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ABSTRACT

Recent advances in reinforcement learning (RL) have predominantly leveraged
neural network policies for decision-making, yet these models often lack inter-
pretability, posing challenges for stakeholder comprehension and trust. Con-
cept bottleneck models offer an interpretable alternative by integrating human-
understandable concepts into policies. However, prior work assumes that concept
annotations are readily available during training. For RL, this requirement poses
a significant limitation: it necessitates continuous real-time concept annotation,
which either places an impractical burden on human annotators or incurs substan-
tial costs in API queries and inference time when employing automated labeling
methods. To overcome this limitation, we introduce a novel training scheme that
enables RL agents to efficiently learn a concept-based policy by only querying
annotators to label a small set of data. Our algorithm, LICORICE, involves three
main contributions: interleaving concept learning and RL training, using an en-
semble to actively select informative data points for labeling, and decorrelating
the concept data with a simple strategy. We show how LICORICE reduces human
labeling efforts to 500 or fewer concept labels in three environments, and 5000
or fewer in two complex environments, all at no cost to performance. We also
explore the use of VLMs as automated concept annotators, finding them effec-
tive in some cases but challenging in others. This work significantly reduces the
annotation burden for interpretable RL, making it more practical for real-world
applications that necessitate transparency. Our code is released.1

1 INTRODUCTION

In reinforcement learning (RL), agents learn a policy, which is a strategy for making sequential
decisions in complex environments. Agents typically represent the policy as a neural network, as
this representation tends to yield high performance (Mirhoseini et al., 2021). However, this choice
can come at a cost: such policies are challenging for stakeholders to interpret — particularly when
the network inputs are also complex, such as high-dimensional sensor data. This opacity can pose
a significant hurdle, especially in applications where understanding the rationale behind decisions
is critical, such as healthcare (Yu et al., 2021) or finance (Liu et al., 2022). In such applications,
decisions can have significant consequences, so it is essential for stakeholders to fully grasp the
reasoning behind actions to confidently adopt or collaborate on a policy.

⇤Equal Contribution.
†This work was done when Ye was a visiting intern at CMU.
1
https://github.com/cuizhuyefei/LICORICE
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Figure 1: LICORICE overview. In concept-based RL, the policy includes a bottleneck to map
from states to concepts with g, and then from concepts to (distributions over) actions with f . During
training, LICORICE addresses concept label efficiency concerns with three key components: i)
iterative training, ii) data decorrelation, and iii) active learning.

To address interpretability concerns in supervised learning, recent works have integrated human-
understandable concepts into neural networks through concept bottleneck models (Koh et al., 2020;
Espinosa Zarlenga et al., 2022). These models insert a bottleneck layer whose units correspond to in-
terpretable concepts, ensuring that the final decisions depend on these concepts instead of on opaque
raw inputs. By training the model both to have high task accuracy and to accurately match experts’
concept labels, these models learn a high-level concept-based representation that is simultaneously
meaningful to humans and useful for machine learning tasks. As an example, a concept-based
explanation for a bird classification task might include a unit that encodes the bird’s wing color.
Concepts also offer a path to compositional generalization by enabling subtask decomposition into
meaningful, reusable components (Mao et al., 2022; Wang et al., 2023).

More recently, these techniques have been applied to RL by incorporating a concept bottleneck in
the policy (Grupen et al., 2022; Zabounidis et al., 2023), so that the chosen actions are a function
of the human-understandable concepts. However, a significant challenge emerges in this method’s
practical application: past work assumes that concept annotations are readily available during RL
training. To learn a mapping from states to concepts, an RL agent requires concept information
for every state encountered during training, which is often millions or billions of state-action pairs.
Many real-world domains—such as autonomous driving—are not accompanied by high-level con-
cepts to support human-understandable decision-making. On one hand, relying on human labelers
is impractical, risking errors due to fatigue (Marshall & Shipman, 2013). On the other hand, using
vision language models (VLMs) for automated concept extraction (Oikarinen et al., 2023), while al-
leviating the human bottleneck, introduces significant API or inference costs that can be prohibitive.

