
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RETHINKING LLM ENSEMBLING FROM THE PERSPEC-
TIVE OF MIXTURE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model ensembling is a well-established technique for improving the performance
of machine learning models. Conventionally, this involves averaging the output
distributions of multiple models and selecting the most probable label. This idea
has been naturally extended to large language models (LLMs), yielding improved
performance but incurring substantial computational cost. This inefficiency stems
from directly applying conventional ensemble implementation to LLMs, which
require a separate forward pass for each model to explicitly compute the ensemble
distribution. In this paper, we revisit this conventional assumption and find that
ensembling in the context of LLMs is fundamentally different. Unlike conventional
models, LLMs typically generate tokens by sampling from the output distribution
rather than selecting the top prediction via argmax. This key distinction enables
us to reinterpret LLM ensembling as a mixture model. Under this perspective,
one can sample from the ensemble distribution by simply selecting a single model
at random and sampling from its output, which avoids the need to compute the
full ensemble distribution explicitly. We refer to this approach as the Mixture-
model-like Ensemble (ME). ME is mathematically equivalent to sampling from
the ensemble distribution, but requires invoking only one model, making it
1.78×-2.68× faster than conventional ensemble. Furthermore, this perspective
connects LLM ensembling and token-level routing methods, suggesting that LLM
ensembling is a special case of routing methods. Our findings open new avenues for
efficient LLM ensembling and motivate further exploration of token-level routing
strategies for LLMs. Our code is available at https://anonymous.4open.
science/r/Mixture-model-like-Ensemble/.

1 INTRODUCTION

“The work of science is to substitute facts for appearances, and demonstrations for
impressions.”

— John Ruskin

In both conventional machine learning and deep learning, model ensembling has been a well-
established technique for improving performance by combining the outputs of multiple weaker base
models (Opitz & Maclin, 1999; Polikar, 2006; Rokach, 2010). In classification tasks, a common
practice is to average the predicted probability distributions from several models and select the class
with the highest aggregated probability (Rokach, 2010). This idea has been naturally extended to large
language models (LLMs). Specifically, when predicting the next token, researchers similarly average
the output distributions of multiple LLMs and sample a token from the averaged distribution (Yu et al.,
2024; Huang et al., 2024; Xu et al., 2024; Yao et al., 2024; Mavromatis et al., 2024), as illustrated
in Figure 1(a). By leveraging the complementary strengths of individual models, this method can
improve the quality of generated text.

However, in the context of LLMs, ensemble methods are often considered too expensive and inefficient
for practical use. An ensemble of n models requires n forward passes, making inference n times more
expensive than with a single model. Although in theory, we can parallelize the ensemble by assigning
each model to a separate device and executing forward passes simultaneously, this approach rarely
achieves the expected speedup in practice. As shown in Table 4 and Figure 3, the parallel ensemble
(CE (Parallel)) provides only a small speed improvement compared to the sequential ensemble (CE

1

https://anonymous.4open.science/r/Mixture-model-like-Ensemble/
https://anonymous.4open.science/r/Mixture-model-like-Ensemble/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Conventional Ensemble (b) Mixture-model-like Ensemble

Prefix

Average

Sample
Prefix

Random

Select Sample

Figure 1: Comparison of (a) conventional ensemble and (b) mixture-model-like ensemble. Mp

andMq denote two distinct LLMs employed in the ensemble, with p(x) and q(x) indicating their
respective output distributions.

(Sequential)), where each model is invoked sequentially. This is because parallel ensemble requires
communication between devices for generating each token, and such overly frequent communication
results in significant time overhead.

In addition, existing studies have attempted to mitigate the high inference overhead of LLM ensembles
by reducing ensemble frequency (Yu et al., 2024) or limiting the vocabulary size (Yao et al., 2024).
However, these methods offer only limited improvement. This is because, during ensemble, each
model still must execute a forward pass to explicitly compute the ensemble distribution, which
remains the core speed bottleneck unresolved. In this paper, we revisit this standard paradigm in
LLM ensembling and pose a central question:

Does a large language model ensemble truly require invoking all models?

Surprisingly, we find that ensembling LLMs does not inherently require invoking all models. In
fact, ensembling n LLMs can be achieved by invoking only one model, resulting in inference
speeds comparable to a single model. We hypothesize that the common belief that “LLM ensembling
is slow” stems from the conventional machine learning ensemble paradigm, which has influenced
both the perception and implementation of LLM ensembles. However, our findings reveal that LLM
ensembling fundamentally differs from conventional ensemble methods.

Let’s reconsider how conventional machine learning models make predictions. Typically, a model
outputs a set of scores for each possible label, which are then normalized to sum to one using a
function like softmax. These normalized scores are often described as a ”probability distribution”
over labels. However, they are not truly used as probabilistic distributions in practice. That is, we will
not sample a label from this distribution as the final prediction. Instead, the standard practice is to
select the label with the highest score as the prediction. This same approach is used when ensembling
multiple models: We average the normalized scores from each model and select the label with the
highest average score (Rokach, 2010). This requires running all base models and computing the
averaged scores to make the final prediction.

