
Score-informed Neural Operator for
Enhancing Ordering-based Causal Discovery

Jiyeon Kang1,2∗, Songseong Kim1,2∗, Chanhui Lee1,3, Doyeong Hwang1,2,
Joanie Hayoun Chung2, Yunkyung Ko2, Sumin Lee2, Sungwoong Kim3†, Sungbin Lim1,2†

1LG AI Research
2Department of Statistics, Korea University

3Department of Artificial Intelligence, Korea University

Abstract

Ordering-based approaches to causal discovery identify topological orders of causal
graphs, providing scalable alternatives to combinatorial search methods. Under the
Additive Noise Model (ANM) assumption, recent causal ordering methods based
on score matching require an accurate estimation of the Hessian diagonal of the
log-densities. However, previous approaches mainly use Stein gradient estimators,
which are computationally expensive and memory-intensive. Although DiffAN
addresses these limitations by substituting kernel-based estimates with diffusion
models, it remains numerically unstable due to the second-order derivatives of score
models. To alleviate these problems, we propose Score-informed Neural Operator
(SciNO), a probabilistic generative model in smooth function spaces designed to
stably approximate the Hessian diagonal and to preserve structural information
during the score modeling. Empirical results show that SciNO reduces order di-
vergence by 42.7% on synthetic graphs and by 31.5% on real-world datasets on
average compared to DiffAN, while maintaining memory efficiency and scalability.
Furthermore, we propose a probabilistic control algorithm for causal reasoning
with autoregressive models that integrates SciNO’s probability estimates with au-
toregressive model priors, enabling reliable data-driven causal ordering informed
by semantic information. Consequently, the proposed method enhances causal
reasoning abilities of LLMs without additional fine-tuning or prompt engineering.

1 Introduction

Ordering-based causal discovery aims to identify a topological ordering of nodes in a causal graph,
typically represented as a Directed Acyclic Graph (DAG), such that the order reflects the underlying
cause-effect relationships. The combinatorial search over DAG structures is known to be NP-hard,
with complexity increasing sharply as the number of variables grows [6]. In contrast, ordering-based
approaches first infer a topological order of the causal graph, and then determine the direction of
edges based on this order, which substantially reduces the number of candidate graph structures.
By leveraging Large Language Models (LLMs), predicting causal orderings rather than full graph
structures, improves consistency and reduces structural errors [41]. Moreover, such causal order
suffices to identify valid backdoor adjustment sets, without full graph discovery [41, Proposition 3.2].

Recently, causal ordering methods based on score matching have been proposed [32, 34, 44] under
the ANM (Additive Noise Model) assumption. All of these approaches determine the causal order by
iteratively identifying and removing leaf nodes—i.e., variables that do not influence any others in the

∗Equal contribution.
†Corresponding Authors. {swkim01, sungbin}@korea.ac.kr.

Accepted at the Third SPIGM Workshop @ NeurIPS 2025.

causal graph. To accomplish this, they require the estimation of the Jacobian of the score function
S(x) = ∇x logP (x), in particular its diagonal, denoted as the Hessian diagonal function D(x):

D(x) := diag (HlogP) (x) =
(
∂xjSj(x) : j = 1, . . . , D

)
. (1)

Score matching based causal ordering methods sequentially identify leaf nodes from a causal graph by
estimating variance or mean of the Jacobian of the score function after each leaf removal. SCORE [32]
and CaPS [44] use the second-order Stein gradient estimator [22]. However, kernel-based estimators
exhibit cubic computational complexity with respect to the number of samples N , and suffer from
numerical instability due to the kernel matrix inversion. Since the score function must be re-estimated
iteratively at every step, the procedure becomes computationally problematic in large-scale causal
graphs as causal discovery algorithms require more data samples as the number of nodes D increases.
Contrary to kernel-based approaches, DiffAN [34] estimates the Jacobian of the score through the
Denoising Diffusion Model [13]. Instead of retraining the score model, DiffAN approximates residue
terms by computing the second-order derivatives of initially trained score model at each ordering step.
These residual approximations reduce computational burden and allow scalable causal ordering when
the number of data points increases, but their performance degrade in high-dimensional settings.

Fundamentally, to identify leaf nodes via the score information, more reliable derivative estimation
of score models is necessary; otherwise errors may accumulate throughout the ordering process,
ultimately degrading the causal discovery performance. While modeling the score function via
diffusion models is suitable from a generative perspective, injecting noise into the data can destroy
the functional information inherent in the original score function. To address this challenge, inspired
by recent advances in score-based generative modeling in Hilbert spaces [24, 25], we propose SciNO
(Score-informed Neural Operator), a functional diffusion model framework which aims to stably
approximate the Hessian diagonal of the data distribution by modeling the score function with neural
operators [16, 23, 25]. To stably learn the derivatives of the score function, we introduce two key
modifications to the time-conditioned Fourier neural operator architecture used in [25]. First, instead
of using positional embeddings [42], we incorporate a Learnable Time Encoding (LTE) module that
enables the model to jointly learn spatiotemporal derivatives. Second, signals in Fourier layers are
decomposed into their real and imaginary parts in the spectral domain, allowing more expressive
representation of functional information. Consequently, SciNO enables stabilizing the estimation of
both the score function and its second-order derivatives, thus it significantly improves performances
of causal ordering methods, including DiffAN and CaPS, especially in high-dimensional settings.
Compared to the original DiffAN, SciNO achieves a 42.7% reduction in order divergence on synthetic
datasets and a 31.5% reduction on real-world datasets.

Additionally, motivated by [41], we apply the proposed method to control autoregressive generative
models, e.g. LLMs and Mamba [12], in causal reasoning tasks. Recent studies leverage prior knowl-
edge of LLMs to improve causal reasoning accuracy [2, 8, 20, 26, 41]. Existing approaches often
treat responses of LLMs as binary decisions, failing to reflect uncertainty in prior knowledge [5]. On
the contrary, we propose a probabilistic control method which leverages score-informed statistics
inferred by SciNO, guiding autoregressive models to generate more reliable causal reasoning. Ap-
plied to real-world datasets, our method improves order divergence by an average of 64%, achieving
up to 85% reduction compared to uncontrolled models. Furthermore, our approach can lower the
computational complexity of LLM queries from O(|V|2) to O(|V|) contrary to pairwise prompting
methods [1, 8, 15, 19, 26]. Notably, these improvements are achieved without fine-tuning or intensive
prompt engineering.

2 Preliminaries

In this section, we briefly introduce preliminaries for understanding score matching based causal
ordering methods—SCORE [32], DiffAN [34], and CaPS [44]—which differ in terms of identifiability
assumptions, Hessian approximation, and leaf node selection criteria.

Additive Noise Models and Identifiability Given a causal Directed Acyclic Graph (DAG) G, a
causal order π : V → V is a non-unique permutation of the set of nodes V = {1, . . . , D} such that
for any directed edge from node i to j in G, it holds π(i) < π(j) [29]. Let πk ⊂ πk+1 ⊂ π denote a
sequence of causal order corresponding to selected nodes at each step k = 1, . . . , |V| − 1, and write
−πk := V \ πk, the indices of remaining nodes. To identify a causal order from observational data D,

2

we impose a functional assumption known as the Additive Noise Models (ANMs) [30]:

xi = fi(Pa(xi)) + ϵi, ϵi ∼ pi. (2)

SCORE [32] Assuming (2) with Gaussian noise pi = N (0, σ2
i), where each fi is supposed to be

nonlinear and twice-continuously differentiable, SCORE proposes an identifiability criterion for
inferring a topological order of the causal graph G by investigating the variance of the diagonal
Hessian iteratively. Due to [32, 34, Lemma 1], Var [Dj(x−πk

)] = 0 holds if and only if j ∈ V \ πk is
a leaf node at step k + 1. SCORE proposes an ordering algorithm as follows:

leaf = argmin
j∈V\πk

Varx∼D [Dj(x−πk
)]. (3)

CaPS [44] Under conditions on variance of noises, CaPS proposes an identifiability criterion, where
each fi can be either linear or nonlinear, extending its applicability to a wider range of structural
functions. Under the ANM assumption [44, Theorem 1], CaPS utilizes the expectation of the Hessian
diagonal to identify leaf nodes according to the following criterion:

leaf = argmax
j∈V\πk

Ex∼D [Dj(x−πk
)]. (4)

DiffAN [34] SCORE and CaPS require re-estimating the Hessian diagonal in (3) and (4) at each
step, resulting in computational overhead when the number of nodes increases. DiffAN replaces this
by approximating the deciduous score S(x−πk

), the score function over the remaining variables after
removing leaf nodes. To approximate D(x−πk

) based on the deciduous score, DiffAN leverages
diffusion models to learn the score function S(x) via score model Ŝθ(t,x) near t ≈ 0:

Dj(x−πk
) ≈ ∂xj Ŝ

θ
j (t,x) +

∑
l∈πk

∂xj

(
∂xj Ŝ

θ
l (t,x) ·

Ŝθ
l (t,x)

∂xl
Ŝθ
l (t,x)

)
, j ∈ V \ πk. (5)

A detailed derivation of (5) is provided in Appendix A.2.1.

3 Score-informed Neural Operator

3.1 Score Matching in Function Spaces

While approximation (5) reduces computational cost, numerical instability is implicit in the computing
second-order derivatives of score models. Conventional MLPs frequently struggle to accurately
estimate derivatives [22], so that the curvature information of score models can be deviated from
that of the true score function. To address this limitation, we employ Hilbert Diffusion Model
(HDM, [25]), which enables functional diffusion modeling in Hilbert spacesH rather than applying
diffusion models in Euclidean space. Theoretical background and approximation guarantees are
provided in Appendix A.2.2. Based on this, we introduce the architecture of SciNO (Score-informed
Neural Operator) in the following section, a specially designed neural operator which aims to stably
approximate the Hessian diagonal to enhance score matching based causal discovery algorithms.

(a) Time-conditioned FNO (b) SciNO with LTE

+ +

Fourier Layer

Skip-connection Skip-connection

iFFTFFT Factorized
SpectralConv

Positional
Embedding

<latexit sha1_base64="PDkh6F7R6CbK+Snno2BKb5H+BH8=">AAACSXicbVDLTgIxFO2AD8QX6NJNIzFxRWaMryWJG5eQyCMBQjrlDjR0OpP2jkIIX+BWv8ov8DPcGVd2gIWAN2lycs59nB4/lsKg6346mezW9s5ubi+/f3B4dFwonjRMlGgOdR7JSLd8ZkAKBXUUKKEVa2ChL6Hpjx5SvfkM2ohIPeEkhm7IBkoEgjO0VA17hZJbdudFN4G3BCWyrGqv6Fx1+hFPQlDIJTOm7bkxdqdMo+ASZvlOYiBmfMQG0LZQsRBMdzp3OqMXlunTINL2KaRz9u/ElIXGTELfdoYMh2ZdS8l/tZTRJjBWpJtq36Tn1rxhcN+dChUnCIovrAWJpBjRNCjaFxo4yokFjGthf0f5kGnG0ca5sl3BC44RxqsHFvTccN6m7K1nugkaV2XvtnxTuy5VKsu8c+SMnJNL4pE7UiGPpErqhBMgr+SNvDsfzpfz7fwsWjPOcuaUrFQm+wvIK7N3</latexit>t

MLPspec

Learnable Time Encoding

concat
& norm

Skip-connection

+

Fourier Layer

FFT ×
real

imag

MLPspec Complexconcat iFFT

<latexit sha1_base64="PDkh6F7R6CbK+Snno2BKb5H+BH8=">AAACSXicbVDLTgIxFO2AD8QX6NJNIzFxRWaMryWJG5eQyCMBQjrlDjR0OpP2jkIIX+BWv8ov8DPcGVd2gIWAN2lycs59nB4/lsKg6346mezW9s5ubi+/f3B4dFwonjRMlGgOdR7JSLd8ZkAKBXUUKKEVa2ChL6Hpjx5SvfkM2ohIPeEkhm7IBkoEgjO0VA17hZJbdudFN4G3BCWyrGqv6Fx1+hFPQlDIJTOm7bkxdqdMo+ASZvlOYiBmfMQG0LZQsRBMdzp3OqMXlunTINL2KaRz9u/ElIXGTELfdoYMh2ZdS8l/tZTRJjBWpJtq36Tn1rxhcN+dChUnCIovrAWJpBjRNCjaFxo4yokFjGthf0f5kGnG0ca5sl3BC44RxqsHFvTccN6m7K1nugkaV2XvtnxTuy5VKsu8c+SMnJNL4pE7UiGPpErqhBMgr+SNvDsfzpfz7fwsWjPOcuaUrFQm+wvIK7N3</latexit>t MLPLTE

cos

sin

Linear
ProjectionLinear

Projection

addition

Figure 1: Architectures of time-conditioned FNO [25] and SciNO with Learnable Time Encoding.

3.2 Architecture of SciNO

Score-based generative modeling necessitates time-conditioning to model score functions Ŝθ(t,x)
over continuous time. Following the approach in DDPM [13], HDM implements time-conditioned

3

Table 1: Comparison of order divergence in Erdös-Rényi synthetic datasets for D ∈ {10, 30, 50, 100}
between DiffAN w/ MLP [34], DiffAN w/ SciNO (PE), and DiffAN w/ SciNO (LTE).

Method\Dataset ER(d10) ER(d30) ER(d50) ER(d100)

DiffAN w/ MLP [34] 3.2± 1.99 26.7± 8.1 45.5± 7.51 117.0± 12.78

DiffAN w/ SciNO (PE) 2.5 ± 1.36 19.0± 6.91 41.4± 11.33 100.7± 15.62
DiffAN w/ SciNO (LTE) 2.7± 1.19 16.9 ± 6.12 32.8 ± 6.55 86.6 ± 12.99

Fourier Neural Operator (FNO, [23]) by adding projected tensors from Positional Embedding (PE,
[42]) module into each Fourier layer, which transforms the input into the spectral domain and
performs spectral convolution to capture global patterns while supporting stable estimation of
function derivatives. However, while the time-conditioned FNO performs well in functional generative
modeling, it shows slight improvements over the MLP-based DiffAN in causal orderings tasks. This
is due to the instability in estimating the derivatives of the score function S(x) near t ≈ 0.

To stably learn the derivatives of the score function, we propose two major modifications to the
architecture used in [25]. First, signals in Fourier layers are decomposed into their real and imaginary
parts in the spectral domain, allowing more expressive representation of functional information. With
the modified Fourier layer, SciNO achieves improved causal ordering performance compared to the
original DiffAN. However, this performance gain relatively decreases as the number of variables
increases (see SciNO (PE) in Table 1). To scale-up SciNO for high-dimensional graphs, rather than
assigning fixed embedding vectors to discrete positions as in PE, we propose a learnable encoding
function defined over a continuum, Learnable Time Encoding (LTE) module, that enables the model
to jointly learn derivatives in both spatial and temporal directions.

Learnable Time Encoding in SciNO We first project the time variable t using F -dimensional
learnable weights wproj ∈ RF , to get a projected vector twproj. Then, we obtain a normalized signal
Φ(t) = [cos(twproj), sin(twproj)]/

√
2F , which is passed through an MLPLTE : R2F → RH layer.

