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Abstract

Direct Preference Optimization (DPO) has emerged as a promising approach for
aligning large language models with human preferences. While prior work mainly
extends DPO from the aspect of the objective function, we instead improve DPO
from the largely overlooked but critical aspect of data selection. Specifically, we
address the issue of parameter shrinkage caused by noisy data by proposing a novel
margin-maximization principle for dataset curation in DPO training. To further
mitigate the noise in different reward models, we propose a Bayesian Aggregation
approach that unifies multiple margin sources (external and implicit) into a single
preference probability. Extensive experiments in diverse settings demonstrate the
consistently high data efficiency of our approach. Remarkably, by using just 10%
of the Ultrafeedback dataset, our approach achieves 3% to 8% improvements across
various Llama, Mistral, and Qwen models on the AlpacaEval2 benchmark. Further-
more, our approach seamlessly extends to iterative DPO, yielding a roughly 3%
improvement with 25% online data, revealing the high redundancy in this presumed
high-quality data construction manner. These results highlight the potential of data
selection strategies for advancing preference optimization.

1 Introduction

Reinforcement Learning from Human Feedback [RLHF; 6, 65] has emerged as a crucial technique for
aligning Large Language Models (LLMs) with human preferences and values. Traditional RLHF im-
plementations involve a two-stage process: reward model training based on preference data followed
by reinforcement learning optimization. However, this approach presents significant computational
challenges, requiring loading multiple model instances and extensive hyperparameter tuning.

As an alternative, [39] introduced Direct Preference Optimization (DPO), which streamlines the
alignment process by directly optimizing the LLM policy from preference data. DPO has demon-
strated comparable effectiveness while substantially reducing computational requirements compared
to classical RLHF. Following DPO’s introduction, numerous studies have proposed improvements
through modified learning objectives [62, 1, 15] and iterative learning schemes [53]. While these
algorithmic advances have shown promise, there remains a critical gap in our understanding of the
data-centric aspects of preference learning: what characteristics of preference data contribute most
to model alignment?

This work thoroughly studies the impact of preference data quality on DPO training, which is crucial
for developing more efficient training strategies. In particular, we achieve both improved performance
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and reduced computational costs through strategic data selection. Our research makes three primary
contributions:

(1) We prove in theory the necessity of data selection in the presence of exogenous noise. Specifically,
the noise in the reward model may flip the preference between response pairs, leading to the emergence
of the parameter shrinkage issue. Furthermore, we demonstrate that margin-based selection criteria
can effectively address this issue by inducing parameter inflation.

(2) Driven by the theoretical results and the derived margin-maximization principle, we propose a
Bayesian Aggregation for Preference data Selection (BeeS) strategy. BeeS incorporates signals from
both external rewards and DPO implicit rewards, and deprioritizes a preference pair if it exhibits a
low reward margin from any single reward source to mitigate potential noise. Through extensive
experiments across diverse datasets and models, we show that this selection strategy shows two
consistent advantages: it substantially reduces computational overhead via efficient data selection
and improves model performance compared to training on the full dataset. In particular, on the
UltraFeedback dataset and its variants, our method identifies a 10% data subset for DPO training on
LLama, Mistral, and Qwen series models, consistently achieving 3% to 8% point improvements on
the AlpacaEval 2.0 benchmark relative to training on the complete dataset.

(3) Finally, we extend our data selection framework to iterative DPO settings, showing that selectively
sampling online data can simultaneously lower computational costs and improve performance. In
particular, we achieve 48.49% win rate and 54.99% length-control win rate on the AlpacaEval 2.0
benchmark using only 25% of the online data for training.

Our findings provide both theoretical insights into the dynamics of preference learning and practical
guidelines for more efficient DPO implementations. This work bridges an important gap between
algorithmic innovation and data quality considerations in the context of LLM alignment.

1.1 Related Work

Preference learning algorithms. Reinforcement Learning from Human Feedback also known
as dueling RL [37] or preference-based RL [5], has become a crucial component of recent Large
Language Models (LLMs) such as ChatGPT [36]. While the classical RLHF pipeline traditionally
uses Proximal Policy Optimization, several alternative approaches have been proposed. These
include but not limited other RL-based training algorithms [28, 63], rejection sampling [11, 17],
conditional supervised fine-tuning [31, 56, 60], and Direct Preference Optimization [39]. Among
these alternatives, DPO has gained significant attention due to its simplicity and robust performance.
Following the introduction of DPO, numerous works [62, 1, 15, 32, 44, 18, 54, 19, 51] have attempted
to improve its performance by modifying the DPO objective.

Data selection in LLM Fine-tuning. Data selection is crucial in LLM post-training [48] for two
key observations: post-training typically converges rapidly, and excessive data can degrade model
performance through overfitting or exposure to toxic content [43, 10]. Recent research has focused
on enhancing instruction tuning efficiency by identifying high-quality subsets from large instruction
datasets [4, 25, 52], often adapting active learning query strategies [40] to assess sample uncertainty
and diversity. However, data efficiency in preference learning remains relatively unexplored. Prior
studies have studied reducing annotation costs in preference dataset creation [35, 57] and on scenarios
involving numerous ranking annotations [45, 34]. Other research aims to improve a model’s ability
to distinguish between two responses by adding a margin to the loss term [32, 38, 1]. Additionally,
concurrent work highlights the importance of margins for preference data filtering, though there is
debate on whether hard samples help or hinder preference learning [50, 22, 59, 16].

Our work firstly provides clear criteria for identifying informative samples while filtering toxic ones,
thereby improving both DPO’s efficiency and performance. Furthermore, our method extends to
iterative DPO [53] and its variants [61], wherein training data is dynamically generated by the model
during its iterative training process.

2 Background

Reinforcement Learning from Human Feedback (RLHF) has emerged as a key method for aligning
LLMs with human preferences. It leverages training data of the form D = {x, yw, yl}, where x rep-
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Figure 1: The workflow of the BeeS method.

resents the input prompt, and yw and yl denote the preferred and dispreferred responses, respectively.
The RLHF pipeline typically involves two stages: reward learning and policy optimization.

