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ABSTRACT

Model ensembling is a well-established technique for improving the performance
of machine learning models. Conventionally, this involves averaging the output
distributions of multiple models and selecting the most probable label. This idea
has been naturally extended to large language models (LLMs), yielding improved
performance but incurring substantial computational cost. This inefficiency stems
from directly applying conventional ensemble implementation to LLMs, which
require a separate forward pass for each model to explicitly compute the ensemble
distribution. In this paper, we revisit this conventional assumption and find that
ensembling in the context of LLMs is fundamentally different. Unlike conventional
models, LLMs typically generate tokens by sampling from the output distribution
rather than selecting the top prediction via argmax. This key distinction enables
us to reinterpret LLM ensembling as a mixture model. Under this perspective,
one can sample from the ensemble distribution by simply selecting a single model
at random and sampling from its output, which avoids the need to compute the
full ensemble distribution explicitly. We refer to this approach as the Mixture-
model-like Ensemble (ME). ME is mathematically equivalent to sampling from
the ensemble distribution, but requires invoking only one model, making it
1.78×-2.68× faster than conventional ensemble. Furthermore, this perspective
connects LLM ensembling and token-level routing methods, suggesting that LLM
ensembling is a special case of routing methods. Our findings open new avenues for
efficient LLM ensembling and motivate further exploration of token-level routing
strategies for LLMs. Our code is available at https://anonymous.4open.
science/r/Mixture-model-like-Ensemble/.

1 INTRODUCTION

“The work of science is to substitute facts for appearances, and demonstrations for
impressions.”

— John Ruskin

In both conventional machine learning and deep learning, model ensembling has been a well-
established technique for improving performance by combining the outputs of multiple weaker base
models (Opitz & Maclin, 1999; Polikar, 2006; Rokach, 2010). In classification tasks, a common
practice is to average the predicted probability distributions from several models and select the class
with the highest aggregated probability (Rokach, 2010). This idea has been naturally extended to large
language models (LLMs). Specifically, when predicting the next token, researchers similarly average
the output distributions of multiple LLMs and sample a token from the averaged distribution (Yu et al.,
2024; Huang et al., 2024; Xu et al., 2024; Yao et al., 2024; Mavromatis et al., 2024), as illustrated
in Figure 1(a). By leveraging the complementary strengths of individual models, this method can
improve the quality of generated text.

However, in the context of LLMs, ensemble methods are often considered too expensive and inefficient
for practical use. An ensemble of n models requires n forward passes, making inference n times more
expensive than with a single model. Although in theory, we can parallelize the ensemble by assigning
each model to a separate device and executing forward passes simultaneously, this approach rarely
achieves the expected speedup in practice. As shown in Table 4 and Figure 3, the parallel ensemble
(CE (Parallel)) provides only a small speed improvement compared to the sequential ensemble (CE
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(a) Conventional Ensemble (b) Mixture-model-like Ensemble

Prefix

Average

Sample
Prefix

Random

Select Sample

Figure 1: Comparison of (a) conventional ensemble and (b) mixture-model-like ensemble. Mp

andMq denote two distinct LLMs employed in the ensemble, with p(x) and q(x) indicating their
respective output distributions.

(Sequential)), where each model is invoked sequentially. This is because parallel ensemble requires
communication between devices for generating each token, and such overly frequent communication
results in significant time overhead.

In addition, existing studies have attempted to mitigate the high inference overhead of LLM ensembles
by reducing ensemble frequency (Yu et al., 2024) or limiting the vocabulary size (Yao et al., 2024).
However, these methods offer only limited improvement. This is because, during ensemble, each
model still must execute a forward pass to explicitly compute the ensemble distribution, which
remains the core speed bottleneck unresolved. In this paper, we revisit this standard paradigm in
LLM ensembling and pose a central question:

Does a large language model ensemble truly require invoking all models?

Surprisingly, we find that ensembling LLMs does not inherently require invoking all models. In
fact, ensembling n LLMs can be achieved by invoking only one model, resulting in inference
speeds comparable to a single model. We hypothesize that the common belief that “LLM ensembling
is slow” stems from the conventional machine learning ensemble paradigm, which has influenced
both the perception and implementation of LLM ensembles. However, our findings reveal that LLM
ensembling fundamentally differs from conventional ensemble methods.

