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ABSTRACT

Deep ensembles perform better than a single network thanks to the diversity
among their members. Recent approaches regularize predictions to increase diver-
sity; however, they also drastically decrease individual members’ performances.
In this paper, we argue that learning strategies for deep ensembles need to tackle
the trade-off between ensemble diversity and individual accuracies. Motivated by
arguments from information theory and leveraging recent advances in neural esti-
mation of conditional mutual information, we introduce a novel training criterion
called DICE: it increases diversity by reducing spurious correlations among fea-
tures. The main idea is that features extracted from pairs of members should only
share information useful for target class prediction without being conditionally
redundant. Therefore, besides the classification loss with information bottleneck,
we adversarially prevent features from being conditionally predictable from each
other. We manage to reduce simultaneous errors while protecting class informa-
tion. We obtain state-of-the-art accuracy results on CIFAR-10/100: for example,
an ensemble of 5 networks trained with DICE matches an ensemble of 7 networks
trained independently. We further analyze the consequences on calibration, uncer-
tainty estimation, out-of-distribution detection and online co-distillation.

1 INTRODUCTION

Averaging the predictions of several models can significantly improve the generalization ability
of a predictive system. Due to its effectiveness, ensembling has been a popular research topic
(Nilsson, 1965; Hansen & Salamon, 1990; Wolpert, 1992; Krogh & Vedelsby, 1995; Breiman, 1996;
Dietterich, 2000; Zhou et al., 2002; Rokach, 2010; Ovadia et al., 2019) as a simple alternative to
fully Bayesian methods (Blundell et al., 2015; Gal & Ghahramani, 2016). It is currently the de facto
solution for many machine learning applications and Kaggle competitions (Hin, 2020).

Ensembling reduces the variance of estimators (see Appendix E.1) thanks to the diversity in pre-
dictions. This reduction is most effective when errors are uncorrelated and members are diverse, i.e.,
when they do not simultaneously fail on the same examples. Conversely, an ensemble of M iden-
tical networks is no better than a single one. In deep ensembles (Lakshminarayanan et al., 2017),
the weights are traditionally trained independently: diversity among members only relies on the
randomness of the initialization and of the learning procedure. Figure 1 shows that the performance
of this procedure quickly plateaus with additional members.

To obtain more diverse ensembles, we could adapt the training samples through bagging (Breiman,
1996) and bootstrapping (Efron & Tibshirani, 1994), but a reduction of training samples has a nega-
tive impact on members with multiple local minima (Lee et al., 2015). Sequential boosting does not
scale well for time-consuming deep learners that overfit their training dataset. Liu & Yao (1999a;b);
Brown et al. (2005b) explicitly quantified the diversity and regularized members into having nega-
tively correlated errors. However, these ideas have not significantly improved accuracy when applied
to deep learning (Shui et al., 2018; Pang et al., 2019): while members should predict the same target,
they force disagreements among strong learners and therefore increase their bias. It highlights the
main objective and challenge of our paper: finding a training strategy to reach an improved trade-off
between ensemble diversity and individual accuracies (Masegosa, 2020).

1



Published as a conference paper at ICLR 2021

Figure 1: DICE better leverages en-
semble size. Without weights sharing,
5 networks trained with DICE match 7
networks trained independently. With
low-level weights sharing, 4 branches
trained with DICE match 7 traditional
branches. Dataset: CIFAR-100. Back-
bone: ResNet-32. Details in Table 8.

Figure 2: Outline. DICE prevents features from be-
ing predictable from each other conditionally upon the
target class. Features extracted by members (1, 2) from
one input ( , ) should not share more information than
features from two inputs in the same class ( , ): i.e.,
( ,-) should not be able to differentiate (-, ) and (-, ).

Our core approach is to encourage all members to predict the same thing, but for different
reasons. Therefore the diversity is enforced in the features space and not on predictions. Intuitively,
to maximize the impact of a new member, extracted features should bring information about the
target that is absent at this time so unpredictable from other members’ features. It would remove
spurious correlations, e.g. information redundantly shared among features extracted by different
members but useless for class prediction. This redundancy may be caused by a detail in the image
background and therefore will not be found in features extracted from other images belonging to the
same class. This could make members predict badly simultaneously, as shown in Figure 2.

