
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETRIEVAL-AUGMENTED EDITING GENERATION: IM-
PACT OF KNOWLEDGE EDITING AND FINE-TUNING ON
RAG

Anonymous authors
Paper under double-blind review

ABSTRACT

The knowledge embedded in Large Language Models (LLMs) is static, tied to the
time when the training data was collected. While Retrieval-Augmented Genera-
tion (RAG) methods are widely used to introduce new knowledge, they simply
rely on retrieved information for reasoning without integrating it into the model’s
parameters. This limits the model’s ability for long-term knowledge retention and
autonomous learning. To overcome this, in this work, we propose the Retrieval-
Augmented Editing Generation (RAEG) framework for open-domain question an-
swering (ODQA) tasks. RAEG enhances model generation performance by first
editing the retrieved paragraphs to inject necessary knowledge, followed by an
augmented generation phase. This dual mechanism—combining knowledge in-
jection and retrieval augmentation—provides complementary advantages in the
reasoning process. When the injected knowledge alone is insufficient for accu-
rate generation, the model can rely on the retrieved information to compensate,
and conversely, when retrieval yields suboptimal results, the injected knowledge
ensures continuity and accuracy in the response. This interplay between internal-
ized and externally sourced knowledge reinforces the model’s ability to produce
correct answers, thereby enhancing overall task performance. We explore the im-
pact of two key methods for knowledge injection: Knowledge Editing (KE) and
Parameter-Efficient Fine-Tuning (PEFT), and analyze how modifying the model’s
parameters influences its reasoning abilities and generation outcomes. To fur-
ther improve RAEG’s performance, we introduce a re-ranking mechanism to op-
timize the integration of external knowledge and apply parameter pruning to mit-
igate the potential drawbacks of parameter modifications during KE. Evaluations
on two authoritative ODQA benchmarks show that RAEG is able to further re-
place RAG as a competitive method. Our data and code will be available at
https://github.com/XXX/XXX.

1 INTRODUCTION

Large-scale pre-trained language models (LLMs) (Radford et al., 2019; Wang & Komatsuzaki, 2022;
Ouyang et al., 2022) leverage self-supervised learning on vast amounts of text to encode implicit
knowledge into their parameters, enabling high-quality language generation. However, the knowl-
edge embedded in these models is static, confined to the point in time when the training data was
collected. Leveraging the language understanding and generation capabilities acquired during pre-
training, large language models have achieved significant success across various practical applica-
tions. However, when confronted with more nuanced downstream tasks or unknown data knowledge,
relying solely on the internal knowledge reasoning of pre-trained language models often leads to is-
sues such as knowledge hallucination and knowledge gaps. These issues are primarily attributed to
the incompleteness, biases, and static nature of the training data. For example, in the open-domain
question answering (ODQA) (Voorhees & Tice, 2000) task, to address these challenges, researchers
adopted RAG-based (Lewis et al., 2020) fine-tuning techniques to generate high-quality responses
with the help of external knowledge specific to the current task.

RAG is a widely adopted approach for handling open-domain, knowledge-intensive tasks. It works
by retrieving relevant text paragraphs and incorporating them into the generation process to assist in

1

https://github.com/XXX/XXX

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Retrieval

Paragraph: Joseph Robinette

Biden Jr. (born November 20,

1942) is an American

politician who has been the

46th and current president of

the United States since

2021 …

Joe Biden

Editing fact: The current president of the United States is Joe Biden.

Query: Who is the

current president of

the US?
Query: Who is the

current president of the

US?

Joe Biden

(a) RAG mode (b) Knowledge Injection Mode (c) Knowledge injection + RAG mode

Figure 1: Methods across different modes: (a) Retrieval-Augmented Generation (RAG) mode:
Generate responses using the retrieved paragraphs. (b) Knowledge injection mode: Generate re-
sponses by injecting key knowledge into the model. (c) Combined RAG and knowledge injection
mode: A dual mechanism that first perform knowledge injection, followed by that combines RAG
for response generation.

answering questions. However, the model does not truly internalize this external information as its
own knowledge, instead relying on real-time retrieval to augment its reasoning capabilities. Thus,
knowledge editing (KE) (Zhang et al., 2024a) and parameter-efficient fine-tuning (PEFT) (Ding
et al., 2023) introduce more flexible approaches that goes beyond merely relying on real-time re-
trieval. By directly modifying specific internal parameters, the model can internalize external knowl-
edge. This enables not only the integration of new knowledge but also allows the model to more
rapidly adapt to constantly evolving task requirements. Compared to retrieval-dependent methods,
this approach offers faster and more stable responses in dynamic environments, as the model has
already internalized the necessary information, eliminating the need for repeated retrieval during
generation. Based on this, we propose the Retrieval-Augmented Editing Generatio (RAEG) frame-
work, which combines a knowledge-internalized model with retrieved information. This dual mech-
anism leverages the immediacy of internalized knowledge while also benefiting from supplementary
external retrieval, thereby improving the accuracy and consistency of the generation process.

In the course of our research, we found that adjusting model parameters may impair its performance
in RAG, as illustrated in figure 1. Figure (a) illustrates a scenario where only RAG is employed, and
the model is able to correctly answer the question ”Who is the current president of the US?” rely
on the retrieved paragraph. In figure (b), after applying knowledge injection via KE or PEFT, the
model still answer the question correctly. However, in figure (c), when both methods are combined,
the changes in model parameters may affect some of the model’s prior reasoning capabilities.

In this study, we focus on the ODQA task using the llama2-7B model (Touvron et al., 2023). We
explored methods of injecting new knowledge through KE and PEFT. Specifically, we extracted rel-
evant knowledge from retrieved text paragraphs and injected it into the initial model’s parameters
fθ using KE or PEFT, resulting in the edited model f∗

θ . Subsequently, we combined this model with
RAG to further enhance the accuracy of the generation process. We investigated the effects of KE
and PEFT on the model’s reasoning performance when integrated with RAG. Additionally, we in-
troduced a paragraph re-ranking mechanism to optimize the source of edited knowledge and applied
parameter pruning to mitigate the impact of knowledge editing method on the model’s reasoning
performance.