Let’s reconsider how conventional machine learning models make predictions. Typically, a model
outputs a set of scores for each possible label, which are then normalized to sum to one using a
function like softmax. These normalized scores are often described as a ”probability distribution”
over labels. However, they are not truly used as probabilistic distributions in practice. That is, we will
not sample a label from this distribution as the final prediction. Instead, the standard practice is to
select the label with the highest score as the prediction. This same approach is used when ensembling
multiple models: We average the normalized scores from each model and select the label with the
highest average score (Rokach, 2010). This requires running all base models and computing the
averaged scores to make the final prediction.

In contrast, LLMs treat output distributions differently. During generation, tokens are typically
sampled from the predicted distribution rather than selected via argmax. When ensembling LLMs,
a common method is to sample from the average of the individual model distributions. Unlike
previous methods, which require explicitly computing this ensemble distribution by invoking all
models, we find that the equivalent result can be achieved by simply select a single model at random
and then sample from its distribution. We prove that the resulting tokens have the same distribution
as those sampled from the full ensemble, offering equivalent results with conventional ensembles
and with significantly greater efficiency. This sampling procedure is analogous to sampling from a
mixture model such as the Gaussian Mixture Model (Everitt & Hand, 1981), where one first selects a
component at random and then samples from its distribution.

This mixture-model perspective leads to an equivalent but significantly faster ensemble algorithm,
which we refer to as the Mixture-model-like Ensemble (ME). It also provides a conceptual bridge
between LLM ensemble methods and token-level routing, where a router selects an appropriate LLM
at each generation step to improve performance or efficiency (Belofsky, 2023; Muqeeth et al., 2024;
Ostapenko et al., 2024). In token-level routing, if we randomly assign the input to one of the LLMs,
the method becomes operationally equivalent to ME, where the output tokens follow the ensemble
distribution. From this perspective, LLM ensemble can be interpreted as the simplest case of routing.
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Token-level routing methods, by incorporating input-specific signals into the routing decision, may
thus be viewed as a more general and potentially more effective extension of ensemble techniques.

We conducted a comprehensive evaluation of our mixture-model-like ensemble using diverse configu-
rations, including ensembles of similar models, heterogeneous models, and models of varying sizes.
We tested our method across four datasets and multiple GPU devices. The results demonstrate that
its performance closely matches that of conventional ensembles, supporting our theoretical finding.
Moreover, in terms of inference speed, the proposed method significantly outperforms both sequential
and parallel conventional ensembles, achieving runtime efficiency comparable to that of a single
model and approaching the theoretical limit. This significantly enhances the practicality of LLM
ensembles in real-world applications. Our contributions are as follows:

1. We propose a new way of understanding LLM ensembling by framing it as a mixture model.
To the best of our knowledge, this is the first work to formally establish this connection.

2. This perspective naturally lends to a new ensemble method, which we call the Mixture-
model-like Ensemble (ME). ME is 1.78× - 2.68× faster than conventional ensembling while
achieving equivalent performance.

3. Furthermore, this perspective also provides a conceptual link between LLM ensembling and
token-level routing. In particular, LLM ensembling can be interpreted as the simplest case
of routing. This connection may offer valuable insights for future research.

2 RELATED WORK

LLM ensembling. LLM ensembling has been shown to enhance both performance and safety (Hoang
et al., 2023; Li et al., 2024; Lu et al., 2024; Chen et al., 2025). Research on this topic primarily
addresses two key challenges. First, methods are needed to align the vocabularies of different models.
Approaches to this include using a unified vocabulary (e.g., a union of all vocabularies) (Yu et al.,
2024; Yao et al., 2024; Phan et al., 2024) or transforming outputs into a shared, latent space (Huang
et al., 2024; Xu et al., 2024). Second, researchers explore how to configure the ensemble, focusing on
the choice of base models and their respective weights (Yao et al., 2024; Yu et al., 2024; Mavromatis
et al., 2024).

Our work aims to provide an understanding of LLM ensembling from the perspective of mixture
models. While issues like vocabulary alignment, model selection, and weight tuning are important,
they are treated as orthogonal to our main focus.

Token-level routing & Mixture-of-Experts (MoE). Token-level routing methods typically involve
training a router and dynamically routing the current input to the most appropriate model (Belofsky,
2023; Muqeeth et al., 2024; Ostapenko et al., 2024), while MoE involves training exports as well as
the router, achieving better performance but involving more training parameters (Jiang et al., 2024;
Dai et al., 2024).