Our new learning framework, called DICE, is driven by Information Bottleneck (IB) (Tishby,
1999; Alemi et al., 2017) principles, that force features to be concise by forgetting the task-irrelevant
factors. Specifically, DICE leverages the Minimum Necessary Information criterion (Fischer, 2020)
for deep ensembles, and aims at reducing the mutual information (MI) between features and inputs,
but also information shared between features. We prevent extracted features from being redundant.
As mutual information can detect arbitrary dependencies between random variables (such as sym-
metry, see Figure 2), we increase the distance between pairs of members: it promotes diversity
by reducing predictions’ covariance. Most importantly, DICE protects features’ informativeness by
conditioning mutual information upon the target. We build upon recent neural approaches (Belghazi
et al., 2018) based on the Donsker-Varadhan representation of the KL formulation of MI.

We summarize our contributions as follows:

• We introduce DICE, a new adversarial learning framework to explicitly increase diversity
in ensemble by minimizing the conditional redundancy between features.

• We rationalize our training objective by arguments from information theory.
• We propose an implementation through neural estimation of conditional redundancy.

We consistently improve accuracy on CIFAR-10/100 as summarized in Figure 1, with better
uncertainty estimation and calibration. We analyze how the two components of our loss modify
the accuracy-diversity trade-off. We improve out-of-distribution detection and online co-distillation.

2 DICE MODEL

Notations Given an input distribution X , a network θ is trained to extract the best possible dense
features Z to model the distribution pθ(Y |X) over the targets, which should be close to the Dirac
on the true label. Our approach is designed for ensembles with M members θi, i ∈ {1, . . . ,M}
extracting Zi. In branch-based setup, members share low-level weights to reduce computation cost.
We average the M predictions in inference. We initially consider an ensemble of M = 2 members.
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Quick overview First, we train each member separately for classification with information bottle-
neck. Second, we train members together to remove spurious redundant correlations while training
adversarially a discriminator. In conclusion, members learn to classify with conditionally uncorre-
lated features for increased diversity. Our procedure is driven by the following theoretical findings.

2.A DERIVING TRAINING OBJECTIVE

2.A.1 BASELINE: NON-CONDITIONAL OBJECTIVE

The Minimum Necessary Information (MNI) criterion from (Fischer, 2020) aims at finding minimal
statistics. In deep ensembles, Z1 and Z2 should capture only minimal information from X , while
preserving the necessary information about the task Y . First, we consider separately the two Markov
chains Z1 ← X ↔ Y and Z2 ← X ↔ Y . As entropy measures information, entropy of Z1 and
Z2 not related to Y should be minimized. We recover IB (Alemi et al., 2017) in deep ensembles:
IBβib

(Z1, Z2) = 1
βib

[I(X;Z1) + I(X;Z2)] − [I(Y ;Z1) + I(Y ;Z2)] = IBβib
(Z1) + IBβib

(Z2).
Second, let’s consider I(Z1;Z2): we minimize it following the minimality constraint of the MNI.

IBRβib,δr (Z1, Z2) =
1
βib

Compression︷ ︸︸ ︷
[I(X;Z1) + I(X;Z2)]−

Relevancy︷ ︸︸ ︷
[I(Y ;Z1) + I(Y ;Z2)] +δr

Redundancy︷ ︸︸ ︷
I(Z1;Z2)

= IBβib
(Z1) + IBβib

(Z2) + δrI(Z1;Z2).

Figure 3: Venn Information Di-
agram (Yeung, 1991). DICE
minimizes conditional redundancy
(green vertical stripes ) with no
overlap with relevancy (red stripes).

Analysis In this baseline criterion, relevancy encouragesZ1

and Z2 to capture information about Y . Compression & re-
dundancy (R) split the information from X into two com-
pressed & independent views. The relevancy-compression-
redundancy trade-off depends on the values of βib & δr.

