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ABSTRACT

The knowledge embedded in Large Language Models (LLMs) is static, tied to the
time when the training data was collected. While Retrieval-Augmented Genera-
tion (RAG) methods are widely used to introduce new knowledge, they simply
rely on retrieved information for reasoning without integrating it into the model’s
parameters. This limits the model’s ability for long-term knowledge retention and
autonomous learning. To overcome this, in this work, we propose the Retrieval-
Augmented Editing Generation (RAEG) framework for open-domain question an-
swering (ODQA) tasks. RAEG enhances model generation performance by first
editing the retrieved paragraphs to inject necessary knowledge, followed by an
augmented generation phase. This dual mechanism—combining knowledge in-
jection and retrieval augmentation—provides complementary advantages in the
reasoning process. When the injected knowledge alone is insufficient for accu-
rate generation, the model can rely on the retrieved information to compensate,
and conversely, when retrieval yields suboptimal results, the injected knowledge
ensures continuity and accuracy in the response. This interplay between internal-
ized and externally sourced knowledge reinforces the model’s ability to produce
correct answers, thereby enhancing overall task performance. We explore the im-
pact of two key methods for knowledge injection: Knowledge Editing (KE) and
Parameter-Efficient Fine-Tuning (PEFT), and analyze how modifying the model’s
parameters influences its reasoning abilities and generation outcomes. To fur-
ther improve RAEG’s performance, we introduce a re-ranking mechanism to op-
timize the integration of external knowledge and apply parameter pruning to mit-
igate the potential drawbacks of parameter modifications during KE. Evaluations
on two authoritative ODQA benchmarks show that RAEG is able to further re-
place RAG as a competitive method. Our data and code will be available at
https://github.com/XXX/XXX.

1 INTRODUCTION

Large-scale pre-trained language models (LLMs) (Radford et al., 2019; Wang & Komatsuzaki, 2022;
Ouyang et al., 2022) leverage self-supervised learning on vast amounts of text to encode implicit
knowledge into their parameters, enabling high-quality language generation. However, the knowl-
edge embedded in these models is static, confined to the point in time when the training data was
collected. Leveraging the language understanding and generation capabilities acquired during pre-
training, large language models have achieved significant success across various practical applica-
tions. However, when confronted with more nuanced downstream tasks or unknown data knowledge,
relying solely on the internal knowledge reasoning of pre-trained language models often leads to is-
sues such as knowledge hallucination and knowledge gaps. These issues are primarily attributed to
the incompleteness, biases, and static nature of the training data. For example, in the open-domain
question answering (ODQA) (Voorhees & Tice, 2000) task, to address these challenges, researchers
adopted RAG-based (Lewis et al., 2020) fine-tuning techniques to generate high-quality responses
with the help of external knowledge specific to the current task.

RAG is a widely adopted approach for handling open-domain, knowledge-intensive tasks. It works
by retrieving relevant text paragraphs and incorporating them into the generation process to assist in
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Retrieval

Paragraph: Joseph Robinette

Biden Jr. (born November 20,

1942) is an American

politician who has been the

46th and current president of

the United States since

2021 …

Joe Biden

Editing fact: The current president of the United States is Joe Biden.

Query: Who is the

current president of

the US?
Query: Who is the

current president of the

US?

Joe Biden

(a) RAG mode (b) Knowledge Injection Mode (c) Knowledge injection + RAG mode

Figure 1: Methods across different modes: (a) Retrieval-Augmented Generation (RAG) mode:
Generate responses using the retrieved paragraphs. (b) Knowledge injection mode: Generate re-
sponses by injecting key knowledge into the model. (c) Combined RAG and knowledge injection
mode: A dual mechanism that first perform knowledge injection, followed by that combines RAG
for response generation.

answering questions. However, the model does not truly internalize this external information as its
own knowledge, instead relying on real-time retrieval to augment its reasoning capabilities. Thus,
knowledge editing (KE) (Zhang et al., 2024a) and parameter-efficient fine-tuning (PEFT) (Ding
et al., 2023) introduce more flexible approaches that goes beyond merely relying on real-time re-
trieval. By directly modifying specific internal parameters, the model can internalize external knowl-
edge. This enables not only the integration of new knowledge but also allows the model to more
rapidly adapt to constantly evolving task requirements. Compared to retrieval-dependent methods,
this approach offers faster and more stable responses in dynamic environments, as the model has
already internalized the necessary information, eliminating the need for repeated retrieval during
generation. Based on this, we propose the Retrieval-Augmented Editing Generatio (RAEG) frame-
work, which combines a knowledge-internalized model with retrieved information. This dual mech-
anism leverages the immediacy of internalized knowledge while also benefiting from supplementary
external retrieval, thereby improving the accuracy and consistency of the generation process.