In contrast, LLMs treat output distributions differently. During generation, tokens are typically
sampled from the predicted distribution rather than selected via argmax. When ensembling LLMs,
a common method is to sample from the average of the individual model distributions. Unlike
previous methods, which require explicitly computing this ensemble distribution by invoking all
models, we find that the equivalent result can be achieved by simply select a single model at random
and then sample from its distribution. We prove that the resulting tokens have the same distribution
as those sampled from the full ensemble, offering equivalent results with conventional ensembles
and with significantly greater efficiency. This sampling procedure is analogous to sampling from a
mixture model such as the Gaussian Mixture Model (Everitt & Hand, 1981), where one first selects a
component at random and then samples from its distribution.

This mixture-model perspective leads to an equivalent but significantly faster ensemble algorithm,
which we refer to as the Mixture-model-like Ensemble (ME). It also provides a conceptual bridge
between LLM ensemble methods and token-level routing, where a router selects an appropriate LLM
at each generation step to improve performance or efficiency (Belofsky, 2023; Muqeeth et al., 2024;
Ostapenko et al., 2024). In token-level routing, if we randomly assign the input to one of the LLMs,
the method becomes operationally equivalent to ME, where the output tokens follow the ensemble
distribution. From this perspective, LLM ensemble can be interpreted as the simplest case of routing.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Token-level routing methods, by incorporating input-specific signals into the routing decision, may
thus be viewed as a more general and potentially more effective extension of ensemble techniques.

We conducted a comprehensive evaluation of our mixture-model-like ensemble using diverse configu-
rations, including ensembles of similar models, heterogeneous models, and models of varying sizes.
We tested our method across four datasets and multiple GPU devices. The results demonstrate that
its performance closely matches that of conventional ensembles, supporting our theoretical finding.
Moreover, in terms of inference speed, the proposed method significantly outperforms both sequential
and parallel conventional ensembles, achieving runtime efficiency comparable to that of a single
model and approaching the theoretical limit. This significantly enhances the practicality of LLM
ensembles in real-world applications. Our contributions are as follows:

1. We propose a new way of understanding LLM ensembling by framing it as a mixture model.
To the best of our knowledge, this is the first work to formally establish this connection.

2. This perspective naturally lends to a new ensemble method, which we call the Mixture-
model-like Ensemble (ME). ME is 1.78× - 2.68× faster than conventional ensembling while
achieving equivalent performance.

3. Furthermore, this perspective also provides a conceptual link between LLM ensembling and
token-level routing. In particular, LLM ensembling can be interpreted as the simplest case
of routing. This connection may offer valuable insights for future research.

2 RELATED WORK

LLM ensembling. LLM ensembling has been shown to enhance both performance and safety (Hoang
et al., 2023; Li et al., 2024; Lu et al., 2024; Chen et al., 2025). Research on this topic primarily
addresses two key challenges. First, methods are needed to align the vocabularies of different models.
Approaches to this include using a unified vocabulary (e.g., a union of all vocabularies) (Yu et al.,
2024; Yao et al., 2024; Phan et al., 2024) or transforming outputs into a shared, latent space (Huang
et al., 2024; Xu et al., 2024). Second, researchers explore how to configure the ensemble, focusing on
the choice of base models and their respective weights (Yao et al., 2024; Yu et al., 2024; Mavromatis
et al., 2024).

Our work aims to provide an understanding of LLM ensembling from the perspective of mixture
models. While issues like vocabulary alignment, model selection, and weight tuning are important,
they are treated as orthogonal to our main focus.

Token-level routing & Mixture-of-Experts (MoE). Token-level routing methods typically involve
training a router and dynamically routing the current input to the most appropriate model (Belofsky,
2023; Muqeeth et al., 2024; Ostapenko et al., 2024), while MoE involves training exports as well as
the router, achieving better performance but involving more training parameters (Jiang et al., 2024;
Dai et al., 2024).

ME, token-level routing, and MoE are all techniques that use efficient collaboration to improve LLMs.
While they share this high-level goal, they differ in their fundamental approach and the specific
trade-offs they make between training efficiency and performance.

As shown in Table 1, the primary distinction
among these methods lies in their training and
performance characteristics. In terms of infer-
ence, all three maintain a similar speed to that
of a single model, making them considerably
faster than conventional ensemble methods,
which require executing n separate models.
However, their training requirements and cor-
responding performance gains vary greatly:

Table 1: Comparison of ME and other related works.

Method Inference
Efficiency

Training
Efficiency

Performance
Improvement

CE ★ ★★★ ★
ME ★★★ ★★★ ★
Routing ★★★ ★★ ★★
MoE ★★★ ★ ★★★

ME offers a simple, ”plug-and-play” solution with no additional training cost, but it provides a
relatively modest performance improvement. Token-level routing requires the extra cost of training
a separate router but can yield greater performance gains. MoE represents the highest training

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

investment, requiring not only the training of a router but also the training of each expert’s parameters
from scratch. However, this higher cost typically translates into the most substantial performance
boost.

Ultimately, MoE is the preferred choice when the primary objective is to maximize performance and
computational resources are not a concern. In contrast, for a simple, low-cost approach to enhancing
a model’s performance without any additional training, ME stands out as a highly practical solution.

3 MIXTURE-MODEL-LIKE ENSEMBLE

3.1 CONVENTIONAL LLM ENSEMBLE

Unlike standard decoding, which relies on a single model’s output distribution to generate the next
token, conventional LLM ensembling combines outputs from multiple models during decoding.
In particular, it aggregates the predicted next-token distributions from n different LLMs through
averaging or weighted averaging to form an ensemble distribution. The next token is then sampled
from this combined distribution. Prior studies have shown that this approach often leads to better
performance compared to using a single model alone.