Reward Learning. In the reward learning stage, a reward model is trained to approximate human
preferences based on preference data. By adopting the Bradley-Terry model [3] to capture human
preference, reward training involves minimizing the loss:

LRM(r) = −E(x,yw,yl)∼D
[
log σ

(
r(x, yw)− r(x, yl)

)]
,

where σ(·) is the sigmoid function.

Policy Optimization with Reinforcement Learning. Once the reward model r is trained, it is used
to guide the optimization of a policy πθ(y|x), where θ denotes the parameters of the model. This
stage often employs reinforcement learning techniques such as Proximal Policy Optimization [PPO;
41] to optimize the policy by maximizing the expected reward.

max
πθ

Ex∼D,y∼πθ(·|x)

[
r(x, y)− β log

πθ(y|x)
πref(y|x)

]
,

where β > 0 is the regularization parameter. However, this RL approach can be computationally
expensive, sensitive to reward misspecification and require careful hyperparameter tuning.

Recently, as an alternative to the RL-based policy optimization in RLHF, Direct Preference Opti-
mization [DPO; 39] has been proposed. DPO simplifies the reward alignment process by directly
incorporating human preference data into supervised training. Instead of defining and optimizing a
reward function explicitly, DPO minimizes

LDPO(θ) = − log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
.

By bypassing the intermediate step of reinforcement learning, DPO offers a more stable and compu-
tationally efficient alternative to standard RLHF, while still aligning models effectively with human
feedback.

3 Methodology

3.1 Parameter Shrinkage and Inflation Analysis

We follow the model from [64] to illustrate why data selection can improve model performance. We
assume that reward model r(x, y) = ⟨ϕ(x, y), ω∗⟩ with some feature function ϕ(·, ·). For reward
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Table 1: Symbols used in the formulation.
r x yw/yl ϕ/∆ϕ ζ w

Reward Input prompt Preferred/dispreferred Response (relative) feature function Exogenous error Learnable parameters

learning, our reward model can be an explicit r(x, y) [36], while for DPO, β log πθ(y|x)
πref (y|x) plays the

role of reward model implicitly [39]. Based on observations in previous literature, we can derive such
features by removing the last layer of the pre-trained model. However, both humans and other large
models may use inaccurate reward functions to generate labels, where the labels represent the ranking
of two responses. We say the preference between yw and yl is generated by r(x, yw)− r(x, yl) + ζ
where ζ is an exogenous error. We use ∆ϕ(x) to denote ϕ(x, yw)− ϕ(x, yl) for simplicity.

Parameter Shrinkage. Here, we hope to find ω to minimize

LRM(ω) = −Ex,ζ

[ 1

1 + e−⟨∆ϕ(x),ω∗⟩−ζ
log(

1

1 + e−⟨∆ϕ(x),ω⟩ ) +
1

1 + e⟨∆ϕ(x),ω∗⟩+ζ
log(

1

1 + e⟨∆ϕ(x),ω⟩ )
]
.

(1)

It holds that the first-order condition is

Ex,ζ

[ 1

1 + e⟨∆ϕ(x),ω∗⟩+ζ

e⟨∆ϕ(x),ω⟩∆ϕ(x)

1 + e⟨∆ϕ(x),ω⟩

]
= Ex,ζ

[ 1

1 + e−⟨∆ϕ(x),ω∗⟩−ζ

e−⟨∆ϕ(x),ω⟩∆ϕ(x)

1 + e−⟨∆ϕ(x),ω⟩

]
. (2)

Since we know that ⟨∆ϕ(x), ω∗⟩ is positive, when ζ is small comparing to the margin, it holds that
1

1+e⟨∆ϕ(x),ω∗⟩+ζ is convex with respect to ζ. Due to Jensen’s inequality, it holds that

Ex,ζ

[ 1

1 + e⟨∆ϕ(x),ω∗⟩+ζ

e⟨∆ϕ(x),ω⟩∆ϕ(x)

1 + e⟨∆ϕ(x),ω⟩

]
≥ Ex

[ 1

1 + e⟨∆ϕ(x),ω∗⟩
e⟨∆ϕ(x),ω⟩∆ϕ(x)

1 + e⟨∆ϕ(x),ω⟩

]
.

Similarly, we have

Ex,ζ

[ 1

1 + e−⟨∆ϕ(x),ω∗⟩−ζ

e−⟨∆ϕ(x),ω⟩∆ϕ(x)

1 + e−⟨∆ϕ(x),ω⟩

]
≤ Ex

[ 1

1 + e−⟨∆ϕ(x),ω∗⟩
e−⟨∆ϕ(x),ω⟩∆ϕ(x)

1 + e−⟨∆ϕ(x),ω⟩

]
.

Since the optimal ω is ω∗ without ζ, plugging ω∗ in Equation (2) will cause the left-hand side to be
greater than the right-hand side. Therefore, the optimal ω with the existence of ζ intends to shrink to
the original point compared to ω∗ so that the first-order condition is still satisfied.

We provide the underlying intuition with an extreme example. If V(ζ) goes to infinity, the preference
between yw and yl mainly depends on ζ, approaching a Rademacher distribution, then ω = 0 could
be a good solution to Equation (1). In other words, ζ offsets part of the information provided by the
reward model, causing the model’s parameters to shrink toward zero. Thus, data selection is essential
for acquiring policies with good performance. Finally, we remark that ζ can come from multiple
resources, including human classification errors, different embeddings or reward models from other
LLMs and so on.

Parameter Inflation. We next explain why selecting data points based on the margin can lead to
parameter inflation, thereby offsetting the parameter shrinkage caused by errors.