In the course of our research, we found that adjusting model parameters may impair its performance
in RAG, as illustrated in figure 1. Figure (a) illustrates a scenario where only RAG is employed, and
the model is able to correctly answer the question ”Who is the current president of the US?” rely
on the retrieved paragraph. In figure (b), after applying knowledge injection via KE or PEFT, the
model still answer the question correctly. However, in figure (c), when both methods are combined,
the changes in model parameters may affect some of the model’s prior reasoning capabilities.

In this study, we focus on the ODQA task using the llama2-7B model (Touvron et al., 2023). We
explored methods of injecting new knowledge through KE and PEFT. Specifically, we extracted rel-
evant knowledge from retrieved text paragraphs and injected it into the initial model’s parameters
fθ using KE or PEFT, resulting in the edited model f∗

θ . Subsequently, we combined this model with
RAG to further enhance the accuracy of the generation process. We investigated the effects of KE
and PEFT on the model’s reasoning performance when integrated with RAG. Additionally, we in-
troduced a paragraph re-ranking mechanism to optimize the source of edited knowledge and applied
parameter pruning to mitigate the impact of knowledge editing method on the model’s reasoning
performance.

In summary, our contributions are as follows:

• We propose a novel Retrieval-Augmented Editing Generation (RAEG) paradigm, which
internalizes retrieved knowledge into the model’s parameters, reducing reliance on training
data in traditional RAG systems, and offering new insights for developing more robust
RAG frameworks.

• Through our experiments, we explored the impact of two knowledge injection meth-
ods—Knowledge Editing (KE) and Parameter-Efficient Fine-Tuning (PEFT)—on model
reasoning performance after parameter modification in the RAG framework.

• We introduce re-ranking and parameter pruning mechanisms, which further enhance the
performance of RAEG and mitigate the potential negative effects of KE on RAG.
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• We demonstrate the effectiveness of the RAEG framework on ODQA tasks across two QA
datasets, showing how the dual mechanism of internalized knowledge combined with re-
trieval can improve task performance, while discussing its potential applications and future
research directions.

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

End-to-end full fine-tuning, while being the simplest and most direct approach, becomes pro-
hibitively expensive as the scale of pre-trained models increases. To address this, Parameter-Efficient
Fine-Tuning (PEFT) (Ding et al., 2023; Lialin et al., 2023) techniques have been proposed, which
aim to achieve performance comparable to full fine-tuning by adjusting only fewer parameters.
PEFT methods are primarily categorized into three types: Additive PEFT (Zhu et al., 2021; Lei
et al., 2023; Chronopoulou et al., 2023), which involves inserting adapter modules into Transformer
blocks for fine-tuning; Selective PEFT (Sung et al., 2021; Liao et al., 2023), which selectively fine-
tunes a subset of existing parameters; and Reparameterization PEFT, which transforms the model
architecture into an equivalent form for training, such as LoRa (Hu et al., 2021), which uses low-rank
matrices for adjustments. Although selecting an appropriate rank for LoRA has been a significant
challenge, various derivatives of LoRA, such as DyLoRA (Valipour et al., 2023), AdaLoRA (Zhang
et al., 2023), and AutoLoRA (Zhang et al., 2024b), have emerged to address this issue. These tech-
niques enhance the efficiency of parameter tuning in large pre-trained models.

2.2 KNOWLEDGE EDITING (KE)

The KE methods of changing parameters mainly encompasses Meta-learning methods (De Cao
et al., 2021; Hase et al., 2023; Mitchell et al., 2022; Tan et al., 2024), which involve training a
hypernetwork to learn changes ∆W in model parameters, thus avoiding direct weight updates; and
Location-then-Edit methods (Meng et al., 2022; 2023; Li et al., 2024; Ma et al., 2023a), which
identify the locations within the model where knowledge is stored using causal traces (Meng et al.,
2022), and then perform edits on those specific regions. These approaches, by directly modifying
parameters of specific regions, enhance the model’s capability for knowledge updating.

2.3 RETRIEVAL-AUGMENTED GENERATION (RAG)

RAG (Lewis et al., 2020), also known as the retrieval-reading architecture (Ma et al., 2023b), en-
hances language models by integrating external information through retrieval. The naive RAG
method relies on basic retrieval and generation processes, but often suffers from inaccurate re-
sponse (Wu et al., 2024; Xiang et al., 2024) due to irrelevant or similar information. Advanced
RAG addresses these issues by optimizing indexing and query processes (Gao et al., 2023; Peng
et al., 2024), and employing techniques such as re-ranking (Nogueira et al., 2020; Ju et al., 2021)
and context compression (Xu et al., 2024; Cheng et al., 2024) to improve retrieval precision and
response quality.

3 PERFORMANCE OF KE AND PEFT IN RAG

3.1 BACKGROUND AND MOTIVATION

3.1.1 DEFINITION

Parameter-Efficient Fine-Tuning (PEFT). PEFT is an optimization method that freezes the major-
ity of the model’s parameters while updating only a small subset. It aims to reduce the computational
burden of fine-tuning while preserving the model’s original knowledge structure.