In summary, our contributions are as follows:

• We propose a novel Retrieval-Augmented Editing Generation (RAEG) paradigm, which
internalizes retrieved knowledge into the model’s parameters, reducing reliance on training
data in traditional RAG systems, and offering new insights for developing more robust
RAG frameworks.

• Through our experiments, we explored the impact of two knowledge injection meth-
ods—Knowledge Editing (KE) and Parameter-Efficient Fine-Tuning (PEFT)—on model
reasoning performance after parameter modification in the RAG framework.

• We introduce re-ranking and parameter pruning mechanisms, which further enhance the
performance of RAEG and mitigate the potential negative effects of KE on RAG.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We demonstrate the effectiveness of the RAEG framework on ODQA tasks across two QA
datasets, showing how the dual mechanism of internalized knowledge combined with re-
trieval can improve task performance, while discussing its potential applications and future
research directions.

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

End-to-end full fine-tuning, while being the simplest and most direct approach, becomes pro-
hibitively expensive as the scale of pre-trained models increases. To address this, Parameter-Efficient
Fine-Tuning (PEFT) (Ding et al., 2023; Lialin et al., 2023) techniques have been proposed, which
aim to achieve performance comparable to full fine-tuning by adjusting only fewer parameters.
PEFT methods are primarily categorized into three types: Additive PEFT (Zhu et al., 2021; Lei
et al., 2023; Chronopoulou et al., 2023), which involves inserting adapter modules into Transformer
blocks for fine-tuning; Selective PEFT (Sung et al., 2021; Liao et al., 2023), which selectively fine-
tunes a subset of existing parameters; and Reparameterization PEFT, which transforms the model
architecture into an equivalent form for training, such as LoRa (Hu et al., 2021), which uses low-rank
matrices for adjustments. Although selecting an appropriate rank for LoRA has been a significant
challenge, various derivatives of LoRA, such as DyLoRA (Valipour et al., 2023), AdaLoRA (Zhang
et al., 2023), and AutoLoRA (Zhang et al., 2024b), have emerged to address this issue. These tech-
niques enhance the efficiency of parameter tuning in large pre-trained models.

2.2 KNOWLEDGE EDITING (KE)

The KE methods of changing parameters mainly encompasses Meta-learning methods (De Cao
et al., 2021; Hase et al., 2023; Mitchell et al., 2022; Tan et al., 2024), which involve training a
hypernetwork to learn changes ∆W in model parameters, thus avoiding direct weight updates; and
Location-then-Edit methods (Meng et al., 2022; 2023; Li et al., 2024; Ma et al., 2023a), which
identify the locations within the model where knowledge is stored using causal traces (Meng et al.,
2022), and then perform edits on those specific regions. These approaches, by directly modifying
parameters of specific regions, enhance the model’s capability for knowledge updating.

2.3 RETRIEVAL-AUGMENTED GENERATION (RAG)

RAG (Lewis et al., 2020), also known as the retrieval-reading architecture (Ma et al., 2023b), en-
hances language models by integrating external information through retrieval. The naive RAG
method relies on basic retrieval and generation processes, but often suffers from inaccurate re-
sponse (Wu et al., 2024; Xiang et al., 2024) due to irrelevant or similar information. Advanced
RAG addresses these issues by optimizing indexing and query processes (Gao et al., 2023; Peng
et al., 2024), and employing techniques such as re-ranking (Nogueira et al., 2020; Ju et al., 2021)
and context compression (Xu et al., 2024; Cheng et al., 2024) to improve retrieval precision and
response quality.

3 PERFORMANCE OF KE AND PEFT IN RAG

3.1 BACKGROUND AND MOTIVATION

3.1.1 DEFINITION

Parameter-Efficient Fine-Tuning (PEFT). PEFT is an optimization method that freezes the major-
ity of the model’s parameters while updating only a small subset. It aims to reduce the computational
burden of fine-tuning while preserving the model’s original knowledge structure.

Knowledge Editing (KE). KE directly modifies parameters fθl in specific layer l of a model to ad-
just or update the embedded knowledge. This approach is typically employed to correct or introduce
new facts without retraining the entire model. By locally editing the model’s parameters, knowledge

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

editing enables the model to accurately reflect newly introduced knowledge during generation, al-
lowing it to produce answers that incorporate the most up-to-date information.

f∗
θl = KE(fθl , E), l ∈ L (1)

where E is the new knowledge to be edited, L is the set of specified editing layers.

Retrieval-Augmented Generation (RAG). RAG is a technique that combines retrieval and genera-
tion. Its core idea is to enhance the answering capability of generative models by retrieving relevant
documents dTop−k from external knowledge corpus D|N | = (d1, d2, ..., dN).

a = argmaxa[g(a | [dTop−k, q])]

dTop−k = argtop-k[Enc(di)
T · Enc(q)], (di ∈ D|N |) (2)

where g(·) represents the generative LLM. In the RAG framework, g(·) is denoted as fθ (base
model), whereas in our RAEG framework, it is represented as f∗

θ (post-edited model). Here, q and
a refer to the query and answer, respectively, and Enc(·) stands for the sentence encoding function
used within the retrieval system.

3.1.2 MOTIVATION

This section primarily explores the feasibility of knowledge injection within RAG systems through
knowledge editing (KE) and parameter-efficient fine-tuning (PEFT). It investigates whether targeted
adjustments to the model parameters can facilitate the integration of new question-answer pairs
while preserving the model’s original inferential capabilities, thereby enabling accurate derivation
of answers from retrieved paragraphs.

Based on the above motivation, we propose the following research questions to explore the potential
impact of KE and PEFT on the model’s knowledge representation, reasoning abilities, and genera-
tion quality within the RAG framework.