2.A.2 DICE: CONDITIONAL OBJECTIVE

The problem is that the compression and redundancy
terms in IBR also reduce necessary information related
to Y : it is detrimental to have Z1 and Z2 fully disen-
tangled while training them to predict the same Y . As
shown on Figure 3, redundancy regions (blue horizontal
stripes ) overlap with relevancy regions (red stripes).
Indeed, the true constraints that the MNI criterion really en-
tails are the following conditional equalities given Y :

I(X;Z1|Y ) = I(X;Z2|Y ) = I(Z1;Z2|Y ) = 0.

Mutual information being non-negative, we transform them into our main DICE objective:

DICEβceb,δcr (Z1, Z2)
= 1

βceb
[I(X;Z1|Y ) + I(X;Z2|Y )]︸ ︷︷ ︸

Conditional Compression

− [I(Y ;Z1) + I(Y ;Z2)]︸ ︷︷ ︸
Relevancy

+δcr I(Z1;Z2|Y )︸ ︷︷ ︸
Conditional Redundancy

= CEBβceb
(Z1) + CEBβceb

(Z2) + δcrI(Z1;Z2|Y ),

(1)

where we recover two conditional entropy bottleneck (CEB) (Fischer, 2020) components,
CEBβceb

(Zi) =
1

βceb
I(X;Zi|Y )− I(Y ;Zi), with βceb > 0 and δcr > 0.

Analysis The relevancy terms force features to be informative about the task Y . But contrary to
IBR, DICE bottleneck constraints only minimize irrelevant information to Y . First, the conditional
compression removes in Z1 (or Z2) information from X not relevant to Y . Second, the condi-
tional redundancy (CR) reduces spurious correlations between members and only forces them to
have independent bias, but definitely not independent features. It encourages diversity without
affecting members’ individual precision as it protects information related to the target class in Z1

and Z2. Useless information from X to predict Y should certainly not be in Z1 or Z2, but it is even
worse if they are in Z1 and Z2 simultaneously as it would cause simultaneous errors. Even if for
i ∈ {1, 2}, reducing I(Zi, X|Y ) indirectly controls I(Z1, Z2|Y ) (as I(Z1;Z2|Y ) ≤ I(X;Zi|Y )
by chain rule), it is more efficient to directly target this intersection region through the CR term. In
a final word, DICE is to IBR for deep ensembles as CEB is to IB for a single network.
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We now approximate the two CEB and the CR components in DICE objective from equation 1.

2.B APPROXIMATING DICE INTO A TRACTABLE LOSS

2.B.1 VARIATIONAL APPROXIMATION OF CONDITIONAL ENTROPY BOTTLENECK

We leverage Markov assumptions in Zi ← X ↔ Y, i ∈ {1, 2} and empirically estimate on the
classification training dataset of N i.i.d. points D = {xn, yn}Nn=1, y

n ∈ {1, . . . ,K}. Following
Fischer (2020), CEBβceb

(Zi) =
1

βceb
I(X;Zi|Y )− I(Y ;Zi) is variationally upper bounded by:

VCEBβceb
({ei, bi, ci}) =

1

N

N∑
n=1

1

βceb
DKL (ei(z|xn)‖bi(z|yn))− Eε [log ci(yn|ei(xn, ε))] . (2)

See explanation in Appendix E.4. ei(z|x) is the true features distribution generated by the encoder,
ci(y|z) is a variational approximation of true distribution p(y|z) by the classifier, and bi(z|y) is a
variational approximation of true distribution p(z|y) by the backward encoder. This loss is applied
separately on each member θi = {ei, ci, bi}, i ∈ {1, 2}.