Knowledge Editing (KE). KE directly modifies parameters fθl in specific layer l of a model to ad-
just or update the embedded knowledge. This approach is typically employed to correct or introduce
new facts without retraining the entire model. By locally editing the model’s parameters, knowledge

3
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editing enables the model to accurately reflect newly introduced knowledge during generation, al-
lowing it to produce answers that incorporate the most up-to-date information.

f∗
θl = KE(fθl , E), l ∈ L (1)

where E is the new knowledge to be edited, L is the set of specified editing layers.

Retrieval-Augmented Generation (RAG). RAG is a technique that combines retrieval and genera-
tion. Its core idea is to enhance the answering capability of generative models by retrieving relevant
documents dTop−k from external knowledge corpus D|N | = (d1, d2, ..., dN ).

a = argmaxa[g(a | [dTop−k, q])]

dTop−k = argtop-k[Enc(di)
T · Enc(q)], (di ∈ D|N |) (2)

where g(·) represents the generative LLM. In the RAG framework, g(·) is denoted as fθ (base
model), whereas in our RAEG framework, it is represented as f∗

θ (post-edited model). Here, q and
a refer to the query and answer, respectively, and Enc(·) stands for the sentence encoding function
used within the retrieval system.

3.1.2 MOTIVATION

This section primarily explores the feasibility of knowledge injection within RAG systems through
knowledge editing (KE) and parameter-efficient fine-tuning (PEFT). It investigates whether targeted
adjustments to the model parameters can facilitate the integration of new question-answer pairs
while preserving the model’s original inferential capabilities, thereby enabling accurate derivation
of answers from retrieved paragraphs.

Based on the above motivation, we propose the following research questions to explore the potential
impact of KE and PEFT on the model’s knowledge representation, reasoning abilities, and genera-
tion quality within the RAG framework.

RQ 1: In the RAG framework, the model relies on externally retrieved knowledge for genera-
tion. Can KE and PEFT shift the model’s reliance from external knowledge to internally embedded
knowledge by injecting edited information, and how might this affect the quality and consistency of
the generated output?

RQ 2: Performing KE and PEFT on the original pre-trained model’s parameters will change the
model’s parameters and alter its knowledge representation. While this may enhance the model’s
understanding of specific knowledge, does the alteration of parameters impact the model’s original
capabilities, particularly its ability to rely on external knowledge for reasoning during generation?
If the alteration of parameters impacts the model’s original capabilities, which method—KE or
PEFT—has a greater impact on the model?

3.2 SELF-GENERATED OF SYNTHETIC KNOWLEDGE

To ensure that LLM can accurately answer the questions, it is crucial to provide correct editing facts.
We employed a prompt-based generation method in the preparation of synthetic data, a technique
that involves providing examples and instructions during model generation to guide the generation
of specific types of output, as shown in figure 2.

With the assistance of the large language model gpt-4o-mini (Ouyang et al., 2022), we constructed
a prompt that included a clear instruction Tinst, detailing the objectives and requirements of the
generation task, and specifying the desired style of information to be extracted from the paragraph.
Additionally, we provided several examples Texa consisting of paragraph-question-answer pairs to
illustrate the expected output style and format, aiding the model in understanding the desired style
and content for answer generation. And then specify the target paragraph Tpara to generate the
question-answer pairs, building the required synthetic question-answer set, which is our editing facts
E(Qsyn, Asyn). The prompt input into gpt-4o-mini is as follows. For details, please refer to table 8.

E(Qsyn, Asyn)← gpt-4o-mini(prompt)
prompt = Tinst ⊕ Texa ⊕ Tpara, (Tpara ∈ dTop−k) (3)

The core of this method is to guide the model in converting information from the paragraph into
synthetic question-answer pairs that align with the style of the examples through effective prompts.
This process significantly supports subsequent KE and PEFT.

4
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GPT – 4 mini

You are an assistant who is good at organizing questions and answers from paragraphs. Here is an example.

Paragraph: Battle of France The Paragraph: "on death row in the United States on January 1, 2013. Since 1977, the states of Texas (464),

Virginia (108) and Oklahoma (94) have executed the most death row inmates. , California (683), Florida (390), Texas (330) and Pennsylvania

(218) housed more than half of all inmates pending on death row. , the longest-serving prisoner on death row in the US who has been

executed …

1. Q: How many death row inmates did Texas execute since 1977?

A: 464

2. Q: Which state executed 108 death row inmates since 1977?

A: Virginia

…

Please follow the format of the example above to generate sixteen questions and corresponding answers for the following Paragraph.

The format of answers should be a very short phrase from paragraph, such as “464”, "2008", "“May 16th, 1931”, or “Jack Alderman”, to meet

the criteria of exact match Paragraph.

Paragraph: "{paragraph}"

Instruction Prompt

Figure 2: Self-generation of synthetic knowledge from retrieved paragraphs using prompt engineer-
ing to produce diverse and comprehensive question-answer pairs, which can be used for further
knowledge injection.