RQ 1: In the RAG framework, the model relies on externally retrieved knowledge for genera-
tion. Can KE and PEFT shift the model’s reliance from external knowledge to internally embedded
knowledge by injecting edited information, and how might this affect the quality and consistency of
the generated output?

RQ 2: Performing KE and PEFT on the original pre-trained model’s parameters will change the
model’s parameters and alter its knowledge representation. While this may enhance the model’s
understanding of specific knowledge, does the alteration of parameters impact the model’s original
capabilities, particularly its ability to rely on external knowledge for reasoning during generation?
If the alteration of parameters impacts the model’s original capabilities, which method—KE or
PEFT—has a greater impact on the model?

3.2 SELF-GENERATED OF SYNTHETIC KNOWLEDGE

To ensure that LLM can accurately answer the questions, it is crucial to provide correct editing facts.
We employed a prompt-based generation method in the preparation of synthetic data, a technique
that involves providing examples and instructions during model generation to guide the generation
of specific types of output, as shown in figure 2.

With the assistance of the large language model gpt-4o-mini (Ouyang et al., 2022), we constructed
a prompt that included a clear instruction Tinst, detailing the objectives and requirements of the
generation task, and specifying the desired style of information to be extracted from the paragraph.
Additionally, we provided several examples Texa consisting of paragraph-question-answer pairs to
illustrate the expected output style and format, aiding the model in understanding the desired style
and content for answer generation. And then specify the target paragraph Tpara to generate the
question-answer pairs, building the required synthetic question-answer set, which is our editing facts
E(Qsyn, Asyn). The prompt input into gpt-4o-mini is as follows. For details, please refer to table 8.

E(Qsyn, Asyn)← gpt-4o-mini(prompt)
prompt = Tinst ⊕ Texa ⊕ Tpara, (Tpara ∈ dTop−k) (3)

The core of this method is to guide the model in converting information from the paragraph into
synthetic question-answer pairs that align with the style of the examples through effective prompts.
This process significantly supports subsequent KE and PEFT.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

GPT – 4 mini

You are an assistant who is good at organizing questions and answers from paragraphs. Here is an example.

Paragraph: Battle of France The Paragraph: "on death row in the United States on January 1, 2013. Since 1977, the states of Texas (464),

Virginia (108) and Oklahoma (94) have executed the most death row inmates. , California (683), Florida (390), Texas (330) and Pennsylvania

(218) housed more than half of all inmates pending on death row. , the longest-serving prisoner on death row in the US who has been

executed …

1. Q: How many death row inmates did Texas execute since 1977?

A: 464

2. Q: Which state executed 108 death row inmates since 1977?

A: Virginia

…

Please follow the format of the example above to generate sixteen questions and corresponding answers for the following Paragraph.

The format of answers should be a very short phrase from paragraph, such as “464”, "2008", "“May 16th, 1931”, or “Jack Alderman”, to meet

the criteria of exact match Paragraph.

Paragraph: "{paragraph}"

Instruction Prompt

Figure 2: Self-generation of synthetic knowledge from retrieved paragraphs using prompt engineer-
ing to produce diverse and comprehensive question-answer pairs, which can be used for further
knowledge injection.

3.3 INJECTING SYNTHETIC KNOWLEDGE INTO LLM

3.3.1 FOR KNOWLEDGE EDITING

We selected the MALMEN (Tan et al., 2024) method for knowledge editing, as it is more effective
for editing free-text question-answer pairs and supports large-scale edits. We optimize the param-
eters of a specified layer using synthetic editing facts E(Qsyn, Asyn) with the goal of maximizing
the probability of the designated target Asyn. And further evaluate the capabilities of the post-edited
model on test question.

Since MALMEN employs meta-learning to train a hypernetwork for editing, our objective in the
context of the MALMEN method is to optimize the meta-learning hypernetwork H so that it can
directly generate suitable parameter adjustments ∆W l for a given editing facts at the lth layer.
Specifically, we aim for the hypernetwork to produce these adjustments based on the provided
(Qsyn, Asyn), thereby improving the model’s performance on new datas. To achieve this, we opti-
mize the cross entropy loss function LCELF , the processes is defined as follows.

H ′ = argminHLCELF (−logP(W+=H(Qsyn))[Asyn | Qsyn])

∆W l = H ′(Qsyn)

W ′l = W l +∆W l (4)

where, H denotes the initial hypernetwork, while H ′ represents the optimized hypernetwork. The
objective is to inject the Asyn as answer of Qsyn through adjusting ∆W l generated in the l-th layer
during optimization.

3.3.2 FOR PARAMETER-EFFICIENT FINE-TUNING

We employ Low-Rank Adaptation (LoRA) (Hu et al., 2021) as our Parameter-Efficient Fine-Tuning
(PEFT) method. LoRA introduces trainable low-rank matrices into the pre-trained model, allow-
ing us to fine-tune only a small subset of parameters while keeping the majority of the original
model frozen. For the task of Qsyn → Asyn (synthetic question-to-answer mapping), LoRA allows
efficient adaptation of the model by fine-tuning specific target modules. Specifically, the original
parameters W are kept frozen, and a small parameter matrix ∆W = A · B is introduced, where
A ∈ Rd×r and B ∈ Rr×d are both low-rank matrices. Here, d represents the output dimension
of the original weight matrix, and r is the rank of the low-rank matrices (typically r ≪ d). The
optimization process is as follows.