Specifically, let the input prefix be x≤t, where t ∈ N represents its length. Let V be the set of all
possible tokens. We consider an ensemble of n different LLMs, denotedM1, . . . ,Mn. For a given
prefix x≤t, each modelMi outputs a prediction distribution over the next token y ∈ V , expressed
asMi(y ∣ x≤t). The ensemble assigns a weight λi ≥ 0 to each model, where the weights sum to
one: ∑n

i=1 λi = 1. Under this standard ensembling framework, the probability of generating token y
at position t + 1, conditioned on the prefix x≤t, is computed as the weighted sum of the individual
model predictions:

P (xt+1 = y ∣ x≤t) =
n

∑
i=1

λiMi(y ∣ x≤t). (1)

During inference, each model in the ensemble performs a forward pass—either sequentially or in
parallel—to produce its prediction distribution over the next token. These distributions are then
combined as formalized in Equation (1) to form the ensemble distribution. The next token is then
sampled from this ensemble distribution. This process is applied iteratively at each generation step to
produce the full output sequence. The overall procedure is outlined in pseudo-code in Algorithm 1.

Algorithm 1 Conventional LLM Ensemble.

Ensure: base modelsM1, . . . ,Mn; ensemble
weights λ1, . . . , λn ; prefix sequence x≤t.

1: S ← x≤t
2: while not finish do
3: for i = 1→ n do
4: Pi ←Mi(y ∣ S)
5: end for
6: P̄ ← ∑

n
i=1 λiPi

7: xt+1 ← P̄ ▷ Sample from ensemble
8: S ← S + xt+1

9: end while
10: return S

Algorithm 2 Mixture-model-like Ensemble.

Ensure: base modelsM1, . . . ,Mn; ensemble
weights λ1, . . . , λn ; prefix sequence x≤t.

1: S ← x≤t
2: while not finish do
3: ▷ Randomly select an index based on the

ensemble weights λ1, . . . , λn

4: i← RANDOMINDEX(λ1, . . . , λn)
5: Pi ←Mi(y ∣ S)
6: xt+1 ← Pi ▷ Sample from Pi

7: S ← S + xt+1

8: end while
9: return S

3.2 MIXTURE-MODEL-LIKE ENSEMBLE

In conventional LLM ensemble methods, each model independently performs a forward pass, and
their output distributions are explicitly averaged to form an ensemble distribution. This combined
distribution is then used to sample the next token. While this approach is straightforward, it requires
evaluating all models, which can be computationally expensive.

However, as previously discussed in Section 1, we find that this explicit computation is not necessary.
Given a set of ensemble weights λ1, . . . , λn over n models, we can instead sample an index i from
the multinomial distribution Multinomial(λ1, . . . , λn) and use only the corresponding modelMi to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

generate the next token. This stochastic selection ensures that the overall distribution of generated
tokens still matches that of the full ensemble.

To further illustrate this equivalence, consider a prefix x≤t. The probability of generating a token x′

from this mixture-model-like ensemble is given by P (x = x′ ∣ x≤t). Then, we have:

P (x = x′ ∣ x≤t) =
n

∑
i=1

P (modelMi is selected) ⋅ P (x′ is generated byMi)

=
n

∑
i=1

λiMi(y ∣ x≤t).

(2)

As shown in Equation (1) and Equation (2), both the mixture-model-like ensemble and the conven-
tional ensemble yield identical token distributions, thereby ensuring equivalent generation quality.

This method introduces randomness earlier in the generation process. In typical sampling, while the
token selection is random, it is drawn from a fixed distribution, so the sampled token follows that
specific distribution. However, a mixture model introduces an additional level of randomness by also
randomizing the choice of distribution itself. As a result, the sampled tokens reflect the combined
behavior of all distributions in the mixture, rather than any single one.

During inference, at each token generation step, a single model from the ensemble is sampled based
on the ensemble weights λ1, . . . , λn and used to perform a forward pass, producing a probability
distribution over the next token. A token is then sampled from this distribution. This process is
repeated iteratively at each step to generate the full output sequence. The complete procedure is
presented in pseudo-code in Algorithm 2.

3.3 ENSEMBLING WITH HETEROGENEOUS VOCABULARIES

In this section, we introduce how to apply ME to model ensembles that use heterogeneous vocabularies.
In practice, different models often have their own unique vocabularies, which makes it impossible
to average their probability distributions directly. To address this, prior work has developed various
vocabulary alignment methods (Yu et al., 2024; Yao et al., 2024; Phan et al., 2024). These methods
typically involve creating a unified vocabulary and then mapping each model’s probability distribution
to it before combining them.

Specifically, let’s consider n LLMs,M1, . . . ,Mn, with their respective vocabularies, V1, . . . ,Vn.
Their next-token prediction distributions are P1, . . . , Pn. We can define a transformation function,
Fi ∶ Pi → P̃i, that maps the probability distribution Pi from vocabulary Vi to a new distribution P̃i

on the unified vocabulary U . The ensemble distribution from Equation (2) can then be rewritten as:

P (x = x′ ∣ x≤t) =
n

∑
i=1

λiFi [Mi(y ∣ x≤t)] , x′ ∈ U . (3)

ME can seamlessly integrate any vocabulary alignment method, making it suitable for models with
different vocabularies. Specifically, in each generation step, ME simply needs to randomly select
a model (e.g.,Mi), perform a forward pass to get its probability distribution Pi(y∣x≤t), and then
apply transformation function Fi to obtain the new distribution P̃i = Fi[Pi(y∣x≤t)]. A new token is
then sampled from P̃i. This means that in Algorithm 2, we simply replace line 5’sMi(y ∣ x≤t) with
Fi [Mi(y ∣ x≤t)]. In this paper, we use UniTe (Yao et al., 2024) for vocabulary alignment.