In this work, we address this challenge with LICORICE (Label-efficient Interpretable COncept-
based ReInforCEment learning), a novel training paradigm designed to minimize the number of
concept annotation queries while maintaining high task performance. Figure 1 illustrates our algo-
rithm. LICORICE tackles three key challenges. First, it addresses the problem of concept learning
on off-policy or outdated data. If concepts are learned from data collected by a random policy, the
concept distribution may not reflect the distribution under an optimal policy. To ensure that con-
cept learning occurs on more recent and on-policy data, LICORICE interleaves concept learning
and RL training through iterative training: it alternately freezes the network layers corresponding
to either the concept learning part or the decision-making part. Second, LICORICE addresses the
problem of limited training data diversity that occurs when an agent interacts with the environment,
thereby generating sequences of highly similar, temporally correlated data points. To tackle this is-
sue, LICORICE implements a data decorrelation strategy to produce a more diverse set of training
samples. Third, LICORICE addresses the inefficient use of annotation effort, where labeled samples
may provide redundant information. To resolve this problem, we employ disagreement-based active

learning using a concept ensemble to select the most informative data points for labeling.

To evaluate the effectiveness of LICORICE, we conduct experiments in two scenarios—perfect hu-
man annotation and VLM annotation—on five environments with image input: an image-based
version of CartPole, two Minigrid environments, and two Atari environments. First, under the as-
sumption of perfect human annotation, we show that LICORICE yields both higher concept accuracy
and higher reward while requiring fewer annotation queries compared to baseline methods. Second,
we find that VLMs can indeed serve as concept annotators for some, but not all, of the environments.
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Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to investigate the problem of a limited concept
annotation budget for interpretable RL. We introduce LICORICE, a novel training scheme that
enables label efficient learning of concept-based RL policies.

• We conduct extensive experiments to show the effectiveness of LICORICE across five environ-
ments with varying budget constraints.

• We study the use of VLMs as automated concept annotators for concept-based RL, demonstrat-
ing their effectiveness in certain environments while highlighting challenges in others.

2 PRELIMINARIES

Reinforcement Learning. In RL, an agent learns to make decisions by interacting with an envi-
ronment (Sutton & Barto, 2018). The environment is commonly modeled as a Markov decision
process (Puterman, 2014), consisting of the following components: a set of states S , a set of actions
A, a state transition function T : S ⇥A ⇥ S ! [0, 1] that indicates the probability of transitioning
from one state to another given an action, a reward function R : S ⇥A⇥ S ! R that assigns a re-
ward for each state-action-state transition, and a discount factor � 2 [0, 1] that determines the present
value of future rewards. The agent learns a policy ⇡ : S ⇥ A ! [0, 1], which maps states to dis-
tributions over actions with the aim of maximizing the expected cumulative discounted reward. We
evaluate a policy via its value function, which is defined as V ⇡(s) = E⇡[

P1
k=0 �

krt+k+1 | st = s].
The ultimate aim in RL is to determine the optimal policy, ⇡⇤, through iterative refinement based on
environmental feedback.

Concept Policy Models. Concept-based explanations have emerged as a common paradigm in
explainable AI (Poeta et al., 2023). They explain a model’s decision-making process through human-
understandable attributes and abstractions. In supervised learning, concept bottleneck models (Koh
et al., 2020) implement this approach using two key functions: a concept predictor g : X ! C,
mapping inputs to interpretable concepts, and a label predictor f : C ! Y , mapping the concept
predictions to a downstream task space, such as labels for classification. As a result, the prediction
takes the form ŷ = f(g(x)), where the input x influences the output solely through the bottleneck
ĉ = g(x). In RL, we insert a concept bottleneck layer into the policy network:

⇡(s) = f(g(s)),

such that ⇡ maps from states s 2 S to concepts c 2 C to actions a 2 A (Grupen et al., 2022;
Zabounidis et al., 2023). This setup allows the policy to base its decisions on understandable and
meaningful features. As a result, we can use any RL algorithm that can be modified to include an
additional loss function for concept prediction.