∆W = argmin∆WLCELF (−logP(W+=∆W)[Asyn | Qsyn])

W ′ = W + α ·∆W (5)

where α is a scaling factor used to balance the influence of the learned low-rank matrices with the
original model weights. By using LoRA, we efficiently fine-tune the model to integrate synthetic
question-answer pairs while preserving the generalization ability of the pre-trained model.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0

10

20

30

40

Base Direct

RAG(K)

Prompt

RAG(K)

EM metric of NQ

K=1

K=2

K=4

K=8

0

10

20

30

40

50

Base Direct

RAG(K)

Prompt

RAG(K)

F1 metric of NQ

K=1

K=2

K=4

K=8

0

20

40

60

80

Base Direct

RAG(K)

Prompt

RAG(K)

EM metric of TQA

K=1

K=2

K=4

K=8

0

20

40

60

80

Base Direct

RAG(K)

Prompt

RAG(K)

F1 metric of TQA

K=1

K=2

K=4

K=8

Figure 3: The impact of the number of paragraphs on RAG: This experiment explores how introduc-
ing different numbers of top-ranked paragraphs as background knowledge affects output of RAG.
Using the NQ and TQA datasets, we provide top 1, 2, 4, and 8 paragraphs as background knowledge
to observe the quality of the generated answers.

3.4 EXPERIMENTAL SETUP

3.4.1 METHODS

Base Model: For the baseline evaluation, we bypass any retrieval sources and directly input the
questions into the model to observe its generated responses. The input format is shown in table 5.

Direct-RAG(K): In the Direct RAG setting, the top-K retrieved documents are concatenated as
background knowledge and fed into the model to observe its generated responses. The input format
is shown in table 6.

Prompt-RAG(K): To improve the accuracy of the EM metric, we followed the setup of Wang et al.
(2024) by incorporating prompts into Direct-RAG, along with providing several answer examples,
forming Prompt-RAG. The input format is shown in table 7.

KE and PEFT: KE and PEFT use the MALMEN and LoRa methods, respectively. In KE, the
editing layers L = [26, 27, 28, 29, 30, 31], while in PEFT, the scaling factor α is set to 32.

Retriever: we employed the Dense Passage Retrieval (DPR) (Karpukhin et al., 2020) retriever to
extract relevant paragraphs from the Wikipages corpus (Vrandečić & Krötzsch, 2014).

3.4.2 DATASETS AND METRICS

We utilized authoritative open-domain question-answering datasets, specifically Natural Questions
(NQ) (Kwiatkowski et al., 2019) and TriviaQA (TQA) (Joshi et al., 2017), for our experiments. To
assess the accuracy and quality of the responses, we employed the Extract Match (EM) and F1-Score
(F1) metrics.

3.5 EXPERIMENTAL RESULTS AND DISCUSSION

Table 1 presents the performance results of Llama2-7B on the NQ and TQA datasets, comparing
the base model, two RAG approaches, and the combined RAG methods after knowledge injection
using KE and PEFT. As shown in figure 3, the model performs better when prompted with the
Top-1 retrieved document. Paper Wang et al. (2024) also mentions that although retrieving more
documents increases the hit rate of gold documents, irrelevant documents may introduce interference
to the model. Hence, we use K=1 as the baseline.

In validating RQ1 through our experimental results, we observed that PEFT consistently outper-
formed the base model across different amounts of injected paragraphs. This demonstrates that the
RAEG method, constructed via PEFT, is effective in improving the performance of the RAG frame-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Top-1 Top-2 Top-4 Top-8

Dataset Methods EM F1 EM F1 EM F1 EM F1

NQ

Base Model 7.80 16.89 7.80 16.89 7.80 16.89 7.80 16.89
KE 18.4 25.69 17.40 24.97 16.47 25.31 17.93 26.74

PEFT 25.20 35.89 27.40 38.29 26.20 37.70 27.47 38.39
Direct-RAG(1) 13.60 23.46 13.60 23.46 13.60 23.46 13.60 23.46
KEw/D-RAG(1) 18.93 26.56 14.27 21.30 14.87 22.84 15.87 24.80

PEFTw/D-RAG(1) 19.27 31.03 24.87 34.51 22.13 32.62 34.95 46.10
Prompt-RAG(1) 29.00 40.61 29.00 40.61 29.00 40.61 29.00 40.61

KEw/P-RAG(1) 21.53 29.89 15.27 22.46 16.93 25.67 18.0 26.78
PEFTw/P-RAG(1) 30.13 41.16 31.93 43.69 30.2 42.01 34.07 44.49

TQA

Base Model 49.07 58.94 49.07 58.94 49.07 58.94 49.07 58.94
KE 36.53 45.61 31.93 41.84 37.2 46.78 30.67 41.07

PEFT 57.90 66.67 59.20 67.16 54.53 64.51 54.47 64.49
Direct-RAG(1) 54.20 64.49 54.20 64.49 54.20 64.49 54.20 64.49
KEw/D-RAG(1) 36.20 44.81 30.47 39.81 34.87 44.43 24.80 34.16

PEFTw/D-RAG(1) 60.67 69.49 62.53 70.74 58.07 67.43 57.73 67.30
Prompt-RAG(1) 60.8 69.37 60.8 69.37 60.8 69.37 60.8 69.37

KEw/P-RAG(1) 37.6 46.33 31.93 41.04 37.33 46.96 26.07 35.90
PEFTw/P-RAG(1) 62.13 70.51 61.47 69.87 56.80 66.06 56.73 66.09

Table 1: The impact of editing or fine-tuning different numbers of paragraph knowledge on RAEG.
This table presents the experimental results of RAEG under varying scales of injected paragraphs.
The top 1, 2, 4, and 8 indicate the number of paragraphs used for knowledge injection. In the
subsequent RAG stage, only the Top-1 paragraph is utilized for knowledge augmentation. D-RAG and
P-RAG represent Direct RAG and Prompt RAG respectively

work by embedding edited information into the model’s internal knowledge. On the other hand, the
KE method showed mixed results: it surpassed the base model on the NQ dataset but did not on the
TQA dataset. This suggests that the success of transferring external knowledge to internally embed-
ded representations using KE is contingent on several factors, such as the nature of the dataset, the
complexity of the questions, and the coverage of the model’s pre-trained knowledge.