This embedding is similar to [21], which is designed for multi-dimensional spatial PE. Then, we inject
the time encoding via elementwise multiplication into both the real and imaginary parts before the
input of MLPspec in Fourier layers (see Figure 1). This continuous encoding aims to learn functional
information, including spatiotemporal derivatives, and aligns with the objective of fitting higher-order
derivatives by enabling a more flexible representation. Consequently, LTE contributes to more stable
Jacobian estimation and allows SciNO to outperform baselines more clearly as graph dimensionality
increases, highlighting its scalability (see SciNO (LTE) in Table 1 and Appendix A.5.1).

SciNO elaborates more explicit Causal Relationship Figure 2 shows that DiffAN with SciNO
consistently achieves residuals closer to zero when approximating Hessian diagonal D(x) than the
original DiffAN. This result indicates that functional diffusion modeling upon SciNO provides more
stable approximation of the score function and its derivatives. We also investigate whether SciNO
learns causal relationship explicitly by evaluating the goodness-of-fit between generated samples and
data distributions, and analyzing its alignment with causal ordering. Leveraging diffusion models on
Erdös-Rényi synthetic datasets, we first generate samples by using trained score models implemented
by DiffAN with MLP and SciNO. We then measure the Maximum Mean Discrepancy (MMD, [11])
between the generated samples and the data, and estimate the Spearman rank correlation between
the best MMD and order divergence for each model. Figure 3 shows significant positive correlation
(ER(d30): 0.453, ER(d50): 0.561) between the goodness-of-fit and causal ordering by SciNO contrary
to MLP. Overall, these findings indicate that SciNO’s stable approximation of the score function and
its derivatives leads the model to learn an explicit causal relationship.

SciNO enables memory efficient Hessian Approximation For scalable causal ordering across
both linear and nonlinear ANMs settings, one can directly replace the score matching in DiffAN
and CaPS by SciNO to approximate the Hessian diagonal D(x) through (5). Alternatively, one can
apply a probing strategy built upon pretrained SciNO during the causal ordering, by freezing Fourier
layers and post-optimize MLPfinal to match the Stein gradient estimator [22]. This allows fast and
memory-efficient adaptation to the Hessian of marginalized density by avoiding the computation of
kernel matrix inverse with whole dataset for each iteration, and does not require retraining of the

4

1 2 3 4 5 6 7 8 9
Graph Index

0.4

0.2

0.0

0.2

0.4

Re
sid

ua
l

DiffAN w/ MLP
DiffAN w/ SciNO

Figure 2: Boxplots of residuals in estimation error of Hessian diagonals corresponding to leaf nodes
across 9 synthetic 2D datasets generated from Structural Equation Models (SEMs).

1.07 1.08 1.09 1.10 1.11 1.12
Best MMD

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Or
de

r D
iv

er
ge

nc
e

Spearman = 0.226

ER(d30)

1.34 1.36 1.38 1.40
Best MMD

35

40

45

50

55

Or
de

r D
iv

er
ge

nc
e

Spearman = 0.042

ER(d50)

0.014 0.016 0.018 0.020 0.022
Best MMD

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

Or
de

r D
iv

er
ge

nc
e

Spearman = 0.453

ER(d30)

0.025 0.030 0.035 0.040
Best MMD

35

40

45

50

55

60

Or
de

r D
iv

er
ge

nc
e

Spearman = 0.561

ER(d50)
DiffAN w/ MLP DiffAN w/ SciNO

Figure 3: Comparion of correlation between the best MMD and order divergence in Erdös-Rényi
synthetic datasets for D ∈ {30, 50} between DiffAN [34] and DiffAN w/ SciNO.

entire network (Figure A.5). While CaPS requires O(N3) computational complexity, the probing
requires O(TB2N) with training epochs T (≪ N) and mini-batches of size B (≪ N).

3.3 Probabilistic Control of Autoregressive Causal Ordering

While SciNO is a stable and scalable method for ordering-based causal discovery, its performance
can be further enhanced by incorporating semantic information [2, 8, 20, 26, 41]. Motivated by [41],
we introduce probabilistic control bridging ordering-based approaches and LLM-based reasoning.

Autoregressive generative models, e.g. Large Language Models (LLMs), generate a sequence due to
the conditional distribution PAR(xt+1|x1:t, context) over the next position xt+1 given a sequence
x1:t = (x1, . . . , xt). Here, context refers to contextual information such as documental guidance
(e.g. variable names or descriptions) or domain knowledge that helps to infer a causal structure a
priori among the variables. From a causal ordering perspective, x1:t represents variables whose
causal orders are predicted, while xt+1 corresponds to a candidate variable for the next leaf node. We
construct an evidence (likelihood) based on statistics estimated from observed data using SciNO, and
propose a method to integrate the prior and the evidence to infer the posterior probability as follows:

P(xt+1|x1:t, stat, context) ∝ PAR(xt+1|x1:t, context)× PSciNO(stat|x1:t+1). (6)

Here, stat in the evidence term PSciNO(stat|x1:t+1) denotes a statistic based on D(x), which can
be used to determine the leaf node due to the identifiability criterion (3) or (4), proposed in SCORE
[32] and CaPS [44], respectively. In this paper, we focus on the criterion (3) without loss of generality.

We propose two estimators for computing PSciNO(stat|x1:t+1) based on statistics, average rank and
confidence interval of Varx∼D[Di(x)] of each node i ∈ V . The node set V represents all variables
in the causal graph, where |V| = D is the number of variables. To compute these statistics, a
multiple number of variance samples is essential and can be obtained by applying the MCMC,
bootstrapping, or ensemble technique. We apply Deep Ensembles [18] to train multiple independent
models with different initializations. Note that due to the probing strategy, one can train multiple
models from a single pretrained SciNO, enabling a memory-efficient ensemble strategy. Let σ(m)

i

denote
√

Varx∼D[Di(x)] for a given independently trained model m ∈ {1, . . . ,M} and node i ∈ V .

5

Rank-based Control Rank-based control uses the statistic of the rank of Varx∼D[Di(x)]:

P(rank)
SciNO (Varx∼D [Di(x)] < Varx∼D [Dj(x)] |x1:t, xt+1 = i), j ∈ V \ πt. (7)

Let πt denote the partial causal order fixed by x1:t. Motivated from Plackett–Luce model [31], we
approximate (7) by computing the average rank r̄(i) for each node i ∈ V across models:

P̂
(rank)
m∼M (σ

(m)
i < σ

(m)
j |x1:t, xt+1 = i) =

exp (−r̄(i))∑
j∈V\πt

exp (−r̄(j)) , r̄(i) =
1

M

M∑
m=1

r
(m)
i . (8)

Here r
(m)
i denotes the rank of σ(m)

i , sorted in ascending order for each model. A lower average rank
implies that the node consistently exhibits minimal variance across models. Rank-based estimator (8)
provides a scale-invariant and outlier-robust way to compare variances across models.

Confidence Interval-based Control Due to the Central Limit Theorem (CLT), the sample mean of
(σ

(m)
i)2 approximates a Gaussian distribution, from which we derive the confidence interval CI(i). Let

CIlower(i) and CIupper(i) denote the lower and the upper bound of the confidence interval. Confidence
interval-based control utilizes the following statistic of the uncertainty in (σ

(m)
i)2 estimation:

P(CI)
SciNO(CIlower(i) ≤ CIupper(j∗)|x1:t, xt+1 = i), j∗ = argmin

j∈V\πt

Varx∼D [Dj(x)]. (9)

We approximate the probability (9) using the following empirical estimator:

P̂
(CI)
m∼M (CIlower(i) ≤ CIupper(j

(m)
min)|x1:t, xt+1 = i) =

1

M

M∑
m=1

1
[
CIlower(i) ≤ CIupper(j

(m)
min)

]
. (10)

Here, j(m)
min denotes the node j of minimal σ(m)

j , and 1[·] is the indicator function. Instead of directly
comparing variance estimates, estimator (10) can account for the uncertainty across different models.

Algorithm 1 in Appendix A.6.1 presents our probabilistic control of autoregressive causal ordering, by
using the estimators proposed in (8) or (10). Each variable belongs to either Vcontext, which contains
variables with contextual information or domain knowledge, or V¬context otherwise. The posterior
computation differs depending on which set the variable belongs to. For v ∈ Vcontext, the algorithm
applies soft supervision which updates the autoregressive model’s prior by multiplying the evidence
term (8) or (10). If variables in v ∈ V¬context, then the algorithm applies hard supervision by imposing
a uninformative prior, which selects a leaf node based on the evidence term. These supervisions
enable the autoregressive model to operate reliably with mixed levels of contextual information.

Table 2: Comparison of causal discovery metrics(OD/SHD/SID) between DiffAN [34] and DiffAN
with SciNO in (a) synthetic datasets and (b) real and semi-synthetic datasets: Physics, Sachs, and
BNLearn with nonlinear ANM. Each score is recorded over 10 random graphs for synthetic datasets,
and over 10 independent runs for real and semi-synthetic datasets.

Dataset\Metric DiffAN [34] DiffAN w/ SciNO (Ours)

OD (↓) SHD (↓) SID (↓) OD (↓) SHD (↓) SID (↓)
ER(d2) 0.2± 0.4 0.3± 0.64 0.3± 0.64 0.0± 0.0 0.0± 0.0 0.0± 0.0
ER(d3) 0.4± 0.49 0.7± 0.9 1.1± 1.58 0.1± 0.3 0.2± 0.6 0.4± 1.2
ER(d5) 1.1± 1.22 1.8± 1.78 3.6± 4.32 0.9± 1.14 1.7± 1.95 4.8± 4.94
ER(d10) 3.2± 1.99 21.9± 3.47 47.8± 10.20 2.7± 1.19 20.5± 3.5 41.6± 9.31
ER(d30) 26.7± 8.1 94.2± 17.57 546.3± 82.80 16.9± 6.12 88.8± 16.5 492.0± 91.64
ER(d50) 45.5± 7.51 184.2± 14.63 1690.3± 133.55 32.8± 6.55 180.0± 15.45 1622.0± 110.92
ER(d100) 117.0± 12.78 463.3± 27.64 7562.2± 435.94 86.6± 12.99 445.9± 32.84 7259.2± 653.27

Physics(d7) 3.3± 0.78 8.6± 2.06 16.8± 4.73 1.9± 0.54 5.8± 1.60 8.2± 4.62
Sachs(d8) 5.7± 2.69 22.8± 4.56 26.1± 10.34 5.6± 2.65 23.1± 3.86 23.3± 9.10
MAGIC-NIAB(d44) 8.8± 6.85 89.1± 25.85 227.2± 157.64 4.1± 0.70 72.0± 4.52 125.5± 28.08
ECOLI70(d46) 21.8± 4.26 111.0± 11.47 684.8± 80.67 12.8± 3.19 90.3± 7.13 500.9± 58.16
MAGIC-IRRI(d64) 12.0± 3.87 146.9± 13.46 321.9± 64.64 10.6± 1.69 144.5± 4.43 254.4± 39.66
ARTH150(d107) 43.3± 15.77 613.3± 72.49 2456.0± 953.08 21.4± 2.76 515.6± 15.26 1186.7± 104.19

6

4 Empirical Results

We evaluate whether the proposed method improves existing ordering-based methods, DiffAN
[34] and CaPS [44]. Additional baseline comparisons are provided in Appendix A.5.2. Given the
inferred order, we apply a pruning based on feature selection [4] to compare the structural accuracies
achieved by the resulting causal graphs across different ordering methods. We also validate causal
ordering performances by applying a probabilistic control to LLMs. Evaluation metrics include Order
Divergence (OD, [32]) for causal ordering, Structural Hamming Distance (SHD, [28]) and Structural
Intervention Distance (SID, [40]) for causal discovery. See Appendix A.4.2 for details on each metric.

4.1 Synthetic Data: Erdös-Renyi Random Graphs

Dataset We generate synthetic datasets from nonlinear ANM on Erdös–Rényi (ER) [9] causal
DAGs, where the number of nodes D varies from 2 to 100 and the expected number of edges is 4D.
For each case, we generate 10 random graphs and produce 1,000 samples per graph. See Appendix
A.4.1 for details.

Results Table 2 shows that SciNO improves the performance of DiffAN in most metrics, particularly
in terms of OD, and remains scalable in high-dimensional settings, notably reducing OD from 117.0
to 86.6 when D = 100. The top line graphs in Figure A.4 show the cumulative OD, which measures
the inaccurate prediction over the leaf nodes. Original DiffAN accumulates OD more rapidly as
the ordering progresses, while SciNO maintains more accurate prediction, particularly in high-
dimensional settings (D ∈ {30, 50}). The bottom of heatmap in Figure A.4 visualizes the ranked
variance of the estimated Hessian diagonal for each variable at ordering steps {10, 20, 30} on ER
graphs with 30 nodes. SciNO provides more accurate leaf node predictions and assigns consistently
lower variances to ground-truth leaves, due to the stable estimation of the Hessian diagonal.

4.2 Real and Semi-Synthetic Data

Dataset We evaluate causal structure learning on three datasets of real-world graphs: (i) A Physics
commonsense-based synthetic dataset [19] with 7 variables and 5,000 nonlinear-SEM samples. (ii)
The Sachs flow-cytometry dataset [33] comprising 7,466 samples for 8 proteins with cyclic terminal
nodes removed. (iii) The BNLearn collection of four real-world graphs— MAGIC-NIAB [37] (44
nodes), ECOLI70 [35] (46 nodes), MAGIC-IRRI [36] (64 nodes), ARTH150 [27] (107 nodes)—each
simulated with 10,000 samples under both linear and nonlinear Structural Equation Models (SEMs).
Detailed sampling procedures are provided in Appendix A.4.1.

Results Consistent with the results on ER synthetic graphs, DiffAN with SciNO outperforms the
MLP-based model across all real datasets (see Table 2). As discussed in Section 3.2, SciNO can be
applied to both methods that assume nonlinear relationships, such as DiffAN [34], and methods based
on linear structures, such as CaPS [44]. Table A.5 compares the performances of the original CaPS
and CaPS with probed SciNO on BNLearn datasets under linear ANM. SciNO achieves comparable
performances across all datasets in terms of OD, improving on higher-dimensional graphs such as
MAGIC-IRRI and ARTH150. As shown in Figure A.5, while CaPS fails to scale to large datasets due
to memory constraints, probed SciNO exhibits significantly lower memory usage.

4.3 Controlling LLM for Causal Ordering

Setting We prompt LLMs (Llama-3.1-8B-Instruct [10], GPT-4o [14]) to predict the leaf node
among unordered variables, then LLMs output the prior probability PLLM(xt+1|x1:t, context) in an
autoregressive manner (see Figure 4). Compared to pairwise prompt methods [1, 8, 15, 19, 26], this
approach reduces the number of LLM calls fromO(|V|2) toO(|V|). We apply a length normalization
for α ∈ {0.5, 1.0} to mitigate bias due to the variable name length. To evaluate the impact of the
evidence quality on the control algorithm, we compute the required statistics using SCORE [32],
DiffAN [34] and SciNO. The evidence term is estimated by (8) and (10), using Deep Ensembles [18]
with M = 30 models for DiffAN and SciNO, while for SCORE, which does not support this, we use
bootstrapping with 1,000 replicates. Full experimental details are provided in Appendix A.6.2.

7

Identify the most likely leaf node in a causal structure.
A leaf node is a variable that does not causally influence
any other variable in the given `Unordered Variables` set.