3.4 UNIFYING LLM ENSEMBLING AND TOKEN-LEVEL ROUTING

Token-level routing is another strategy for enabling collaboration among LLMs. It typically involves
a trained router and multiple specialized, heterogeneous models. At each generation step, the router
selects the most suitable model based on the current input prefix x≤t, and the chosen expert generates
the next token. This approach aims to enhance overall performance or efficiency.

We find that ME provides a natural bridge between LLM ensembling and token-level routing.
Specifically, if we design a simple router that randomly selects one expert at each generation step
to process the input, the resulting behavior is effectively equivalent to ME. From this perspective,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

this random routing mechanism essentially ensembles multiple experts. Conversely, we can interpret
LLM ensembling as the most basic version of token-level routing.

This unified view allows us to compare the two approaches in terms of the tradeoff between perfor-
mance and training cost. While both achieve similar inference speeds, token-level routing offers
the potential for better performance by making informed routing decisions based on input content.
However, this benefit comes at the cost of training a router, which adds computational overhead. In
contrast, LLM ensembling requires no additional training—once multiple models are available, they
can be used directly—making it a training-free, plug-and-play alternative.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models for ensemble. To thoroughly evaluate our approach, we test a variety of model combinations,
categorized into three key scenarios:

1. Ensembling similar models: This category combines models that share the same architecture
and vocabulary but were trained on different datasets. For our experiments, we use (Qwen-
3B1, Qwen-Math-1.5B) and (Openchat, Nous-Hermes) for a two-model ensemble, and use
(OpenHermes, Openchat, and Nous-Hermes) for a three-model ensemble.

2. Ensembling heterogeneous models: In this scenario, we combine models with distinct
architectures, vocabularies, and training data. For our experiments, we use (Openchat,
Deepseek-7B, Mistral-7B).

3. Ensembling models of different sizes. For this scenario, we use (Llama-3-8B, Llama-3-1B)
and (Llama-3-8B, Llama-3-3B).

This configuration covers several mainstream model series, such as Qwen and Llama, ensuring a
broad and robust evaluation.

Datasets and evaluation. We evaluated our method across multiple tasks, including mathematical
reasoning (GSM8K (Cobbe et al., 2021)), multi-task understanding (MMLU (Hendrycks et al., 2021)),
complex logical reasoning (BBH (Suzgun et al., 2022)), and general knowledge (ARC (Clark et al.,
2018)). For each dataset, we measured both accuracy and speed. For accuracy, we ran five separate
experiments and reported the average score. For speed, we measured the number of tokens generated
per second. All speed tests were performed on an H100 GPU unless specified otherwise.

Compared methods. In our experimental setup, we evaluated three main approaches: 1) Single
Model — using a single model for direct inference without ensembling; 2) Conventional Ensemble
(CE), as described in Section 3.1; and 3) Mixture-model-like Ensemble (ME), as described in
Section 3.2. Inspired by UniTe (Yao et al., 2024), we employ the top-k ensembling strategy to align
vocabulary and enhance performance.

To further analyze inference speed, we divided CE into two variants: sequential CE, which invokes
each model one after another, and parallel CE, which runs models concurrently on separate GPUs. For
the parallel CE, we use the GaC (Yu et al., 2024) implementation. Note that the speed we reported may
differ from those in prior work (Yu et al., 2024; Yao et al., 2024), as we enable key-value caching—a
configuration more reflective of real-world applications. Further details of the experimental setup can
be found in Appendix A.3.

4.2 ENSEMBLING ON SIMILAR AND HETEROGENEOUS MODELS

Table 2 and 3 show the performance of ensembling using similar and heterogeneous models, respec-
tively, while Table 4 presents their corresponding inference speeds. Our results lead to three key
observations:

First, our experiments confirm that ME and CE have equivalent performance. As shown in Tables
2 and 3, ME’s performance is consistently on par with CE, whether the ensemble includes two or

1To ensure brevity, we use abbreviations for model names. For example, Qwen-3B refers to Qwen2.5-3B-
Instruct. A comprehensive list of all models and their full names can be found in Table 5.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of ME and other baselines on ensembling similar models. The
numbers in parentheses (+x / −y) indicate the performance gain or drop of the ensemble model
compared to the best single model.

Model GSM8K MMLU BBH ARC

❶ Qwen-3B 79.77 66.75 51.94 81.81

❷ Qwen-Math-1.5B 79.39 39.54 39.75 46.23

Two model ensembling: ❶ + ❷

CE (k = 5) 83.14 (+3.37) 66.05 (−0.70) 52.74 (+0.80) 81.14 (−0.67)

ME (k = 5) 82.97 (+3.20) 65.61 (−1.14) 53.04 (+1.10) 81.12 (−0.69)

CE (k = 10) 82.62 (+2.85) 66.67 (−0.08) 52.25 (+0.31) 81.57 (−0.24)

ME (k = 10) 82.83 (+3.06) 67.90 (+1.15) 52.51 (+0.57) 81.10 (−0.71)