Practically, we parameterize all distributions with Gaussians. The encoder ei is a traditional neural
network features extractor (e.g. ResNet-32) that learns distributions (means and covariances) rather
than deterministic points in the features space. That’s why ei transforms an image into 2 tensors;
a features-mean eµi (x) and a diagonal features-covariance eσi (x) each of size d (e.g. 64). The
classifier ci is a dense layer that transforms a features-sample z into logits to be aligned with the
target y through conditional cross entropy. z is obtained via reparameterization trick: z = ei(x, ε) =
eµi (x)+εe

σ
i (x) with ε ∼ N(0, 1). Finally, the backward encoder bi is implemented as an embedding

layer of size (K, d) that maps the K classes to class-features-means bµi (z|y) of size d, as we set the
class-features-covariance to 1. The Gaussian parametrization also enables the exact computation of
the DKL (see Appendix E.3), that forces (1) features-mean eµi (x) to converge to the class-features-
mean bµi (z|y) and (2) the predicted features-covariance eσi (x) to be close to 1. The advantage of
VCEB versus VIB (Alemi et al., 2017) is the class conditional bµi (z|y) versus non-conditional
bµi (z) which protects class information.

2.B.2 ADVERSARIAL ESTIMATION OF CONDITIONAL REDUNDANCY

Theoretical Problem We now focus on estimating I(Z1;Z2|Y ), with no such Markov proper-
ties. Despite being a pivotal measure, mutual information estimation historically relied on nearest
neighbors (Singh et al., 2003; Kraskov et al., 2004; Gao et al., 2018) or density kernels (Kandasamy
et al., 2015) that do not scale well in high dimensions. We benefit from recent advances in neural
estimation of mutual information (Belghazi et al., 2018), built on optimizing Donsker & Varadhan
(1975) dual representations of the KL divergence. Mukherjee et al. (2020) extended this formulation
for conditional mutual information estimation.

CR = I(Z1;Z2|Y ) = DKL(P (Z1, Z2, Y )‖P (Z1, Y )p(Z2|Y ))
= sup

f
Ex∼p(z1,z2,y)[f(x)]− log

(
Ex∼p(z1,y)p(z2|y)[exp(f(x))]

)
= Ex∼p(z1,z2,y)[f

∗(x)]− log
(
Ex∼p(z1,y)p(z2|y)[exp(f

∗(x))]
)
,

where f∗ computes the pointwise likelihood ratio, i.e., f∗(z1, z2, y) =
p(z1,z2,y)

p(z1,y)p(z2|y) .

Empirical Neural Estimation We estimate CR (1) using the empirical data distribution and (2)
replacing f∗ = w∗

1−w∗ by the output of a discriminator w, trained to imitate the optimal w∗. Let
B be a batch sampled from the observed joint distribution p(z1, z2, y) = p(e1(z|x), e2(z|x), y);
we select the features extracted by the two members from one input. Let Bp be sampled from the
product distribution p(z1, y)p(z2|y) = p(e1(z|x), y)p(z2|y); we select the features extracted by the
two members from two different inputs that share the same class. We train a multi-layer network w
on the binary task of distinguishing these two distributions with the standard cross-entropy loss:

Lce(w) = −
1

|B|+ |Bp|

 ∑
(z1,z2,y)∈B

logw(z1, z2, y) +
∑

(z1,z′2,y)∈Bp

log(1− w(z1, z
′
2, y))

 . (3)
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Figure 4: Learning strategy overview. Blue arrows represent training criteria: (1) classification
with conditional entropy bottleneck applied separately on members 1 and 2, and (2) adversarial
training to delete spurious correlations between members and increase diversity. X and X ′ belong
to the same Y for conditional redundancy minimization. See Figure 13 for a larger version.

If w is calibrated (see Appendix B.3), a consistent (Mukherjee et al., 2020) estimate of CR is:

ÎCRDV =
1

|B|
∑

(z1,z2,y)∈B

log f(z1, z2, y)︸ ︷︷ ︸
Diversity

− log

 1

|Bp|
∑

(z1,z′2,y)∈Bp

f(z1, z
′
2, y)︸ ︷︷ ︸

Fake correlations

 ,with f =
w

1− w
.