First, when the margin is large, namely, ⟨∆ϕ(x), ω∗⟩+ ζ is large, from the S-shaped graph of σ(·),
we know that the slope is very small in this area. As a result, the probability of preference reversal
caused by ζ is low, which means the likelihood of incorrect samples is also low. Secondly, given
prompt x, as we select data with large ⟨∆ϕ(x), ω∗⟩ + ζ, the posterior distribution of ζ is skewed
toward the positive side. Therefore, the preferences corresponding to this kind of data are more
pronounced, leading to inflated estimates of ω in Equation (1). Finally, we point out that if realized yw
and yl are all separable, proportional scaling of ω can reduce the value of Equation (1) continuously.
Hence, some techniques like regularization or early stopping when training are indispensable.

In summary, inaccuracies in the reward model can cause the parameters of LLMs to shrink toward
zero. By selecting data with larger margins, we can compensate for the performance degradation
caused by this shrinkage. The balance between parameter shrinkage and inflation offers the potential
to enhance the performance of LLMs. Driven by this theoretical result, our main idea is to let the
model reach an overall high margin during preference learning. We realize this by providing a robust
estimation of reward margins for the entire dataset ahead of full-set training, which then allows
efficient high-margin data filtering.

3.2 Multi-source Margin Aggregation

Building on our previous analysis, we aim to develop a data selection strategy based on the margin-
maximization principle, with the calculation of reward margin being the critical component. We
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Figure 2: Visualization of joint margin distribution on UltraFeedback. (Left) Joint distribution of
external and implicit reward margin values. (Middle) Joint distribution of implicit reward margins
computed using models of 1B and 3B scales. (Right) Joint distribution of two different external
reward margin values on online-generated data.

examine two distinct types of reward margin calculations: external reward margin and implicit reward
margin. The external reward margin is provided by an external reward function, while the implicit
reward margin is derived from the implicit reward log πθ

πref
, where πθ represents the policy trained by

DPO [39] (see Section 4.1 for details on margin calculation). We visualize the joint distribution of
different reward margin sources using the UltraFeedback dataset [7] in Figure 2.

• The left and middle panels of Figure 2 reveal several key phenomena: (1) The correlation between
implicit and external reward margins is notably weak. In particular, samples exhibiting high positive
implicit margins span a broad range of external margins, including strongly negative values, and
vice versa. This divergence highlights the distinct preference patterns captured by these two reward
types. This underscores the need to combine both reward types for a reliable margin estimation. (2)
In contrast, we observe a strong correlation between implicit reward margins calculated by models
of different sizes (Llama-3.2 3B and 1B). Notably, these two patterns remain consistent across
other datasets as well (see Appendix B.2).

• Online RLHF [53, 13] employs the target model to generate multiple responses for given prompts
iteratively and uses an external reward model to identify the response pair with the largest margin
for DPO training. The right panel of Figure 2 illustrates that a max-margin pair construction
method, even when derived from one strong reward model, can still yield ambiguous preferences
when evaluated by another reward model (which shows similar performance on RewardBench
Leadboard). This ambiguity in preference signal indicates that the online data generation process
can still cause high redundancy, which may offer little to no benefit, or could even be detrimental,
to online-DPO training.

These observations highlight the need for multi-source margin aggregation to achieve a more robust
margin estimation, thereby enhancing data selection and preference learning. To this end, we
propose a strict aggregation strategy, Bayesian Aggregation for Preference data Selection (BeeS),
that deprioritizes a preference pair if it exhibits a low reward margin from any single reward source.
We implement this method through a general three-step procedure.

Step 1: in-distribution pre-DPO training. Our objective is to obtain the in-distribution implicit reward
model with low computational and GPU-memory cost. Given the strong correlation of that margin
across different models (See Figure 2), this weak-to-strong guidance is feasible. To achieve this, we
randomly select a small seed dataset D0 from D and employ a (or several) small model to perform
preference learning on this seed set. The high sample and training efficiency of the DPO loss [23]
ensures the feasibility of this approach.

Step 2: margin calculation. We calculate external and implicit reward margins as mex =
rex(x

i, yiw) − rex(x
i, yil) and mim = rim(x

i, yiw) − rim(x
i, yil) for each datum in D, where we

directly calculate rim(x, y) as log πθ(y|x)
πref (y|x) . Here, πref and πθ denote the small model before and after

preference learning. We assume that there are K margins involved from these two typical sources.

Step 3: Bayesian aggregation. To mitigate noise from individual reward sources, we utilize Bayesian
probability theory for their robust aggregation. Given that reward margins from different sources
often vary in their underlying distributions and value ranges, we propose projecting these diverse
margins into a unified probability space. This projection serves to quantify the confidence that a
specific preference direction yw > yl is correct, formally expressed as P(yw > yl|m1,m2, · · · ,mK).
Assuming that these sources are conditionally independent, then following the Bayesian formula
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transformation in previous work [30, 9], the preference probability can be expressed as:

P(yw > yl|m1,m2, · · · ,mK) =

∏K
i=1 P(yw > yl|mi)∏K

i=1 P(yw > yl|mi) +
∏K

i=1(1− P(yw > yl|mi))
. (3)

The typical absence of well-defined preference labels (e.g., yw > yl for clear preference, or
yw = yl for indifference) renders the rigorous estimation of single-source preference proba-
bilities challenging.2 Consequently, we approximate the probability using a linear projection:
P(yw > yl|mi) = clip(mi,L,U)−L

U−L , where clip(m,L,U) = min(max(m,L), U)) and L, U are
tuning parameters. This adaptive approach mitigates the adverse effects of outlier samples with
unusually high margin values. See more implementation details and discussion about the derivation
approximation of Eq. (3) in Appendix A.1.

Sample selection. We consider the data selection for both the one-pass DPO training and the iterative
DPO workflow. For the former, we directly select the samples with the highest aggregated preference
probability to construct Dtrain. The threshold depends on how many preference samples we prefer to
use (but should guarantee that samples with negative margins are excluded). For the latter, we only
need to train implicit reward models in the first iteration, and BeeS three-step procedures are applied
for each iteration.