❸ Openchat 68.02 56.47 44.85 73.39

❹ Nous-Hermes 67.11 58.37 46.72 73.02

❺ OpenHermes 67.59 59.84 47.13 75.25

Two model ensembling: ❸ + ❹

CE (k = 5) 69.34 (+1.32) 60.60 (+2.23) 48.12 (+1.40) 78.84 (+5.45)

ME (k = 5) 69.11 (+1.09) 60.95 (+2.58) 47.33 (+1.22) 78.78 (+5.39)

CE (k = 10) 68.19 (+0.17) 60.28 (+1.91) 47.82 (+1.10) 78.70 (+5.31)

ME (k = 10) 68.74 (+0.72) 60.63 (+2.26) 47.25 (+0.53) 80.06 (+6.67)

Three model ensembling: ❸ + ❹ + ❺

CE (k = 5) 69.05 (+1.03) 60.60 (+0.76) 47.82 (+0.69) 78.38 (+3.13)

ME (k = 5) 69.42 (+1.40) 59.97 (+0.13) 48.04 (+0.91) 78.42 (+3.17)

CE (k = 10) 68.47 (+0.45) 61.19 (+1.35) 46.87 (−0.26) 77.34 (+2.09)

ME (k = 10) 67.93 (−0.09) 60.80 (+0.96) 47.40 (+0.27) 76.29 (+1.04)

more similar or heterogeneous models. This finding strongly supports our theoretical conclusion,
outlined in Section 3.2, that these two ensembling methods are fundamentally equivalent.

Second, ME is significantly faster. Table 4 shows that ME’s inference speed is consistently much
higher than both Sequential CE and Parallel CE across all configurations. Impressively, ME’s
speed approaches the maximum theoretical limit—the speed of a single model—which highlights its
efficiency. We also observed that Parallel CE provides only a slight speed increase over Sequential
CE. This is likely due to the significant overhead from frequent GPU communication during parallel
implementation.

Third, adding more models doesn’t always improve performance. While model ensembling
generally boosts performance, there isn’t a guarantee of continuous gains by adding more models.
For example, on all datasets except MMLU, where the ❸ + ❹ + ❺ configuration did not perform
better than ❸ + ❹. This suggests that the best number of models for an ensemble should be carefully
chosen based on the specific task and the models’ characteristics.

4.3 ENSEMBLING MODELS OF DIFFERENT SIZES

As shown in Figure 2, ensembling models of different sizes with ME presents a trade-off between
performance and speed. This is because larger models typically offer better performance but are
slower, while smaller models are faster but less accurate. By combining them, ME balances these
two factors. The hyperparameter λ controls this balance: a higher value for λ prioritizes performance
over speed. If λ is set to either 0 or 1, ME is equivalent to using a single model.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison of ME and other baselines on ensembling heterogeneous models.

Model GSM8K MMLU BBH ARC

❻ Openchat 68.02 56.47 44.85 73.39

❼ Deepseek-7B 53.63 46.10 36.02 56.41

❽ Mistral-7B 46.90 56.22 41.25 68.75

Three heterogeneous model ensembling: ❻ + ❼ + ❽

CE (k = 5) 69.20 (+1.18) 57.98 (+1.51) 45.61 (+0.76) 75.00 (+1.61)

ME (k = 5) 69.86 (+1.84) 57.79 (+1.32) 45.76 (+0.91) 74.19 (+0.80)

CE (k = 10) 68.23 (+0.21) 58.50 (+2.03) 44.96 (+0.11) 78.69 (+5.30)

ME (k = 10) 67.81 (−0.21) 58.46 (+1.99) 45.38 (+0.53) 78.58 (+5.19)

Table 4: Speed comparison of ME and other baselines. The numbers in parentheses indicate the
speedup relative to Sequential CE. Individual model speeds (in gray) are provided for reference, but
aren’t directly comparable to the ensemble methods.

Method ❶ + ❷ ❸ + ❹ ❸ + ❹ + ❺ ❻ + ❼ + ❽

Single Model 63.68 (1.95×) 54.83 (2.01×) 54.71 (3.13×) 54.42 (3.16×)

CE (Sequential) 32.71 (1.00×) 27.16 (1.00×) 17.43 (1.00×) 17.21 (1.00×)

CE (Parallel) 34.58 (1.05×) 34.24 (1.26×) 31.74 (1.82×) 31.55 (1.83×)

ME (Ours) 58.25 (1.78×) 51.33 (1.89×) 46.22 (2.65×) 46.17 (2.68×)

It’s important to note that this trade-off management is not the main purpose of ME; it’s an incidental
benefit of ensembling models of different sizes. For tasks where the goal is specifically to control
these trade-offs, ME may not be as effective as specialized methods like token-level routing (Zheng
et al., 2025).

4.4 FURTHER ANALYSIS

Speedup on other common devices. Our primary speed tests were conducted on H100 GPUs, but we
also evaluated speed on other common devices, including the RTX 3090, V100, and A100. For these
tests, we used three pairs of models with varying sizes: (Qwen-1.5B, Qwen-Math-1.5B), (Qwen-3B,
Qwen-Coder-3B), and (Qwen-7B, Qwen-Math-7B).

As shown in Figure 3, the results are consistent with our primary findings in Section 4.2: ME is
significantly faster than both sequential and parallel CE, and its speed is comparable to that of a
single model inference. These findings demonstrate the robustness of the ME method across different
hardware configurations.

An interesting finding on the RTX 3090 was that parallel CE was slower than sequential CE. This
is likely due to the slower inter-GPU communication speed of the RTX 3090, which introduces
significant overhead and negates the benefits of parallelization.