Intuition By training our members to minimize ÎCRDV , we force triples from the joint distribution
to be indistinguishable from triples from the product distribution. Let’s imagine that two features
are conditionally correlated, some spurious information is shared between features only when they
are from the same input and not from two inputs (from the same class). This correlation can be
informative about a detail in the background, an unexpected shape in the image, that is rarely found
in samples from this input’s class. In that case, the product and joint distributions are easily dis-
tinguishable by the discriminator. The first adversarial component will force the extracted features
to reduce the correlation, and ideally one of the two features loses this information: it reduces re-
dundancy and increases diversity. The second term would create fake correlations between features
from different inputs. As we are not interested in a precise estimation of the CR, we get rid of this
second term that, empirically, did not increase diversity, as detailed in Appendix G.

L̂CRDV (e1, e2) =
1

|B|
∑

(z1,z2,y)∈B∼p(e1(z|x),e2(z|x),y)

log f(z1, z2, y). (4)

Summary First, we train each member for classification with VCEB from equation 2, as shown
in Step 1 from Figure 4. Second, as shown in Step 2 from Figure 4, the discriminator, conditioned
on the class Y , learns to distinguish features sampled from one image versus features sampled from
two images belonging to Y . Simultaneously, both members adversarially (Goodfellow et al., 2014)
delete spurious correlations to reduce CR estimation from equation 4 with differentiable signals: it
conditionally aligns features. We provide a pseudo-code in B.4. While we derive similar losses for
IBR and CEBR in Appendix E.5, the full DICE loss is finally:

LDICE(θ1, θ2) = VCEBβceb
(θ1) + VCEBβceb

(θ2) + δcrL̂CRDV (e1, e2). (5)

2.C FULL PROCEDURE WITH M MEMBERS

We expand our objective for an ensemble with M > 2 members. We only consider pairwise in-
teractions for simplicity to keep quadratic rather than exponential growth in number of components
and truncate higher order interactions, e.g. I(Zi;Zj , Zk|Y ) (see Appendix F.1). Driven by previous
variational and neural estimations, we train θi = {ei, bi, ci}, i ∈ {1, . . . ,M} on:

LDICE(θ1:M ) =

M∑
i=1

VCEBβceb
(θi) +

δcr
(M − 1)

M∑
i=1

M∑
j=i+1

L̂CRDV (ei, ej), (6)
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while training adversariallyw on Lce. Batch B is sampled from the concatenation of joint distribu-
tion p(zi, zj , y) where i, j ∈ {1, . . . ,M}, i 6= j, while Bp is sampled from the product distribution,
p(zi, y)p(zj |y). We use the same discriminator w for

(
M
2

)
estimates. It improves scalability by

reducing the number of parameters to be learned. Indeed, an additional member in the ensemble
only adds 256 ∗ d trainable weights in w, where d is the features dimension. See Appendix B.3 for
additional information related to the discriminator w.

3 RELATED WORK

To reduce the training cost of deep ensembles (Hansen & Salamon, 1990; Lakshminarayanan et al.,
2017), Huang et al. (2017) collect snapshots on training trajectories. One stage end-to-end co-
distillation (Song & Chai, 2018; Lan et al., 2018; Chen et al., 2020b) share low-level features among
members in branch-based ensemble while forcing each member to mimic a dynamic weighted com-
bination of the predictions to increase individual accuracy. However both methods correlate errors
among members, homogenize predictions and fail to fit the different modes of the data which overall
reduce diversity.

Beyond random initializations (Kolen & Pollack, 1991), authors implicitly introduced stochas-
ticity into the training, by providing subsets of data to learners with bagging (Breiman, 1996) or
by backpropagating subsets of gradients (Lee et al., 2016); however, the reduction of training sam-
ples hurts performance for sufficiently complex models that overfit their training dataset (Nakkiran
et al., 2019). Boosting with sequential training is not suitable for deep members (Lakshminarayanan
et al., 2017). Some approaches applied different data augmentations (Dvornik et al., 2019; Stickland
& Murray, 2020), used different networks or hyperparameters (Singh et al., 2016; Ruiz & Verbeek,
2020; Yang & Soatto, 2020), but are not general-purpose and depend on specific engineering choices.