In investigating RQ2, our experiments reveal that the RAEG framework, constructed using PEFT,
continues to outperform the original RAG model without negatively affecting the model’s reasoning
abilities. This suggests that PEFT preserves the model’s capacity to leverage external knowledge
for reasoning, even after modifying its internal knowledge representation. Conversely, while the
KE method initially demonstrated strong performance on the NQ dataset, its performance dropped
when we compared KEw/P-RAG with the baseline Prompt RAG. This indicates that, although KE
can surpass the base model in some cases, it may compromise the model’s reasoning ability as a
trade-off for improving knowledge representation.

These results emphasize a critical distinction between the two methods: PEFT successfully inte-
grates new knowledge while preserving the model’s original reasoning capabilities, whereas KE,
although improving specific knowledge areas, can undermine the model’s reasoning performance.
This highlights the need for more robust and balanced KE techniques that do not compromise origi-
nal abilities of pre-trained model. In particular, developing more stable KE methods that generalize
effectively across diverse datasets and handle complex reasoning tasks could significantly enhance
the integration of edited knowledge into large models.

4 METHODOLOGY

4.1 IMPROVED MODULE DESIGN

4.1.1 RE-RANKER

Since the retrieved information is not always fully reliable, it is crucial to distinguish between useful
and harmful knowledge to ensure proper alignment of the LLM’s preferences. To further enhance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Query

Wiki Corpus

Top paragraphs

retrieved

Re-ranking

Top paragraphs

after re-ranking

Retrieval … … Synthetic

QAs

Knowledge Editing

Llama2 LLM

Hypernetwork

𝜵𝑾𝒍𝟏

𝜵𝑾𝒍𝟐

Post-edited

Llama2 LLM

Llama2 LLM

Parameter-Efficient Fine-Tuning

Post-edited

Llama2 LLM

Parameter

Pruning

𝜵𝑾𝒍𝟏
′

𝜵𝑾𝒍𝟐
′

Synthetic Knowledge

Generation

Figure 4: The knowledge editing process of RAEG. Relevant knowledge paragraphs are retrieved
from an external corpus based on query q and re-ranked by the re-ranker. The Top-K paragraphs
are selected to generate synthetic knowledge for injection. To mitigate the side effects of knowledge
editing, parameter pruning strategies are applied.

the accuracy of the synthesized information, we introduced a re-ranking mechanism, which refines
the selection process by prioritizing the most relevant and trustworthy sources from the retrieved
content.

The specific steps for training the re-ranker are shown in Algorithm 1. We construct a reranker
training set from the retrieval results of the training set. For each query qi ∈ Q in the training set,
we retrieve the top 100 documents DTop using a pre-trained DPR retriever (Karpukhin et al., 2020).
Then, we examine each document di ∈ DTop to determine whether it contains the correct answer
to qi, labeling each document accordingly. The labels YTop are binary, where yi is labeled as either
’has answer’ or ’no answer’. We use the gemma-2B Gemma Team et al. (2024) model, fine-tuned
by (Chen et al., 2024), as the backbone for the reranker R(θ). The reranker is then fine-tuned on
the constructed training subset (qi, di, yi), where di is a document retrieved for query qi and yi
serves as the binary label (Yes or No) indicating whether di contains the answer to qi. The fine-
tuning process optimizes the reranker using a binary cross-entropy loss function, with yi guiding the
training to improve the reranker’s ability to distinguish between relevant and irrelevant documents.
For detailed results on the retrieval accuracy after re-ranking, please refer to appendix B.

4.1.2 PARAMETER PRUNING

After applying knowledge editing, we obtain the parameter update matrix ∆W . Drawing inspiration
from the findings of Gu et al. (2024), which suggest that smaller values in ∆W may carry less
substantial editing information but can still affect the model’s performance, we apply a pruning
strategy. By pruning ∆W , we aim to filter out parameters with smaller magnitudes, as they might
contribute less to the desired knowledge update. In addition, we propose a random pruning strategy.
We explore two pruning strategies to optimize the edited parameters ∆W in order to mitigate the
potential side effects of KE.

Algorithm 1 Re-ranker Training
Requested: Query set in training set Q, Retriever DPR, Retrieved results (D,Y) = (dk, yk)

100
k=1,

Re-ranker model Rθ

1: for each query qi ∈ Q do
2: (D,Y)i = DPR(qi)
3: for each (dk, yk)

100
k=1 do

4: relevance score = Rθ(qi, di)
5: loss = BCELF(relevance score, yi) //BCELF means binary cross-entropy loss function
6: Update Rθ

7: end for
8: end for
9: Return Trained Re-ranker Rθ

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Top-1 Top-2 Top-4 Top-8

Dataset Methods EM F1 EM F1 EM F1 EM F1

NQ

KEw/D-RAG(1) 27.13 35.98 21.47 31.12 20.8 31.11 21.20 31.97
8.20 9.42 7.20 9.82 5.93 8.27 5.33 7.17

PEFTw/D-RAG(1) 27.93 38.25 34.67 46.20 35.10 46.88 34.93 46.53
8.66 7.22 9.80 11.69 12.97 14.26 -0.02 0.43

KEw/P-RAG(1) 32.40 41.91 25.53 34.54 23.60 34.19 23.13 33.46
10.87 12.02 10.26 12.08 6.67 8.52 5.13 6.68

PEFTw/P-RAG(1) 32.13 43.51 33.93 45.51 34.89 46.11 34.4 46.11
2.00 2.35 2.00 1.82 4.69 4.10 0.33 1.62

TQA

KEw/D-RAG(1) 47.60 58.39 44.20 55.43 49.53 60.11 39.07 50.75
11.40 13.58 13.73 15.62 14.66 15.68 14.27 16.59

PEFTw/D-RAG(1) 61.40 70.74 63.47 72.11 60.27 70.33 60.53 69.80
0.73 1.25 0.94 1.37 2.20 2.90 2.80 2.50

KEw/P-RAG(1) 50.00 60.24 46.40 56.87 52.07 62.10 40.33 50.46
12.4 13.91 14.47 15.83 14.74 15.14 14.26 14.56

PEFTw/P-RAG(1) 62.60 70.88 63.67 71.67 59.20 69.08 60.40 69.61
0.47 0.37 2.20 1.80 2.40 3.02 3.67 3.52

Table 2: Results after re-ranking and parameter pruning. Red values indicate improvements com-
pared to those in table 1. The knowledge editing (KE) results are based on magnitude-based pruning
applied at a 30% pruning ratio.