Ablation on lambda. We conducted an ablation study on λ using two model combinations: ❶
+ ❷ and ❸ + ❹. The results, shown in Figure 4, reveal two key findings: 1) The performance of
ME consistently aligns with CE across different values of λ. This consistency further supports the
equivalence of the two methods; 2) The ensemble effect’s sensitivity to λ depends on the performance
difference between the individual models. When the models have similar performance, the ensemble’s
result is not significantly affected by λ. Conversely, when there’s a larger performance gap between
the two models, the ensemble effect changes significantly and follows a monotonic trend, as shown
in Figure 4 (b).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Lambda

30

40

50

60

70

80
Pe

rf
or

m
an

ce

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

Sp
ee

du
p

GSM8K
MMLU
BBH
ARC
Speedup

(a) Llama-3-8B + Llama-3-1B

0.0 0.2 0.4 0.6 0.8 1.0
Lambda

50

55

60

65

70

75

80

85

Pe
rf

or
m

an
ce

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

Sp
ee

du
p

GSM8K
MMLU
BBH
ARC
Speedup

(b) Llama-3-8B + Llama-3-3B

Figure 2: When ensembling models with different sizes, the trend of ME’s performance and speed
changing with λ. Here, λ = 0 indicates that only the smaller model is used for inference, while λ = 1
indicates that only the larger model is used.

2.05x

2.02x

1.98x

RTX 3090 V100 A100
0

10

20

30

40

50

Sp
ee

d
(t

ok
en

/s
ec

)

Qwen-1.5B

1x

1x

1x

1.20x

1.17x

0.55x

1.89x

1.84x

1.95x

1.97x

1.97x

1.98x

RTX 3090 V100 A100

Qwen-3B

1x

1x

1x

1.29x

1.24x

0.61x

1.87x

1.81x

1.96x

2.01x

1.96x

RTX 3090 V100 A100

Qwen-7B

1x

1x

1.25x

1.17x

1.87x

1.85x

CE (Sequential) CE (Parallel) ME Single (for Reference) OOM (Out of Memory)

Figure 3: Speed comparison of ME and other baselines on three other common device types, using
three model pairs of varying sizes.

5 DISCUSSION

Limitations. One limitation of our work is that the proposed mixture-model perspective is applicable
when next-token sampling is used during generation—that is, when tokens are drawn probabilistically
from the prediction distribution. However, in scenarios where greedy decoding is preferred—selecting
the token with the highest probability—the mixture-model perspective no longer holds. In such cases,
a full forward pass must still be performed for each model.

Potential Extensions. In this work, we focus on LLM ensemble methods that combine different
model outputs using a weighted average. We believe this foundational approach can be extended to a
wider range of combination strategies. A detailed discussion of these potential extensions is provided
in Appendix A.5.

Conclusion. In this paper, we revisit the ensemble paradigm for large language models (LLMs) and
introduce a novel perspective by framing LLM ensembling as a mixture model. From this viewpoint,
we first naturally derive an algorithm that is equivalent in output to conventional ensemble methods
but significantly more efficient. We term this algorithm the Mixture-model-like Ensemble. Second,
we reveal a connection between two previously distinct research directions: LLM ensembling and
token-level routing. We find that LLM ensembling can be interpreted as the most fundamental form
of token-level routing. Extensive experiments across diverse datasets, model pairs, and GPU devices
empirically support our findings. We hope this new perspective can provide valuable insights for
future work on collaborative decoding in LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work adheres to the ICLR Code of Ethics. This study does not involve human subjects, personally
identifiable information, or proprietary data. All datasets used in our experiments are publicly
available. The proposed Mixture-model-like Ensemble (ME) method is a novel technique for
improving the efficiency of large language model (LLM) ensembling. It does not introduce any new
capabilities that could cause harm, nor does it enable misuse beyond the standard capabilities of
existing LLMs.

We are not aware of any potential risks related to bias, fairness, or security that arise specifically from
the proposed method. However, we acknowledge that the effectiveness and potential output of our
method are dependent on the base LLMs used. As such, they may reflect or amplify biases present
in the sources on which the base models were trained. While we did not perform a dedicated ethics
audit, our approach does not introduce novel societal risks.

No conflicts of interest, legal compliance issues, or sponsorship-related influences are present in this
work.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made several key efforts. Our proposed Mixture-
model-like Ensemble (ME) method is mathematically simple and intuitive, with a clear and rig-
orous proof of its equivalence to conventional ensembling provided in Section 3.2 of the main
text. Furthermore, the complete source code for our method and all experiments has been made
publicly available in an anonymous repository at https://anonymous.4open.science/
r/Mixture-model-like-Ensemble/. All datasets utilized in our experiments are publicly
available, and we provide a comprehensive description of our experimental setup, hyperparameters,
and data preprocessing steps in Section 4.1 and Appendix A.3 to enable full replication of our results.

REFERENCES

Joshua Belofsky. Token-level adaptation of lora adapters for downstream task generalization. In
Proceedings of the 2023 6th Artificial Intelligence and Cloud Computing Conference, pp. 168–172,
2023.