Input:
 Unordered Variables: ["TSI", "SAT", "WS"]
 Data Description: Physics-based environmental variables
with causal relations
 Variable Descriptions: [
 {"TSI": "Total Solar Irradiance"},
 {"SAT": "Surface Air Temperature"},
 {"WS": "Wind Speed"},
]

LLM Prompt

WS

Uncontrolled
LLM Output

Wgt ER…

SAT

Controlled
LLM OutputControl by SciNO

Unordered Variables
Select leaf node[]

<latexit sha1_base64="njmz3pH7HOk03iaHaFWqDyh/edI=">AAACl3icdVFbS+QwFE6762287Kz6Ir4EB0FRhnYRV3xRVMQHLyM6KkyHkmYyGkyTkpwuDrV/yR/jm//GdKas4+1AyMc55/vOLUoEN+B5L4774+fI6Nj4RGVyanrmV/X37JVRqaasSZVQ+iYihgkuWRM4CHaTaEbiSLDr6H6/iF//Y9pwJS+hl7B2TG4l73JKwLrC6lMQE7iLoqyRrzyEGaz5+aP9/W3I1wNgD5AZIP8xVbL481UcJFoloPAbPcwGOcfHJ/l3WkN84DEzX9AvKD89swJDxUsRK7caVmte3esb/gz8EtRQaY2w+hx0FE1jJoEKYkzL9xJoZ0QDp4LllSA1LCH0ntyyloWS2K7aWX+vOV62ng7uKm2fBNz3DjMyEhvTiyObWcxhPsYK51exVgrdrXbGZZICk3RQqJsKbBdaHAl3uGYURM8CQjW3vWJ6RzShYE9ZsUvwP478GVz9qfub9c3zjdruXrmOcbSIltAK8tFftIuOUAM1EXXmnW1n3zlwF9wd99A9GqS6TsmZQ+/MPX8FWYnOtQ==</latexit>

P(xt+1|x1:t, stat, context) → PLLM(xt+1|x1:t, context)↑ PSciNO(stat|x1:t+1)

xt+1

TSI SAT WS

Current Causal Order x1:t

?

Variable

TSI 0.1125 0.3350 0.1047

SAT 0.6237 0.2872 0.6772

WS 0.2641 0.3778 0.2180

selected

True causal graph

TSI

RNFL Wgt

SAT

ER

WS

MC

1

<latexit sha1_base64="njmz3pH7HOk03iaHaFWqDyh/edI=">AAACl3icdVFbS+QwFE6762287Kz6Ir4EB0FRhnYRV3xRVMQHLyM6KkyHkmYyGkyTkpwuDrV/yR/jm//GdKas4+1AyMc55/vOLUoEN+B5L4774+fI6Nj4RGVyanrmV/X37JVRqaasSZVQ+iYihgkuWRM4CHaTaEbiSLDr6H6/iF//Y9pwJS+hl7B2TG4l73JKwLrC6lMQE7iLoqyRrzyEGaz5+aP9/W3I1wNgD5AZIP8xVbL481UcJFoloPAbPcwGOcfHJ/l3WkN84DEzX9AvKD89swJDxUsRK7caVmte3esb/gz8EtRQaY2w+hx0FE1jJoEKYkzL9xJoZ0QDp4LllSA1LCH0ntyyloWS2K7aWX+vOV62ng7uKm2fBNz3DjMyEhvTiyObWcxhPsYK51exVgrdrXbGZZICk3RQqJsKbBdaHAl3uGYURM8CQjW3vWJ6RzShYE9ZsUvwP478GVz9qfub9c3zjdruXrmOcbSIltAK8tFftIuOUAM1EXXmnW1n3zlwF9wd99A9GqS6TsmZQ+/MPX8FWYnOtQ==</latexit>

P(xt+1|x1:t, stat, context) → PLLM(xt+1|x1:t, context)↑ PSciNO(stat|x1:t+1)
<latexit sha1_base64="njmz3pH7HOk03iaHaFWqDyh/edI=">AAACl3icdVFbS+QwFE6762287Kz6Ir4EB0FRhnYRV3xRVMQHLyM6KkyHkmYyGkyTkpwuDrV/yR/jm//GdKas4+1AyMc55/vOLUoEN+B5L4774+fI6Nj4RGVyanrmV/X37JVRqaasSZVQ+iYihgkuWRM4CHaTaEbiSLDr6H6/iF//Y9pwJS+hl7B2TG4l73JKwLrC6lMQE7iLoqyRrzyEGaz5+aP9/W3I1wNgD5AZIP8xVbL481UcJFoloPAbPcwGOcfHJ/l3WkN84DEzX9AvKD89swJDxUsRK7caVmte3esb/gz8EtRQaY2w+hx0FE1jJoEKYkzL9xJoZ0QDp4LllSA1LCH0ntyyloWS2K7aWX+vOV62ng7uKm2fBNz3DjMyEhvTiyObWcxhPsYK51exVgrdrXbGZZICk3RQqJsKbBdaHAl3uGYURM8CQjW3vWJ6RzShYE9ZsUvwP478GVz9qfub9c3zjdruXrmOcbSIltAK8tFftIuOUAM1EXXmnW1n3zlwF9wd99A9GqS6TsmZQ+/MPX8FWYnOtQ==</latexit>

P(xt+1|x1:t, stat, context) → PLLM(xt+1|x1:t, context)↑ PSciNO(stat|x1:t+1)
<latexit sha1_base64="njmz3pH7HOk03iaHaFWqDyh/edI=">AAACl3icdVFbS+QwFE6762287Kz6Ir4EB0FRhnYRV3xRVMQHLyM6KkyHkmYyGkyTkpwuDrV/yR/jm//GdKas4+1AyMc55/vOLUoEN+B5L4774+fI6Nj4RGVyanrmV/X37JVRqaasSZVQ+iYihgkuWRM4CHaTaEbiSLDr6H6/iF//Y9pwJS+hl7B2TG4l73JKwLrC6lMQE7iLoqyRrzyEGaz5+aP9/W3I1wNgD5AZIP8xVbL481UcJFoloPAbPcwGOcfHJ/l3WkN84DEzX9AvKD89swJDxUsRK7caVmte3esb/gz8EtRQaY2w+hx0FE1jJoEKYkzL9xJoZ0QDp4LllSA1LCH0ntyyloWS2K7aWX+vOV62ng7uKm2fBNz3DjMyEhvTiyObWcxhPsYK51exVgrdrXbGZZICk3RQqJsKbBdaHAl3uGYURM8CQjW3vWJ6RzShYE9ZsUvwP478GVz9qfub9c3zjdruXrmOcbSIltAK8tFftIuOUAM1EXXmnW1n3zlwF9wd99A9GqS6TsmZQ+/MPX8FWYnOtQ==</latexit>

P(xt+1|x1:t, stat, context) → PLLM(xt+1|x1:t, context)↑ PSciNO(stat|x1:t+1)

Figure 4: (Top) Overview of the LLM control. The LLM is prompted to output the most likely
leaf node among unordered variables. Prior probabilities are multiplied by SciNO’s data-informed
evidence terms to compute posteriors. The variable with the highest posterior probability is selected
as the leaf node. (Bottom) Updated posterior probabilities ■ obtained by the SciNO-based control
versus LLM prior probabilities ■ of ground-truth leaf nodes at each causal reasoning step (ECOLI70).

Table 3: Comparison of OD in real and semi-synthetic datasets between GPT-4o, uncontrolled Llama,
and controlled Llama (SciNO), with percent changes relative to the uncontrolled result.

Method\Dataset Physics(d7) Sachs(d8) MAGIC-NIAB(d44) ECOLI70(d46) MAGIC-IRRI(d64) ARTH150(d107)
GPT-4o 1 2 12 37 22 73

SciNO (Ours)

Llama-3.1-8b(1-norm) 3 3 9 32 18 80
w/ control(rank) 1 (▼66.7%) 5 (▲66.7%) 4 (▼55.6%) 11 (▼65.6%) 9 (▼50.0%) 21 (▼73.8%)
w/ control(CI) 1 (▼66.7%) 3 2 (▼77.8%) 15 (▼53.1%) 10 (▼44.4%) 18 (▼77.5%)

Llama-3.1-8b(0.5-norm) 1 3 14 32 17 80
w/ control(rank) 1 4 (▲33.3%) 2 (▼85.7%) 10 (▼68.8%) 9 (▼47.1%) 21 (▼73.8%)
w/ control(CI) 1 4 (▲33.3%) 2 (▼85.7%) 14 (▼56.3%) 10 (▼41.2%) 18 (▼77.5%)

Results Llama-3.1 and GPT-4o, recognized as high-performance reasoning LLMs, accurately
predict topological orders in familiar domains such as Physics and Sachs. However, both LLMs
show notable limitations when confronted with high-dimensional causal graphs. Figure 4 shows the
LLM prior and updated posterior probabilities of ground-truth leaf nodes at each reasoning step on
ECOLI70. Prior probabilities remain below 0.2, indicating poor predictive performance when faced
with a large number of variables. In contrast, updated posterior probabilities in overall steps show
that LLM control can reduce inaccurate leaf prediction, thereby enhancing causal reasoning. Table
3 further shows that the SciNO-based control improves performance across all datasets with over
40 nodes, achieving up to 77% on ARTH150 and surpassing the results in Table 2. While this table
focuses on SciNO-based control, the full results including SCORE- and DiffAN-based controls are
reported in Table A.7. These results correspond to the setting where all variables are well-described,
i.e., Vcontext = V in Algorithm 1. See Appendix A.6.3 for other settings when Vcontext ̸= V .

5 Conclusion

We propose SciNO, a functional diffusion model framework that enables accurate causal ordering
through stable approximation of the Hessian diagonal. SciNO consistently enhances existing score
matching based causal ordering methods in both accuracy and scalability across diverse synthetic
and real-world causal graph benchmarks. We further propose a probabilistic control method for
supervising autoregressive generative models to generate more reliable causal reasoning by using
score-informed statistics estimated by SciNO. By improving the reliability of causal ordering, SciNO
supports more trustworthy reasoning and robust decision-making in practice.

8

References
[1] Alessandro Antonucci, Gregorio Piqué, and Marco Zaffalon. Zero-shot causal graph extrapola-

tion from text via LLMs. arXiv preprint arXiv:2312.14670, 2023.

[2] Taiyu Ban, Lyuzhou Chen, Xiangyu Wang, and Huanhuan Chen. From query tools to causal
architects: Harnessing large language models for advanced causal discovery from data. CoRR,
2023.

[3] Daniel Bernstein, Basil Saeed, Chandler Squires, and Caroline Uhler. Ordering-based causal
structure learning in the presence of latent variables. In International conference on artificial
intelligence and statistics, pages 4098–4108. PMLR, 2020.

[4] Peter Bühlmann, Jonas Peters, and Jan Ernest. CAM: Causal additive models, high-dimensional
order search and penalized regression. The Annals of Statistics, pages 2526–2556, 2014.

[5] Haoang Chi, He Li, Wenjing Yang, Feng Liu, Long Lan, Xiaoguang Ren, Tongliang Liu, and
Bo Han. Unveiling causal reasoning in large language models: Reality or mirage? Advances in
Neural Information Processing Systems, 37:96640–96670, 2024.

[6] David Maxwell Chickering. Learning Bayesian networks is NP-complete. Learning from data:
Artificial intelligence and statistics V, pages 121–130, 1996.

[7] David Maxwell Chickering. Optimal structure identification with greedy search. Journal of
machine learning research, 3(Nov):507–554, 2002.

[8] Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Large Language Models are
Effective Priors for Causal Graph Discovery. arXiv e-prints, 2024.

[9] Paul Erdos and Alfred Renyi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci., 5(1):17–60, 1960.

[10] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[11] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander
Smola. A Kernel Two-Sample Test. Journal of Machine Learning Research, 13(25):723–773,
2012.

[12] Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces.
In First Conference on Language Modeling, 2024.

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[14] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[15] Emre Kiciman, Robert Ness, Amit Sharma, and Chenhao Tan. Causal Reasoning and Large
Language Models: Opening a New Frontier for Causality. Transactions on Machine Learning
Research, 2024. Featured Certification.

[16] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

[17] Nicolai Vladimirovich Krylov. Lectures on Elliptic and Parabolic Equations in Sobolev Spaces,
volume 96. American Mathematical Soc., 2008.

[18] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. Advances in neural information
processing systems, 30, 2017.

9

[19] Chanhui Lee, Juhyeon Kim, YongJun Jeong, Yoonseok Yeom, Juhyun Lyu, Jung-Hee Kim,
Sangmin Lee, Sangjun Han, Hyeokjun Choe, Soyeon Park, Woohyung Lim, Kyunghoon Bae,
Sungbin Lim, and Sanghack Lee. On Incorporating Prior Knowledge Extracted from Pre-trained
Language Models into Causal Discovery. In Causality and Large Models @NeurIPS 2024,
2024.

[20] Peiwen Li, Xin Wang, Zeyang Zhang, Yuan Meng, Fang Shen, Yue Li, Jialong Wang, Yang
Li, and Wenwu Zhu. RealTCD: temporal causal discovery from interventional data with large
language model. In Proceedings of the 33rd ACM International Conference on Information and
Knowledge Management, pages 4669–4677, 2024.

[21] Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, and Samy Bengio. Learnable Fourier Features for
Multi-Dimensional Spatial Positional Encoding. Advances in Neural Information Processing
Systems, 34:15816–15829, 2021.

[22] Yingzhen Li and Richard E Turner. Gradient Estimators for Implicit Models. In International
Conference on Learning Representations, 2018.

[23] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, Anima Anandkumar, et al. Fourier Neural Operator for Parametric Partial
Differential Equations. In International Conference on Learning Representations, 2021.

[24] Jae Hyun Lim, Nikola B Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Azizzade-
nesheli, Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, Jan Kautz, et al. Score-based
diffusion models in function space. arXiv preprint arXiv:2302.07400, 2023.

[25] Sungbin Lim, Eunbi Yoon, Taehyun Byun, Taewon Kang, Seungwoo Kim, Kyungjae Lee, and
Sungjoon Choi. Score-based Generative Modeling through Stochastic Evolution Equations in
Hilbert Spaces. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[26] Stephanie Long, Alexandre Piché, Valentina Zantedeschi, Tibor Schuster, and Alexandre Drouin.
Causal Discovery with Language Models as Imperfect Experts. In ICML 2023 Workshop on
Structured Probabilistic Inference & Generative Modeling, 2023.

[27] Rainer Opgen-Rhein and Korbinian Strimmer. From correlation to causation networks: a simple
approximate learning algorithm and its application to high-dimensional plant gene expression
data. BMC systems biology, 1:1–10, 2007.

[28] Jonas Peters and Peter Bühlmann. Structural Intervention Distance for Evaluating Causal
Graphs. Neural Computation, 27(3):771–799, 03 2015.

[29] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of Causal Inference: Foun-
dations and Learning Algorithms. MIT Press, 2017.

[30] Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with
continuous additive noise models. The Journal of Machine Learning Research, 15(1):2009–
2053, 2014.

[31] Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society Series
C: Applied Statistics, 24(2):193–202, 1975.

[32] Paul Rolland, Volkan Cevher, Matthäus Kleindessner, Chris Russell, Dominik Janzing, Bernhard
Schölkopf, and Francesco Locatello. Score Matching Enables Causal Discovery of Nonlinear
Additive Noise Models. In International Conference on Machine Learning, pages 18741–18753.
PMLR, 2022.

[33] Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan.
Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Science,
308(5721):523–529, 2005.

[34] Pedro Sanchez, Xiao Liu, Alison Q O’Neil, and Sotirios A Tsaftaris. Diffusion Models for
Causal Discovery via Topological Ordering. In The Eleventh International Conference on
Learning Representations, 2023.