ME, token-level routing, and MoE are all techniques that use efficient collaboration to improve LLMs.
While they share this high-level goal, they differ in their fundamental approach and the specific
trade-offs they make between training efficiency and performance.

As shown in Table 1, the primary distinction
among these methods lies in their training and
performance characteristics. In terms of infer-
ence, all three maintain a similar speed to that
of a single model, making them considerably
faster than conventional ensemble methods,
which require executing n separate models.
However, their training requirements and cor-
responding performance gains vary greatly:

Table 1: Comparison of ME and other related works.

Method Inference
Efficiency

Training
Efficiency

Performance
Improvement

CE ★ ★★★ ★
ME ★★★ ★★★ ★
Routing ★★★ ★★ ★★
MoE ★★★ ★ ★★★

ME offers a simple, ”plug-and-play” solution with no additional training cost, but it provides a
relatively modest performance improvement. Token-level routing requires the extra cost of training
a separate router but can yield greater performance gains. MoE represents the highest training
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investment, requiring not only the training of a router but also the training of each expert’s parameters
from scratch. However, this higher cost typically translates into the most substantial performance
boost.

Ultimately, MoE is the preferred choice when the primary objective is to maximize performance and
computational resources are not a concern. In contrast, for a simple, low-cost approach to enhancing
a model’s performance without any additional training, ME stands out as a highly practical solution.

3 MIXTURE-MODEL-LIKE ENSEMBLE

3.1 CONVENTIONAL LLM ENSEMBLE

Unlike standard decoding, which relies on a single model’s output distribution to generate the next
token, conventional LLM ensembling combines outputs from multiple models during decoding.
In particular, it aggregates the predicted next-token distributions from n different LLMs through
averaging or weighted averaging to form an ensemble distribution. The next token is then sampled
from this combined distribution. Prior studies have shown that this approach often leads to better
performance compared to using a single model alone.

Specifically, let the input prefix be x≤t, where t ∈ N represents its length. Let V be the set of all
possible tokens. We consider an ensemble of n different LLMs, denotedM1, . . . ,Mn. For a given
prefix x≤t, each modelMi outputs a prediction distribution over the next token y ∈ V , expressed
asMi(y ∣ x≤t). The ensemble assigns a weight λi ≥ 0 to each model, where the weights sum to
one: ∑n

i=1 λi = 1. Under this standard ensembling framework, the probability of generating token y
at position t + 1, conditioned on the prefix x≤t, is computed as the weighted sum of the individual
model predictions:

P (xt+1 = y ∣ x≤t) =
n

∑
i=1

λiMi(y ∣ x≤t). (1)

During inference, each model in the ensemble performs a forward pass—either sequentially or in
parallel—to produce its prediction distribution over the next token. These distributions are then
combined as formalized in Equation (1) to form the ensemble distribution. The next token is then
sampled from this ensemble distribution. This process is applied iteratively at each generation step to
produce the full output sequence. The overall procedure is outlined in pseudo-code in Algorithm 1.

Algorithm 1 Conventional LLM Ensemble.

Ensure: base modelsM1, . . . ,Mn; ensemble
weights λ1, . . . , λn ; prefix sequence x≤t.

1: S ← x≤t
2: while not finish do
3: for i = 1→ n do
4: Pi ←Mi(y ∣ S)
5: end for
6: P̄ ← ∑

n
i=1 λiPi

7: xt+1 ← P̄ ▷ Sample from ensemble
8: S ← S + xt+1

9: end while
10: return S

Algorithm 2 Mixture-model-like Ensemble.

Ensure: base modelsM1, . . . ,Mn; ensemble
weights λ1, . . . , λn ; prefix sequence x≤t.

1: S ← x≤t
2: while not finish do
3: ▷ Randomly select an index based on the

ensemble weights λ1, . . . , λn

4: i← RANDOMINDEX(λ1, . . . , λn)
5: Pi ←Mi(y ∣ S)
6: xt+1 ← Pi ▷ Sample from Pi

7: S ← S + xt+1

8: end while
9: return S

3.2 MIXTURE-MODEL-LIKE ENSEMBLE

In conventional LLM ensemble methods, each model independently performs a forward pass, and
their output distributions are explicitly averaged to form an ensemble distribution. This combined
distribution is then used to sample the next token. While this approach is straightforward, it requires
evaluating all models, which can be computationally expensive.