Others explicitly encourage orthogonality of the gradients (Ross et al., 2020; Kariyappa &
Qureshi, 2019; Dabouei et al., 2020) or of the predictions, by boosting (Freund & Schapire, 1999;
Margineantu & Dietterich) or with a negative correlation regularization (Shui et al., 2018), but
they reduce members accuracy. Second-order PAC-Bayes bounds motivated the diversity loss in
Masegosa (2020). As far as we know, adaptive diversity promoting (ADP) (Pang et al., 2019) is the
unique approach more accurate than the independent baseline: they decorrelate the non-maximal
predictions. The limited success of these logits approaches suggests that we seek diversity in fea-
tures. Empirically we found that the increase of (L1, L2, − cos) distances between features (Kim
et al., 2018) reduce performance: they are not invariant to variables’ symmetry. Simultaneously to
our findings, Sinha et al. (2020) is somehow equivalent to our IBR objective (see Appendix C.2) but
without information bottleneck motivations for the diversity loss.

The uniqueness of mutual information (see Appendix E.2) as a distance measure between vari-
ables has been applied in countless machine learning projects, such as reinforcement learning (Kim
et al., 2019a), metric learning (Kemertas et al., 2020), or evolutionary algorithms (Aguirre & Coello,
2004). Objectives are often a trade-off between (1) informativeness and (2) compression. In com-
puter vision, unsupervised deep representation learning (Hjelm et al., 2019; van den Oord et al.,
2018; Tian et al., 2020a; Bachman et al., 2019) maximizes correlation between features and in-
puts following Infomax (Linsker, 1988; Bell & Sejnowski, 1995), while discarding information
not shared among different views (Bhardwaj et al., 2020), or penalizing predictability of one la-
tent dimension given the others for disentanglement (Schmidhuber, 1992; Comon, 1994; Kingma &
Welling, 2014; Kim & Mnih, 2018; Blot et al., 2018).

The ideal level of compression is task dependent (Soatto & Chiuso, 2014). As a selection crite-
rion, features should not be redundant (Battiti, 1994; Peng et al., 2005) but relevant and complemen-
tary given the task (Novovičová et al., 2007; Brown, 2009). As a learning criteria, correlations be-
tween features and inputs are minimized according to Information Bottleneck (Tishby, 1999; Alemi
et al., 2017; Kirsch et al., 2020; Saporta et al., 2019), while those between features and targets are
maximized (LeCun et al., 2006; Qin & Kim, 2019). It forces the features to ignore task-irrelevant
factors (Zhao et al., 2020), to reduce overfitting (Alemi et al., 2018) while protecting needed in-
formation (Tian et al., 2020b). Fischer & Alemi (2020) concludes in the superiority of conditional
alignment to reach the MNI point.
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4 EXPERIMENTS

In this section, we present our experimental results on the CIFAR-10 and CIFAR-100 (Krizhevsky
et al., 2009) datasets. We detail our implementation in Appendix B. We took most hyperparameter
values from Chen et al. (2020b). Hyperparameters for adversarial training and information bottle-
neck were fine-tuned on a validation dataset made of 5% of the training dataset, see Appendix D.1.
Bold highlights best score. First, we show gain in accuracy. Then, we further analyze our strategy’s
impacts on calibration, uncertainty estimation, out-of-distribution detection and co-distillation.

4.A COMPARISON OF CLASSIFICATION ACCURACY

Table 1: CIFAR-100 ensemble classification accuracy (Top-1, %).