3.3 INJECTING SYNTHETIC KNOWLEDGE INTO LLM

3.3.1 FOR KNOWLEDGE EDITING

We selected the MALMEN (Tan et al., 2024) method for knowledge editing, as it is more effective
for editing free-text question-answer pairs and supports large-scale edits. We optimize the param-
eters of a specified layer using synthetic editing facts E(Qsyn, Asyn) with the goal of maximizing
the probability of the designated target Asyn. And further evaluate the capabilities of the post-edited
model on test question.

Since MALMEN employs meta-learning to train a hypernetwork for editing, our objective in the
context of the MALMEN method is to optimize the meta-learning hypernetwork H so that it can
directly generate suitable parameter adjustments ∆W l for a given editing facts at the lth layer.
Specifically, we aim for the hypernetwork to produce these adjustments based on the provided
(Qsyn, Asyn), thereby improving the model’s performance on new datas. To achieve this, we opti-
mize the cross entropy loss function LCELF , the processes is defined as follows.

H ′ = argminHLCELF (−logP(W+=H(Qsyn))[Asyn | Qsyn])

∆W l = H ′(Qsyn)

W ′l = W l +∆W l (4)

where, H denotes the initial hypernetwork, while H ′ represents the optimized hypernetwork. The
objective is to inject the Asyn as answer of Qsyn through adjusting ∆W l generated in the l-th layer
during optimization.

3.3.2 FOR PARAMETER-EFFICIENT FINE-TUNING

We employ Low-Rank Adaptation (LoRA) (Hu et al., 2021) as our Parameter-Efficient Fine-Tuning
(PEFT) method. LoRA introduces trainable low-rank matrices into the pre-trained model, allow-
ing us to fine-tune only a small subset of parameters while keeping the majority of the original
model frozen. For the task of Qsyn → Asyn (synthetic question-to-answer mapping), LoRA allows
efficient adaptation of the model by fine-tuning specific target modules. Specifically, the original
parameters W are kept frozen, and a small parameter matrix ∆W = A · B is introduced, where
A ∈ Rd×r and B ∈ Rr×d are both low-rank matrices. Here, d represents the output dimension
of the original weight matrix, and r is the rank of the low-rank matrices (typically r ≪ d). The
optimization process is as follows.

∆W = argmin∆WLCELF (−logP(W+=∆W )[Asyn | Qsyn])

W ′ = W + α ·∆W (5)

where α is a scaling factor used to balance the influence of the learned low-rank matrices with the
original model weights. By using LoRA, we efficiently fine-tune the model to integrate synthetic
question-answer pairs while preserving the generalization ability of the pre-trained model.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0

10

20

30

40

Base Direct

RAG(K)

Prompt

RAG(K)

EM metric of NQ

K=1

K=2

K=4

K=8

0

10

20

30

40

50

Base Direct

RAG(K)

Prompt

RAG(K)

F1 metric of NQ 

K=1

K=2

K=4

K=8

0

20

40

60

80

Base Direct

RAG(K)

Prompt

RAG(K)

EM metric of TQA

K=1

K=2

K=4

K=8

0

20

40

60

80

Base Direct

RAG(K)

Prompt

RAG(K)

F1 metric of TQA 

K=1

K=2

K=4

K=8

Figure 3: The impact of the number of paragraphs on RAG: This experiment explores how introduc-
ing different numbers of top-ranked paragraphs as background knowledge affects output of RAG.
Using the NQ and TQA datasets, we provide top 1, 2, 4, and 8 paragraphs as background knowledge
to observe the quality of the generated answers.

3.4 EXPERIMENTAL SETUP

3.4.1 METHODS

Base Model: For the baseline evaluation, we bypass any retrieval sources and directly input the
questions into the model to observe its generated responses. The input format is shown in table 5.

Direct-RAG(K): In the Direct RAG setting, the top-K retrieved documents are concatenated as
background knowledge and fed into the model to observe its generated responses. The input format
is shown in table 6.

Prompt-RAG(K): To improve the accuracy of the EM metric, we followed the setup of Wang et al.
(2024) by incorporating prompts into Direct-RAG, along with providing several answer examples,
forming Prompt-RAG. The input format is shown in table 7.

KE and PEFT: KE and PEFT use the MALMEN and LoRa methods, respectively. In KE, the
editing layers L = [26, 27, 28, 29, 30, 31], while in PEFT, the scaling factor α is set to 32.

Retriever: we employed the Dense Passage Retrieval (DPR) (Karpukhin et al., 2020) retriever to
extract relevant paragraphs from the Wikipages corpus (Vrandečić & Krötzsch, 2014).

3.4.2 DATASETS AND METRICS

We utilized authoritative open-domain question-answering datasets, specifically Natural Questions
(NQ) (Kwiatkowski et al., 2019) and TriviaQA (TQA) (Joshi et al., 2017), for our experiments. To
assess the accuracy and quality of the responses, we employed the Extract Match (EM) and F1-Score
(F1) metrics.