However, as previously discussed in Section 1, we find that this explicit computation is not necessary.
Given a set of ensemble weights λ1, . . . , λn over n models, we can instead sample an index i from
the multinomial distribution Multinomial(λ1, . . . , λn) and use only the corresponding modelMi to

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

generate the next token. This stochastic selection ensures that the overall distribution of generated
tokens still matches that of the full ensemble.

To further illustrate this equivalence, consider a prefix x≤t. The probability of generating a token x′

from this mixture-model-like ensemble is given by P (x = x′ ∣ x≤t). Then, we have:

P (x = x′ ∣ x≤t) =
n

∑
i=1

P (modelMi is selected) ⋅ P (x′ is generated byMi)

=
n

∑
i=1

λiMi(y ∣ x≤t).

(2)

As shown in Equation (1) and Equation (2), both the mixture-model-like ensemble and the conven-
tional ensemble yield identical token distributions, thereby ensuring equivalent generation quality.

This method introduces randomness earlier in the generation process. In typical sampling, while the
token selection is random, it is drawn from a fixed distribution, so the sampled token follows that
specific distribution. However, a mixture model introduces an additional level of randomness by also
randomizing the choice of distribution itself. As a result, the sampled tokens reflect the combined
behavior of all distributions in the mixture, rather than any single one.

During inference, at each token generation step, a single model from the ensemble is sampled based
on the ensemble weights λ1, . . . , λn and used to perform a forward pass, producing a probability
distribution over the next token. A token is then sampled from this distribution. This process is
repeated iteratively at each step to generate the full output sequence. The complete procedure is
presented in pseudo-code in Algorithm 2.

3.3 ENSEMBLING WITH HETEROGENEOUS VOCABULARIES

In this section, we introduce how to apply ME to model ensembles that use heterogeneous vocabularies.
In practice, different models often have their own unique vocabularies, which makes it impossible
to average their probability distributions directly. To address this, prior work has developed various
vocabulary alignment methods (Yu et al., 2024; Yao et al., 2024; Phan et al., 2024). These methods
typically involve creating a unified vocabulary and then mapping each model’s probability distribution
to it before combining them.

Specifically, let’s consider n LLMs,M1, . . . ,Mn, with their respective vocabularies, V1, . . . ,Vn.
Their next-token prediction distributions are P1, . . . , Pn. We can define a transformation function,
Fi ∶ Pi → P̃i, that maps the probability distribution Pi from vocabulary Vi to a new distribution P̃i

on the unified vocabulary U . The ensemble distribution from Equation (2) can then be rewritten as:

P (x = x′ ∣ x≤t) =
n

∑
i=1

λiFi [Mi(y ∣ x≤t)] , x′ ∈ U . (3)

ME can seamlessly integrate any vocabulary alignment method, making it suitable for models with
different vocabularies. Specifically, in each generation step, ME simply needs to randomly select
a model (e.g.,Mi), perform a forward pass to get its probability distribution Pi(y∣x≤t), and then
apply transformation function Fi to obtain the new distribution P̃i = Fi[Pi(y∣x≤t)]. A new token is
then sampled from P̃i. This means that in Algorithm 2, we simply replace line 5’sMi(y ∣ x≤t) with
Fi [Mi(y ∣ x≤t)]. In this paper, we use UniTe (Yao et al., 2024) for vocabulary alignment.

3.4 UNIFYING LLM ENSEMBLING AND TOKEN-LEVEL ROUTING

Token-level routing is another strategy for enabling collaboration among LLMs. It typically involves
a trained router and multiple specialized, heterogeneous models. At each generation step, the router
selects the most suitable model based on the current input prefix x≤t, and the chosen expert generates
the next token. This approach aims to enhance overall performance or efficiency.

We find that ME provides a natural bridge between LLM ensembling and token-level routing.
Specifically, if we design a simple router that randomly selects one expert at each generation step
to process the input, the resulting behavior is effectively equivalent to ME. From this perspective,
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this random routing mechanism essentially ensembles multiple experts. Conversely, we can interpret
LLM ensembling as the most basic version of token-level routing.