Random Pruning: This strategy is inspired by the dropout mechanism, where parameters are ran-
domly zeroed out. This helps prevent overfitting to the edited knowledge by ensuring that the model
does not become overly reliant on specific edited parameters.

Magnitude-based Pruning: In this approach, we filter out the smallest K% of the parameter values,
under the assumption that these smaller values contain less critical editing information. By zeroing
out these parameters, we aim to preserve the model’s performance by minimizing the difference
between the edited model and the original model. The pruning operation can be formalized as
follows:

∆W =

{
0, if ∆W ≤ threshold(K%)

∆W, otherwise
(6)

Through this dual pruning strategy, we balance the retention of critical knowledge with maintaining
the integrity of the pre-existing model structure, effectively mitigating the risk of excessive edits.

4.2 ABLATION STUDY OF PARAMETER PRUNING

We conducted a comprehensive study on various pruning scales using two different pruning strate-
gies, the results as shown in table 3. The results indicate that, for both pruning strategies, perfor-
mance improves progressively as the pruning ratio increases. This suggests that in extreme pruning
scenarios, where a significant portion of the parameters are removed, the remaining parameters are
sufficiently robust to sustain overall model performance.

At pruning scales below 50%, magnitude-based pruning significantly outperforms random pruning.
This highlights the efficacy of structured pruning strategies, which rank and remove less important
parameters based on their magnitudes, thus preserving the critical parameters that contribute most
to the model’s performance. In contrast, random pruning at low pruning ratios tends to remove
key parameters indiscriminately, leading to noticeable performance degradation. At pruning scales
above 50%, random pruning shows marked improvement. This suggests that while random pruning
may remove some redundant parameters at higher pruning ratios, its inherent randomness still results
in less stability and consistency compared to magnitude-based pruning, which remains more reliable
across different scales.

These findings indicate that magnitude-based pruning is a more stable and effective approach, espe-
cially at lower pruning ratios, as it preserves model performance more effectively. However, despite

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

NQ TQA

Pruning strategy Pruning scale EM F1 EM F1

Magnitude

10% 32.00 41.51 48.53 58.88
30% 32.40 41.91 50.00 60.24
50% 32.53 42.13 50.73 60.64
70% 32.47 42.20 51.00 61.14
90% 33.20 42.95 52.87 62.73

Random

10% 29.07 38.10 44.13 54.84
30% 29.53 38.99 47.27 57.67
50% 32.07 41.68 51.47 61.61
70% 32.73 43.09 55.87 65.50
90% 32.20 43.04 61.20 69.97

Table 3: Ablation experiment on parameter pruning: Results of two pruning strategies at different
pruning scales.

its variability, random pruning demonstrates potential at higher pruning scales, particularly in ex-
treme pruning conditions where it may still offer some practical applications.

4.3 FURTHER EXPERIMENTAL RESULTS AND DISCUSSION

The experimental setup in this section is identical to that in section § 3.4, ensuring a fair assessment
of the improvements introduced by our designed modules.

Table 2 illustrates the further performance improvements achieved by integrating the improved mod-
ules, compared to the results in table 1.

Through the re-ranking process, we further refine the selection of documents that are more likely
to contain correct answers. The information from these selected documents is then edited into the
model to enhance its knowledge representation and accuracy. Parameter pruning mitigated the im-
pact of the edited parameters on the original model’s weights, resulting in an 8% to 12% performance
improvement for the KE method combined with RAG across both datasets.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced a novel framework, Retrieval-Augmented Editing Generation (RAEG),
which combines knowledge injection from retrieved documents with RAG to enhance the accuracy
of answer generation. The dual strategy of first injecting knowledge and then performing retrieval-
augmented generation significantly improves model performance.

A key contribution of our study is the investigation of the impact of two knowledge injection tech-
niques—Knowledge Editing (KE) and Parameter-Efficient Fine-Tuning (PEFT)—on model reason-
ing abilities after parameter modification. Our experiments show that while KE effectively internal-
izes new knowledge, it severely disrupts the model’s prior reasoning capabilities. In contrast, PEFT,
which operates through global fine-tuning, preserves the model’s overall performance more effec-
tively and achieves better results on open-domain question-answering (ODQA) tasks. In finally, we
further enhanced RAEG by introducing a re-ranking mechanism to refine the selection of reliable
knowledge sources and by employing parameter pruning to mitigate the negative effects of KE on
model performance.

Future research should continue to explore and discuss the impacts of various editing techniques on
parameter updates of pre-trained language models across a broader range of NLP tasks. Addition-
ally, developing more robust components to counteract the unintended side effects of model editing
and its ripple effects (Cohen et al., 2024) remains a critical challenge. Our data and code have been
made available to the community to support further advances in this research direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. M3-embedding:
Multi-linguality, multi-functionality, multi-granularity text embeddings through self-knowledge
distillation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the As-
sociation for Computational Linguistics ACL 2024, pp. 2318–2335, Bangkok, Thailand and
virtual meeting, August 2024. Association for Computational Linguistics. URL https://
aclanthology.org/2024.findings-acl.137.

Xin Cheng, Xun Wang, Xingxing Zhang, Tao Ge, Si-Qing Chen, Furu Wei, Huishuai Zhang, and
Dongyan Zhao. xrag: Extreme context compression for retrieval-augmented generation with one
token. arXiv preprint arXiv:2405.13792, 2024.