3.5 EXPERIMENTAL RESULTS AND DISCUSSION

Table 1 presents the performance results of Llama2-7B on the NQ and TQA datasets, comparing
the base model, two RAG approaches, and the combined RAG methods after knowledge injection
using KE and PEFT. As shown in figure 3, the model performs better when prompted with the
Top-1 retrieved document. Paper Wang et al. (2024) also mentions that although retrieving more
documents increases the hit rate of gold documents, irrelevant documents may introduce interference
to the model. Hence, we use K=1 as the baseline.

In validating RQ1 through our experimental results, we observed that PEFT consistently outper-
formed the base model across different amounts of injected paragraphs. This demonstrates that the
RAEG method, constructed via PEFT, is effective in improving the performance of the RAG frame-
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Top-1 Top-2 Top-4 Top-8

Dataset Methods EM F1 EM F1 EM F1 EM F1

NQ

Base Model 7.80 16.89 7.80 16.89 7.80 16.89 7.80 16.89
KE 18.4 25.69 17.40 24.97 16.47 25.31 17.93 26.74

PEFT 25.20 35.89 27.40 38.29 26.20 37.70 27.47 38.39
Direct-RAG(1) 13.60 23.46 13.60 23.46 13.60 23.46 13.60 23.46
KEw/D-RAG(1) 18.93 26.56 14.27 21.30 14.87 22.84 15.87 24.80

PEFTw/D-RAG(1) 19.27 31.03 24.87 34.51 22.13 32.62 34.95 46.10
Prompt-RAG(1) 29.00 40.61 29.00 40.61 29.00 40.61 29.00 40.61

KEw/P-RAG(1) 21.53 29.89 15.27 22.46 16.93 25.67 18.0 26.78
PEFTw/P-RAG(1) 30.13 41.16 31.93 43.69 30.2 42.01 34.07 44.49

TQA

Base Model 49.07 58.94 49.07 58.94 49.07 58.94 49.07 58.94
KE 36.53 45.61 31.93 41.84 37.2 46.78 30.67 41.07

PEFT 57.90 66.67 59.20 67.16 54.53 64.51 54.47 64.49
Direct-RAG(1) 54.20 64.49 54.20 64.49 54.20 64.49 54.20 64.49
KEw/D-RAG(1) 36.20 44.81 30.47 39.81 34.87 44.43 24.80 34.16

PEFTw/D-RAG(1) 60.67 69.49 62.53 70.74 58.07 67.43 57.73 67.30
Prompt-RAG(1) 60.8 69.37 60.8 69.37 60.8 69.37 60.8 69.37

KEw/P-RAG(1) 37.6 46.33 31.93 41.04 37.33 46.96 26.07 35.90
PEFTw/P-RAG(1) 62.13 70.51 61.47 69.87 56.80 66.06 56.73 66.09

Table 1: The impact of editing or fine-tuning different numbers of paragraph knowledge on RAEG.
This table presents the experimental results of RAEG under varying scales of injected paragraphs.
The top 1, 2, 4, and 8 indicate the number of paragraphs used for knowledge injection. In the
subsequent RAG stage, only the Top-1 paragraph is utilized for knowledge augmentation. D-RAG and
P-RAG represent Direct RAG and Prompt RAG respectively

work by embedding edited information into the model’s internal knowledge. On the other hand, the
KE method showed mixed results: it surpassed the base model on the NQ dataset but did not on the
TQA dataset. This suggests that the success of transferring external knowledge to internally embed-
ded representations using KE is contingent on several factors, such as the nature of the dataset, the
complexity of the questions, and the coverage of the model’s pre-trained knowledge.

In investigating RQ2, our experiments reveal that the RAEG framework, constructed using PEFT,
continues to outperform the original RAG model without negatively affecting the model’s reasoning
abilities. This suggests that PEFT preserves the model’s capacity to leverage external knowledge
for reasoning, even after modifying its internal knowledge representation. Conversely, while the
KE method initially demonstrated strong performance on the NQ dataset, its performance dropped
when we compared KEw/P-RAG with the baseline Prompt RAG. This indicates that, although KE
can surpass the base model in some cases, it may compromise the model’s reasoning ability as a
trade-off for improving knowledge representation.

These results emphasize a critical distinction between the two methods: PEFT successfully inte-
grates new knowledge while preserving the model’s original reasoning capabilities, whereas KE,
although improving specific knowledge areas, can undermine the model’s reasoning performance.
This highlights the need for more robust and balanced KE techniques that do not compromise origi-
nal abilities of pre-trained model. In particular, developing more stable KE methods that generalize
effectively across diverse datasets and handle complex reasoning tasks could significantly enhance
the integration of edited knowledge into large models.