10

[35] Juliane Schäfer and Korbinian Strimmer. A shrinkage approach to large-scale covariance matrix
estimation and implications for functional genomics. Statistical applications in genetics and
molecular biology, 4(1), 2005.

[36] M Scutari. Bayesian networks, magic populations and multiple trait prediction. In Invited Talk
at the 5th International Conference on Quantitative Genetics (ICQG 2016), 2016.

[37] Marco Scutari, Phil Howell, David J Balding, and Ian Mackay. Multiple quantitative trait
analysis using Bayesian networks. Genetics, 198(1):129–137, 2014.

[38] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
International Conference on Learning Representations, 2021.

[39] Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and search. MIT
press, 2000.

[40] Ioannis Tsamardinos, Laura Brown, and Constantin Aliferis. The Max-Min Hill-Climbing
Bayesian Network Structure Learning Algorithm. Machine Learning, 65:31–78, 10 2006.

[41] Aniket Vashishtha, Abbavaram Gowtham Reddy, Abhinav Kumar, Saketh Bachu, Vineeth N.
Balasubramanian, and Amit Sharma. Causal Order: The Key to Leveraging Imperfect Experts
in Causal Inference. In The Thirteenth International Conference on Learning Representations,
2025.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[43] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine
translation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

[44] Zhuopeng Xu, Yujie Li, Cheng Liu, and Ning Gui. Ordering-Based Causal Discovery for
Linear and Nonlinear Relations. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

11

A Supplementary Material

In this supplementary material, we provide the information for understanding SciNO with detailed ex-
planations. The supplementary material is organized as follows: Section A.1 introduces related works
in ordering based causal discovery, score matching methods, and LLM-assisted causal discovery.
Section A.2 provides theoretical derivations and proofs for preliminaries and the proposed method.
Section A.3 explains a detailed description of the architecture of SciNO with layer-by-layer formu-
lations on how to implement it. Section A.4 describes the experimental setup, datasets, evaluation
metrics and implementation details of empirical results in Sections 4.1 and 4.2. Section A.5 presents
additional ablation studies and comparisons with causal discovery baselines. Section A.6 presents
experimental details in Section 4.3 and additional results on controlling LLMs for causal ordering.

A.1 Related Works

A.1.1 Ordering-based Causal Discovery

Ordering-based causal discovery methods are typically categorized into score matching based and
non-score matching based approaches. SCORE [32], DiffAN [34], and CaPS [44] are score matching
based methods that estimate the Hessian of the log density to identify leaf nodes and construct causal
order. Non-score matching methods such as CAM [4] and GSPo[3] recover the causal order using
functional assumptions and conditional independence tests, respectively. In this work, we focus on
the score matching based approaches [32, 34, 44], which estimate gradients of the log-density for
causal ordering.

A.1.2 Score Matching and Score-based Generative Models

A common approach to estimating the score function of a data distribution is to use a gradient
estimator based on the Stein identity [22]. Stein kernel-based methods allow score estimation without
an explicit density and have been used in SCORE [32] and CaPS [44]. However, these methods require
computing the inverse of a kernel matrix, leading to high computational and memory costs. In recent
work, Diffusion models [13, 38] have emerged as a key method for score estimation in generative
modeling. However, the commonly used Denoising Diffusion Model [13, 38] is defined over finite-
dimensional spaces and thus struggle to handle functional data such as derivatives. Functional
diffusion models [24, 25] address this issue by defining the diffusion process over a Hilbert space
and learning it directly via score-based modeling. [24, 25] utilize the Neural Operators [16, 23] to
learn mappings between functions, allowing the model to capture both the functional form and its
derivatives.

A.1.3 Causal Discovery with Large Language Models

Recent studies leverage domain knowledge inferred from LLM as priors or constraints to enhance
data-driven causal discovery [2, 8, 19, 20, 26, 41]. Most methods adopt pairwise prompts to construct
causal graphs via repeated queries on variable pairs [1, 8, 15, 19, 26]. To address inability of LLMs
to distinguish between direct and indirect effects, [41] introduces a triplet prompt that queries
relationships among three variables simultaneously, deriving causal order rather than graph structures.
Existing methods treat LLMs as a black-box and directly convert generated tokens into binary
decisions. This obscures uncertainty and limits the scientific explanatory power of causal inference.
[8] partially addresses this by extracting pairwise edge-direction probabilities from the LLM and
combining them with mutual information, but this approach remains limited, as it does not directly
reflect causal relationships, limiting its explanatory power.

A.2 Proof of Theorems

A.2.1 Derivation of the Hessian diagonal approximation

In this section, we derive approximations (5), which are suggested by DiffAN [34], for the sake of
completeness. Under the ANM assumption (2), the score function S(x) can be derived as:

Sj(x) = ∂xj
logP (x) = ∂xj

log

D∏
i=1

P (xi | Pa(xi)) = ∂xj

D∑
i=1

logP (xi | Pa(xi)), j ∈ V, (11)

12

where D denotes the number of nodes |V|. Let ϵi = xi − fi. By the change of variable, it holds that

∂xj

D∑
i=1

logP (xi | Pa(xi)) = ∂xj

D∑
i=1

log pi(xi − fi) (12)

=
∂ log pj(xj − fj)

∂xj
−

∑
i∈Ch(xj)

∂fi
∂xj

∂ log pi(xi − fi)

∂ϵi
. (13)

When a leaf node xl is marginalized out, the resulting score Sj(x−l) for xj ∈ Pa(xl) becomes:

Sj(x−l) = Sj(x) +
∂fl
∂xj

∂ log pl(xl − fl)

∂ϵl
. (14)

Let δj,l denote the residue term added to the score of xj upon marginalizing out xl:

δj,l :=
∂fl
∂xj
· ∂ log pl(xl − fl)

∂ϵl
. (15)

Note that the residue term δj,l vanishes if xj /∈ Pa(xl). For a leaf node xl, it holds that:

Sl(x) =
∂ log pl(xl − fl)

∂xl
=

∂ log pl(xl − fl)

∂ϵl
· ∂(xl − fl)

∂xl
=

∂ log pl(xl − fl)

∂ϵl
. (16)

The partial derivatives of the score Sl(x) with respect to xj for any j ∈ V are given by:

∂xj
Sl(x) =

∂2 log pl(xl − fl)

∂ϵ2l
· ∂fl
∂xj

. (17)

In particular, when j = l, this reduces to:

∂xl
Sl(x) =

∂2 log pl(xl − fl)

∂ϵ2l
. (18)

Thus, δj,l can be rewritten as:

δj,l =
∂fl
∂xj

∂ log pl(xl − fl)

∂ϵl
(19)

=
∂2 log pl(xl − fl)

∂ϵl2
· ∂fl
∂xj
· ∂ log pl(xl − fl)

∂ϵl

/∂2 log pl(xl − fl)

∂ϵl2
(20)

= ∂xjSl(x) ·
Sl(x)

∂xl
Sl(x)

(21)

Let πk ⊂ π denote the set of selected leaf nodes up to step k, and−πk = V \πk denote the remaining
ones. The deciduous score on the remaining variables S(x−πk

) ∈ RD−|πk| are approximated by:

Sj(x−πk
) = Sj(x) +

∑
l∈πk

(
∂xj

Sl(x) ·
Sl(x)

∂xl
Sl(x)

)
, j ∈ V \ πk. (22)

Finally, the Hessian diagonal D(x−πk
) =

(
∂xjSj(x−πk

) : j ∈ V \ πk

)
is:

Dj(x−πk
) = ∂xjSj(x) +

∑
l∈πk

∂xj

(
∂xjSl(x) ·

Sl(x)

∂xl
Sl(x)

)
(23)

≈ ∂xj Ŝ
θ
j (t,x) +

∑
l∈πk

∂xj

(
∂xj

Ŝθ
l (t,x) ·

Ŝθ
l (t,x)

∂xl
Ŝθ
l (t,x)

)
, j ∈ V \ πk. (24)

Thus, we obtain the approximation (5).

Remark A.1. Note that (23) requires the second-order derivatives of S(x) and so does approximation
(5) replacing the score function by the score model Ŝθ(t,x).

13

A.2.2 Approximation Power of Neural Operators

Score-based Generative Modeling in Function Spaces For readers who are not familiar with
functional diffusion modeling, we briefly introduce a time-reversal theory of score-based generative
modeling in Hilbert spaces [25].

Consider the following stochastic evolution equations in the Hilbert spaceH:

dXt = Bt(Xt)dt+GtdWt, dX̂t = B̂t(X̂t)dt+ ĜtdWt, t ∈ [0, T], (25)

where (Xt, X̂t) is a pair of forward and reverse stochastic processes with coefficients (Bt,Gt)t∈[0,T]

and (B̂t, Ĝt)t∈[0,T], and Wt is anH-valued Wiener process. [25, Theorem 2.1] provides the time-
reversal formula which connects pairs (Xt, X̂t) to have the same marginal distribution:

B̂t(u) = −BT−t(u) + ST−t(u), Ĝt = GT−t, t ∈ [0, T]. (26)

Here St denotes the score operator for each marginal probability measures (µt)t∈[0,T] of the solution
to the forward equation. Therefore, we can generate samples from X̂T ∼ Pdata and approximate the
score operator of Pdata in function spaces by training the score model Ŝθ(t, ·) and running the reverse
equation with replacing the score operator S(t, ·) in (26) by the trained score model Ŝθ(t, ·) for each
t ∈ [0, T]. Therefore, the learning objective of score-based generative modeling in function spaces is
equivalent to the score matching between S(t, ·) and Ŝθ(t, ·) in the Hilbert spaceH [24, 25].

Theorem A.1. For any compact set K and ε > 0, there exists a neural operator Ŝθ such that

sup
x∈K
∥S(x)− Ŝθ(x)∥Hk ≤ ε, k > 2 +

D

2
. (27)

Due to Sobolev embedding theorem [17], we consider the Sobolev space H = Hk and a class of
neural operators [16] to learn higher-order derivatives of the score function.

Proof of Theorem A.1 To explain the statement in Theorem A.1 precisely, let us introduce necessary
definitions and theorems. We first introduce Sobolev spaces and Sobolev embedding theorem [17],
which are main elements for understanding a fundamental theory in neural operators [16].

Definition A.1 ([17, Chapter 1.3]). Let W k
2 = W k

2 (X) be the Sobolev space with the norm:

∥f∥Wk
2
:=

∑
|α|≤k

∥∂α
x f∥L2(X) (28)

with the inner-product:

⟨f, g⟩Wk
2
:=

∑
|α|≤k

⟨∂α
x f, ∂

α
x g⟩L2

. (29)

Remark A.2. Note that the inner-product (29) induces the norm which is equivalent to the Sobolev
norm (28). Due to the Sobolev embedding theorem [17, Chapter 10], it holds that

W k
2 ⊂ Ck−D

2 , (30)

where Ck−D
2 denotes the Hölder space with the following Hölder-norm:

∥f∥
Ck−D

2
:= max

|α|≤m
sup
x∈X

∥∥∂β
xf(x)

∥∥+ max
|β|=m

∥∥∂β
xf
∥∥
Ck−D

2
−m , m = ⌊k − D

2
⌋. (31)

Sobolev embedding (30) implies that for any f ∈W k
2 , it holds

∥f∥
Ck−D

2
> ∥f∥Wk

2
, (32)

where the notation > means the inequality ≤ holds up to constant factors. Therefore, we can
approximate a function including its derivatives by (32) if we can control the Sobolev norm (28).

14

Let us set a := (Bt,Gt)t∈[0,T] as smooth coefficients defined on [0, T] and consider their function
class as A = C([0, T]), which determines the probability measure µT by simulating the forward
stochastic evolution equation Xt in (25). For a given a ∈ A, let us define an operator G†(a) =
S∗ which maps smooth coefficients a to the target score function S∗ = ∇x logPdata of the data
distribution Pdata on the data space X . In this paper, we assume the target score function satisfies
S∗ ∈W k

2 (Ω) for any Lipschitz domain Ω ⊂ X where k > 2 + D
2 . This is a natural assumption for

many probability densities which are continuously differentiable on Lipschitz subsets of X .
Theorem A.2. Suppose the map G† : C([0, T]) → W k

2 (Ω) is continuous for any Lipschitz subset
Ω ⊂ X such that G†(a) = S∗. Then for any ε > 0 and compact set Ā ⊂ A, there exists a neural
operator G : C([0, T])→W k

2 (Ω) such that
sup
a∈Ā

∥∥G†(a)− G(a)∥∥
Wk

2 (Ω)
≤ ε. (33)

Furthermore, the neural operator G : C∞([0, T])→W k
2 (Ω) is discretization-invariant such that

sup
a∈A
∥G(a)∥ > sup

a∈A

∥∥G†(a)∥∥ , (34)

where the notation > means the inequality ≤ holds up to constant factors.

Proof. Due to [23, Theorem 8] and Remark A.2, the neural operator G is discretization-invariant
since W k

2 (Ω) is continuously embedded in C(Ω̄). We apply [23, Theorem 11] to show (33) and (34).
Note that Assumption 9 holds since we set A = C([0, T]) and so does Assumption 10 since we set
U = W k

2 (Ω). Therefore, for a given ε > 0 and a compact set Ā ⊂ A, by [23, Theorem 11], there
exists a neural operator G such that

sup
a∈Ā

∥∥G†(a)− G(a)∥∥
Wk

2 (Ω)
≤ ϵ. (35)

Thus, (33) is proved. Also, (34) holds automatically because U = W k
2 (Ω) is a Hilbert space with the

inner product (29). The theorem is proved.

Remark A.3. Theorem A.2 implies that there exists a set of L-layer neural operators which can
approximate the operator G† which acts on a set of smooth coeffcients a = (Bt,Gt)t∈[0,T]. Since
(Bt,Gt)t∈[0,T] determines marginal densities (µt : t ∈ [0, T]) of stochastic equations (25), the
inequality (33) in Theorem A.2 enhances the approximation to weak derivatives of the target score
function S∗ in the Sobolev space. To obtain the desired approximation result in Hölder space, we
utilize the Sobolev embedding theorem (see Remark A.2), upon Theorem A.2.

Now we prove the main result. Let us restate Theorem A.1 formally.
Theorem A.3. Let k ∈ N such that k > 2 + D

2 . For any compect subset K ⊂ Ω ⊂ X and ϵ > 0,
there exists a neural operator Ŝθ such that

sup
x∈K

∑
|α|≤m

∣∣∣∂α
xS(x)− ∂α

x Ŝ
θ(x)

∣∣∣ ≤ ε, m = ⌊k − D

2
⌋. (36)

Proof. Let ε > 0 be given and fix a compact set K ⊂ Ω. Due to Theorem A.2, there exists a neural
operator G which maps a smooth coeffcients a = (Bt,Gt)t∈[0,T] ∈ A to W k

2 (Ω)-valued function,
G(a) = Ŝθ : Ω→ RD, with the approximation power (33). Therefore, by (33), it holds that∥∥∥S∗ − Ŝθ

∥∥∥
Wk

2 (Ω)
≤ ε/C, (37)

where the constant C is determined by (30). Having K ⊂ Ω in mind, by (30) and (31),

sup
x∈K

∑
|α|≤m

∣∣∣∂α
xS(x)− ∂α

x Ŝ
θ(x)

∣∣∣ ≤ ∥∥∥S∗ − Ŝθ
∥∥∥
Ck−D

2 (Ω)
≤ C

∥∥∥S∗ − Ŝθ
∥∥∥
Wk

2 (Ω)
≤ ε, (38)

hence we obtain (36). The theorem is proved.