Alexandra Chronopoulou, Matthew E Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup:
Weight averaging to improve generalization of pretrained language models. In EACL (Findings),
2023.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects
of knowledge editing in language models. Transactions of the Association for Computational
Linguistics, 12:283–298, 2024.

N De Cao, W Aziz, and I Titov. Editing factual knowledge in language models. In EMNLP 2021-
2021 Conference on Empirical Methods in Natural Language Processing, Proceedings, pp. 6491–
6506, 2021.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
relevance labels. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1762–1777, 2023.

Thomas Mesnard Gemma Team, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, and et al.
Gemma. 2024. doi: 10.34740/KAGGLE/M/3301. URL https://www.kaggle.com/m/
3301.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun
Peng. Model editing harms general abilities of large language models: Regularization to the
rescue. arXiv preprint arXiv:2401.04700, 2024.

Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov, Mohit
Bansal, and Srinivasan Iyer. Methods for measuring, updating, and visualizing factual beliefs
in language models. In Proceedings of the 17th Conference of the European Chapter of the
Association for Computational Linguistics, pp. 2714–2731, 2023.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Jia-Huei Ju, Jheng-Hong Yang, and Chuan-Ju Wang. Text-to-text multi-view learning for passage
re-ranking. In Proceedings of the 44th international ACM SIGIR conference on research and
development in information retrieval, pp. 1803–1807, 2021.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.550. URL https://www.aclweb.org/anthology/
2020.emnlp-main.550.

11

https://aclanthology.org/2024.findings-acl.137
https://aclanthology.org/2024.findings-acl.137
https://www.kaggle.com/m/3301
https://www.kaggle.com/m/3301
https://www.aclweb.org/anthology/2020.emnlp-main.550
https://www.aclweb.org/anthology/2020.emnlp-main.550

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vincent
Zhao, Yuexin Wu, Bo Li, et al. Conditional adapters: Parameter-efficient transfer learning with
fast inference. Advances in Neural Information Processing Systems, 36:8152–8172, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model edit-
ing in a transformer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 18564–18572, 2024.

Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale up: A guide to
parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647, 2023.

Baohao Liao, Yan Meng, and Christof Monz. Parameter-efficient fine-tuning without introducing
new latency. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 4242–4260, 2023.

Jun-Yu Ma, Jia-Chen Gu, Zhen-Hua Ling, Quan Liu, and Cong Liu. Untying the reversal curse via
bidirectional language model editing. arXiv preprint arXiv:2310.10322, 2023a.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query rewriting for retrieval-
augmented large language models. arXiv preprint arXiv:2305.14283, 2023b.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass editing
memory in a transformer. The Eleventh International Conference on Learning Representations
(ICLR), 2023.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In International Conference on Learning Representations, 2022. URL
https://openreview.net/pdf?id=0DcZxeWfOPt.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. Document ranking with a pre-
trained sequence-to-sequence model. In Findings of the Association for Computational Linguis-
tics: EMNLP 2020, pp. 708–718, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Wenjun Peng, Guiyang Li, Yue Jiang, Zilong Wang, Dan Ou, Xiaoyi Zeng, Derong Xu, Tong Xu,
and Enhong Chen. Large language model based long-tail query rewriting in taobao search. In
Companion Proceedings of the ACM on Web Conference 2024, pp. 20–28, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

12

https://openreview.net/pdf?id=0DcZxeWfOPt

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta
learning. In International Conference on Learning Representations, 2024. URL https:
//openreview.net/pdf?id=L6L1CJQ2PE.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 3274–3287, 2023.

Ellen M. Voorhees and Dawn M. Tice. The TREC-8 question answering track. In M. Gavrili-
dou, G. Carayannis, S. Markantonatou, S. Piperidis, and G. Stainhauer (eds.), Proceedings
of the Second International Conference on Language Resources and Evaluation (LREC’00),
Athens, Greece, May 2000. European Language Resources Association (ELRA). URL http:
//www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf.

Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Commun.
ACM, 57(10):78–85, sep 2014. ISSN 0001-0782. doi: 10.1145/2629489. URL https://doi.
org/10.1145/2629489.

Ben Wang and Aran Komatsuzaki. Gpt-j-6b: a 6 billion parameter autoregressive language model
(2021). URL https://github. com/kingoflolz/mesh-transformer-jax, 2022.

Yuhao Wang, Ruiyang Ren, Junyi Li, Wayne Xin Zhao, Jing Liu, and Ji-Rong Wen. Rear: A
relevance-aware retrieval-augmented framework for open-domain question answering. arXiv
preprint arXiv:2402.17497, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Siye Wu, Jian Xie, Jiangjie Chen, Tinghui Zhu, Kai Zhang, and Yanghua Xiao. How easily do
irrelevant inputs skew the responses of large language models? arXiv preprint arXiv:2404.03302,
2024.

Chong Xiang, Tong Wu, Zexuan Zhong, David Wagner, Danqi Chen, and Prateek Mittal. Certifiably
robust rag against retrieval corruption. arXiv preprint arXiv:2405.15556, 2024.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. Recomp: Improving retrieval-augmented lms with
context compression and selective augmentation. In The Twelfth International Conference on
Learning Representations, 2024.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, et al. A comprehensive study of knowledge editing
for large language models. arXiv preprint arXiv:2401.01286, 2024a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and Pengtao Xie. AutoLoRA: Automatically
tuning matrix ranks in low-rank adaptation based on meta learning. In Kevin Duh, Helena Gomez,
and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 5048–5060, Mexico City, Mexico, June 2024b. Association for Computational
Linguistics. doi: 10.18653/v1/2024.naacl-long.282. URL https://aclanthology.org/
2024.naacl-long.282.

Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingxuan Wang, and Lei Li. Counter-interference
adapter for multilingual machine translation. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 2812–2823, 2021.