This unified view allows us to compare the two approaches in terms of the tradeoff between perfor-
mance and training cost. While both achieve similar inference speeds, token-level routing offers
the potential for better performance by making informed routing decisions based on input content.
However, this benefit comes at the cost of training a router, which adds computational overhead. In
contrast, LLM ensembling requires no additional training—once multiple models are available, they
can be used directly—making it a training-free, plug-and-play alternative.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models for ensemble. To thoroughly evaluate our approach, we test a variety of model combinations,
categorized into three key scenarios:

1. Ensembling similar models: This category combines models that share the same architecture
and vocabulary but were trained on different datasets. For our experiments, we use (Qwen-
3B1, Qwen-Math-1.5B) and (Openchat, Nous-Hermes) for a two-model ensemble, and use
(OpenHermes, Openchat, and Nous-Hermes) for a three-model ensemble.

2. Ensembling heterogeneous models: In this scenario, we combine models with distinct
architectures, vocabularies, and training data. For our experiments, we use (Openchat,
Deepseek-7B, Mistral-7B).

3. Ensembling models of different sizes. For this scenario, we use (Llama-3-8B, Llama-3-1B)
and (Llama-3-8B, Llama-3-3B).

This configuration covers several mainstream model series, such as Qwen and Llama, ensuring a
broad and robust evaluation.

Datasets and evaluation. We evaluated our method across multiple tasks, including mathematical
reasoning (GSM8K (Cobbe et al., 2021)), multi-task understanding (MMLU (Hendrycks et al., 2021)),
complex logical reasoning (BBH (Suzgun et al., 2022)), and general knowledge (ARC (Clark et al.,
2018)). For each dataset, we measured both accuracy and speed. For accuracy, we ran five separate
experiments and reported the average score. For speed, we measured the number of tokens generated
per second. All speed tests were performed on an H100 GPU unless specified otherwise.

Compared methods. In our experimental setup, we evaluated three main approaches: 1) Single
Model — using a single model for direct inference without ensembling; 2) Conventional Ensemble
(CE), as described in Section 3.1; and 3) Mixture-model-like Ensemble (ME), as described in
Section 3.2. Inspired by UniTe (Yao et al., 2024), we employ the top-k ensembling strategy to align
vocabulary and enhance performance.

To further analyze inference speed, we divided CE into two variants: sequential CE, which invokes
each model one after another, and parallel CE, which runs models concurrently on separate GPUs. For
the parallel CE, we use the GaC (Yu et al., 2024) implementation. Note that the speed we reported may
differ from those in prior work (Yu et al., 2024; Yao et al., 2024), as we enable key-value caching—a
configuration more reflective of real-world applications. Further details of the experimental setup can
be found in Appendix A.3.

4.2 ENSEMBLING ON SIMILAR AND HETEROGENEOUS MODELS

Table 2 and 3 show the performance of ensembling using similar and heterogeneous models, respec-
tively, while Table 4 presents their corresponding inference speeds. Our results lead to three key
observations:

First, our experiments confirm that ME and CE have equivalent performance. As shown in Tables
2 and 3, ME’s performance is consistently on par with CE, whether the ensemble includes two or

1To ensure brevity, we use abbreviations for model names. For example, Qwen-3B refers to Qwen2.5-3B-
Instruct. A comprehensive list of all models and their full names can be found in Table 5.
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Table 2: Performance comparison of ME and other baselines on ensembling similar models. The
numbers in parentheses (+x / −y) indicate the performance gain or drop of the ensemble model
compared to the best single model.

Model GSM8K MMLU BBH ARC

❶ Qwen-3B 79.77 66.75 51.94 81.81

❷ Qwen-Math-1.5B 79.39 39.54 39.75 46.23

Two model ensembling: ❶ + ❷

CE (k = 5) 83.14 (+3.37) 66.05 (−0.70) 52.74 (+0.80) 81.14 (−0.67)

ME (k = 5) 82.97 (+3.20) 65.61 (−1.14) 53.04 (+1.10) 81.12 (−0.69)

CE (k = 10) 82.62 (+2.85) 66.67 (−0.08) 52.25 (+0.31) 81.57 (−0.24)

ME (k = 10) 82.83 (+3.06) 67.90 (+1.15) 52.51 (+0.57) 81.10 (−0.71)

❸ Openchat 68.02 56.47 44.85 73.39

❹ Nous-Hermes 67.11 58.37 46.72 73.02

❺ OpenHermes 67.59 59.84 47.13 75.25

Two model ensembling: ❸ + ❹

CE (k = 5) 69.34 (+1.32) 60.60 (+2.23) 48.12 (+1.40) 78.84 (+5.45)