4 Experiments

We organize the experiments as follows: we explain the experimental setup in Section 4.1; we
compare BeeS with various sample selection baselines on diverse preference tasks and present the
detailed results in Section 4.2; then we focus on the important chat task, and explore the effectiveness
of BeeS in enhancing comprehensive dialogue ability in Section 4.3. Lastly, we perform diverse
ablation studies for the BeeS in Section 4.4.

4.1 Experimental Setup

Preference Datasets. We evaluate our approach using three established preference datasets: (1)
Reddit TL;DR summarization dataset [47, 42] that contains human-written summaries and human-
rated results, (2) Anthropic Helpful and Harmless dialogue dataset (HH) [2], and (3) UltraFeedback
[7], which comprises quality-scored model responses across diverse prompts from multiple sources.
To explore how models react to on-policy data, we leverage two modified versions of the UltraFeed-
back dataset, Llama-UltraFeedback and Mistral-UltraFeedback [32]. In the variants, the original
chosen and rejected responses are replaced with the highest and lowest scored responses, respectively,
sampled from five candidates generated by the corresponding Instruct model. The scores are given by
the PairRM [21] reward model. Statistics about these datasets are in Appendix A.

Models. Our experiments are conducted across four model series: Llama-3.2 [33], Llama-3 [14],
Mistral-7B-v2 [20], and Qwen-2.5 [55] under Base and Instruct setups. For the Base model (Llama-
3.2-3B and Llama-3-8B), we first establish fundamental Instruction-following capabilities through
supervised fine-tuning on the RLHFlow/SFT-OpenHermes-2.5-Standard datasets. For the Instruct
setup, we directly use them as the start of DPO training. Regarding the external reward model,
we adopt the recent Skywork-Reward-Llama-3.1-8B-v0.2 [29] that is the best reward model at this
scale according to the RewardBench leadboard. As for the implicit reward model, we employ the
Llama-3.2-3B Base and its DPO-tuned model (on 2,000 randomly selected samples from the complete
dataset) for πref and πθ.

Implementation and Evaluation. For DPO training, we follow [39] and use a fixed value of
β = 0.1, except for TL;DR where β = 0.5. We run each training for two epochs, with a learning rate
of 5× 10−7, and a 0.1 warmup ratio. Following [39], we evaluate the models using 400 randomly
sampled test sets from the validation/test pools of the TL;DR and HH datasets, separately. For
models trained on UltraFeedback, we employ AlpacaEval and AlpacaEval 2.0 [27] as our evaluation
benchmark, which consists of 805 diverse questions.3 As the ground truth oracle is unavailable,

2This estimation typically relies on methods such as isotonic regression or histogram analysis.
3They use the same set of questions, and differ in their reference response generation: AlpacaEval uses

Text-Davinci-003 [58], whereas AlpacaEval 2.0 employs GPT4-1106-preview
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Table 2: GPT-4 judged win rates for Llama-3.2-3B models fine-tuned with DPO on subsets selected
by various data selection strategies. For every strategy and benchmark (TL;DR, HH, UltraFeed-
back (UF)), 2,000 preference samples were selected. Performance is highlighted as follows: bold
numbers denote the best results, blue numbers indicate the significantly degraded results, and
underlined numbers represent runner-up performances to the best number. P, Z, and N denote the
most positive, near-zero, and most negative selection principles.

Strategy Rand External Margin Implicit Margin IFD Margin BeeS Fullset
Region P Z N P Z N P Z N P
TL;DR 46.50 66.25 42.00 22.00 30.75 43.00 19.75 1.75 41.25 55.25 83.25 36.75

HH 84.25 82.25 76.50 69.75 92.25 81.25 32.00 11.25 90.00 64.50 90.25 92.00
UF 82.86 91.18 73.29 25.84 89.81 77.14 37.02 72.05 83.60 54.53 91.68 80.99

we employ GPT-4 as a proxy for human judgment across three distinct settings: summarization,
helpful or harmless completion, and single-turn dialogue. We utilized a fixed decoding temperature
(T = 0.7) for all model generation in the experiments. More details are presented in Appendix A.

Baselines. For the offline data selection setting, we compare our method with three types of
methods: (1) Random, a simple yet effective strategy in many domains (e.g., Instruction tuning [52]),
(2) IFD [26] (i.e., exponential form of the Point-wise Mutual Information), which measures semantic
overlap. We use the difference in IFD scores between chosen and rejected responses for preference
data selection. (3) External/Implicit Margin (M-Ex/Im) computes the gap between chosen and
rejected responses using either external reward models or implicit DPO rewards. For (2) and (3), we
segment the data into P (most positive pairs), Z (close to zero pairs), and N (most negative pairs)
subsets according to margin values. Specifically, previous work [50] posits that "hard" preference
pairs (where chosen and rejected samples are highly similar) are more beneficial for training, and
we use the IFD-Z to quantify this scheme and call it Low-Gap. For the iterative DPO setting, we
compare our approach against the standard online iterative DPO baseline established by [53, 12] and
run for three rounds, each using 20k prompts sampled from UltraFeedback. We provide source code
of our paper in https://github.com/xiangtanshi/DPO-Data-Selection.

4.2 Win Rate Comparison with Baselines on Classic Preference Datasets

First, we compare BeeS and baseline strategies on three widely-used preference datasets: TL;DR,
HH, and UltraFeedback. Using a Llama-3.2-3B model as our Base architecture, we evaluate different
selection methods, each sampling 2,000 training examples for DPO training. We use AlpacaEval as
the test sets of UltraFeedback as it better reveals the degree of improvement. The results, measured
by GPT4 win rates, are presented in Table 2. We summarize the findings below.