4 METHODOLOGY

4.1 IMPROVED MODULE DESIGN

4.1.1 RE-RANKER

Since the retrieved information is not always fully reliable, it is crucial to distinguish between useful
and harmful knowledge to ensure proper alignment of the LLM’s preferences. To further enhance

7
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Wiki Corpus

Top paragraphs

retrieved

Re-ranking

Top paragraphs 

after re-ranking

Retrieval … … Synthetic 

QAs

Knowledge Editing

Llama2 LLM

Hypernetwork

𝜵𝑾𝒍𝟏

𝜵𝑾𝒍𝟐

Post-edited 
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Llama2 LLM

Parameter-Efficient Fine-Tuning

Post-edited 
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Parameter 

Pruning

𝜵𝑾𝒍𝟏
′

𝜵𝑾𝒍𝟐
′

Synthetic Knowledge 

Generation

Figure 4: The knowledge editing process of RAEG. Relevant knowledge paragraphs are retrieved
from an external corpus based on query q and re-ranked by the re-ranker. The Top-K paragraphs
are selected to generate synthetic knowledge for injection. To mitigate the side effects of knowledge
editing, parameter pruning strategies are applied.

the accuracy of the synthesized information, we introduced a re-ranking mechanism, which refines
the selection process by prioritizing the most relevant and trustworthy sources from the retrieved
content.

The specific steps for training the re-ranker are shown in Algorithm 1. We construct a reranker
training set from the retrieval results of the training set. For each query qi ∈ Q in the training set,
we retrieve the top 100 documents DTop using a pre-trained DPR retriever (Karpukhin et al., 2020).
Then, we examine each document di ∈ DTop to determine whether it contains the correct answer
to qi, labeling each document accordingly. The labels YTop are binary, where yi is labeled as either
’has answer’ or ’no answer’. We use the gemma-2B Gemma Team et al. (2024) model, fine-tuned
by (Chen et al., 2024), as the backbone for the reranker R(θ). The reranker is then fine-tuned on
the constructed training subset (qi, di, yi), where di is a document retrieved for query qi and yi
serves as the binary label (Yes or No) indicating whether di contains the answer to qi. The fine-
tuning process optimizes the reranker using a binary cross-entropy loss function, with yi guiding the
training to improve the reranker’s ability to distinguish between relevant and irrelevant documents.
For detailed results on the retrieval accuracy after re-ranking, please refer to appendix B.

4.1.2 PARAMETER PRUNING

After applying knowledge editing, we obtain the parameter update matrix ∆W . Drawing inspiration
from the findings of Gu et al. (2024), which suggest that smaller values in ∆W may carry less
substantial editing information but can still affect the model’s performance, we apply a pruning
strategy. By pruning ∆W , we aim to filter out parameters with smaller magnitudes, as they might
contribute less to the desired knowledge update. In addition, we propose a random pruning strategy.
We explore two pruning strategies to optimize the edited parameters ∆W in order to mitigate the
potential side effects of KE.

Algorithm 1 Re-ranker Training
Requested: Query set in training set Q, Retriever DPR, Retrieved results (D,Y ) = (dk, yk)

100
k=1,

Re-ranker model Rθ

1: for each query qi ∈ Q do
2: (D,Y )i = DPR(qi)
3: for each (dk, yk)

100
k=1 do

4: relevance score = Rθ(qi, di)
5: loss = BCELF(relevance score, yi) //BCELF means binary cross-entropy loss function
6: Update Rθ

7: end for
8: end for
9: Return Trained Re-ranker Rθ

8
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Top-1 Top-2 Top-4 Top-8

Dataset Methods EM F1 EM F1 EM F1 EM F1

NQ

KEw/D-RAG(1) 27.13 35.98 21.47 31.12 20.8 31.11 21.20 31.97
8.20 9.42 7.20 9.82 5.93 8.27 5.33 7.17

PEFTw/D-RAG(1) 27.93 38.25 34.67 46.20 35.10 46.88 34.93 46.53
8.66 7.22 9.80 11.69 12.97 14.26 -0.02 0.43

KEw/P-RAG(1) 32.40 41.91 25.53 34.54 23.60 34.19 23.13 33.46
10.87 12.02 10.26 12.08 6.67 8.52 5.13 6.68

PEFTw/P-RAG(1) 32.13 43.51 33.93 45.51 34.89 46.11 34.4 46.11
2.00 2.35 2.00 1.82 4.69 4.10 0.33 1.62

TQA

KEw/D-RAG(1) 47.60 58.39 44.20 55.43 49.53 60.11 39.07 50.75
11.40 13.58 13.73 15.62 14.66 15.68 14.27 16.59

PEFTw/D-RAG(1) 61.40 70.74 63.47 72.11 60.27 70.33 60.53 69.80
0.73 1.25 0.94 1.37 2.20 2.90 2.80 2.50

KEw/P-RAG(1) 50.00 60.24 46.40 56.87 52.07 62.10 40.33 50.46
12.4 13.91 14.47 15.83 14.74 15.14 14.26 14.56

PEFTw/P-RAG(1) 62.60 70.88 63.67 71.67 59.20 69.08 60.40 69.61
0.47 0.37 2.20 1.80 2.40 3.02 3.67 3.52

Table 2: Results after re-ranking and parameter pruning. Red values indicate improvements com-
pared to those in table 1. The knowledge editing (KE) results are based on magnitude-based pruning
applied at a 30% pruning ratio.