Training Concept Policy Models. Training these models requires a dataset of state-concept-action
triplets (s, c, a) 2 S ⇥C ⇥A. The functions f and g are typically implemented as neural networks,
with their parameters collectively defined as ✓. Previous work (Zabounidis et al., 2023) simply
combines the concept prediction loss LC(✓) and RL loss LRL(✓):

L(✓) = LRL(✓) + LC(✓),

where the exact definitions of LRL(✓) and LC(✓) depend on the choice of RL algorithm and concept
learning task. The objective is to find the optimal parameters ✓⇤ that minimize this combined loss
function. However, this approach requires continuous access to ground-truth concepts for training
f , which may not always be feasible or desirable in practical RL scenarios.

3 LICORICE

As we have mentioned, the standard way of training concept-based RL assumes continuous access
to an oracle to provide concept labels. However, this assumption is problematic due to the large
annotation cost incurred by human or automated labeling efforts. To reduce the number of concept
labels required for concept-based RL, we propose LICORICE, a novel algorithm for interpretable
RL consisting of three main components: iterative training, data decorrelation, and disagreement-
based active learning. The full pseudocode is in Algorithm 1.

3



Published as a conference paper at ICLR 2025

Algorithm 1 LICORICE (Label-efficient Interpretable COncept-based ReInforCEment learning)
1: Input: Total budget B, number of iterations M , sample acceptance threshold p, ratio ⌧ for

active learning, batch size for querying b, number of concept models N to ensemble
2: Initialize: training set Dtrain  ;, and validation set Dval  ;
3: for m = 1 to M do
4: Allocate budget for iteration m: Bm  B

M
5: while |Um| < ⌧ ·Bm do
6: Execute policy ⇡m to collect unlabeled data Um using acceptance rate p
7: end while
8: Initialize iteration-specific datasets for collecting labeled data: D0

train  ;, D0
val  ;

9: while Bm > 0 do
10: Train N concept models {g̃i}Ni=1 on Dtrain [D0

train, using Dval [D0
val for early stopping

11: Calculate acquisition function value ↵(s) for all s 2 Um \ (D0
train [D0

val)
12: Choose bm = min(b, Bm) unlabeled points from Um according to argmaxs ↵(s)
13: Query for concept labels to obtain new dataset Dm  {(s, c)}bm
14: Split Dm into train and validation splits and add to D0

train,D0
val

15: Decrement budget: Bm  Bm � bm
16: end while
17: Aggregate datasets: Dtrain  Dtrain [D0

train, Dval  Dval [D0
val

18: Continue training the concept network g on Dtrain, using Dval for early stopping
19: Freeze g and continue training f using standard RL training to obtain ⇡m+1

20: end for

Iterative Training. As the agent’s policy improves, the distribution of the visited states and their
associated concepts changes. Consider an MDP where states are indexed. With a random (initial)
policy, the agent tends to visit small-index states near the initial state, encountering only the concepts
relevant to those states. However, as the policy improves, the agent explores higher-index states,
leading to a shift in both the state and concept visitation distribution. If we exhaust all queries at the
beginning of training, we risk training the model only on the concepts associated with small-index
states from the random policy, potentially missing important concepts that emerge as the agent
explores. We therefore propose iterative training to enable LICORICE to progressively refine its
understanding of concepts as the policy improves. Iterative training consists of two parts: concept
learning and behavior learning. Assume that we have access to an annotated concept dataset Dtrain
generated by our current policy ⇡m. Then, concept learning focuses on training the concept portion
of the network g on this dataset Dtrain (lines 17 to 19). Behavior learning involves freezing g and
training the behavior portion of the network f with any standard RL algorithm with its associated
loss LRL (line 19). Upon completion of behavior learning, we obtain an updated policy ⇡m+1, which
serves to collect more unlabeled concept data to help train g in the next iteration.