Remark A.4. Since we assume k > 2 + D
2 , we have m ≥ 2 so that Ŝθ is at least twice continuously

differentiable which can approximate the target score function S∗ with respect to the Hölder norm
∥ · ∥

Ck−D
2

. Theorems A.2 and A.3 are crucial for the approximation (5) to the Hessian diagonal
D(x) since (34) supports the numerical stability and (36) guarantees the approximation power for
computing the second-order derivatives of score models Ŝθ.

15

A.3 Architectural Details of SciNO

A.3.1 Overview of the SciNO Architecture

: Element-wise multiplication

̂Sθ(t, X)MLPinit
Fourier
Layer 1

[B, D]

×

B: Batch D: Data Dimension H: Hidden Dimension F: Fourier Feature Dimension L: Number of Fourier Layers

[B, D]

[B, 1]

…

<latexit sha1_base64="PDkh6F7R6CbK+Snno2BKb5H+BH8=">AAACSXicbVDLTgIxFO2AD8QX6NJNIzFxRWaMryWJG5eQyCMBQjrlDjR0OpP2jkIIX+BWv8ov8DPcGVd2gIWAN2lycs59nB4/lsKg6346mezW9s5ubi+/f3B4dFwonjRMlGgOdR7JSLd8ZkAKBXUUKKEVa2ChL6Hpjx5SvfkM2ohIPeEkhm7IBkoEgjO0VA17hZJbdudFN4G3BCWyrGqv6Fx1+hFPQlDIJTOm7bkxdqdMo+ASZvlOYiBmfMQG0LZQsRBMdzp3OqMXlunTINL2KaRz9u/ElIXGTELfdoYMh2ZdS8l/tZTRJjBWpJtq36Tn1rxhcN+dChUnCIovrAWJpBjRNCjaFxo4yokFjGthf0f5kGnG0ca5sl3BC44RxqsHFvTccN6m7K1nugkaV2XvtnxTuy5VKsu8c+SMnJNL4pE7UiGPpErqhBMgr+SNvDsfzpfz7fwsWjPOcuaUrFQm+wvIK7N3</latexit>t

[B, H] [B, D]

MLPfinal

[B, H] [B, H]

<latexit sha1_base64="VoOWk9a+t7ASCdqqaZ8fNMftFqM=">AAACUnicbVLLTgIxFO3gCxEVdOmmkZi4IjPG15LEjUtM5BGBkE65Aw2dzqS9o5AJf+FWv8qNv+LKDrAQ8CZNTs65t/f0pH4shUHX/XZyW9s7u3v5/cJB8fDouFQ+aZoo0RwaPJKRbvvMgBQKGihQQjvWwEJfQssfP2R66xW0EZF6xmkMvZANlQgEZ2ipl27IcOQH6WTWL1Xcqjsvugm8JaiQZdX7ZeeqO4h4EoJCLpkxHc+NsZcyjYJLmBW6iYGY8TEbQsdCxUIwvXRueUYvLDOgQaTtUUjn7N+JlIXGTEPfdmYWzbqWkf9qGaNNYKxIN9WBydatecPgvpcKFScIii+sBYmkGNEsMToQGjjKqQWMa2FfR/mIacbR5rpyu4I3nCBMVhcs6Lnhgk3ZW890EzSvqt5t9ebpulKrLfPOkzNyTi6JR+5IjTySOmkQThR5Jx/k0/lyfnL2lyxac85y5pSsVK74CxSStZ0=</latexit>x

Complex : Constructs a complex value

Skip-connection

Learnable
Time Encoding

[B, H]

+

+ : Element-wise addition

[B, D] [B, H][B, F] [B, 2F]

[B, H] [B, H] [B, 2H] [B, H] [B, H]

Fourier Layer

Learnable Time Encoding

Fourier
Layer ()ℓ

Fourier
Layer L

…

[B, H]

FFT

MLPLTE
LTE(t)Linear

Projection

cos

sin

×
real

imag

MLPspec Complex

concat & norm

concat

[B, 2H]

iFFT

Figure A.1: Architecture of Score-informed Neural Operator

A D-dimensional input data X ∈ RD is passed through the initial MLPinit : RD → RH layer:

X(1) = MLPinit(X). (39)

To explain the intermediate layers in SciNO, let ℓ ∈ {1, . . . , L} denote the index of Fourier layers.
Then we transform X(ℓ) into the spectral domain to get the following CH -dimensional tensor:

ξ(ℓ) = FFT(X(ℓ))⊙ LTE(t), t ∈ [0, 1] (40)

where FFT means the Fast Fourier Transform, ⊙ denotes the element-wise multiplication, and
LTE : [0, 1]→ RH is the Learnable Time Encoding module. The real ℜ(ξ(ℓ)) and imaginary ℑ(ξ(ℓ))
parts are then split to construct an R2H -valued tensor χ(ℓ) =

[
ℜ(ξ(ℓ)),ℑ(ξ(ℓ))

]
. Then we plug the

tensor into an MLP(ℓ)
spec : R2H → R2H layer in the spectral domain:

Z(ℓ) = MLP(ℓ)
spec(χ

(ℓ)). (41)

Then we combine Z(ℓ) = [Z
(ℓ)
real,Z

(ℓ)
imag] to get a CH -valued tensor ζ(ℓ) = Z

(ℓ)
real + iZ

(ℓ)
imag. Next, we

transform the signal ζ(ℓ) from the spectral domain to the spatial domain with skip connection, which
helps alleviate gradient vanishing during training:

X(ℓ+1) = X(ℓ) + iFFT(ζ(ℓ)), (42)

where iFFT(·) denotes the inverse Fourier transformation. By repeating the above procedure for
ℓ ∈ {1, . . . , L}, we get the output of the Fourier layer X(L+1). Then X(L+1) is passed through the
final MLPfinal : RH → RD layer for final processing:

Ŝθ(t,X) = MLPfinal(X
(L+1)). (43)

A.3.2 MLP Modules in SciNO

The MLP modules used in SciNO are organized as follows.

Initial MLP Layer. The input data X ∈ RD is first projected into RH through MLPinit:

MLPinit(X) = Dropout0.2 (LayerNorm (LeakyReLU (WinitX))) ∈ RH , (44)

where Winit ∈ RH×D.

16

Spectral MLP Layer. MLPspec is designed to effectively capture differential information in the
frequency domain. The input χ(ℓ) ∈ R2H is processed as follows:

MLP(ℓ)
spec(χ

(ℓ)) = BatchNorm
(

LeakyReLU
(
W (ℓ)

specχ
(ℓ) + b(ℓ)spec

))
∈ R2H . (45)

The layer is parameterized by W
(ℓ)
spec and b

(ℓ)
spec, with shapes R2H×2H and R2H .

Final MLP Layer. The output X(L+1) ∈ RH from the final Fourier layer is mapped to RD via
MLPfinal:

h1 = LeakyReLU(W
(1)
finalX

(L+1) + b
(1)
final), (46)

h2 = LeakyReLU(W
(2)
finalh1 + b

(2)
final), (47)

MLPfinal(X
(L+1)) = W

(3)
finalh2 + b

(3)
final. (48)

Here, W (1)
final ∈ RH×H , b(1)final ∈ RH , W (2)

final ∈ RS×H , b(2)final ∈ RS , W (3)
final ∈ RD×S , and b

(3)
final ∈ RD

denote the weights and biases of the MLPfinal. The dimension S denotes an intermediate hidden
dimension between D and H .

Time Encoding MLP Layer. Given the Fourier feature Φ(t) ∈ R2F , the time encoding LTE(t) is
computed via MLPLTE:

MLPLTE(Φ(t)) = W
(2)
LTEGeLU

(
W

(1)
LTEΦ(t) + b

(1)
LTE

)
+ b

(2)
LTE ∈ RH , (49)

where W
(1)
LTE ∈ RM×2F , b(1)LTE ∈ RM , W (2)

LTE ∈ RH×M , and b
(2)
LTE ∈ RH . Here, M denotes the hidden

dimension of the intermediate layer in the Time Encoding MLP.

A.4 Experimental Setting in Sections 4.1 and 4.2

A.4.1 Datasets

Erdös-Renyi We generate causal DAGs using the Erdös–Rényi (ER) model [9]. For a graph with D
nodes, we set the expected number of edges to 4D. We sample node values according to a nonlinear
ANM with Gaussian noise, where the functions are generated by a Gaussian Process with a Radial
Basis Function (RBF) kernel with fixed bandwidth 1. To evaluate model’s scalability, we vary the
number of nodes across 2, 3, 5, 10, 30, 50, and 100. For each case, we generate 10 random graphs
and produce 1,000 samples per graph.

Physics We generate a Physics commonsense-based synthetic dataset using the physics-based
causal DAG introduced in [19], which models causal relations among 7 variables related to water
evaporation. Each edge weight is sampled from the following uniform distributions:

e ∼ U(−1,−0.1) ∪ U(0.1, 1). (50)

Using the sampled adjacency matrix A, we generate 5,000 samples via the following nonlinear
Structural Equation Model (SEM):

x = 2 sin(A⊤(x+ 0.5 · 1)) +A⊤(x+ 0.5 · 1) + z, z ∼ N (0, 1). (51)

Sachs The Sachs dataset [33] contains 7,466 single-cell measurements of 11 proteins and phospho-
proteins involved in human immune signaling, collected under various stimulation conditions using
flow cytometry. To ensure a DAG structure for evaluating causal order, we exclude terminal nodes
(praf, plcg, and PIP2) involved in cycles and use the remaining 8-node graph for experiments.

BNLearn We use four real-world DAGs from the BNLearn repository— MAGIC-NIAB [37] (44
nodes/ 66 edges), ECOLI70 [35] (46 nodes/ 70 edges), MAGIC-IRRI [36] (64 nodes/ 102 edges),
and ARTH150 [27] (107 nodes/ 150 edges)—and generate data based on their causal structures. For
the linear case, samples are generated using the graph structures and linear functional relationships
provided by BNLearn. For the nonlinear case, we generate data using nonlinear SEMs defined over
the same graphs, where each functional relationship is parameterized by Multilayer Perceptron (MLP).
We generate 10,000 samples per graph in both linear and nonlinear settings for evaluation.

17

TSI

RNFL Wgt

SAT

ER

WS

MC

Figure A.2: Physics commonsense-based synthetic graph with 7 nodes: Rainfall (RNFL), Total
Solar Irradiance (TSI), Surface Air Temperature (SAT), Wind Speed (WS), Evaporation Rate (ER),
Moisture Content (MC), and Object Weight (Wgt).

A.4.2 Metrics

Order Divergence. Given a causal order π and a true adjacency matrix G, the Order Divergence
(OD, [32]) is defined as:

Dtop(π,G) =
D∑
i=1

∑
j:πi>πj

Gij . (52)

Order divergence counts the number of edges in G that are inconsistent with the order π. A smaller
value indicates a closer alignment between π and G.

SHD. Structural Hamming Distance (SHD, [40]) measures the structural discrepancy between a
predicted graph Ĝ and the ground-truth graph G. It is defined as the total number of edge insertions,
deletions, and reversals required to convert Ĝ into G:

SHD(G, Ĝ) = #
{
(i, j) ∈ V2

∣∣∣ G and Ĝ do not have the same type of edge between i and j
}
.

(53)

A lower SHD indicates that the predicted graph Ĝ is closer to the true causal graph G in terms of
structural similarity.

SID. Structural Intervention Distance (SID, [28]) quantifies how similarly a predicted graph Ĝ and
the ground-truth graph G infer causal relationships under intervention:

SID(G, Ĝ) = #

{
(i, j), i ̸= j

∣∣∣∣ PaĜ(Xi) not a valid adjustment set for
the intervention Xj |do(Xi) in graph G

}
. (54)

A lower SID indicates that the predicted graph Ĝ is more causally consistent with the true causal
graph G under interventions, making SID a suitable metric for evaluating the reliability of causal
inference.

A.4.3 Implementation Details

For synthetic datasets, we set the number of Fourier layers to L = 10, and for real-world datasets,
we use L = 1. The Fourier feature dimension in the LTE module (49) is fixed at F = 32. We set the
hidden dimensions of the model as H = max(1024, 5D), and S = max(128, 3D) in (44), (45), and
(46), where D denotes the number of nodes |V|. All experiments are conducted on a single NVIDIA
A6000 GPU.

18

A.5 Additional Experiments

A.5.1 Ablation Studies

We conduct a series of ablation studies to evaluate the impact of key architectural choices.

PE vs. LTE In Table A.1, we provide additional evidence comparing standard PE and LTE on
datasets beyond the ER graphs. Consistent with Table 1, LTE yields lower OD, especially as the
number of variables increases, confirming its effectiveness in diverse graph settings.

Table A.1: Comparison of OD in real and semi-synthetic datasets between PE and LTE in SciNO.
Each score is recorded over 10 independent runs.

Method\Dataset Physics(d7) Sachs(d8) MAGIC-NIAB(d44) ECOLI70(d46) MAGIC-IRRI(d64) ARTH150(d107)

DiffAN w/ SciNO (PE) 2.7± 0.46 4.4 ± 1.50 4.0 ± 1.55 30.6± 2.42 16.6± 1.12 33.9± 3.94
DiffAN w/ SciNO (LTE) 1.9 ± 0.54 5.6± 2.65 4.1± 0.70 12.8 ± 3.19 10.6 ± 1.69 21.4 ± 2.76

Additive vs. Multiplicative LTE To validate our design choice of using a multiplicative form of
LTE, we compare it against the more common additive variant in Table A.2. Across ER graph settings,
the multiplicative variant consistently achieves lower OD, with the performance gap becoming more
pronounced as the number of variables increases.

Table A.2: Comparison of OD in ER datasets between additive and multiplicative LTE in SciNO.
Each score is recorded over 10 random graphs.

Method\Dataset ER(d10) ER(d30) ER(d50) ER(d100)

DiffAN w/ SciNO (Additive LTE) 2.8± 1.74 17.67± 5.64 38.86± 11.42 99.2± 14.27
DiffAN w/ SciNO (Multiplicative LTE) 2.7 ± 1.19 16.9 ± 6.12 32.8 ± 6.55 86.6 ± 12.99

DiffAN with LTE We applied LTE to DiffAN to assess whether LTE alone explains the perfor-
mance gain. As shown in Table A.3, simply injecting LTE into DiffAN does not yield performance
improvement. This suggests that LTE alone is insufficient, and that the performance gain results from
combining LTE with our architectural design.

Table A.3: Comparison of OD on synthetic and real datasets between DiffAN with LTE and SciNO.
Each score is recorded over 10 random graphs for synthetic datasets, and over 10 independent runs
for real and semi-synthetic datasets.

