test case),
−1.0, if o has an invalid format (syntactically invalid),

where oans is the generated code, executed in a sandbox and validated against the unit tests
associated with the sample; |= denotes logical satisfaction.

• Scientific QA. We employ a 1.5B General-Verifier1 (Cheng et al., 2025) to assess consistency
between the model’s output and the ground-truth answer:

rqa(o, a) =


1.0− 0.05 ·min(||oans| − |a|| , 10) , if o has a valid format and oans = a,

0, if o has a valid format but oans ̸= a,

−1.0, if o has an invalid format,
where oans is the extracted answer content. Here, “valid format” means the response adheres to QA
conventions (e.g., no garbled text, complete sentences).

• Creative writing. We adopt an LLM-as-a-Judge strategy, scoring the model’s output o against a
reference oref via pairwise comparison:

rwriting(o, oref) =


1.0, if o has a valid format and o ≻ oref,

0.25, if o has a valid format and o ∼ oref,

−0.5, if o has a valid format and o ≺ oref,

−1.0, if o has an invalid format,
where o ≻ oref (preferred), o ∼ oref (tie), and o ≺ oref (worse) are determined by a fixed evaluator
(Qwen2.5-72B-Instruct) serving as the judge.

1https://huggingface.co/TIGER-Lab/general-verifier

17

https://huggingface.co/TIGER-Lab/general-verifier

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.4 HYPERPARAMTERS

We use a learning rate of 1 × 10−6, a prompt batch size of 128, a mini-batch size of 64, a group
size of 8, a rollout temperature of 1.0, εlow = 0.2, εhigh = 0.28, and β = 0.001 for CGPO and all
baselines. All methods are trained for one epoch. For the mixing coefficient α, we tune it within the
range of 0.5–1.5, and provide an ablation study on α in Section 4.3.

C.5 EVALUATION

To comprehensively evaluate cross-domain capabilities, we adopt authoritative benchmarks spanning
four domains: Math, Coding, Scientific QA, and Creative Writing. The evaluation settings are
detailed below:

• Math domain
– MATH500 (Hendrycks et al., 2021): A set of 500 challenging problems sampled from the

full MATH dataset, covering seven areas: elementary algebra, algebra, geometry, number
theory, combinatorics, probability, and calculus. Problems are presented in open-ended
form and require precise solutions. This benchmark is widely adopted for assessing LLMs’
mathematical reasoning and problem-solving abilities.

– AMC 2023 (MAA, 2023): A set of 50 questions taken from the AMC 12A and 12B (2023)
contests, spanning algebra, geometry, number theory, combinatorics, and probability. Multiple-
choice options are removed, requiring models to directly output the final answer. This
benchmark focuses on higher-order reasoning, problem analysis, and accurate calculation.

• Coding domain
– HumanEval (Chen et al., 2021): Consisting of 164 human-written Python programming

tasks, ranging from basic algorithms to medium-level function implementations. It evaluates
whether models can generate correct and executable code from natural language descriptions.

– MBPP (Austin et al., 2021): A collection of 974 beginner-level Python problems designed
to test the ability to synthesize short programs from natural language instructions. It is a
standard benchmark for fundamental code generation.

• Scientific QA domain
– GPQA (diamond split) (Rein et al., 2023): Graduate-level QA items written and verified

by domain experts across physics, chemistry, biology, and earth sciences. The diamond split
represents the most difficult and highest-quality subset, specifically constructed to prevent
shallow memorization or pattern matching. To ensure consistent evaluation, we reconstruct
ordered option lists using randomized indexing.

– SuperGPQA (Team et al., 2025): Comprising 285 interdisciplinary graduate-level reasoning
problems, curated to prevent direct solutions via search engines. To reduce computational
cost, we use random seed 42 to sample 200 problems, ensuring both representativeness and
reliable measurement of deep reasoning ability.

• Creative Writing domain
– WritingBench (Wu et al., 2025): A benchmark of 1000 real-world writing tasks spanning

6 domains and 100 sub-themes, covering diverse styles, task types, and difficulty levels.
It evaluates generated text on quality, coherence, creativity, and task alignment through a
structured scoring framework. For efficiency, we sample 200 requests using random seed
42, and apply the official critic model WritingBench-Critic-Model-Qwen-7B2 for
automated scoring, striking a balance between evaluation cost and representativeness.