Data Decorrelation. In the previous section, we omitted that we do not obtain ground-truth concept
labels when rolling out the current policy ⇡m. Instead, rollouts produce a dataset Um of unlabeled
states as candidates for querying for ground-truth concepts from an oracle. Given that consecutive
states from policy rollouts tend to be highly similar, leading to redundant and inefficient datasets,
this setup raises the question of how to collect diverse and informative data. Simply collecting all
encountered states would give us long chains of nearly-identical samples, undermining the diversity
we need for effective learning. To resolve this challenge, we introduce data decorrelation with two
key components: a budget multiplier ⌧ that sets |Um| = ⌧ · Bm, and a per-state acceptance proba-
bility p. This random acceptance/rejection mechanism leverages a fundamental property of Markov
processes—states become increasingly independent as their temporal distance grows according to
the mixing time—allowing us to build more diverse datasets from our policy rollouts.

Disagreement-Based Active Learning. Equipped with Um, we are now prepared to select data
points for querying for concept labels. The purpose of this stage is to make use of our limited la-
beling budget Bm to collect a labeled dataset Dm for training g. We propose to train a concept
ensemble—consisting of N independent concept models—from scratch on the dataset of training
points Dtrain that has been aggregated over all iterations (line 10). We use this ensemble to calculate
the disagreement-based acquisition function ↵(·), which determines whether each candidate in Um

ought to receive a ground-truth concept label (line 11). This function targets samples where pre-
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diction disagreement is highest among ensemble members, as these points often represent areas of
uncertainty or decision boundaries where additional labeled data would be most informative. For
↵(·), we use two different formulations, depending on the concept learning task. For concept classi-
fication, we use a query-by-committee (Seung et al., 1992) approach, in which we prioritize points
with a high proportion of predicted class labels that are not the modal class prediction (also called
the variation ratio (Beluch et al., 2018)):

↵(s) = 1�max
c2C

1

N

NX

i=1

[g̃i(s) = c].

Here, g̃i(s) is the concept prediction of the i-th model on state s. For concept regression, we directly
use the estimate of variance across the concept models as a measure of disagreement:

↵(s) = �2(s) =
1

N � 1

NX

i=1

(g̃i(s)� µ(s))2,

where µ(s) = 1
N

PN
i=1 g̃i(s) is the mean prediction of the N concept models. After querying for

Bm ground-truth concept labels (line 13) using ↵(·), we are prepared to continue training g during
the concept learning stage.

Implementation Details. For training g (line 18), we employ two types of loss functions depending
on the nature of the concepts: MSE for continuous concepts and cross-entropy loss for categorical
concepts. If the problem requires mixed-type concepts, we either discretize continuous attributes or
simply use a mixed loss. To train f (line 19), we freeze g and use PPO to continue training f from the
previous iterations, resulting in the final policy ⇡M+1. For complex environments that require many
iterations, we observe that RL-related parameters may get stuck in a local region in early iterations,
becoming hard to optimize later. To mitigate this issue, in the last iteration, we additionally train a
new RL network f 0 from scratch when fixing g with ⇡M+1 as the anchoring policy to get the final
⇡0
M+1. The anchoring policy ensures ⇡0

M+1 has a similar distribution to the previous one and the
annotated observations are still highly relevant. Specifically, we initialize another policy ⇡✓ with
the same frozen g parameters and randomly initialized f , then train it with the standard PPO loss
function and an additional KL-divergence penalty between the current policy and ⇡M+1:

L(✓) = LPPO(✓) + � · KL[⇡M+1(· | s),⇡✓(· | s)].

4 EXPERIMENTS

In our experiments, we investigate the following questions:

RQ 1 Under a limited concept annotation budget, does LICORICE enable both high concept
accuracy and high environment reward?

RQ 2 How effective are VLMs as automated concept annotators when used with LICORICE?
RQ 3 How label efficient is LICORICE compared with other methods?
RQ 4 Does LICORICE support test-time concept interventions?

4.1 EXPERIMENT SETUP

In each experiment, we run each algorithm 5 times, each with a random seed. All algorithms use
PPO (Schulman et al., 2017; Raffin et al., 2021) with a concept bottleneck. More implementation
details and hyperparameters are in Appendix A.2.