Random Pruning: This strategy is inspired by the dropout mechanism, where parameters are ran-
domly zeroed out. This helps prevent overfitting to the edited knowledge by ensuring that the model
does not become overly reliant on specific edited parameters.

Magnitude-based Pruning: In this approach, we filter out the smallest K% of the parameter values,
under the assumption that these smaller values contain less critical editing information. By zeroing
out these parameters, we aim to preserve the model’s performance by minimizing the difference
between the edited model and the original model. The pruning operation can be formalized as
follows:

∆W =

{
0, if ∆W ≤ threshold(K%)

∆W, otherwise
(6)

Through this dual pruning strategy, we balance the retention of critical knowledge with maintaining
the integrity of the pre-existing model structure, effectively mitigating the risk of excessive edits.

4.2 ABLATION STUDY OF PARAMETER PRUNING

We conducted a comprehensive study on various pruning scales using two different pruning strate-
gies, the results as shown in table 3. The results indicate that, for both pruning strategies, perfor-
mance improves progressively as the pruning ratio increases. This suggests that in extreme pruning
scenarios, where a significant portion of the parameters are removed, the remaining parameters are
sufficiently robust to sustain overall model performance.

At pruning scales below 50%, magnitude-based pruning significantly outperforms random pruning.
This highlights the efficacy of structured pruning strategies, which rank and remove less important
parameters based on their magnitudes, thus preserving the critical parameters that contribute most
to the model’s performance. In contrast, random pruning at low pruning ratios tends to remove
key parameters indiscriminately, leading to noticeable performance degradation. At pruning scales
above 50%, random pruning shows marked improvement. This suggests that while random pruning
may remove some redundant parameters at higher pruning ratios, its inherent randomness still results
in less stability and consistency compared to magnitude-based pruning, which remains more reliable
across different scales.

These findings indicate that magnitude-based pruning is a more stable and effective approach, espe-
cially at lower pruning ratios, as it preserves model performance more effectively. However, despite

9
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NQ TQA

Pruning strategy Pruning scale EM F1 EM F1

Magnitude

10% 32.00 41.51 48.53 58.88
30% 32.40 41.91 50.00 60.24
50% 32.53 42.13 50.73 60.64
70% 32.47 42.20 51.00 61.14
90% 33.20 42.95 52.87 62.73

Random

10% 29.07 38.10 44.13 54.84
30% 29.53 38.99 47.27 57.67
50% 32.07 41.68 51.47 61.61
70% 32.73 43.09 55.87 65.50
90% 32.20 43.04 61.20 69.97

Table 3: Ablation experiment on parameter pruning: Results of two pruning strategies at different
pruning scales.

its variability, random pruning demonstrates potential at higher pruning scales, particularly in ex-
treme pruning conditions where it may still offer some practical applications.

4.3 FURTHER EXPERIMENTAL RESULTS AND DISCUSSION

The experimental setup in this section is identical to that in section § 3.4, ensuring a fair assessment
of the improvements introduced by our designed modules.

Table 2 illustrates the further performance improvements achieved by integrating the improved mod-
ules, compared to the results in table 1.

Through the re-ranking process, we further refine the selection of documents that are more likely
to contain correct answers. The information from these selected documents is then edited into the
model to enhance its knowledge representation and accuracy. Parameter pruning mitigated the im-
pact of the edited parameters on the original model’s weights, resulting in an 8% to 12% performance
improvement for the KE method combined with RAG across both datasets.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced a novel framework, Retrieval-Augmented Editing Generation (RAEG),
which combines knowledge injection from retrieved documents with RAG to enhance the accuracy
of answer generation. The dual strategy of first injecting knowledge and then performing retrieval-
augmented generation significantly improves model performance.

A key contribution of our study is the investigation of the impact of two knowledge injection tech-
niques—Knowledge Editing (KE) and Parameter-Efficient Fine-Tuning (PEFT)—on model reason-
ing abilities after parameter modification. Our experiments show that while KE effectively internal-
izes new knowledge, it severely disrupts the model’s prior reasoning capabilities. In contrast, PEFT,
which operates through global fine-tuning, preserves the model’s overall performance more effec-
tively and achieves better results on open-domain question-answering (ODQA) tasks. In finally, we
further enhanced RAEG by introducing a re-ranking mechanism to refine the selection of reliable
knowledge sources and by employing parameter pruning to mitigate the negative effects of KE on
model performance.