D RELATED WORK

Multi-domain RL for LLMs. The application of RL in LLMs receives widespread attention
(Schulman et al., 2017; Shao et al., 2024; Yu et al., 2025a; Liu et al., 2025). However, RL strategies
that simultaneously and steadily enhance the capabilities of LLMs across multiple domains remain an

2https://huggingface.co/AQuarterMile/WritingBench-Critic-Model-Qwen-7B

18

https://huggingface.co/AQuarterMile/WritingBench-Critic-Model-Qwen-7B

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

open challenge. A key difficulty in this area lies in designing reward functions that work effectively
across diverse domains. Some researchers develop reward computation methods that are broadly
applicable across multiple domains. For example, Zhou et al. (2025) simplify the binary reward
function by leveraging properties of the ground truth. RLPR (Yu et al., 2025b) constructs its reward
based on the probability of generating correct outputs. Other researchers create distinct reward
computation methods tailored to specific domains. For instance, Li et al. (2025a) propose a hybrid
reward system that employs rule-based, sandbox-based, and LLM-as-a-Judge frameworks, customized
for different types of data. Another challenge lies in appropriately handling interactions among
multiple domains. Cheng et al. (2025) study the effects of single-domain training on other domains.
Li et al. (2025b) further examine interactions across several domains, including math, coding, and
puzzle solving. Existing approaches mainly rely on experimental and qualitative observations, while
a deeper understanding of cross-domain interactions remains largely unexplored.

Mitigating Gradient Conflicts. Gradient conflicts pose a major challenge in machine learning,
leading to slow learning and wasted computation (Chen et al., 2025). Much work in multi-task
learning addresses this by balancing or projecting gradients to reduce interference, such as GradNorm
(Chen et al., 2018), which adjusts each task’s gradient according to its relative loss, PCGrad (Yu
et al., 2020), which projects away conflicting directions, MGDA (Sener & Koltun, 2018), which
seeks Pareto-optimal updates, and ConFIG (Liu et al., 2024) or CAGrad (Liu et al., 2021), which
optimize updates under constraints to ensure conflict-free directions. While effective in standard
MTL, these approaches face key limitations in RL for LLMs: they generally either require storing
all domain gradients on the GPU, which quickly becomes memory-intensive and can often cause
out-of-memory failures, or act reactively without leveraging the underlying geometry of the reward
landscape, which usually makes them prone to high variance on noisy, rollout-based gradients. These
challenges motivate scalable, memory-efficient methods that can mitigate cross-domain conflicts
while supporting multi-domain RL training, such as our proposed CGPO.

Second-Order Optimization Methods. The loss landscapes of deep neural networks are often
highly complex, posing significant challenges for first-order optimization algorithms, such as gradient
descent, which rely solely on local gradient information. Without insights into the geometric structure
of the landscape, first-order methods can easily get trapped in saddle points or narrow valleys,
making it difficult to reach better local optima. In contrast, second-order optimization methods,
such as Newton’s method, exploit geometric information like the Hessian matrix to precondition
gradients according to the local curvature, offering stronger theoretical guarantees. To mitigate the
computational cost of full Hessian computation, various approximate Newton methods have been
proposed, including AdaGrad, K-FAC, GGT, Shampoo, and SOAP (Duchi et al., 2011; Martens
& Grosse, 2015; Agarwal et al., 2018; Gupta et al., 2018; Vyas et al., 2025). Recent studies show
that Newton’s method and its approximate variant SOAP (Vyas et al., 2025) can alleviate gradient
conflicts in physics-informed neural networks (PINNs) (Wang et al., 2025), providing inspiration
for our approach. However, due to the massive parameter scale of large language models, directly
applying Newton-type methods or their approximations in RL for LLMs is infeasible. Motivated by
this, we distill the core idea of leveraging curvature information and develop CGPO, a principled and
scalable framework for multi-domain RL in LLMs.

19

	Introduction
	Preliminaries
	Multi-domain Language Modeling as Reinforcement Learning
	Policy Optimization Algorithms
	Newton's Method for Gradient Preconditioning

	Curvature-Guided Policy Optimization
	Motivation: Why Hessian-gradient interactions matter
	Approximate Cross-Domain Interactions via Sequential Updates
	Full Algorithm: Randomized Cross-task Interactions

	Experiments
	Experimental Settings
	Main Results
	Analysis and Ablations

	Related Work
	Conclusion
	Ethics Statement
	Reproducibility Statement
	LLM Usage Statement
	Mathematical Derivations
	Detailed Derivation of Eq. (2)
	Detailed Derivation of Eq. (3) and Eq. (4)
	Detailed Derivation of Eq. (5)
	Derivation of Gradient Alignment Symmetrization

	More Details of Experiments
	Tasks and Datasets
	Baselines
	Reward Functions
	Hyperparamters
	Evaluation

	Related Work