13

https://openreview.net/pdf?id=L6L1CJQ2PE
https://openreview.net/pdf?id=L6L1CJQ2PE
http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://aclanthology.org/2024.naacl-long.282
https://aclanthology.org/2024.naacl-long.282

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ENVIRONMENT SETTING

All data construction, knowledge editing, and evaluation experiments were conducted on worksta-
tions equipped with NVIDIA RTX A6000 GPUs. The initial weights of the LLama-2 (Touvron
et al., 2023) language models were sourced from HuggingFace Transformers (Wolf et al., 2019),
and the experiments utilized PyTorch version 2.4.0 (Paszke et al., 2019).

B RESULT OF RE-RANKER

Table 4 presents the retrieval accuracy results of our trained re-ranker model, comparing the per-
formance before and after its implementation on two datasets: NQ and TQA. The results show a
significant increase in retrieval accuracy across 4 top-rank type.

Higher retrieval accuracy directly affects the effectiveness of the generated synthetic knowledge,
significantly enhancing the quality and reliability of the responses. Therefore, the implementation
of the re-ranker not only optimizes the retrieval process but also greatly enriches the knowledge base
relied upon for generating responses. This improvement enables the model to generate synthetic
knowledge more effectively, increasing the accuracy and effectiveness of the final responses in the
RAEG framework. Our trained re-ranker model will be released along with the associated code.

Top-1 Top-2 Top-4 Top-8

Datasets Before After Before After Before After Before After
NQ 44.60 62.66 55.73 69.47 64.47 76.67 72.93 80.33

TQA 56.53 76.27 65.27 79.67 72.07 82.53 76.73 84.47

Table 4: Comparison of retrieval accuracy results before and after using the re-ranker.

C PROMPT FORMAT

This section provides a detailed overview of the input formats utilized in this paper. It includes
the input format for the Base model in table 5, as well as the input formats for Direct-RAG(K)
and Prompt-RAG(K) in table 6 7. Additionally, we outline the prompt templates used for self-
generating 8 synthetic knowledge.

Input Format of Base

Question: {question}
Answer:

Table 5: Input Format of Base.

Input Format of Direct-RAG(K)

Knowledge:
{Top-1 paragraph}
...
{Top-K paragraph}

Question: {question}
Answer:

Table 6: Input Format of Direct-RAG(K).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Input Format of Prompt-RAG(K)

Knowledge:
{Top-1 paragraph}
...
{Top-K paragraph}

Base above knowledge, answer the following question with a very short
phrase, such as “1998”, “May 16th, 1931”, or “James Bond”, to meet the criteria
of exact match datasets.
Question: {question}
Answer:

Table 7: Input Format of Prompt-RAG(K).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Prompt templates for self-generating synthetic knowledge

You are an assistant who is good at organizing questions and answers from
paragraphs. Here is an example.

Paragraph: ”on death row in the United States on January 1, 2013. Since
1977, the states of Texas (464), Virginia (108) and Oklahoma (94) have executed
the most death row inmates. , California (683), Florida (390), Texas (330) and
Pennsylvania (218) housed more than half of all inmates pending on death row.
, the longest-serving prisoner on death row in the US who has been executed
was Jack Alderman who served over 33 years. He was executed in Georgia in
2008. However, Alderman only holds the distinction of being the longest-serving
ëxecutedı̈nmate so far. A Florida inmate, Gary Alvord, arrived”
1. Q: How many death row inmates did Texas execute since 1977?
A: 464
2. Q: Which state executed 108 death row inmates since 1977?
A: Virginia
3. Q: How many death row inmates did Oklahoma execute since 1977?
A: 94
4. Q: Which state housed 683 death row inmates as of January 1, 2013?
A: California
5. Q: How many inmates did Florida house on death row?
A: 390
6. Q: How many death row inmates did Texas have pending?
A: 330
7. Q: How many death row inmates did Pennsylvania house?
A: 218
8. Q: Who was the longest-serving prisoner on death row who was executed?
A: Jack Alderman
9. Q: How many years did Jack Alderman serve on death row?
A: over 33 years
10. Q: In which year was Jack Alderman executed?
A: 2008
11. Q: Which state executed Jack Alderman?
A: Georgia
12. Q: Who is noted as the longest-serving ”executed” inmate?
A: Jack Alderman
13. Q: Which inmate arrived in Florida?
A: Gary Alvord
14. Q: What is the date referenced for death row statistics in the passage?
A: January 1, 2013
15. Q: Since when has the execution data been tracked in this passage?
A: 1977
16. Q: What constitutes more than half of all inmates pending on death row?
A: California, Florida, Texas, and Pennsylvania

Please follow the format of the example above to generate sixteen ques-
tions and corresponding answers for the following Paragraph. The format of
answers should be a very short phrase from paragraph, such as “464”, ”2008”,
”May 16th, 1931”, or “Jack Alderman”, to meet the criteria of exact match
Paragraph.

Paragraph: ”{paragraph}”

Table 8: The prompt template format used to generate synthetic knowledge, which includes a clear
instruction outlining our requirements and an example of a paragraph along with its corresponding
question-answer pairs. The model is then expected to generate similar question-answer pairs for
new paragraphs based on this format.

16

	Introduction
	Related Work
	Parameter-Efficient Fine-Tuning (PEFT)
	Knowledge Editing (KE)
	Retrieval-Augmented Generation (RAG)

	Performance of KE and PEFT in RAG
	Background and Motivation
	Definition
	Motivation

	Self-generated of synthetic knowledge
	Injecting Synthetic Knowledge into LLM
	For Knowledge Editing
	For Parameter-Efficient Fine-Tuning

	Experimental setup
	Methods
	Datasets and Metrics

	Experimental Results and Discussion

	Methodology
	Improved module design
	Re-ranker
	Parameter Pruning

	Ablation Study of Parameter Pruning
	Further Experimental Results and Discussion

	Conclusion and Future Work
	Environment Setting
	Result of Re-ranker
	Prompt format