Dataset\Method DiffAN w/ MLP (LTE) DiffAN w/ SciNO (LTE)

ER(d2) 0.2± 0.4 0.0 ± 0.0
ER(d3) 0.1± 0.3 0.1 ± 0.3
ER(d5) 0.8 ± 0.75 0.9± 1.14
ER(d10) 3.9± 1.51 2.7 ± 1.19
ER(d30) 37.1± 7.33 16.9 ± 6.12
ER(d50) 62.0± 11.96 32.8 ± 6.55
ER(d100) 120.3± 17.12 86.6 ± 12.99
Physics(d7) 5.0± 1.1 2.0 ± 0.0
Sachs(d8) 7.2± 2.71 5.8 ± 2.93
MAGIC-NIAB(d44) 10.6± 12.72 3.8 ± 0.75
ECOLI70(d46) 20.4± 1.85 14.4 ± 3.61
MAGIC-IRRI(d64) 25.0± 23.06 10.0 ± 0.89
ARTH150(d107) 82.0± 23.28 20.8 ± 2.32

19

A.5.2 Comparison with Causal Discovery Baselines

ANM-based Baselines We compare SciNO against ANM-based baselines: CAM [4] and SCORE
[32]. As shown in Table A.4, SciNO achieves consistently lower SHD than CAM on the high-
dimensional ER datasets and superior performance on the semi-synthetic datasets for all datasets
except ARTH150. Compared to SCORE, SciNO yields similar performance on low-dimensional
graphs and demonstrates a significant advantage on high-dimensional datasets. Overall, SciNO
demonstrates reliable performance across both synthetic and real datasets, particularly in high-
dimensional regimes.

Table A.4: Comparison of causal discovery metrics(OD/SHD/SID) between CAM [4], SCORE [32],
and SciNO in (a) synthetic datasets and (b) real and semi-synthetic datasets: Physics, Sachs, and
BNLearn with nonlinear ANM. Each score is recorded over 10 random graphs for synthetic datasets,
and over 10 independent runs for real and semi-synthetic datasets.

Dataset\Metric CAM [4] SCORE [32] DiffAN w/ SciNO (Ours)

SHD (↓) SID (↓) OD (↓) SHD (↓) SID (↓) OD (↓) SHD (↓) SID (↓)
ER(d2) 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.3 0.2 ± 0.6 0.2 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
ER(d3) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.3 0.2 ± 0.6 0.4 ± 1.2
ER(d5) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.3 0.1 ± 0.3 0.9 ± 1.14 1.7 ± 1.95 4.8 ± 4.94
ER(d10) 16.6 ± 4.45 30.9 ± 11.96 4.2 ± 2.6 21.5 ± 5.24 41.2 ± 13.24 2.7 ± 1.19 20.5 ± 3.5 41.6 ± 9.31
ER(d30) 129.0 ± 14.99 450.2 ± 99.2 24.8 ± 11.97 92.8 ± 16.27 510.8 ± 90.77 16.9 ± 6.12 88.8 ± 16.5 492.0 ± 91.64
ER(d50) 238.5 ± 17.29 1503.6 ± 201.35 49.3 ± 14.37 180.8 ± 15.99 1527.1 ± 179.61 32.8 ± 6.55 180.0 ± 15.45 1622.0 ± 110.92
ER(d100) 537.2 ± 45.37 6289.9 ± 533.87 120.0 ± 18.49 455.3 ± 26.34 7175.0 ± 435.0 86.6 ± 12.99 445.9 ± 32.84 7259.2 ± 653.27

Physics(d7) 12 11 1 2 12 1.9 ± 0.54 5.8 ± 1.60 8.2 ± 4.62
Sachs(d8) 37 41 6 16 30 5.6 ± 2.65 23.1 ± 3.86 23.3 ± 9.10
MAGIC-NIAB(d44) 167 384 8 61 189 4.1 ± 0.70 72.0 ± 4.52 125.5 ± 28.08
ECOLI70(d46) 184 828 7 80 771 12.8 ± 3.19 90.3 ± 7.13 500.9 ± 58.16
MAGIC-IRRI(d64) 261 791 17 175 529 10.6 ± 1.69 144.5 ± 4.43 254.4 ± 39.66
ARTH150(d107) 437 2133 38 460 2709 21.4 ± 2.76 515.6 ± 15.26 1186.7 ± 104.19

Table A.5: Comparison of causal discovery metrics(OD/SHD/SID) between CaPS [44] and CaPS
with SciNO in BNLearn datasets with linear ANM. Each score is recorded over 10 independent runs.

Dataset\Metric CaPS [44] CaPS w/ SciNO (Ours)

OD (↓) SHD (↓) SID (↓) OD (↓) SHD (↓) SID (↓)
MAGIC-NIAB(d44) 36 160 1024 37.5± 0.50 165.4± 0.50 1185.9± 5.61
ECOLI70(d46) 25 134 786 25.4± 0.80 141.3± 4.78 882.4± 13.02
MAGIC-IRRI(d64) 41 179 1192 41.6± 0.80 183.5± 2.97 1280.7± 36.83
ARTH150(d107) 49 406 3051 48.2± 0.87 380.0± 4.63 2799.1± 73.26

Non-ANM Baselines We further compare SciNO with classical Causal Discovery algorithms that
do not rely on ANM assumptions, the constraint-based PC [39] and the score-based GES [7]. To
ensure a fair comparison, we convert the predicted graphs of all methods into CPDAGs and report
results using Structural Hamming Distance for CPDAGs (SHD-C). As shown in Table A.6, SciNO
consistently outperforms both PC and GES across ER datasets of various sizes. This highlights the
advantages of our approach against representative methods beyond the ANM family: it achieves
superior accuracy while also being more scalable, overcoming the high computational complexity
that limits these classic methods.

Table A.6: Comparison of SHD between PC [39], GES [7] and SciNO in ER datasets. Each score is
recorded over 10 random graphs.

Dataset\Method PC [39] GES [7] DiffAN w/ SciNO (Ours)

ER(d2) 0.1± 0.3 0.2± 0.4 0.0± 0.0
ER(d3) 0.6± 0.92 1.3± 1.01 0.0± 0.0
ER(d5) 9.03± 0.64 8.4± 1.43 1.3± 2.41
ER(d10) 34.6± 2.93 35.2± 2.96 23.8± 5.49
ER(d30) 108.5± 15.69 105.7± 15.3 88.3± 18.11
ER(d50) 195.9± 12.08 180.2± 12.45 174.3± 14.48

20

 x1

 = 0.0633Var(𝒟2(x))

 = 0.0456Var(𝒟1(x)) = 0.0037Var(𝒟2(x))

 = 0.3883Var(𝒟1(x))

Squared error of ∂2
x1 log P(x) Squared error of ∂2

x2 log P(x)

Squared error of ∂2
x1 log P(x) Squared error of ∂2

x2 log P(x)

DiffAN w/ MLP

DiffAN w/ SciNO

 x1

Sampled Data

 x1

x 2

x 2

 P(x)

Figure A.3: Comparison of Hessian diagonal approximation between DiffAN with MLP (top row)
and DiffAN with SciNO (bottom row). The left column shows sampled data and its true density.
The center and right columns illustrate the squared approximation error of the second derivatives of
logP (x) with respect to x1 and x2, computed over a meshgrid.

Figure A.4: (Top) Order divergence in ER datasets per each step. The solid lines represent the average
order divergence, and the shaded regions indicate the 95% confidence intervals across 10 random
graphs with D ∈ {3, 30, 50}. (Bottom) Heatmaps of variance of the Hessian diagonal estimated by
DiffAN with MLP and SciNO, respectively. Darker colors indicate lower estimated variance. Red
boxes □ denote ground-truth causal leaves, and white stars ☆ indicate the variables selected by
models. Green boxes □ denote cases where the model predicts leaf node correctly.

21

102 103 104 105

Sample Size
101

102

103

104

105

106

107

108

M
em

or
y

Us
ag

e
(M

B)

OOM
MAGIC-NIAB(d44)

DiffAN
CaPS
DiffAN w/ SciNO
CaPS w/ SciNO

102 103 104 105

Sample Size
101

102

103

104

105

106

107

108

OOM
ECOLI70(d46)

DiffAN
CaPS
DiffAN w/ SciNO
CaPS w/ SciNO

102 103 104 105

Sample Size
101

102

103

104

105

106

107

108

OOM
MAGIC-IRRI(d64)

DiffAN
CaPS
DiffAN w/ SciNO
CaPS w/ SciNO

102 103 104 105

Sample Size
101

102

103

104

105

106

107

108

OOM
ARTH150(d107)

DiffAN
CaPS
DiffAN w/ SciNO
CaPS w/ SciNO

Figure A.5: Comparison of GPU memory usage of DiffAN [34], CaPS [44], SciNO during the causal
ordering process while scaling up the sample size. SciNO demonstrates memory efficiency while
CaPS suffers out-of-memory (OOM) errors when the number of samples is larger than 100,000.

A.6 Controlling LLM for Causal Ordering

A.6.1 Algorithm for Probabilistic Control of Autoregressive Causal Ordering

Algorithm 1: Probabilistic Control of Autoregressive Causal Ordering
Input: Variable list V = Vcontext ∪ V¬context
Output: Causal order π

1 Initialize π ← ∅
2 while V−π ̸= ∅ do
3 Let xπ ← (xπ(i) : i = 1, . . . , |π|) and set V−π := V \ π
4 foreach v ∈ V−π do
5 Compute prior PAR(v|xπ, context)
6 Compute evidence P̂SciNO(v) ; // by (8) or (10)
7 if v ∈ Vcontext then
8 Compute P (v)← PAR(v|xπ, context) · P̂SciNO(v); // soft supervision
9 else

10 Compute P (v)← 1
|V−π| P̂SciNO(v); // hard supervision

11 Select leaf node v∗ = argmax
v∈V−π

P (v) and update π ← π ∪ {v∗}

12 return π

A.6.2 Experimental Details in Section 4.3

Implementation Details in LLM Control The LLM prompt is designed to select a leaf node, a
variable among the unordered variables that does not causally influence any other variable. Each
prompt consists of an Unordered Variables list, a Data Description summarizing the overall
data context, and Variable Descriptions providing natural language descriptions of each variable
(as illustrated in Figure A.7). Simple input-output examples are provided within the prompt to clarify
the task objective and promote consistent output behavior. To avoid formatting inconsistencies such
as stray whitespace or mismatched capitalization, each variable name is prefixed with node_ and
presented in the format node_variable_name.

For each variable name, the LLM generates token-level conditional probabilities for the sequence of
tokens t1, t2, . . . , tn that constitute v, where v = (t1, . . . , tn). The probability of generating the full
variable name v is computed using the chain rule:

PLLM(v | context) =
n∏

i=1

PLLM(ti | t1, . . . , ti−1, context). (55)

Here, context refers to contextual information, including variable descriptions or domain knowledge.
In practice, we construct the full input sequence by appending each variable name to the prompt in the
form of node_variable_name, and then feed the entire sequence to the model in a single forward
pass. To compute the probability of each variable name, we consider only the tokens following the

22

common prefix node, since tokenization often splits strings like node_v into node and _v. This
allows us to isolate the informative portion of the name and compute joint probabilities efficiently,
without repeatedly modifying the prompt.

Length Normalization Since variable names typically consist of multiple tokens with varying
length, using raw probabilities introduces a bias against longer names. To address this, we apply
length normalization by exponentiating the average of the log-likelihoods of the tokens composing
the variable name [43]. To further mitigate over-penalization of longer names, we normalize the value
by dividing it by lengthα (0 < α ≤ 1). In this paper, we use α ∈ {0.5, 1.0}.

Pα-norm(v | context) = exp

(
1

nα

n∑
i=1

logPLLM(ti | t1, . . . , ti−1, context)

)
. (56)

Leaf node selection through LLM control. Llama-3 provides token-level probabilities directly,
enabling us to compute the leaf node probabilities using (56). The leaf node is selected as v∗ =
argmaxv∈V\πk

Pα-norm(v), i.e., the variable with the highest length-normalized probability, where
πk denotes the set of selected leaf nodes up to step k. For GPT-4o, we treat the variables mentioned
in the final response as leaf nodes, since the model’s probability distribution cannot be externally
controlled during generation. We set the temperature to its default value of 1 and perform three
inference runs per dataset, reporting the result with the highest performance.

Results Figure A.6 presents the results under the setting where all variables are well-described,
i.e., Vcontext = V . The top plot compares the LLM prior probabilities with the posterior probabili-
ties—updated via control—of the ground-truth leaf nodes at each step of the causal reasoning process.
A substantial increase in the posterior probability is consistently observed across high-dimensional
datasets such as ECOLI70, MAGIC-NIAB, MAGIC-IRRI, and ARTH150. The effect is especially
pronounced in the early stages of the causal ordering process, where the true causal structure must be
inferred from a large pool of candidate nodes. Furthermore, the bottom plot illustrates several cases
in which the posterior successfully identifies the true leaf node, even when SciNO alone fails to do so.
These results indicate that the LLM prior can be complemented through integration with SciNO’s
data-informed evidence, while the semantic knowledge embedded in the LLM can also compensate
for incomplete or uncertain statistical inference.

Table A.7 presents the full benchmark results of the LLM control method using evidence from
SCORE [32], DiffAN [34], and SciNO. SciNO-based control achieves substantial improvements
on high-dimensional datasets, yielding an average 64% OD reduction over uncontrolled Llama,
compared to 49% from DiffAN. While SCORE-based control yields improvements on some datasets,
it does not surpass its data-only baseline on ECOLI70 and ARTH150, as shown in Table A.4. Overall,
these findings indicate that the synergy between semantic information from LLMs and data-driven
evidence is most robust with stable, diffusion-based methods like SciNO.

A.6.3 Additional Experiments on LLM Control

In many domains such as biomedicine, healthcare, and finance, variable names are deliberately
abstracted and metadata is often scarce and uncertain. To account for this practical challenge, we
conduct an additional experiment in which all variable names are masked and the proportion of
variables accompanied by descriptions is systematically varied.

Experimental Setting We consider an experiment to simulate practical conditions involving a
mixture of Vcontext and V¬context ̸= ∅, where Vcontext refers to variables that contain contextual or
domain-specific information, whereas V¬context includes variables without such information. Variable
names are replaced with randomly generated four-letter alphabetic strings (e.g., ‘zntr’, ‘lgvp’,
‘aqsm’), and descriptions are provided for 10%, 40%, or 70% of the variables. Each experiment is
repeated three times, with randomization applied to both the selection of context-given variables and
their input order. We use semi-synthetic datasets from BNLearn: MAGIC-NIAB (7/44 variables have
descriptions), ECOLI70 (41/46), MAGIC-IRRI (10/64), and ARTH150 (105/107). Due to the limited
availability of variable descriptions in MAGIC-NIAB and MAGIC-IRRI, we restrict experiments on
these two datasets to the 10% description setting.

23

Table A.7: Comparison of OD in real and semi-synthetic datasets between GPT-4o, uncontrolled
Llama, and controlled Llama via SCORE [32], DiffAN [34] and SciNO. Differences are expressed as
percent change relative to the uncontrolled result.