• Our method, BeeS, consistently achieves optimal or near-optimal win rates across all eval-
uated tasks, while all baseline methods show weak performance on at least one task. This
outcome highlights BeeS’s superior robustness to noisy or detrimental samples across diverse task
environments. Further, more data in DPO training does not always yield better results. Using
just 2-5% of carefully selected data can surpass the performance achieved with the full dataset.
Insights from Table 2 also reveal the existence of toxic samples and potential pitfalls of certain
selection strategies. For instance, results highlighted by blue numbers show that models trained on
data selected using external, implicit, or IFD margins can sometimes perform significantly worse
than models trained on randomly chosen subsets. Such outcomes highlight the critical need for
rigorous data quality assessment and effective filtering mechanisms in DPO training pipelines.

• Among all methods, only implicit margin-N consistently identifies toxic samples, emphasizing
the value of incorporating DPO implicit reward margin into the BeeS strategy. Despite
its strong performance in RewardBench, the Skywork reward model’s margin signals prove less
effective than random selection on HH, highlighting the Out-of-Distribution challenge external
reward models face when evaluating unfamiliar behavioral patterns/preferences. As for the IFD
margin metric, it exhibits notable inconsistency across different datasets, rendering it unreliable
for evaluating new datasets where prior preference patterns are unknown. In general, preference
learning departs from traditional representation learning, which predominantly leverages contrastive
samples to improve discriminative capacity [10, 8]. Preference learning focuses on capturing
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Table 3: Performance comparison on AlpacaEval 2.0 using DPO-trained models with different
6,000-sample subsets (10% of full set). Both SFT and Instruct variants of Llama-3-8B were evaluated.
LC and WR denote length-controlled and raw win rate, respectively. Bold number denotes the
best-performing selected subset. Blue numbers denote results that show little advantage over random.

Dataset UltraFeedback Llama-UltraFeedback
Model Llama-3-Base (8B) Llama-3-Instruct (8B) Llama-3-Base (8B) Llama-3-Instruct (8B)
Metric LC (%) WR (%) LC (%) WR (%) LC (%) WR (%) LC (%) WR (%)

Init 9.61 6.69 22.92 22.57 9.61 6.69 22.92 22.57
Random 12.33 10.96 22.74 24.59 11.58 9.51 31.51 31.92
Low-Gap 13.93 11.40 28.19 27.95 11.12 7.87 34.95 34.25
M-Ex 16.61 14.81 26.28 25.24 21.11 18.63 35.10 34.80
M-Im 19.33 17.80 29.71 29.44 18.88 16.25 33.71 32.92
BeeS 19.53 19.09 30.03 30.46 21.67 20.01 36.36 36.47

Full 17.32 15.30 28.64 26.54 19.92 16.45 32.31 32.44
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Figure 3: DPO training loss and margin of Llama-3.2-3B Base (Left) and Llama-3-8B Base (Middle
and Right) on UltraFeedback datasets.

semantic relationships, and models benefit when the underlying preferences in the data are explicit
and well-defined.

4.3 AlpacaEval 2.0 Win Rate Comparison

In this section, we aim to understand how data filtering influences DPO training efficiency and
models’ versatile conversational abilities, representing a key application area for preference learning.
We use both Llama-3-8B (Base) and (Instruct) models, measuring performance through raw and
length-controlled win rates on AlpacaEval 2.0, and results are shown in Table 3, Figures 3 and 4.

BeeS consistently outperforms fullest DPO training and other selection strategies. As shown in
Table 3, BeeS-selected subsets achieve around 4% higher win rates compared to full dataset training
across all four settings. This distinct advantage highlights BeeS’s superior data and training efficiency,
and further confirms the significant value of effective data filtering for DPO training. In contrast,
all baseline strategies demonstrate inferior performance or limited improvement on some evaluated
settings (see blue results). We attribute this instability to samples with ambiguous preferences, and
whose margins differ a lot for different reward models.

Different training dynamics of ‘P’/‘N’/‘Z’ subset region. The left panel of Figure 3 shows DPO
training loss curves for subsets selected by various strategies. Notably, training on subsets filtered
according to the ‘P’ and ‘N’ criteria results in a rapid decrease in loss. In contrast, the loss curves
corresponding to the ‘Z’ criterion tend to stabilize at consistently higher plateaus. Notably, ’N’-
selected samples, which are often assumed as "difficult-to-learn" [16], can actually be learned as
rapidly as ’P’-selected samples, suggesting that ‘bad’ preferences are also easy to grasp for LLM.
The pattern is consistent across different datasets and models (see Appendix C.1 for more results.
While this observation might explain proposals that use absolute margin values for selection [35],
Table 2 reveals that ‘P’ and ‘N’ samples produce opposing effects despite similar training dynamics.

The middle and right panels of Figure 3 illustrate that data subsets selected by BeeS exhibit both the
most rapid decrease in training loss and the fastest increase in the DPO training margin, i.e., current
train-batch average implicit margin. These concurrent observations of accelerated optimization help
to explain the superior performance achieved by BeeS.

Extension to Iterative DPO. We explore the data efficiency of iterative DPO using prompts from
UltraFeedback as in [53]. In comparison, 20k prompts are used for on-policy preference pair
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Method
Llama-3-Base (8B) Llama-3-Instruct (8B)

LC (%) WR (%) Len LC (%) WR (%) Len

DPO (r1) 17.64 13.36 1496 40.51 43.90 2173

DPO (r2) 23.06 22.45 1897 42.51 49.23 2366

DPO (r3) 29.03 30.86 2736 44.51 53.12 2860

DPO-BeeS (r1) 16.35 13.09 1624 42.20 45.74 2091

DPO-BeeS (r2) 23.79 24.17 1901 46.40 50.60 2316

DPO-BeeS (r3) 32.31 33.91 2565 48.49 54.99 2774 0 3k 6k 10k 15k All (60k)
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Figure 4: AlpacaEval 2.0 results for on-policy datasets: (Left) Iterative DPO results across three DPO
training iterations using UltraFeedback prompts. (Right) DPO on Llama-UltraFeedback subsets of
varying sizes, selected by BeeS. Results of DPO-variants trained on fullset are also compared.

generation per iteration, and our online version uses BeeS to reserve only 5k samples per iteration.
The results are in the left panel of Figure 4.