Environments. We investigate these questions across five environments: PixelCartPole (Yang et al.,
2021), DoorKey (Chevalier-Boisvert et al., 2023), DynamicObstacles (Chevalier-Boisvert et al.,
2023), Boxing (Bellemare et al., 2013), and Pong (Bellemare et al., 2013). Each environment in-
cludes a distinct challenge and features a set of interpretable concepts describing key objects and
properties. We summarize the concepts in Table 1, with more details in Appendix A.1. These
environments are characterized by their dual representation: a complex image-based input and a
symbolic concept-based representation. PixelCartPole, DoorKey, and DynamicObstacles are sim-
pler because we can extract noiseless ground-truth concept labels from their source code. In contrast,
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Environment # Concepts Concept Type Binarized # Concepts

PixelCartPole 4 Continuous N/A
DoorKey 12 Discrete 46
DynamicObstacles 11 Discrete 30
Boxing 8 Discrete 1480
Pong 7 Discrete 1848

Table 1: Summary of environments, including their associated concepts. Counts for the binarized
version of the concepts provided where applicable to illustrate the problem size.

Boxing, as implemented in OCAtari (Delfosse et al., 2023), uses reverse engineering to extract po-
sitions of important objects from the game’s RAM state. This extraction process introduces a small
amount of noise. The concepts in Pong are derived from the VIPER paper (Bastani et al., 2018) that
also uses reverse engineering.

Baselines. To our knowledge, there exist no previous algorithms that seek to minimize the number
of concept labels for interpretable RL, so we implement three: Sequential-Q, Disagreement-Q, and
Random-Q. In Sequential-Q, the agent spends B queries on the first B states encountered during
the initial policy rollout. In Disagreement-Q, the agent also spends its budget at the beginning of
training; however, it uses active learning with the same ↵(·) as LICORICE to strategically choose
the training data for annotation. In Random-Q, the agent receives B concept labels at random points
using a probability to decide whether to query in each state. As a budget-unconstrained baseline,
we implement CPM from previous work in multi-agent RL (Zabounidis et al., 2023) for the single-
agent setting. As mentioned in §2, CPM jointly trains g and f , assuming unlimited access to concept
labels, so it also represents an upper bound on concept accuracy.

VLM Details. For our VLM experiments, we use GPT-4o (gpt). During training, we query GPT-4o
each time LICORICE requires a concept label. As an example, for the concept related to the position
of an object, we prompt GPT-4o with instructions to report the coordinates (x y). More details about
our prompts can be found in Appendix A.3.

Performance Metrics. We present the reward as a function of the upper bound calculated by train-
ing PPO with ground-truth concept labels (PixelCartPole: 500, DoorKey: 0.97, DynamicObstacles:
0.91, Boxing: 86.05, Pong: 21). In the first four environments, percentages (or ratios) make sense
since the minimum reasonable reward is 0.2 In Pong, a random policy has -21 reward so we first get
the difference between rewards and -21 and then calculate the ratio. We additionally report the con-
cept error (MSE for regression; 1 - accuracy for classification). In Boxing, following the practice of
OCAtari, we consider a concept prediction correct if it is within 5 pixels of the ground truth label. In
Pong, we simply use classification error. All reported numbers are calculated using 100 evaluation
episode s.

4.2 RESULTS

RQ1: REWARD AND CONCEPT ACCURACY UNDER A LIMITED ANNOTATION BUDGET

LICORICE achieves similarly high reward and concept performance to the state-of-the-art
budget-unconstrained baseline. We first seek to understand how LICORICE performs compared
to the state-of-the-art in concept-based RL, CPM, which is not constrained by concept label budgets.
Surprisingly, LICORICE and CPM achieve nearly 100% of the maximum reward in all environments
in this unfair comparison (Figure 2). They also achieve a similar concept error rate, only seeing a
clear difference in error for the most complex environment, Pong. We emphasize that CPM is given
an unlimited budget; in practice, it uses 1M-15M concept labels for all environments, which is
around 2000 to 13000⇥ the budget used by LICORICE. In contrast, LICORICE operates under a
strict budget constraint, with 3000 labels for Boxing and 5000 for Pong, and at most 500 concept
labels for the simpler environments (PixelCartPole: 500, DoorKey: 300, DynamicObstacles: 300).