Method\Dataset Physics(d7) Sachs(d8) MAGIC-NIAB(d44) ECOLI70(d46) MAGIC-IRRI(d64) ARTH150(d107)
GPT-4o 1 2 12 37 22 73

SCORE [32]

Llama-3.1-8b(1-norm) 3 3 9 32 18 80
w/ control(rank) 0 (▼100%) 9 (▲200%) 1 (▼88.9%) 15 (▼53.1%) 11 (▼38.9%) 45 (▼43.8%)
w/ control(CI) 0 (▼100%) 6 (▲100%) 1 (▼88.9%) 15 (▼53.1%) 11 (▼38.9%) 43 (▼46.3%)

Llama-3.1-8b(0.5-norm) 1 3 14 32 17 80
w/ control(rank) 0 (▼100%) 9 (▲200%) 1 (▼92.9%) 18 (▼43.8%) 10 (▼41.2%) 45 (▼43.8%)
w/ control(CI) 0 (▼100%) 7 (▲133%) 2 (▼85.7%) 18 (▼43.8%) 7 (▼58.8%) 43 (▼46.3%)

DiffAN [34]

Llama-3.1-8b(1-norm) 3 3 9 32 18 80
w/ control(rank) 4 (▲33.3%) 3 2 (▼77.8%) 22 (▼31.3%) 7 (▼61.1%) 25 (▼68.8%)
w/ control(CI) 3 4 (▲33.3%) 6 (▼33.3%) 16 (▼50.0%) 13 (▼27.8%) 52 (▼35.0%)

Llama-3.1-8b(0.5-norm) 1 3 14 32 17 80
w/ control(rank) 4 (▲300%) 3 1 (▼92.9%) 20 (▼37.5%) 8 (▼52.9%) 25 (▼68.8%)
w/ control(CI) 4 (▲300%) 5 (▲66.7%) 8 (▼42.9%) 18 (▼43.8%) 14 (▼17.6%) 52 (▼35.0%)

SciNO (Ours)

Llama-3.1-8b(1-norm) 3 3 9 32 18 80
w/ control(rank) 1 (▼66.7%) 5 (▲66.7%) 4 (▼55.6%) 11 (▼65.6%) 9 (▼50.0%) 21 (▼73.8%)
w/ control(CI) 1 (▼66.7%) 3 2 (▼77.8%) 15 (▼53.1%) 10 (▼44.4%) 18 (▼77.5%)

Llama-3.1-8b(0.5-norm) 1 3 14 32 17 80
w/ control(rank) 1 4 (▲33.3%) 2 (▼85.7%) 10 (▼68.8%) 9 (▼47.1%) 21 (▼73.8%)
w/ control(CI) 1 4 (▲33.3%) 2 (▼85.7%) 14 (▼56.3%) 10 (▼41.2%) 18 (▼77.5%)

Figure A.6: (Top) Comparison of LLM prior and posterior probabilities for the true leaf nodes across
four datasets (ECOLI70, MAGIC-NIAB, MAGIC-IRRI, and ARTH150). Posterior probabilities are
computed by multiplying the LLM prior with SciNO computed probabilities. (Bottom) Heatmap
of SciNO probabilities for the SciNO-selected nodes at each ordering step across datasets. Red
boxes □ denote steps where SciNO alone fails to select the correct leaf node, but the correct node is
successfully recovered via integration with LLM priors.

Control with Hard and Soft Supervision Under the above experimental conditions, we follow the
causal ordering procedure described in Algorithm 1. The control mechanism is formalized as:

P(xt+1|x1:t, stat, context) ∝ PAR(xt+1|x1:t, context)× PSciNO(stat|x1:t+1). (57)

Let πt denote the partial causal order determined by x1:t, the sequence of nodes selected in the
previous steps. The evidence term PSciNO(stat|x1:t+1) is estimated using two approaches introduced
in Section 3.3. The first estimator relies on the average rank r̄(i) for each node i ∈ V \ πt across
models:

P̂
(rank)
m∼M (σ

(m)
i < σ

(m)
j |x1:t, xt+1 = i) =

exp (−r̄(i))∑
j∈V\πt

exp (−r̄(j)) , r̄(i) =
1

M

M∑
m=1

r
(m)
i . (58)

Here, r(m)
i is the rank of node i in model m, based on the variance of its Hessian diagonal. The

second estimator is based on confidence intervals:

P̂
(CI)
m∼M (CIlower(i) ≤ CIupper(j

(m)
min)|x1:t, xt+1 = i) =

1

M

M∑
m=1

1
[
CIlower(i) ≤ CIupper(j

(m)
min)

]
. (59)

24

where j
(m)
min is the node with the smallest variance of the Hessian diagonal in model m.

Depending on whether variable descriptions are available, we apply two supervision strategies. For
variables without descriptions V¬context, we use hard supervision, relying exclusively on the evidence
term estimated by (8) or (10):

P (v) ∝ 1

|V \ πt|
P̂SciNO(stat|πt, xt+1 = v). (60)

For variables with descriptions Vcontext, we apply soft supervision by multiplying the LLM-derived
prior (55) to the evidence term (8) or (10):

P (v) ∝ Pα-norm(xt+1 = v|πt, context) · P̂SciNO(stat|πt, xt+1 = v). (61)

To adapt the soft supervision signal, one can use a temperature parameter τ ≥ 0:

P̂τ (stat|πt, xt+1 = v) =
(
P̂SciNO(stat|πt, xt+1 = v)

)τ
, (62)

P̂τ−soft(stat|πt, v) = softmax(P̂τ (stat|πt, xt+1 = v)). (63)

We choose τ ∈ {0, 1, 2, 3, 4, 5} for experiments. When τ > 5, the evidence term grows exponentially
and overwhelms the prior, leading to predictions that are nearly indistinguishable from using the data
statistic alone. Applying the above τ -temperature to the soft supervision, the posterior predictive term
is computed by:

P (v) ∝ Pα-norm(v|πt, context) · P̂τ−soft(stat|πt, xt+1 = v), v ∈ V \ πt. (64)

Then we select the variable with the highest posterior probability as the next leaf node:

v∗ = argmax
v∈V\πt

P (v). (65)

Results Table A.8 reports the order divergence under the setting where Vcontext ̸= V , across varying
levels of description proportions and τ values. Compared to the results in Table 3, performance
without control reveals that the LLM’s ability to infer causality deteriorates as descriptive content
decreases and variable names are masked. Across all datasets, increasing τ from 0 to 1 consistently
improves performance, even under low description conditions (e.g., 10%), indicating robustness in the
combination of LLM prior and SciNO evidence. When the description is limited, performance tends
to plateau after τ = 1, suggesting that the contribution from LLM priors has been fully exploited,
leaving SciNO as the dominant signal. Conversely, with a higher description ratio, the effect of
soft supervision becomes more pronounced as τ varies, allowing the model to better leverage both
semantic and structural signals. Interestingly, a higher τ does not always lead to better results. This
highlights the importance of finding an optimal balance between the LLM’s semantic knowledge and
the evidence from SciNO. We compare various combinations of description proportions and τ values.
Among them, the configuration using 70% descriptions with τ = 5 achieves the highest performance
on the ARTH150 dataset. It outperforms all other tested combinations, including those with lower
description ratios, different τ values, and even the use of SciNO alone. This suggests that when
richer semantic information is available, the integration with SciNO becomes especially effective. In
conclusion, these results demonstrate that even under limited description conditions, combining LLM
semantic knowledge with data-driven causal inference can lead to improved performance.

25

Table A.8: Comparison of OD across semi-synthetic datasets under the control with hard and soft
supervision setting with varying description proportions (70%, 40%, 10%) and temperature parameters
τ ∈ {0, 1, 2, 3, 4, 5}. The lowest OD for each dataset and description proportion is highlighted in
bold. Each score is recorded over 3 independent runs.

Dataset Proportion Method w/o control τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

MAGIC-NIAB 10%

Llama-3.1-8b(1-norm) w/ control(rank) 24.7 ± 9.3 5.3 ± 0.6 3.3 ± 0.6 3.3 ± 0.6 3.3 ± 0.6 3.7 ± 0.6 3.7 ± 0.6
Llama-3.1-8b(0.5-norm) w/ control(rank) 22.3 ± 7.6 4.7 ± 0.6 3.3 ± 0.6 3.3 ± 0.6 3.3 ± 0.6 3.7 ± 0.6 3.7 ± 0.6
Llama-3.1-8b(1-norm) w/ control(CI) 24.7 ± 9.3 5.0 ± 1.0 4.0 ± 0.0 4.0 ± 0.0 4.0 ± 0.0 4.0 ± 0.6 4.0 ± 0.0
Llama-3.1-8b(0.5-norm) w/ control(CI) 22.3 ± 7.6 5.0 ± 1.0 4.0 ± 0.0 4.0 ± 0.0 4.0 ± 0.0 4.3 ± 0.6 4.3 ± 0.6

ECOLI70

70%

Llama-3.1-8b(1-norm) w/ control(rank) 30.3 ± 2.1 35.7 ± 2.9 8.7 ± 0.6 8.3 ± 0.6 8.0 ± 0.0 8.0 ± 0.0 8.3 ± 0.6
Llama-3.1-8b(0.5-norm) w/ control(rank) 28.7 ± 2.9 39.0 ± 4.0 9.0 ± 0.0 8.3 ± 0.6 8.3 ± 0.6 8.3 ± 0.6 8.7 ± 0.6
Llama-3.1-8b(1-norm) w/ control(CI) 30.3 ± 2.1 24.0 ± 2.0 11.3 ± 1.5 11.7 ± 2.3 12.7 ± 1.5 12.0 ± 1.0 11.7 ± 1.2
Llama-3.1-8b(0.5-norm) w/ control(CI) 28.7 ± 2.9 27.3 ± 4.2 11.0 ± 2.7 12.7 ± 1.5 12.0 ± 1.0 12.3 ± 3.8 10.0 ± 2.0

40%

Llama-3.1-8b(1-norm) w/ control(rank) 33.0 ± 1.7 21.7 ± 8.5 8.3 ± 0.6 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0
Llama-3.1-8b(0.5-norm) w/ control(rank) 36.7 ± 9.7 20.7 ± 7.5 9.3 ± 0.6 8.3 ± 0.6 8.3 ± 0.6 8.3 ± 0.6 8.3 ± 0.6
Llama-3.1-8b(1-norm) w/ control(CI) 33.0 ± 1.7 17.0 ± 4.4 12.3 ± 4.0 11.7 ± 0.6 11.7 ± 0.6 11.7 ± 0.6 11.7 ± 0.6
Llama-3.1-8b(0.5-norm) w/ control(CI) 36.7 ± 9.7 16.3 ± 3.2 12.7 ± 4.0 11.0 ± 1.7 11.0 ± 1.7 11.0 ± 1.7 11.0 ± 1.7

10%

Llama-3.1-8b(1-norm) w/ control(rank) 34.3 ± 3.8 13.0 ± 3.6 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0
Llama-3.1-8b(0.5-norm) w/ control(rank) 33.3 ± 2.5 14.0 ± 2.0 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0
Llama-3.1-8b(1-norm) w/ control(CI) 34.3 ± 3.8 13.0 ± 3.6 11.3 ± 0.6 11.0 ± 1.0 10.7 ± 0.6 10.7 ± 1.5 10.7 ± 1.5
Llama-3.1-8b(0.5-norm) w/ control(CI) 33.3 ± 2.5 12.7 ± 3.8 11.0 ± 0.0 10.7 ± 0.6 10.7 ± 1.5 10.7 ± 1.5 11.0 ± 1.0

MAGIC-IRRI 10%

Llama-3.1-8b(1-norm) w/ control(rank) 29.7 ± 1.5 11.3 ± 1.2 10.3 ± 0.6 9.7 ± 0.6 9.3 ± 0.6 9.7 ± 0.6 9.7 ± 0.6
Llama-3.1-8b(0.5-norm) w/ control(rank) 25.3 ± 2.9 9.7 ± 2.1 9.7 ± 1.2 9.7 ± 0.6 9.7 ± 0.6 9.3 ± 0.6 9.7 ± 0.6
Llama-3.1-8b(1-norm) w/ control(CI) 29.7 ± 1.5 10.0 ± 1.0 9.7 ± 0.6 9.7 ± 0.6 9.7 ± 0.6 9.7 ± 0.6 9.7 ± 0.6
Llama-3.1-8b(0.5-norm) w/ control(CI) 25.3 ± 2.9 10.3 ± 1.5 9.7 ± 0.6 9.7 ± 0.6 9.7 ± 0.6 9.7 ± 0.6 9.7 ± 0.6

ARTH150

70%

Llama-3.1-8b(1-norm) w/ control(rank) 73.0 ± 3.5 80.7 ± 1.2 20.3 ± 1.2 20.7 ± 0.6 21.3 ± 1.2 21.0 ± 1.0 21.0 ± 1.0
Llama-3.1-8b(0.5-norm) w/ control(rank) 64.3 ± 3.5 73.3 ± 8.6 19.7 ± 0.6 19.7 ± 0.6 20.0 ± 0.0 20.3 ± 0.6 20.3 ± 0.6
Llama-3.1-8b(1-norm) w/ control(CI) 73.0 ± 3.5 77.3 ± 5.5 20.0 ± 1.7 19.7 ± 1.2 19.0 ± 1.7 20.0 ± 2.0 19.3 ± 2.1
Llama-3.1-8b(0.5-norm) w/ control(CI) 64.3 ± 3.5 71.3 ± 8.1 17.7 ± 0.6 17.0 ± 1.0 16.7 ± 2.1 16.3 ± 1.2 16.3 ± 1.2

40%

Llama-3.1-8b(1-norm) w/ control(rank) 76.0 ± 10.4 81.3 ± 12.9 19.7 ± 1.2 20.0 ± 1.0 20.0 ± 0.0 20.0 ± 0.0 20.0 ± 0.0
Llama-3.1-8b(0.5-norm) w/ control(rank) 87.7 ± 1.2 77.7 ± 9.0 19.0 ± 0.0 19.3 ± 0.6 20.0 ± 0.0 20.0 ± 0.0 20.0 ± 0.0
Llama-3.1-8b(1-norm) w/ control(CI) 76.0 ± 10.4 57.0 ± 25.5 22.3 ± 1.2 20.7 ± 1.2 20.7 ± 1.2 20.0 ± 1.7 20.0 ± 2.0
Llama-3.1-8b(0.5-norm) w/ control(CI) 87.7 ± 1.2 59.3 ± 18.5 19.3 ± 1.5 21.7 ± 0.6 20.7 ± 1.2 20.7 ± 1.2 19.7 ± 1.5

10%

Llama-3.1-8b(1-norm) w/ control(rank) 76.0 ± 7.6 40.7 ± 17.4 19.7 ± 0.6 20.0 ± 1.0 20.0 ± 1.0 20.7 ± 1.2 20.7 ± 1.2
Llama-3.1-8b(0.5-norm) w/ control(rank) 88.7 ± 6.4 37.0 ± 13.8 19.7 ± 0.6 19.7 ± 0.6 20.3 ± 1.5 20.7 ± 1.2 20.7 ± 1.2
Llama-3.1-8b(1-norm) w/ control(CI) 76.0 ± 7.6 24.7 ± 8.1 19.3 ± 1.5 19.3 ± 1.5 19.7 ± 2.1 19.0 ± 1.0 19.0 ± 1.0
Llama-3.1-8b(0.5-norm) w/ control(CI) 88.7 ± 6.4 25.0 ± 7.0 19.3 ± 1.5 19.3 ± 1.5 19.7 ± 2.1 19.0 ± 1.0 19.0 ± 1.0

26

B Miscellaneous

You are an AI assistant tasked with identifying the most likely leaf node in a causal structure.

A leaf node is a variable that does not cause any other variables in the unordered variables set.

Your goal is to determine the best leaf node among Unordered Variables using the given information.

Selection Criteria:

- A leaf node does not act as a cause for any other variable in Unordered Variables.

- If multiple candidates exist, select the one that is influenced by others but does not influence any other

variable in Unordered Variables.

Important Formatting Rules:

- Respond only with the variable name of the selected leaf node.

- Do not include any punctuation, reasoning, quotes, or formatting.

- Leaf Node must be exactly one variable name as plain text, matching one from the Unordered Variables

list.

- Do not include any additional text before or after the variable name.

Example 1:

Input :

Unordered Variables: [“node_CloudCover”, “node_Humidity”, “node_Pressure”, “node_Temperature”]

Data Description: The dataset contains weather data recorded hourly with multiple atmospheric variables.