There is high redundancy in the on-policy data construction manner. Although iterative DPO
shows much higher data efficiency than one-pass DPO training (i.e., better results than those in
Table 3), data selection is still important for quality control. This can be attributed to the presence of
numerous ambiguous, low-margin samples (usually paired with low-quality prompts).

A smaller β value in DPO loss correlates with higher data efficiency. While β is commonly
recognized as a factor controlling the strength of the Kullback-Leibler (KL) divergence, it also
significantly influences data efficiency. Specifically, the DPO loss, defined as log σ(β × mim),
indicates that a reduced β allows for effective gradient updates for more preference pairs with wider
margins. To investigate this, we conducted DPO training on the Llama-3-Instruct 8B model using its
on-policy dataset, Llama-UltraFeedback, with β set to 0.01. We then evaluated performance using
varying numbers of samples selected by our method, BeeS. The results, presented in the right panel
of Figure 4, demonstrate that relaxing the margin constraint in the DPO loss substantially improves
data efficiency (Refer to Appendix C.4 for results on the Base setup). Notably, DPO training with a
3k-sample subset selected by BeeS achieved performance comparable to training with the full dataset
(which is 20 times larger).

Furthermore, we compared BeeS data selection with several established DPO variants that modify the
original loss function, including SimPO [32], β-DPO [50], and α-DPO [49]. Our findings indicate
that BeeS is unique in its ability to effectively enhance both the win rate and the length-controlled
(LC) win rate. In contrast, these variants primarily improved the LC win rate, and to a lesser extent
than BeeS. These results underscore the significant potential of data selection and data efficiency
considerations to enhance the original DPO training algorithm.

4.4 Ablation Study

A critical aspect of dataset filtering methods is their generalization capability—specifically, the
performance when transferred to new models or applied with similar optimization algorithms.

Data filtering remains effective for new LLM architecture. we evaluated BeeS on several
contemporary model architectures: Mistral-7B-Instruct, Qwen-2.5-7B-Instruct, and Qwen-2.5-14B-
Instruct. Consistent with previous experiments, BeeS was used to select a 10% data subset, and its
performance was compared against DPO training on the full dataset. The AlpacaEval 2.0 evaluation
results are presented in the left panel of Figure 5. We observe that BeeS consistently and significantly
outperforms full-dataset DPO training. Notably, even though larger models like Qwen-14B inherently
demonstrate higher data efficiency, our data selection strategy, BeeS, still improved the win rate by
approximately 3% while utilizing only 10% of the data.

BeeS selected subsets are effective for diverse preference learning algorithms. We examine
whether the subset selected by BeeS remains data efficient for DPO-variants like IPO [1], KTO
[15], and SLiC [62]. We utilize the BeeS selected 6k-sample subset from Llama-UltraFeedback
and the results are presented in the right panel of Figure 5. We observe that the high-margin
subset consistently benefit these preference learning algorithms by outperforming full-set training.
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Mistral-7B Qwen-2.5-7B Qwen-2.5-14B

LC (%) WR (%) LC (%) WR (%) LC (%) WR (%)

Initial 17.11 14.72 31.27 31.60 37.03 32.64

Full 18.00 18.77 39.67 38.24 49.99 46.81

BeeS 26.04 20.53 46.20 43.78 50.20 49.74
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Figure 5: Ablation Study: (Left) different model choices (Mistral-7B-Instruct-v-0.2, Qwen-2.5-
Instruct-7B and Qwen-2.5-Instruct-14B). BeeS selects a 6k-sample subset for training. (Right)
variants of DPO: win rate comparison on IPO, KTO, and SLiC algorithms. UltraFeedback is used
for the preference learning on Llama-3-8B (Base) model. Rand and BeeS select a 6k-sample subset.
Notably, it achieves large improvements in raw/LC win rates — over 12% for the IPO algorithm.
This advantage is maintained even across these preference learning algorithms with varying data
efficiency (as measured by the performance gap between randomly selected 6,000 samples and the
full dataset). These findings highlight the significant value of sample filtering for other preference
learning. Additional results related to Instruct model training can be found in Appendix C.3.

5 Conclusion

Our research bridges the gap between algorithmic advances and data-focused approaches in Large
Language Model (LLM) alignment by systematically examining how preference data quality affects
Direct Preference Optimization (DPO). We address the issue of parameter shrinkage caused by noisy
data and introduce a BeeS strategy for selecting high-quality training examples. This approach
not only improves model performance but also significantly increases computational efficiency.
Our extensive experiments show that the method maintains or enhances performance while using
just around 10% of the original training data, demonstrated through consistent improvements on
the AlpacaEval2 benchmark. Additionally, our framework successfully extends to iterative DPO
applications. These results emphasize the importance of careful data curation in developing better
alignment techniques and provide practical guidelines for future research and implementation.
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A Datasets and Evaluation Details

Data information. The detailed information about the datasets used in the experiments is shown
in Table 4. The test sets of TL;DR and HH are sampled from their original large testing pool, and
we utilize prompts in AlpacaEval as the test sets for all models trained on UltraFeedback and its
variants. In particular, results in Table 2 utilize Text-Davinci-003 generated answers as reference
response as it can better reflect how models’ ability varies with different training data, and results in
other tables all utilize GPT4-1106-preview generated answer as reference response (i.e., AlpacaEval
2.0).

Table 4: Statistical information about the training and evaluation datasets used in the experiments.
Dataset |Dtrain| |Dtest| Type

TL;DR 92858 400 Summarization
HH 86372 400 Helpful & Harmless

UltraFeedback 61135 - Hybrid
Llama-UltraFeedback 59876 - Hybrid
Mistral-UltraFeedback 59720 - Hybrid

AlpacaEval - 805 Chat

Evaluation details. Win rate judgments serve as a key evaluation metric across our experiments.
For the TL;DR and HH, we slightly modify the evaluation prompts suggested by [39] for the win
rates judge. We use the original prompt designed for AlpacaEval and AlpacaEval 2.0 benchmark in
all testing.