2In PixelCartPole and DoorKey, all rewards are nonnegative; in DynamicObstacles, an agent can ensure
nonnegative reward by simply staying in place; in Boxing, a random policy can get around 0 reward and all of
the trained policies have positive reward.
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Figure 2: LICORICE generally achieves higher reward and lower concept error than all other budget-
constrained algorithms (Sequential-Q, Disagreement-Q, Random-Q). The budgets for each environ-
ment are PixelCartpole: 500, DoorKey: 300, DynamicObstacles: 300, Boxing: 3000, Pong: 5000.
CPM has an unlimited budget (in practice, it uses 4M, 4M, 1M, 15M, 10M labels, respectively).
Despite this extreme budget difference, LICORICE achieves comparable reward and concept error.
Full results in Table 5, Appendix B.

LICORICE generally achieves higher reward and lower concept error than budget-
constrained baselines. We now study all budget-constrained algorithms (LICORICE plus those
in §4.1) under the same fixed concept labeling budget as above. Figure 2 shows that LICORICE
outperforms all baselines in terms of reward and concept error on all but arguably the easiest environ-
ment, DynamicObstacles. In that environment, LICORICE performs similarly to the baselines. The
greatest performance differences occur in PixelCartPole and DoorKey, where LICORICE achieves
100% and 99% of the maximum reward, while the second-best algorithm achieves 36% and 89%,
respectively. We therefore answer RQ 1 affirmatively: not only does LICORICE achieve the same
high concept accuracy and high reward as the state-of-the-art in concept-based RL, it also performs
on-par to budget-constrained baselines in one environment and outperforms them in the other four.

RQ 2: VLMS AS CONCEPT ANNOTATORS

We now seek to answer the question of whether VLMs can successfully provide concept labels in
lieu of a human annotator within our LICORICE framework. Because using VLMs incurs costs and
users requiring interpretable policies for their environments may still face budget constraints, we
operate within the same budget-constrained setting as above. We present these results in Figure 2.

c Error

Environment LICORICE+GPT-4o GPT-4o

PixelCartPole 0.25 0.24
DoorKey 0.31 0.30
DynamicObstacles 0.13 0.13
Boxing 0.98 0.82
Pong 0.73 0.87

Table 2: Concept error comparison. The con-
cept error of LICORICE+GPT-4o matches that of
GPT-4o alone.

VLMs can serve as concept annotators for
some environments. In DoorKey and Dy-
namicObstacles, LICORICE with GPT-4o la-
bels achieves 83% and 88% of the maximum
reward, respectively. To assess the quality of
VLM-generated labels, we compare the con-
cept error rate of our trained model against
GPT-4o’s labeling error, both evaluated on the
same rollout observations, while GPT-4o evalu-
ation is on a random subset of 50 observations,
due to API cost constraints. Table 2 shows that
the concept error of LICORICE is comparable
to that of GPT-4o when GPT-4o labeling error
is not high, which suggests that LICORICE can effectively utilize these concept labels. VLMs,
particularly GPT-4o, could serve as concept annotators for certain concepts in certain environments.

VLMs struggle to provide accurate concepts in more complex environments. In PixelCartPole,
Boxing, and Pong, however, GPT-4o struggles to provide accurate labels. In these environments, not
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Figure 3: Reward (top) and concept error (bottom) of all algorithms for different budgets.
LICORICE more efficiently makes use of the varying budgets, achieving higher reward and lower
concept error. Full results with standard deviation are in Tables 6 to 8, Appendix B.

only does LICORICE+GPT-4o achieve less than 25% of the maximum reward, it also incurs a large
concept error. The challenge with PixelCartPole is the continuous nature of the concepts and the
lack of necessary knowledge of physical rules and quantities in this specific environment. Boxing is
particularly challenging due to the large number of possible concept values that each of the 8 discrete
concepts can take on (160 or 210 possible values). Similarly, concepts in Pong have hundreds of
possible values and some physics quantities require multi-frame inference. We therefore answer
RQ 2 with cautious optimism: there are indeed cases in which LICORICE could be used alongside
VLMs. Generally speaking, a less complex environment is more likely to work well with VLMs
by enabling clear and detailed labeling instructions in the prompt. However, VLM capabilities need
improvement before they can fully alleviate the human annotation burden in safety-critical settings.