Name Components ResNet-32 ResNet-110 WRN-28-2
Div. I.B. 3-branch 4-branch 5-branch 4-net 3-branch 4-branch 3-branch 4-branch 3-net

Ind. 76.28±0.12 76.78± 0.19 77.24± 0.25 77.38± 0.12 80.54± 0.09 80.89± 0.31 78.83± 0.12 79.10± 0.08 80.01± 0.15

ONE (Lan et al., 2018) 75.17±0.35 75.13±0.25 75.25±0.22 76.25±0.32 78.97±0.24 79.86±0.25 78.38±0.45 78.47±0.32 77.53±0.36

OKDDip (Chen et al., 2020b) 75.37±0.32 76.85±0.25 76.95±0.18 77.27±0.31 79.07±0.27 80.46±0.35 79.01±0.19 79.32±0.17 80.02±0.14

ADP (Pang et al., 2019) Pred. 76.37±0.11 77.21±0.21 77.67±0.25 77.51±0.25 80.73±0.38 81.40± 0.27 79.21±0.19 79.71±0.18 80.01±0.17

IB (equation 8) VIB 76.01±0.12 76.93± 0.24 77.22±0.19 77.72±0.12 80.43±0.34 81.12±0.19 79.19±0.35 79.15±0.12 80.15±0.13

CEB (equation 2) VCEB 76.36±0.06 76.98± 0.18 77.35±0.14 77.64± 0.15 81.08± 0.12 81.17± 0.16 78.92±0.08 79.20±0.13 80.38±0.18

IBR (equation 9) R VIB 76.68±0.13 77.25± 0.13 77.77±0.21 77.84±0.12 81.34±0.21 81.38± 0.08 79.33±0.15 79.90±0.10 80.22±0.10

CEBR (equation 10) R VCEB 76.72±0.08 77.30± 0.12 77.81± 0.10 77.82± 0.11 81.52±0.11 81.55±0.33 79.25±0.15 79.98±0.07 80.35±0.15

DICE (equation 6) CR VCEB 76.89± 0.09 77.51± 0.17 78.08± 0.18 77.92± 0.08 81.67±0.14 81.93± 0.13 79.59±0.13 80.05±0.11 80.55± 0.12

Table 1 reports the Top-1 classification accuracy averaged over 3 runs with standard deviation for
CIFAR-100, while Table 2 focuses on CIFAR-10. {3,4,5}-{branch,net} refers to the training of
{3,4,5}members {with,without} low-level weights sharing. Ind. refers to independent deterministic
deep ensembles without interactions between members (except optionally the low-level weights
sharing). DICE surpasses concurrent approaches (summarized in Appendix C) for ResNet and Wide-
ResNet architectures, in network and even more in branch setup. We bring significant and systematic
improvements to the current state-of-the-art ADP (Pang et al., 2019): e.g., {+0.52,+0.30,+0.41}
for {3,4,5}-branches ResNet-32, {+0.94,+0.53} for {3,4}-branches ResNet-110 and finally +0.34
for 3-networks WRN-28-2. Diversity approaches better leverage size, as shown on the main Figure
1, which is detailed in Table 8: on CIFAR-100, DICE outperforms Ind. by {+0.60,+0.73,+0.84}
for {3,4,5}-branches ResNet-32. Finally, learning only the redundancy loss without compression
yields unstable results: CEB learns a distribution (at almost no extra cost) that stabilizes adversarial
training (see Appendix F.1) through sampling, with lower standard deviation in results than IB (βib
can hinder the learnability (Wu et al., 2019b)).

Table 2: CIFAR-10 ensemble classification accuracy (Top-1, %).

Backbone Structure Ind. ONE OKDDip ADP IB CEB IBR CEBR DICE

ResNet-32 4-branch 94.75±0.08 94.41±0.05 94.86± 0.08 94.92± 0.04 94.76± 0.12 94.93± 0.11 94.91± 0.14 94.94± 0.12 95.01± 0.09

ResNet-110 3-branch 95.62±0.06 95.25±0.08 95.21±0.09 95.43± 0.12 94.54± 0.07 94.65± 0.05 95.68± 0.05 95.67± 0.06 95.74± 0.08

4.B ABLATION STUDY

Branch-based is attractive: it reduces bias by gradient diffusion among shared layers, at only a slight
cost in diversity which makes our approach even more valuable. We therefore study the 4-branches
ResNet-32 on CIFAR-100 in following experiments. We ablate the two components of DICE: (1)
deterministic, with VIB or VCEB, and (2) no adversarial loss, or with redundancy, conditionally or
not. We measure diversity by the ratio-error (Aksela, 2003), r =

Nsingle

Nshared
, which computes the ratio

between the number of single errors Nsingle and of shared errors Nshared. A higher average over the(
M
2

)
pairs means higher diversity as members are less likely to err on the same inputs. Our analysis

remains valid for non-pairwise diversity measures, analyzed in Appendix A.5.