Zhijun Chen, Jingzheng Li, Pengpeng Chen, Zhuoran Li, Kai Sun, Yuankai Luo, Qianren Mao,
Dingqi Yang, Hailong Sun, and Philip S Yu. Harnessing multiple large language models: A survey
on llm ensemble. arXiv preprint arXiv:2502.18036, 2025.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

DeepSeek-AI. Deepseek llm: Scaling open-source language models with longtermism. arXiv preprint
arXiv:2401.02954, 2024. URL https://github.com/deepseek-ai/DeepSeek-LLM.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

BS Everitt and DJ Hand. Finite mixture distributions. Monographs on applied probability and
statistics Show all parts in this series, 1981.

10

https://anonymous.4open.science/r/Mixture-model-like-Ensemble/
https://anonymous.4open.science/r/Mixture-model-like-Ensemble/
https://github.com/deepseek-ai/DeepSeek-LLM

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Hieu Hoang, Huda Khayrallah, and Marcin Junczys-Dowmunt. On-the-fly fusion of large language
models and machine translation. arXiv preprint arXiv:2311.08306, 2023.

Yichong Huang, Xiaocheng Feng, Baohang Li, Yang Xiang, Hui Wang, Ting Liu, and Bing Qin.
Ensemble learning for heterogeneous large language models with deep parallel collaboration.
Advances in Neural Information Processing Systems, 37:119838–119860, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Tianlin Li, Qian Liu, Tianyu Pang, Chao Du, Qing Guo, Yang Liu, and Min Lin. Purifying large
language models by ensembling a small language model. arXiv preprint arXiv:2402.14845, 2024.

Jinliang Lu, Ziliang Pang, Min Xiao, Yaochen Zhu, Rui Xia, and Jiajun Zhang. Merge, ensemble,
and cooperate! a survey on collaborative strategies in the era of large language models. arXiv
preprint arXiv:2407.06089, 2024.

Costas Mavromatis, Petros Karypis, and George Karypis. Pack of llms: Model fusion at test-time via
perplexity optimization. arXiv preprint arXiv:2404.11531, 2024.

Mohammed Muqeeth, Haokun Liu, Yufan Liu, and Colin Raffel. Learning to route among specialized
experts for zero-shot generalization. In Proceedings of the 41st International Conference on
Machine Learning, pp. 36829–36846, 2024.

David Opitz and Richard Maclin. Popular ensemble methods: An empirical study. Journal of
artificial intelligence research, 11:169–198, 1999.

Oleksiy Ostapenko, Zhan Su, Edoardo Ponti, Laurent Charlin, Nicolas Le Roux, Lucas Caccia,
and Alessandro Sordoni. Towards modular llms by building and reusing a library of loras. In
International Conference on Machine Learning, pp. 38885–38904. PMLR, 2024.

Buu Phan, Brandon Amos, Itai Gat, Marton Havasi, Matthew Muckley, and Karen Ullrich. Exact
byte-level probabilities from tokenized language models for fim-tasks and model ensembles. arXiv
preprint arXiv:2410.09303, 2024.

Robi Polikar. Ensemble based systems in decision making. IEEE Circuits and systems magazine, 6
(3):21–45, 2006.

Lior Rokach. Ensemble-based classifiers. Artificial intelligence review, 33:1–39, 2010.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants, 2023.
URL https://huggingface.co/datasets/teknium/OpenHermes-2.5.

Teknium, theemozilla, karan4d, and huemin art. Nous hermes 2 mistral
7b dpo, 2024. URL [https://huggingface.co/NousResearch/
Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/
NousResearch/Nous-Hermes-2-Mistral-7B-DPO).

11

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO
https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO
https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. Openchat: Ad-
vancing open-source language models with mixed-quality data. arXiv preprint arXiv:2309.11235,
2023.

Yangyifan Xu, Jinliang Lu, and Jiajun Zhang. Bridging the gap between different vocabularies for
llm ensemble. arXiv preprint arXiv:2404.09492, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

Yuxuan Yao, Han Wu, Mingyang Liu, Sichun Luo, Xiongwei Han, Jie Liu, Zhijiang Guo, and Linqi
Song. Determine-then-ensemble: Necessity of top-k union for large language model ensembling.
arXiv preprint arXiv:2410.03777, 2024.

Yao-Ching Yu, Chun Chih Kuo, Ye Ziqi, Chang Yucheng, and Yueh-Se Li. Breaking the ceiling of
the llm community by treating token generation as a classification for ensembling. In Findings of
the Association for Computational Linguistics: EMNLP 2024, pp. 1826–1839, 2024.

Wenhao Zheng, Yixiao Chen, Weitong Zhang, Souvik Kundu, Yun Li, Zhengzhong Liu, Eric P Xing,
Hongyi Wang, and Huaxiu Yao. Citer: Collaborative inference for efficient large language model
decoding with token-level routing. arXiv preprint arXiv:2502.01976, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

This paper benefited from the use of Large Language Models (LLMs) as general-purpose assist tools.
Specifically, LLMs were used for two main purposes:

• Writing and Editing: LLMs were used to refine and improve the clarity, grammar, and
style of the manuscript.

• Coding Assistance: LLMs were utilized to assist with coding tasks, such as debugging and
generating code snippets.

The authors take full responsibility for the content of this paper, including any parts that were
generated or assisted by LLMs. LLMs were not involved in the research ideation, experimental
design, or data analysis. They are not considered eligible for authorship.