RQ 3: INVESTIGATION OF BUDGET REQUIREMENTS FOR PERFORMANCE

Given these results, we now investigate the minimum budget required for all environments to achieve
99% of the reward upper bound. As a result, we incrementally increase the budget for each envi-
ronment starting from a reasonably small budget until LICORICE reaches 99% of the reward upper
bound. In Pong, we further increase the budget until the concept error is below 0.25. In addi-
tion to the baselines, we study LICORICE under perfect (human) annotation and noisy VLM labels
in Figure 3.

LICORICE more rapidly achieves high reward compared to baselines. Across all environ-
ments, LICORICE is the most query-efficient. In three of the environments, it consistently achieves
higher reward than baselines across all budget levels. In DynamicObstacles and Pong, LICORICE
outperforms baselines at the smallest query budget, after which some baseline method achieves com-
parable reward. LICORICE is similarly performant with respect to concept error. Except for one
budget setting for one environment, LICORICE consistently achieves lower concept error than the
baselines.

For LICORICE+GPT-4o, more concept labels is not always better. In DoorKey,
LICORICE+GPT-4o exhibits predictable behavior in terms of concept error: as the budget increases,
the reward increases and the concept error decreases. Counterintuitively, for some environments, the
concept error and reward fluctuates with more budget, likely due to the additional labeling noise in-
troduced to the concept network. We therefore provide a more nuanced answer to RQ 3: LICORICE
is indeed label efficient across varying budgets, but the benefit is annotator-dependent.
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Figure 4: Concept intervention results: LICORICE enables test-time concept intervention.

Figure 5: Test-time intervention examples, where intervening on a single concept corrects the action.

RQ 4: INTERPRETABILITY ANALYSIS: TEST-TIME CONCEPT INTERVENTIONS

A great property of concept-based networks is the ability for people to successfully intervene on the
concepts to correct them. In RL, this intervention enables the inspection of how different concepts
influence the immediate decisions of the agent.

LICORICE enables test-time concept intervention. To validate that LICORICE supports test-
time concept intervention, we simulate using a noisy concept model g with f to study the impact
of concept interventions on reward. For PixelCartPole, each concept adds a Gaussian noise with
standard deviation of 0.2. For the other three environments with discrete concepts, each concept
label is randomly changed with probability 0.2. Following previous work (Koh et al., 2020), we first
intervene individually on concepts, setting them to ground truth, and sort the concepts in descending
order of reward improvement. We then sequentially intervene on the concepts following this order-
ing, such that any previously intervened concepts remain intervened. According to Figure 4, using a
noisy concept model significantly degrades reward. However, the performance increases with more
interventions, meaning LICORICE supports test-time concept intervention, affirmatively answering
RQ 4.

Concept interventions show how the policy decisions change. We now show how domain experts
could interact with the model. Specifically, we simulate a counterfactual question: What if a concept
value is incorrectly predicted? Figure 5 depicts two examples in DoorKey. Just intervening on the
concept of the door being open or closed is sufficient to change the agent’s behavior, both highlight-
ing the importance of this specific concept and the ability of a user to intervene on the concepts to
interrogate and understand agent behavior.

ADDITIONAL EXPERIMENTS

Ablation study: all components of LICORICE contribute positively to its performance. We
now conduct an ablation study of our three main contributions: iterative training, decorrelation, and
disagreement-based active learning. LICORICE-IT uses only one iteration, LICORICE-DE does
not perform data decorrelation, and LICORICE-AC uses the entire unlabeled dataset for querying
instead of a subset chosen by active learning. All components are critical to achieving both high
reward and low concept error (Table 3; learning curves in Appendix B). However, the component
that most contributes to the performance differs depending on the environment. For example, com-
pared with LICORICE, LICORICE-IT exhibits the largest reward gap for PixelCartPole; however,
LICORICE-AC yields the largest reward gap for DynamicObstacles, and LICORICE-DE yields the
largest gap for DoorKey. This difference may occur because the concepts in DynamicObstacles are
simple enough that one iteration is sufficient, so the largest gains can be made with active learn-
ing. In contrast, PixelCartPole requires further policy refinement to better estimate on-distribution
concept values, so the largest gains can be made by leveraging multiple iterations.
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PixelCartPole DoorKey DynamicObstacles Boxing
Algorithm R " c MSE # R " c Error # R " c Error # R " c Error #