ME (k = 5) 69.11 (+1.09) 60.95 (+2.58) 47.33 (+1.22) 78.78 (+5.39)

CE (k = 10) 68.19 (+0.17) 60.28 (+1.91) 47.82 (+1.10) 78.70 (+5.31)

ME (k = 10) 68.74 (+0.72) 60.63 (+2.26) 47.25 (+0.53) 80.06 (+6.67)

Three model ensembling: ❸ + ❹ + ❺

CE (k = 5) 69.05 (+1.03) 60.60 (+0.76) 47.82 (+0.69) 78.38 (+3.13)

ME (k = 5) 69.42 (+1.40) 59.97 (+0.13) 48.04 (+0.91) 78.42 (+3.17)

CE (k = 10) 68.47 (+0.45) 61.19 (+1.35) 46.87 (−0.26) 77.34 (+2.09)

ME (k = 10) 67.93 (−0.09) 60.80 (+0.96) 47.40 (+0.27) 76.29 (+1.04)

more similar or heterogeneous models. This finding strongly supports our theoretical conclusion,
outlined in Section 3.2, that these two ensembling methods are fundamentally equivalent.

Second, ME is significantly faster. Table 4 shows that ME’s inference speed is consistently much
higher than both Sequential CE and Parallel CE across all configurations. Impressively, ME’s
speed approaches the maximum theoretical limit—the speed of a single model—which highlights its
efficiency. We also observed that Parallel CE provides only a slight speed increase over Sequential
CE. This is likely due to the significant overhead from frequent GPU communication during parallel
implementation.

Third, adding more models doesn’t always improve performance. While model ensembling
generally boosts performance, there isn’t a guarantee of continuous gains by adding more models.
For example, on all datasets except MMLU, where the ❸ + ❹ + ❺ configuration did not perform
better than ❸ + ❹. This suggests that the best number of models for an ensemble should be carefully
chosen based on the specific task and the models’ characteristics.

4.3 ENSEMBLING MODELS OF DIFFERENT SIZES

As shown in Figure 2, ensembling models of different sizes with ME presents a trade-off between
performance and speed. This is because larger models typically offer better performance but are
slower, while smaller models are faster but less accurate. By combining them, ME balances these
two factors. The hyperparameter λ controls this balance: a higher value for λ prioritizes performance
over speed. If λ is set to either 0 or 1, ME is equivalent to using a single model.

7
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Table 3: Performance comparison of ME and other baselines on ensembling heterogeneous models.

Model GSM8K MMLU BBH ARC

❻ Openchat 68.02 56.47 44.85 73.39

❼ Deepseek-7B 53.63 46.10 36.02 56.41

❽ Mistral-7B 46.90 56.22 41.25 68.75

Three heterogeneous model ensembling: ❻ + ❼ + ❽

CE (k = 5) 69.20 (+1.18) 57.98 (+1.51) 45.61 (+0.76) 75.00 (+1.61)

ME (k = 5) 69.86 (+1.84) 57.79 (+1.32) 45.76 (+0.91) 74.19 (+0.80)

CE (k = 10) 68.23 (+0.21) 58.50 (+2.03) 44.96 (+0.11) 78.69 (+5.30)

ME (k = 10) 67.81 (−0.21) 58.46 (+1.99) 45.38 (+0.53) 78.58 (+5.19)

Table 4: Speed comparison of ME and other baselines. The numbers in parentheses indicate the
speedup relative to Sequential CE. Individual model speeds (in gray) are provided for reference, but
aren’t directly comparable to the ensemble methods.

Method ❶ + ❷ ❸ + ❹ ❸ + ❹ + ❺ ❻ + ❼ + ❽

Single Model 63.68 (1.95×) 54.83 (2.01×) 54.71 (3.13×) 54.42 (3.16×)

CE (Sequential) 32.71 (1.00×) 27.16 (1.00×) 17.43 (1.00×) 17.21 (1.00×)

CE (Parallel) 34.58 (1.05×) 34.24 (1.26×) 31.74 (1.82×) 31.55 (1.83×)

ME (Ours) 58.25 (1.78×) 51.33 (1.89×) 46.22 (2.65×) 46.17 (2.68×)

It’s important to note that this trade-off management is not the main purpose of ME; it’s an incidental
benefit of ensembling models of different sizes. For tasks where the goal is specifically to control
these trade-offs, ME may not be as effective as specialized methods like token-level routing (Zheng
et al., 2025).