**TL;DR win rate prompt**: Which of the following summaries does a better job of
summarizing the most important points in the given forum post, without including
unimportant or irrelevant details? A good summary is both precise and concise.

Post:
{Post}

Summary A:
{Summary_A}

Summary B:
{Summary_B}

FIRST provide a one-sentence comparison of the two summaries, explaining which
you prefer and why. SECOND, on a new line, state only "A" or "B" to indicate your
choice. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">

**HH win rate prompt**: For the following query to a chatbot, which response is
more helpful or harmless? A helpful response provides useful information, while a
harmless response avoids causing/suggesting harm or discomfort.

Query: {query}

Response A:
{res_a}

Response B:
{res_b}

FIRST provide a one-sentence comparison of the two responses and explain which you
feel is more helpful or harmless. SECOND, on a new line, state only "A" or "B" to
indicate which response is more helpful or harmless. Your response should use the
format:
Comparison: <one-sentence comparison and explanation>
More helpful or harmless: <"A" or "B">
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A.1 More Implementation Details

SFT. The SFT training of the Base model is carried out for two epochs with a learning rate of
2× 10−5. Sample packing [46] is employed to accelerate the training, and we use a block size of
4096.

We present the implementation details of our baseline methods: P, Z, and N using margins calculated
from three metrics, IFD/Conditional Perplexity (CPPL), External (Ex), and Implicit (Im) rewards.
Subsequently, we describe the implementation of BeeS in our experimental setup.

The baseline strategies are implemented as follows: first, we eliminate outlier samples with extreme
margin values (both positively high and negatively low) for CPPL, Ex, and Im metrics. For the P
and N strategies, we select samples based on their ranking positions at the upper and lower ends of
the distribution, respectively. The Z strategy involves random sampling from the subset of samples
whose margin values fall within the interval [−τ, τ ], where τ is set to 0.1 for CPPL and 1.0 for Ex/Im
metrics.

For BeeS, we set L = −2 as the lower bound for both external and implicit reward margins. The
upper bound U is determined dynamically based on two conditions: (1) The number of samples
with margin values in the interval [U,max margin] is less than 30, or (2) The number of samples in
[U,max margin] is less than max margin − U .

prompt: 

Hi, I'm trying to solve a crossword puzzle, but I've never done one of these before. Can you help me out?

response: 

<|start_header_id|>assistant<|end_header_id|><|end_header_id|><|end_header_id|><|start_header_id|>assistant<|end_header_id|><|end_heade

r_id|>\u20ac\nI'd be happy to help you solve your crossword puzzle.\n\nTo get started, can you please share the following details:\n\n1. What 

size is the crossword puzzle (e.g., 15x15, 17x17)?\n2. What clues are you having trouble with? Share the clue(s) and the letter count (if given)

prompt:

How do I dice without slicing my finger

response:

Dicing vegetables safely involvesusing sharp knivesinand proper Technique /******/boldsymbol \ufffd\ufffd

/******/T*******/boldsymbol>\r\n\u044c\u0435\u0014%\u001a){\r /******/ //\r\u001e:_*\r\n1. Choose Sharp Knives: Using dull knives 

can increase the risk of slipping and causing injuries. Make sure your knives are sharp before starting to dice. If needed, have them sharpened 

by a professional.\r\n\r\n2. Secure Your Worksurface: Make sure your cutting board is stable and won't slip during use. You can secure it by 

placing a damp towel underneath or using a rubber mat.\r\n\r\n3. Proper Holding Technique: Hold the vegetable 

stabilizerCREF{ Vegetable };m{\r\n veg;\r\n /******/*\r\n\"\r*\r\n))\r){\r\u0dc3:} firmly with your non-dominant hand. This will give you 

better control and prevent the vegetable from moving excessively while you're dicing.\r\n\r\n4. SmallChunks:`:`:`:`:`:`:`:`:`:`:`:`:`:`:`:`:`:\r\n 

Cutlarger vegetablesintoquartersbeforedicingtoreduceTHEIRsizeANDmakeTHEMeasiertohandle.\r\n\r\n5. 

UsetheCorrectTechnique:`:`:`:`:\r\n - Placeethevegetabledownonthecuttingboard,\r\n -

Positionyourdominanthandovertheknifewithfingertipsrestingontheotherside, \r\n -

ApplygentledownwardpressureonthehandleasyoupushTHEknifethroughTHEvegetable.\r\n\r\n6. KeepYourFocus:`:`:`:`:\r\n 

Payfullattentiontoservicesyouredgeswhiledicingtoavoidaccidentalcontactwithyourfinger. \r\n\r\n7. CleanUp:`:`:\r\n 

Afterfinisheddicing,washyourknivesthoroughlyanddrythembeforestoringthemaway.Thiswillhelppreventaccidentalcutsinjuriesduringfu turepre

paration sessions.

Figure 6: The model breaking pattern when conducting DPO training with small β (β = 0.01) for
Llama-3-8B-Instruct and Mistral-7B-Instruct-V0.2. We select two examples of abnormal responses
given by each model.

B Visualization of Margin Distributions

B.1 Singular Margin Distribution

The margin distributions calculated using CPPL margin, External and Implicit DPO reward margins,
as illustrated in Figures 9,8,7, reveal a notable concentration of sample margins around zero. This
clustering around the zero indicates ambiguous preference labels. It leads to the challenge in
preference learning, as evidenced by the substantially slower decrease in training loss (and slower
increase in training margin) compared to samples with larger margins, as shown in Section 3.2.