LICORICE-IT 0.53 0.08 0.99 0.09 1.00 0.00 0.98 0.14
LICORICE-DE 0.97 0.03 0.78 0.20 0.98 0.00 1.00 0.04
LICORICE-AC 0.91 0.02 0.82 0.16 0.58 0.00 0.99 0.09

LICORICE 1.00 0.02 0.99 0.05 0.99 0.00 1.00 0.05

Table 3: Ablation study results for LICORICE. All components generally help achieve better reward
and lower concept error. Full results with standard deviation are in Table 9, Appendix B.

LICORICE is robust to various hyperparameter values. LICORICE involves a few key hyperpa-
rameters, described in §3 and summarized here for convenience. In data decorrelation, ⌧ governs the
size of the unlabeled dataset collected by the current policy and p controls the rate of acceptance of
data points. Active learning involves a concept ensemble with N models. We study the effect of the
values of these hyperparameters on DynamicObstacles, finding that LICORICE achieves 96� 99%
of the maximum reward across 2 values for N , 3 values for p, and 3 values for ⌧ (Appendix B.5).

5 RELATED WORK

Interpretable RL. Interpretable RL has gained significant attention in recent years (Glanois et al.,
2024). One prominent area uses rule-based methods—such as decision trees (Silva et al., 2020;
Topin et al., 2021), logic (Delfosse et al., 2024), and programs (Verma et al., 2018; Penkov &
Ramamoorthy, 2019)—to represent policies. These works either assume that the state is already
interpretable or that the policy is pre-specified. Unlike prior work, our method involves learning the
interpretable representation (through concept training) for policy learning.

Concept Learning for RL. Due to successes in the supervised setting (Collins et al., 2023; Sheth
& Ebrahimi Kahou, 2023; Zarlenga et al., 2023), concept models have recently been used in RL.
Das et al. (2023) trains a joint embedding model between state-action pairs and concept-based ex-
planations to expedite learning via reward shaping. Unlike LICORICE, their policy is not a strict
function of the concepts, allowing our techniques to be combined to provide concept-based expla-
nations alongside an interpretable policy. Another example, CPM (Zabounidis et al., 2023), is a
multi-agent RL approach that assumes that concept labels are continuously available during train-
ing. As we have shown, this approach uses over 1M concept labels, whereas LICORICE achieves
similar performance while using 2000⇥ fewer labels.

Learning Concepts with Human Feedback. Prior research has explored leveraging human concept
labels, but not for RL and without focusing on reducing the labeling burden. For instance, Lage &
Doshi-Velez (2020) has users label additional information about the relevance of certain feature di-
mensions to the concept label to facilitate concept learning for high-dimensional data. In a different
vein, Chauhan et al. (2023) develop a test-time intervention policy for querying for concept labels to
improve the final prediction. These methods do not directly tackle the issue of reducing the overall
labeling burden during training and could be used alongside our method. A concurrent work (Shao
et al., 2024) also studies sample efficiency but mainly focus on human task demonstrations.

6 DISCUSSION AND CONCLUSION

In this work, we proposed LICORICE, a novel RL algorithm that addresses the critical issue of
model interpretability while minimizing the reliance on continuous human annotation. We intro-
duced a training scheme that enables RL algorithms to learn concepts efficiently from little labeled
concept data. We demonstrated how this approach reduces manual labeling effort. We conducted
initial experiments to demonstrate how we can leverage powerful VLMs to infer concepts from raw
visual inputs without explicit labels in some environments. There are broader societal impacts of
our work that must be considered, including both the impacts of using VLMs in real-world appli-
cations and more general considerations around interpretability. For a more detailed discussion of
limitations and future work, please refer to Appendix C.
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