A.2 TESTED MODELS AND ABBREVIATIONS

Table 5: Tested Models and Abbreviations

Model Full Name

Qwen-3B Qwen2.5-3B-Instruct (Yang et al., 2024a)
Qwen-Math-1.5B Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024b)
Openchat Openchat-3.5-0106 (Wang et al., 2023)
Nous-Hermes Nous-Hermes-2-Mistral-7B-DPO (Teknium et al., 2024)
OpenHermes OpenHermes-2.5-Mistral-7B (Teknium, 2023)
Deepseek-7B Deepseek-LLM-7b-Chat (DeepSeek-AI, 2024)
Mistral-7B Mistral-7B-Instruct-v0.3 (Jiang et al., 2023)
Llama-3-8B Llama-3.1-8B-Instruct (Dubey et al., 2024)
Llama-3-3B Llama-3.2-3B-Instruct
Llama-3-1B Llama-3.2-1B-Instruct

A.3 MORE EXPERIMENTAL DETAILS

For evaluation, we used the full test set of the GSM8K dataset. For MMLU and ARC, due to the size
and category imbalance of their full test sets, we created balanced subsets. Specifically, we randomly
selected 20 samples per subcategory from MMLU to form a 1,140-sample subset. For ARC, we
sampled 50 instances from each subcategory to create a 1,350-sample subset.

All models were evaluated in a unified zero-shot setting with a temperature of 1. The specific prompts
used are provided in our code repository. For our main results, we performed a grid search to find the
optimal ensemble weights, using a step size of 0.1. The reported performance corresponds to this
optimal weight configuration.

A.4 ABLATION STUDY ON λ

A.5 POTENTIAL EXTENSIONS

We observe that the mixture-model-like ensemble is applicable not only to LLM ensembles but
also to broader forms of model combination. To illustrate this, consider a simple case where two
probability distributions, p(x) and q(x), are combined into a new distribution C(p(x), q(x)) through
some combination operation. If this combined distribution partially contains the original distribution
p(x)—specifically, there exists a parameter λ ∈ (0,1) such that the following inequality holds:

C(p(x), q(x)) ≥ λp(x), ∀x (4)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8
lambda

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Qwen-3B-Instruct
Qwen-Math-1.5B
CE
ME

(a) ❶ + ❷, GSM8K

0.2 0.4 0.6 0.8
lambda

0.40

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

Qwen-3B-Instruct
Qwen-Math-1.5B
CE
ME

(b) ❶ + ❷, MMLU

0.2 0.4 0.6 0.8
lambda

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

Qwen-3B-Instruct
Qwen-Math-1.5B
CE
ME

(c) ❶ + ❷, BBH

0.2 0.4 0.6 0.8
lambda

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

Openchat
Nous-Hermes-2
CE
ME

(d) ❸ + ❹, GSM8K

0.2 0.4 0.6 0.8
lambda

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

Openchat
Nous-Hermes-2
CE
ME

(e) ❸ + ❹, MMLU

0.2 0.4 0.6 0.8
lambda

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

Openchat
Nous-Hermes-2
CE
ME

(f) ❸ + ❹, BBH

Figure 4: Ablation study on λ. k is set to 5. Each point represents the mean of five independent runs,
with the shaded bands showing the 95% confidence intervals.

Then, the combined distribution C(p(x), q(x)) can be rewritten as:

C(p(x), q(x)) = C(p(x), q(x)) − λp(x) + λp(x)

= (1 − λ) [
1

1 − λ
(C(p(x), q(x)) − λp(x))] + λp(x)

= (1 − λ)C′(p(x), q(x)) + λp(x)

(5)

where the new distribution is defined as:

C
′
(p(x), q(x)) =

1

1 − λ
(C(p(x), q(x)) − λp(x)) (6)

Clearly, by definition, C′(p(x), q(x)) is non-negative and sums to 1; thus, it is a valid probability
distribution.

Hence, we transform the original combined distribution C(p(x), q(x)) into a mixture form of two
distributions (C′(p(x), q(x)) and p(x)), allowing us to apply the mixture-model-like ensemble for
more efficient inference. Specifically, at each generation step, we sample from p(x)with probability λ
and from the new distribution C′(p(x), q(x)) with probability (1−λ). Compared to the conventional
combination method (which requires a forward pass from both models at each step), this approach
only needs one forward pass under the λ case, thus significantly improving inference efficiency.

This basic example can be extended to more complex formulations. For instance, the combination
distribution C(p(x), q(x)) may contains transformations of p(x), such as p(x)2 or Top-k(p(x)).
In such cases, the generation process samples from norm (p(x)2) or norm (Top-k(p(x))) with
probability λ.

This concept also generalizes to more model combinations. For example, given n models in a combi-
nation distribution C(p1(x), . . . , pn(x)), one might form a sub-combination C′(pi1(x), . . . , pik(x))
using only k of the models (k < n). With probability λ, sampling is then restricted to these k models,
reducing computational cost and improving inference efficiency.

However, a systematic analysis of such extensions still requires further study. For instance, which
combination structures are “separable,” and how should the optimal separation strategy be determined?
These issues are left for future work.

14

	Introduction
	Related Work
	Mixture-model-like Ensemble
	Conventional LLM Ensemble
	Mixture-model-like Ensemble
	Ensembling with Heterogeneous Vocabularies
	Unifying LLM Ensembling and Token-level Routing

	Experiments
	Experimental Setup
	Ensembling on similar and heterogeneous models
	Ensembling models of different sizes
	Further Analysis

	Discussion
	Appendix
	The Use of Large Language Models
	Tested Models and Abbreviations
	More Experimental Details
	Ablation study on lambda
	Potential Extensions