Future research should continue to explore and discuss the impacts of various editing techniques on
parameter updates of pre-trained language models across a broader range of NLP tasks. Addition-
ally, developing more robust components to counteract the unintended side effects of model editing
and its ripple effects (Cohen et al., 2024) remains a critical challenge. Our data and code have been
made available to the community to support further advances in this research direction.
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A ENVIRONMENT SETTING

All data construction, knowledge editing, and evaluation experiments were conducted on worksta-
tions equipped with NVIDIA RTX A6000 GPUs. The initial weights of the LLama-2 (Touvron
et al., 2023) language models were sourced from HuggingFace Transformers (Wolf et al., 2019),
and the experiments utilized PyTorch version 2.4.0 (Paszke et al., 2019).

B RESULT OF RE-RANKER

Table 4 presents the retrieval accuracy results of our trained re-ranker model, comparing the per-
formance before and after its implementation on two datasets: NQ and TQA. The results show a
significant increase in retrieval accuracy across 4 top-rank type.

Higher retrieval accuracy directly affects the effectiveness of the generated synthetic knowledge,
significantly enhancing the quality and reliability of the responses. Therefore, the implementation
of the re-ranker not only optimizes the retrieval process but also greatly enriches the knowledge base
relied upon for generating responses. This improvement enables the model to generate synthetic
knowledge more effectively, increasing the accuracy and effectiveness of the final responses in the
RAEG framework. Our trained re-ranker model will be released along with the associated code.

Top-1 Top-2 Top-4 Top-8

Datasets Before After Before After Before After Before After
NQ 44.60 62.66 55.73 69.47 64.47 76.67 72.93 80.33

TQA 56.53 76.27 65.27 79.67 72.07 82.53 76.73 84.47

Table 4: Comparison of retrieval accuracy results before and after using the re-ranker.

C PROMPT FORMAT

This section provides a detailed overview of the input formats utilized in this paper. It includes
the input format for the Base model in table 5, as well as the input formats for Direct-RAG(K)
and Prompt-RAG(K) in table 6 7. Additionally, we outline the prompt templates used for self-
generating 8 synthetic knowledge.

Input Format of Base

Question: {question}
Answer:

Table 5: Input Format of Base.

Input Format of Direct-RAG(K)

Knowledge:
{Top-1 paragraph}
...
{Top-K paragraph}

Question: {question}
Answer:

Table 6: Input Format of Direct-RAG(K).
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Input Format of Prompt-RAG(K)

Knowledge:
{Top-1 paragraph}
...
{Top-K paragraph}

Base above knowledge, answer the following question with a very short
phrase, such as “1998”, “May 16th, 1931”, or “James Bond”, to meet the criteria
of exact match datasets.
Question: {question}
Answer:

Table 7: Input Format of Prompt-RAG(K).
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Prompt templates for self-generating synthetic knowledge

You are an assistant who is good at organizing questions and answers from
paragraphs. Here is an example.

Paragraph: ”on death row in the United States on January 1, 2013. Since
1977, the states of Texas (464), Virginia (108) and Oklahoma (94) have executed
the most death row inmates. , California (683), Florida (390), Texas (330) and
Pennsylvania (218) housed more than half of all inmates pending on death row.
, the longest-serving prisoner on death row in the US who has been executed
was Jack Alderman who served over 33 years. He was executed in Georgia in
2008. However, Alderman only holds the distinction of being the longest-serving
ëxecutedı̈nmate so far. A Florida inmate, Gary Alvord, arrived”
1. Q: How many death row inmates did Texas execute since 1977?
A: 464
2. Q: Which state executed 108 death row inmates since 1977?
A: Virginia
3. Q: How many death row inmates did Oklahoma execute since 1977?
A: 94
4. Q: Which state housed 683 death row inmates as of January 1, 2013?
A: California
5. Q: How many inmates did Florida house on death row?
A: 390
6. Q: How many death row inmates did Texas have pending?
A: 330
7. Q: How many death row inmates did Pennsylvania house?
A: 218
8. Q: Who was the longest-serving prisoner on death row who was executed?
A: Jack Alderman
9. Q: How many years did Jack Alderman serve on death row?
A: over 33 years
10. Q: In which year was Jack Alderman executed?
A: 2008
11. Q: Which state executed Jack Alderman?
A: Georgia
12. Q: Who is noted as the longest-serving ”executed” inmate?
A: Jack Alderman
13. Q: Which inmate arrived in Florida?
A: Gary Alvord
14. Q: What is the date referenced for death row statistics in the passage?
A: January 1, 2013
15. Q: Since when has the execution data been tracked in this passage?
A: 1977
16. Q: What constitutes more than half of all inmates pending on death row?
A: California, Florida, Texas, and Pennsylvania

Please follow the format of the example above to generate sixteen ques-
tions and corresponding answers for the following Paragraph. The format of
answers should be a very short phrase from paragraph, such as “464”, ”2008”,
”May 16th, 1931”, or “Jack Alderman”, to meet the criteria of exact match
Paragraph.

Paragraph: ”{paragraph}”

Table 8: The prompt template format used to generate synthetic knowledge, which includes a clear
instruction outlining our requirements and an example of a paragraph along with its corresponding
question-answer pairs. The model is then expected to generate similar question-answer pairs for
new paragraphs based on this format.
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