B.2 Joint Margin Distribution

To complement the left and middle subfigures in Figure 2, we present additional results showing
the joint margin distributions of samples on the other datasets in Figure 10. Our analysis reveals
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Figure 7: Distribution of implicit reward margins on TL;DR, HH, and UltraFeedback datasets. The
reward is calculated using the Llama-3.2-3B SFT model, and its weakly aligned DPO model that is
fine-tuned on 2,000 randomly selected samples from the full set.
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(c) UltraFeedback
Figure 8: Distribution of external rewards on TL;DR, HH, and UltraFeedback datasets. The reward
is calculated using Skywork-Reward-Llama-3.1-8B-v0.2.

that external and implicit margins exhibit minimal correlation across all four datasets, while implicit
margins calculated by different models maintain a high correlation. These further enhance the
rationality of our design detail of BeeS: fusion of both margins and disentangling implicit margin
from the target model (if the target model is a bit large and we want to accelerate the enumeration
process of the full-set.)

C More Experimental Results

C.1 Train Loss and Margin Curves - 3B

To complement the right subfigure in Figure 2, we present additional results showing the progression
of training loss and margins throughout the DPO training process. The results are shown in Figure 11.
All strategies demonstrated consistent patterns in loss reduction: both P margin-oriented and N
strategies achieved rapid decreases in training loss, while the Z strategy exhibited slower convergence
and remained at significantly higher final loss values. Regarding training margins, P strategies
achieved higher levels compared to N and Z approaches. Notably, our proposed BeeS strategy
demonstrated even larger margins than the Implicit Margin-P strategy.

C.2 Resources and computation cost

For all experiments, we utilized 8 A100 GPUs. We conduct SFT/DPO training with 4 A100 GPUs
for all runs in our experiments. For both Supervised Fine-Tuning (SFT) and Direct Preference
Optimization (DPO) training, we allocated 4 A100 GPUs per run. Training 8B parameter models
on the UltraFeedback dataset for two epochs required approximately 9 hours of computation time.
In each round of iterative DPO implementation, we performed generation and annotation processes
on 4 A100 GPUs, with each GPU processing 5,000 prompts with 5 distinct generations per prompt.
The overall generation that utilizes vLLM [24] for acceleration takes about 1.5 hours, and the
corresponding reward annotation takes about 2 hours.
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(c) UltraFeedback
Figure 9: Distribution of conditional perplexity (also named instruction following difficulty) margins
on TL;DR, HH, and UltraFeedback datasets. The perplexity is calculated with the Llama-3.2-3B
SFT model.
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(c) Llama-UltraFeedback
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Figure 10: Subfigure (a)-(d): scatter plot showing the joint distribution of samples across external
and implicit reward margin values on four datasets. Subfigure (e)-(f): joint distribution of implicit
reward margins computed using models of 1B and 3B scales on two datasets.

C.3 More Results for Ablation Study on the DPO Variants

As a complementary study to the results shown in Figure 5, we conducted experiments using
the Llama-3-8B-Instruct model while maintaining all other experimental parameters. The results,
presented in Figure 12, demonstrate that models trained on subsets selected by BeeS achieved
significantly higher win rates across most evaluation scenarios.
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Figure 11: DPO train loss and margin on TL;DR, HH, and UltraFeedback datasets. The training
was implemented with Llama-3.2-3B SFT version on different subsets selected by five strategies.

C.4 Hyperparameters Risks

Although smaller β can lead to higher data efficiency, we observe that it can bring potential issues for
DPO training. Specifically, a small β corresponds to a relaxed Kullback-Leibler (KL) divergence
constraint in the policy optimization process. This relaxation can permit excessive deviation from the
initial policy, potentially compromising the model’s learned behaviors and stability during training.
For instance, when we conduct DPO training with Llama-3-8B-Instruct/Mistral-7B-Instruct-v0.2 on
the Ex/Im-P selected 6,000 subsets from UltraFeedback, with β = 0.01 and two epochs update, we
find that although the model could respond normally to most questions, it sometimes outputs repeated
or chaotic tokens, as shown in Figure 6. And their win rates on AlpacaEval 2.0 dropped by more than
10 points as a consequence.

Further analysis of the training details revealed a significant degradation in log probabilities for both
chosen and rejected samples, coinciding with the model’s performance decline. Specifically, during
the above-mentioned Mistral model DPO training, the log probability values for chosen samples
decreased from -400 to -1400, while rejected samples showed a more dramatic reduction from -600
to -4600. Overall, Mistral suffers more from this log probability drop compared to Llama.

Such phenomenon can be avoided by using a smaller learning rate: from 5×10−7 to 3×10−7 or early
stop at the end of epoch 1. These operations can lead to a relatively smaller drop in chosen/rejected
log probability.
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Figure 12: Ablation study on variants of DPO: win rate comparison on IPO, KTO, and SLiC
algorithms. The experiments utilize the UltraFeedback dataset for preference optimization, with the
Llama-3-8B-Instruct model as the initial model. Random and BeeS select 6,000 samples (10% of the
full set) for subset training.
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Figure 13: DPO on Llama-UltraFeedback subsets of varying sizes, selected by BeeS. The training is
conducted on Llama-3-8B-Base model.

D Limitations.

The empirical evaluations in this study primarily focused on models up to the 14B parameter scale,
where BeeS demonstrated notable efficacy. Extending these investigations to significantly larger
foundation models, such as those in the 70B parameter range or beyond, was constrained by the
computational resources available for the current work. Future research could build upon our findings
by exploring the scalability and performance of BeeS in these larger-scale settings.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction accurately reflect the paper’s contributions on
data selection for direct preference learning.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: See Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the derivation in Section 3.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all implementation details in the experimental part and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All the datasets and models used in this work are publicly available. We
utilize the open-source TRL repo for all our DPO experiments, which is easy to implement.
All the details required to reproduce the main experimental results can be found in the
experiments and appendix, and the code is available at https://github.com/xiangtanshi/DPO-
Data-Selection.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all training and test details in experimental section and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: LLM experiments are typically costly and relatively robust, so we do not
conduct the experiments repeatedly or report statistical significance metrics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Refer to Appendix C.2
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research in this paper fully conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, the paper properly credits the original creators of all assets used, explicitly
mentions licenses and terms of use, and respects these conditions throughout the research.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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