Variable Descriptions:
[

“node_CloudCover”: “The fraction of the sky covered by clouds.”,

“node_Humidity”: “The amount of water vapor in the air.”,

“node_Pressure”: “The atmospheric pressure at a given location.”,

“node_Temperature”: “The measure of how hot or cold the air is.”

]

Output : node_Temperature

Input :

Unordered Variables: {unordered_variables}

Data Description: {data_description}

Variable Descriptions: {variable_description}

Output :

Figure A.7: Prompting for Leaf Node Selection

27

=== Causal Ordering Step t=1 ===

LLM Prior: {'Weight of object': 0.303, 'Moisture Content of object': 0.205, 'Rainfall': 0.144, …, 'Total Solar
Irradiance': 0.071, 'Surface Air Temperature': 0.068} 
SciNO Likelihood: {'Weight of object': 0.635, 'Rainfall': 0.233, 'Moisture Content of object': 0.086, …, 'Wind
Speed': 0.003, 'Total Solar Irradiance': 0.002} 
Updated Posterior: {'Weight of object': 0.776, 'Rainfall': 0.136, 'Moisture Content of object': 0.071, …, 'Wind
Speed': 0.001, 'Total Solar Irradiance': 0.001} 
 
Current Causal Order : [Weight of object]

=== Causal Ordering Step t=2 ===

LLM Prior: {'Moisture Content of object': 0.288, 'Rainfall': 0.220, 'Rate of Evaporation': 0.219, …, 'Total Solar
Irradiance': 0.086, 'Surface Air Temperature': 0.086} 
SciNO Likelihood: {'Rainfall': 0.644, 'Moisture Content of object': 0.214, 'Surface Air Temperature': 0.084, …,
'Wind Speed': 0.010, 'Total Solar Irradiance': 0.005} 
Updated Posterior: {'Rainfall': 0.641, 'Moisture Content of object': 0.278, 'Rate of Evaporation': 0.040, …,
'Wind Speed': 0.005, 'Total Solar Irradiance': 0.002} 
 
Current Causal Order : [Weight of object, Rainfall]

(…..)

=== Causal Ordering Step t=5 ===

LLM Prior: {'Wind Speed': 0.464, 'Total Solar Irradiance': 0.300, 'Surface Air Temperature': 0.235} 
SciNO Likelihood: {'Surface Air Temperature': 0.677, 'Wind Speed': 0.218, 'Total Solar Irradiance': 0.104} 
Updated Posterior: {'Surface Air Temperature': 0.545, 'Wind Speed': 0.346, 'Total Solar Irradiance': 0.107} 
 
Current Causal Order : [Weight of object, Rainfall, … , Surface Air Temperature]

=== Causal Ordering Step t=6 ===

LLM Prior: {'Wind Speed': 0.584, 'Total Solar Irradiance': 0.415} 
SciNO Likelihood: {'Wind Speed': 0.704, 'Total Solar Irradiance': 0.295} 
Updated Posterior: {'Wind Speed': 0.769, 'Total Solar Irradiance': 0.230} 
 
Current Causal Order : [Weight of object, Rainfall, …. , Wind Speed]

=== Final Results ===

Complete Causal Order: [Total Solar Irradiance, Wind Speed, …, Rainfall, Weight of object] 
Order Divergence: 1

π1

π2

π5

π6

Physics ((=alpha)=0.5, Control: rank-based)α

Figure A.8: LLM control log on the Physics dataset.

28

Sachs ((=alpha)=1.0, Control: CI-based)α

=== Causal Ordering Step t=1 ===

LLM Prior: {'pakts473': 0.195, 'p44/42': 0.166, 'pjnk': 0.163, …, 'PIP3': 0.077, 'P38': 0.071}  
SciNO Likelihood: {'pmek': 0.125, 'PIP3': 0.125, 'p44/42': 0.125, …, 'P38': 0.125, 'pjnk': 0.12}  
Updated Posterior: {'pakts473': 0.195, 'p44/42': 0.166, 'pjnk': 0.163, …, 'PIP3': 0.077, 'P38': 0.071}  
 
Current Causal Order : [pakts473]

=== Causal Ordering Step t=2 ===

LLM Prior: {'p44/42': 0.213, 'PKC': 0.210, 'pjnk': 0.204, …, 'PIP3': 0.089, 'P38': 0.074}  
SciNO Likelihood: {'pmek': 0.142, 'PIP3': 0.142, 'p44/42': 0.143, …, 'P38': 0.143, 'pjnk': 0.142}  
Updated Posterior: {'p44/42': 0.213, 'PKC': 0.210, 'pjnk': 0.204, …, 'PIP3': 0.089, 'P38': 0.074}  
Current Causal Order : [pakts473, p44/42]

(…..)

=== Causal Ordering Step t=6 ===

LLM Prior: {'P38': 0.496, 'PKA': 0.286, 'PIP3': 0.217}  
SciNO Likelihood: {'PIP3': 0.416, 'P38': 0.416, 'PKA': 0.166}  
Updated Posterior: {'P38': 0.599, 'PIP3': 0.262, 'PKA': 0.138}  
 
Current Causal Order : [pakts473, p44/42, …, P38]

=== Causal Ordering Step t=7 ===

LLM Prior: {'PIP3': 0.605, 'PKA': 0.394}  
SciNO Likelihood: {'PIP3': 0.500, 'PKA': 0.500}  
Updated Posterior: {'PIP3': 0.605, 'PKA': 0.394}  
 
Current Causal Order : [pakts473, p44/42, …, P38, PIP3]

=== Final Results ===

Complete Causal Order: [PKA, PIP3, … , p44/42, pakts473]  
Order Divergence: 3

π1

π2

π6

π7

Figure A.9: LLM control log on the Sachs dataset.

29

MAGIC-NIAB ((=alpha)=0.5, Control: rank-based)α

=== Causal Ordering Step t=1 ===

LLM Prior: {‘YR.GLASS': 0.176, 'YLD': 0.142, 'HT': 0.118, …, 'G1750': 0.019, 'G1276': 0.016} 
SciNO Likelihood: {'YR.FIELD': 0.328, 'FT': 0.296, 'YLD': 0.297, …, 'G1294': 0.000, 'G1276': 0.000} 
Updated Posterior: {'YLD': 0.424, 'FT': 0.311, 'YR.FIELD': 0.216, …, 'G1276': 0.000, 'G1294': 0.000} 
 
Current Causal Order : [YLD]

=== Causal Ordering Step t=2 ===

LLM Prior: {'FT': 0.161, 'HT': 0.149, 'G43': 0.108, …, 'G1750': 0.022, 'G800': 0.015} 
SciNO Likelihood: {'YR.FIELD': 0.443, 'FT': 0.414, 'FUS': 0.102, …, 'G1276': 0.000, 'G1263': 0.000} 
Updated Posterior: {'FT': 0.712, 'YR.FIELD': 0.171, 'FUS': 0.111, …, 'G1294': 0.000, 'G1263': 0.000} 
 
Current Causal Order : [YLD, FT]

(…..)

=== Causal Ordering Step t=42 ===

LLM Prior: {'G418': 0.359, 'G1750': 0.347, 'G1217': 0.292} 
SciNO Likelihood: {'G418': 0.685, 'G1750': 0.193, 'G1217': 0.121} 
Updated Posterior: {'G418': 0.706, 'G1750': 0.192, 'G1217': 0.101} 
 
Current Causal Order : [YLD, FT, …, G418]

=== Causal Ordering Step t=43 ===

LLM Prior: {'G1750': 0.527, 'G1217': 0.472} 
SciNO Likelihood: {'G1217': 0.660, 'G1750': 0.339} 
Updated Posterior: {'G1217': 0.635, 'G1750': 0.364} 
 
Current Causal Order : [YLD, FT, …, G418, G1217]

=== Final Results ===

Complete Causal Order: [G1750, G1217, …, G38, FT, YLD] 
Order Divergence: 2

π1

π2

π42

π43

Figure A.10: LLM control log on the MAGIC-NIAB dataset.

30

ECOLI70 (ɑ(=alpha)=0.5, Control: rank-based)

=== Causal Ordering Step t=1 ===

LLM Prior: {'atpG': 0.072, 'asnA': 0.054, 'atpD': 0.054, …, 'b1191': 0.030, 'yedE': 0.027} 
SciNO Likelihood: {'ygbD': 0.742, 'tnaA': 0.193, 'nmpC': 0.030, …, 'sucD': 0.000, 'yecO': 0.000} 
Updated Posterior: {'ygbD': 0.476, 'tnaA': 0.440, 'atpG': 0.058, …, 'yecO': 0.000, 'sucD': 0.000} 
 
Current Causal Order : [ygbD]

=== Causal Ordering Step t=2 ===

LLM Prior: {'atpG': 0.060, 'yheI': 0.048, 'asnA': 0.046, …, 'b1583': 0.033, 'b1191': 0.032} 
SciNO Likelihood: {'cspA': 0.720, 'tnaA': 0.274, 'pspA': 0.003, …, 'dnaG': 0.000, 'yecO': 0.000} 
Updated Posterior: {'cspA': 0.579, 'tnaA': 0.418, 'pspA': 0.001, …, 'dnaG': 0.000, 'icdA': 0.000} 
 
Current Causal Order : [ygbD, cspA]

(…..)

=== Causal Ordering Step t=44 ===

LLM Prior: {'b1191': 0.359, 'cspG': 0.352, 'eutG': 0.287} 
SciNO Likelihood: {'b1191': 0.669, 'eutG': 0.214, 'cspG': 0.115} 
Updated Posterior: {'b1191': 0.701, 'eutG': 0.179, 'cspG': 0.118} 
 
Current Causal Order : [ygbD, cspA, …, b1191]

=== Causal Ordering Step t=45 ===

LLM Prior: {'eutG': 0.540, 'cspG': 0.459} 
SciNO Likelihood: {'eutG': 0.673, 'cspG': 0.326} 
Updated Posterior: {'eutG': 0.708, 'cspG': 0.291} 
 
Current Causal Order : [ygbD, cspA, …, b1191, eutG]

=== Final Results ===

Complete Causal Order: [cspG, eutG, …, cspA, ygbD] 
Order Divergence: 10

π1

π2

π44

π45

Figure A.11: LLM control log on the ECOLI70 dataset.

31

MAGIC-IRRI ((=alpha)=0.5, Control: rank-based)α

=== Causal Ordering Step t=1 ===

LLM Prior: {'YLD': 0.238, 'HT': 0.070, 'BROWN': 0.069, …, 'G3092': 0.023, 'AMY': 0.021} 
SciNO Likelihood: {'CHALK': 0.664, 'GW': 0.158, 'YLD': 0.134, …, 'FT': 0.000, 'AMY': 0.000} 
Updated Posterior: {'YLD': 0.518, 'CHALK': 0.445, 'BROWN': 0.026, …, 'AMY': 0.000, 'FT': 0.000} 
 
Current Causal Order : [YLD]

=== Causal Ordering Step t=2 ===

LLM Prior: {'HT': 0.119, 'CHALK': 0.099, 'BROWN': 0.093, …, 'G3927': 0.030, 'G3098': 0.024} 
SciNO Likelihood: {'CHALK': 0.652, 'GW': 0.232, 'BROWN': 0.068, …, 'AMY': 0.000, 'GTEMP': 0.000} 
Updated Posterior: {'CHALK': 0.866, 'BROWN': 0.084, 'GW': 0.045, …, 'FT': 0.000, 'HT': 0.000} 
 
Current Causal Order : [YLD, CHALK]

(…..)

=== Causal Ordering Step t=62 ===

LLM Prior: {'G3925': 0.379, 'G3823': 0.360, 'G4156': 0.260} 
SciNO Likelihood: {'G4156': 0.439, 'G3925': 0.284, 'G3823': 0.275} 
Updated Posterior: {'G4156': 0.355, 'G3925': 0.335, 'G3823': 0.308} 
 
Current Causal Order : [YLD, CHALK, …, G4156]

=== Causal Ordering Step t=63 ===

LLM Prior: {'G3823': 0.690, 'G3925': 0.309} 
SciNO Likelihood: {'G3925': 0.689, 'G3823': 0.310} 
Updated Posterior: {'G3823': 0.500, 'G3925': 0.499} 
 
Current Causal Order : [YLD, CHALK, …, G4156, G3823]

=== Final Results ===

Complete Causal Order: [G3925, G3823, …, CHALK, YLD] 
Order Divergence: 9

π1

π2

π62

π63

Figure A.12: LLM control log on the MAGIC-IRRI dataset.

32

ARTH150 ((=alpha)=0.5, Control: CI-based)α

=== Causal Ordering Step t=1 ===

LLM Prior: {‘519': 0.066, '78': 0.044, '93': 0.037, …, '4': 0.025, '96': 0.024} 
SciNO Likelihood: {'496': 0.500, '677': 0.500, '4': 0.000, …, '47': 0.000, '61': 0.000} 
Updated Posterior: {'496': 0.662, '677': 0.337, '4': 0.000, …, '47': 0.000, '61': 0.000} 
 
Current Causal Order : [496]

=== Causal Ordering Step t=2 ===

LLM Prior: {'519': 0.073, '78': 0.047, '93': 0.040, …, '783': 0.026, '539': 0.025} 
SciNO Likelihood: {'677': 1.000, '4': 0.000, '8': 0.000, …, '61': 0.000, '63': 0.000} 
Updated Posterior: {‘677': 1.000, '4': 0.000, '8': 0.000, …, '61': 0.000, '63': 0.000} 
 
Current Causal Order : [496, 677]

(…..)

=== Causal Ordering Step t=105 ===

LLM Prior: {'738': 0.378, '539': 0.311, '783': 0.309} 
SciNO Likelihood: {'539': 0.333, '738': 0.333, '783': 0.333} 
Updated Posterior: {'738': 0.378, '539': 0.311, '783': 0.309} 
 
Current Causal Order : [496, 677, …, 738]

=== Causal Ordering Step t=106 ===

LLM Prior: {'783': 0.533, '539': 0.466} 
SciNO Likelihood: {'539': 0.967, '783': 0.032} 
Updated Posterior: {'539': 0.963, '783': 0.036} 
 
Current Causal Order : [496, 677, …, 738, 539]

=== Final Results ===

Complete Causal Order: [783, 539, …, 677, 496] 
Order Divergence: 18

π1

π2

π105

π106

Figure A.13: LLM control log on the ARTH150 dataset.

33

	Introduction
	Preliminaries
	Score-informed Neural Operator
	Score Matching in Function Spaces
	Architecture of SciNO
	Probabilistic Control of Autoregressive Causal Ordering

	Empirical Results
	Synthetic Data: Erdös-Renyi Random Graphs
	Real and Semi-Synthetic Data
	Controlling LLM for Causal Ordering

	Conclusion
	Supplementary Material
	Related Works
	Ordering-based Causal Discovery
	Score Matching and Score-based Generative Models
	Causal Discovery with Large Language Models

	Proof of Theorems
	Derivation of the Hessian diagonal approximation
	Approximation Power of Neural Operators

	Architectural Details of SciNO
	Overview of the SciNO Architecture
	MLP Modules in SciNO

	Experimental Setting in Sections 4.1 and 4.2
	Datasets
	Metrics
	Implementation Details

	Additional Experiments
	Ablation Studies
	Comparison with Causal Discovery Baselines

	Controlling LLM for Causal Ordering
	Algorithm for Probabilistic Control of Autoregressive Causal Ordering
	Experimental Details in Section 4.3
	Additional Experiments on LLM Control

	Miscellaneous