4.4 FURTHER ANALYSIS

Speedup on other common devices. Our primary speed tests were conducted on H100 GPUs, but we
also evaluated speed on other common devices, including the RTX 3090, V100, and A100. For these
tests, we used three pairs of models with varying sizes: (Qwen-1.5B, Qwen-Math-1.5B), (Qwen-3B,
Qwen-Coder-3B), and (Qwen-7B, Qwen-Math-7B).

As shown in Figure 3, the results are consistent with our primary findings in Section 4.2: ME is
significantly faster than both sequential and parallel CE, and its speed is comparable to that of a
single model inference. These findings demonstrate the robustness of the ME method across different
hardware configurations.

An interesting finding on the RTX 3090 was that parallel CE was slower than sequential CE. This
is likely due to the slower inter-GPU communication speed of the RTX 3090, which introduces
significant overhead and negates the benefits of parallelization.

Ablation on lambda. We conducted an ablation study on λ using two model combinations: ❶
+ ❷ and ❸ + ❹. The results, shown in Figure 4, reveal two key findings: 1) The performance of
ME consistently aligns with CE across different values of λ. This consistency further supports the
equivalence of the two methods; 2) The ensemble effect’s sensitivity to λ depends on the performance
difference between the individual models. When the models have similar performance, the ensemble’s
result is not significantly affected by λ. Conversely, when there’s a larger performance gap between
the two models, the ensemble effect changes significantly and follows a monotonic trend, as shown
in Figure 4 (b).
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Figure 2: When ensembling models with different sizes, the trend of ME’s performance and speed
changing with λ. Here, λ = 0 indicates that only the smaller model is used for inference, while λ = 1
indicates that only the larger model is used.
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Figure 3: Speed comparison of ME and other baselines on three other common device types, using
three model pairs of varying sizes.

5 DISCUSSION

Limitations. One limitation of our work is that the proposed mixture-model perspective is applicable
when next-token sampling is used during generation—that is, when tokens are drawn probabilistically
from the prediction distribution. However, in scenarios where greedy decoding is preferred—selecting
the token with the highest probability—the mixture-model perspective no longer holds. In such cases,
a full forward pass must still be performed for each model.

Potential Extensions. In this work, we focus on LLM ensemble methods that combine different
model outputs using a weighted average. We believe this foundational approach can be extended to a
wider range of combination strategies. A detailed discussion of these potential extensions is provided
in Appendix A.5.

Conclusion. In this paper, we revisit the ensemble paradigm for large language models (LLMs) and
introduce a novel perspective by framing LLM ensembling as a mixture model. From this viewpoint,
we first naturally derive an algorithm that is equivalent in output to conventional ensemble methods
but significantly more efficient. We term this algorithm the Mixture-model-like Ensemble. Second,
we reveal a connection between two previously distinct research directions: LLM ensembling and
token-level routing. We find that LLM ensembling can be interpreted as the most fundamental form
of token-level routing. Extensive experiments across diverse datasets, model pairs, and GPU devices
empirically support our findings. We hope this new perspective can provide valuable insights for
future work on collaborative decoding in LLMs.
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We are not aware of any potential risks related to bias, fairness, or security that arise specifically from
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model-like Ensemble (ME) method is mathematically simple and intuitive, with a clear and rig-
orous proof of its equivalence to conventional ensembling provided in Section 3.2 of the main
text. Furthermore, the complete source code for our method and all experiments has been made
publicly available in an anonymous repository at https://anonymous.4open.science/
r/Mixture-model-like-Ensemble/. All datasets utilized in our experiments are publicly
available, and we provide a comprehensive description of our experimental setup, hyperparameters,
and data preprocessing steps in Section 4.1 and Appendix A.3 to enable full replication of our results.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

This paper benefited from the use of Large Language Models (LLMs) as general-purpose assist tools.
Specifically, LLMs were used for two main purposes:

• Writing and Editing: LLMs were used to refine and improve the clarity, grammar, and
style of the manuscript.

• Coding Assistance: LLMs were utilized to assist with coding tasks, such as debugging and
generating code snippets.

The authors take full responsibility for the content of this paper, including any parts that were
generated or assisted by LLMs. LLMs were not involved in the research ideation, experimental
design, or data analysis. They are not considered eligible for authorship.

A.2 TESTED MODELS AND ABBREVIATIONS

Table 5: Tested Models and Abbreviations

Model Full Name

Qwen-3B Qwen2.5-3B-Instruct (Yang et al., 2024a)
Qwen-Math-1.5B Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024b)
Openchat Openchat-3.5-0106 (Wang et al., 2023)
Nous-Hermes Nous-Hermes-2-Mistral-7B-DPO (Teknium et al., 2024)
OpenHermes OpenHermes-2.5-Mistral-7B (Teknium, 2023)
Deepseek-7B Deepseek-LLM-7b-Chat (DeepSeek-AI, 2024)
Mistral-7B Mistral-7B-Instruct-v0.3 (Jiang et al., 2023)
Llama-3-8B Llama-3.1-8B-Instruct (Dubey et al., 2024)
Llama-3-3B Llama-3.2-3B-Instruct
Llama-3-1B Llama-3.2-1B-Instruct

A.3 MORE EXPERIMENTAL DETAILS

For evaluation, we used the full test set of the GSM8K dataset. For MMLU and ARC, due to the size
and category imbalance of their full test sets, we created balanced subsets. Specifically, we randomly
selected 20 samples per subcategory from MMLU to form a 1,140-sample subset. For ARC, we
sampled 50 instances from each subcategory to create a 1,350-sample subset.

All models were evaluated in a unified zero-shot setting with a temperature of 1. The specific prompts
used are provided in our code repository. For our main results, we performed a grid search to find the
optimal ensemble weights, using a step size of 0.1. The reported performance corresponds to this
optimal weight configuration.

A.4 ABLATION STUDY ON λ

A.5 POTENTIAL EXTENSIONS

We observe that the mixture-model-like ensemble is applicable not only to LLM ensembles but
also to broader forms of model combination. To illustrate this, consider a simple case where two
probability distributions, p(x) and q(x), are combined into a new distribution C(p(x), q(x)) through
some combination operation. If this combined distribution partially contains the original distribution
p(x)—specifically, there exists a parameter λ ∈ (0,1) such that the following inequality holds:

C(p(x), q(x)) ≥ λp(x), ∀x (4)
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Figure 4: Ablation study on λ. k is set to 5. Each point represents the mean of five independent runs,
with the shaded bands showing the 95% confidence intervals.

Then, the combined distribution C(p(x), q(x)) can be rewritten as:

C(p(x), q(x)) = C(p(x), q(x)) − λp(x) + λp(x)

= (1 − λ) [
1

1 − λ
(C(p(x), q(x)) − λp(x))] + λp(x)

= (1 − λ)C′(p(x), q(x)) + λp(x)

(5)

where the new distribution is defined as:

C
′
(p(x), q(x)) =

1

1 − λ
(C(p(x), q(x)) − λp(x)) (6)

Clearly, by definition, C′(p(x), q(x)) is non-negative and sums to 1; thus, it is a valid probability
distribution.

Hence, we transform the original combined distribution C(p(x), q(x)) into a mixture form of two
distributions (C′(p(x), q(x)) and p(x)), allowing us to apply the mixture-model-like ensemble for
more efficient inference. Specifically, at each generation step, we sample from p(x)with probability λ
and from the new distribution C′(p(x), q(x)) with probability (1−λ). Compared to the conventional
combination method (which requires a forward pass from both models at each step), this approach
only needs one forward pass under the λ case, thus significantly improving inference efficiency.

This basic example can be extended to more complex formulations. For instance, the combination
distribution C(p(x), q(x)) may contains transformations of p(x), such as p(x)2 or Top-k(p(x)).
In such cases, the generation process samples from norm (p(x)2) or norm (Top-k(p(x))) with
probability λ.

This concept also generalizes to more model combinations. For example, given n models in a combi-
nation distribution C(p1(x), . . . , pn(x)), one might form a sub-combination C′(pi1(x), . . . , pik(x))
using only k of the models (k < n). With probability λ, sampling is then restricted to these k models,
reducing computational cost and improving inference efficiency.

However, a systematic analysis of such extensions still requires further study. For instance, which
combination structures are “separable,” and how should the optimal separation strategy be determined?
These issues are left for future work.
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