In Figure 5, CEB has slightly higher diversity than Ind.: it benefits from compression. ADP reaches
higher diversity but sacrifices individual accuracies. On the contrary, co-distillation OKDDip sacri-
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fices diversity for individual accuracies. DICE curve is above all others, and notably δcr = 0.2 in-
duces an optimal trade-off between ensemble diversity and individual accuracies on validation.
CEBR reaches same diversity with lower individual accuracies: information about Y is removed.

Figure 6 shows that starting from random initializations, diversity begins small: DICE minimizes the
estimated CR in features and increases diversity in predictions compared to CEB (δcr = 0.0). The
effect is correlated with δcr: a high value (0.6) creates too much diversity. On the contrary, a negative
value (−0.025) can decrease diversity. Figure 8 highlights opposing dynamics in accuracies.

Figure 5: Ensemble diversity/individual accu-
racy trade-off for different strategies. DICE
(r. CEBR) is learned with different δcr (r. δr).

Figure 6: Impact of the diversity coefficient δcr
in DICE on the training dynamics on validation:
CR is negatively correlated with diversity.

4.C FURTHER ANALYSIS: UNCERTAINTY ESTIMATION AND CALIBRATION

Procedure We follow the procedure from (Ashukha et al., 2019). To evaluate the quality of the
uncertainty estimates, we reported two complementary proper scoring rules (Gneiting & Raftery,
2007); the Negative Log-Likelihood (NLL) and the Brier Score (BS) (Brier, 1950). To measure the
calibration, i.e., how classification confidences match the observed prediction accuracy, we report
the Expected Calibration Error (ECE) (Naeini et al., 2015) and the Thresholded Adaptive Calibra-
tion Error (TACE) (Nixon et al., 2019) with 15 bins: TACE resolves some pathologies in ECE by
thresholding and adaptive binning. Ashukha et al. (2019) showed that “comparison of [. . .] en-
sembling methods without temperature scaling (Guo et al., 2017) might not provide a fair ranking”.
Therefore, we randomly divide the test set into two equal parts and compute metrics for each half
using the temperature T optimized on another half: their mean is reported. Table 3 compares results
after temperature scaling (TS) while those before TS are reported in Table 9 in Appendix A.6.

Table 3: Uncertainty estimation (NLL, BS) and calibration (ECE, TACE) on CIFAR-100 after
temperature scaling.

1-net Ind. OKDDip-E ADP IB CEB IBR CEBR DICE

T 1.49 1.31 1.33 0.64 1.21 1.24 1.17 1.19 1.11

NLL ↓ (10−1) 10.38 8.10 8.13 8.51 8.12 8.11 8.09 8.05 7.98
BS ↓ (10−3) 3.92 3.24 3.19 3.27 3.20 3.19 3.17 3.18 3.12

ECE ↓ (10−2) 1.83 1.60 1.73 2.99 2.17 2.07 1.97 2.02 2.59
TACE ↓ (10−3) 1.98 1.78 1.74 1.79 1.68 1.69 1.75 1.72 1.70

Acc. ↑ (%) 71.28 76.71 76.85 77.21 76.93 76.98 77.25 77.30 77.51

Results We recover that ensembling improves performances (Ovadia et al., 2019), as one single
network (1-net) performs significantly worse than ensemble approaches with 4-branches ResNet-32.
Members’ disagreements decrease internal temperature and increase uncertainty estimation. DICE
performs best even after TS, and reduces NLL from 8.13 to 7.98 and BS from 3.24 to 3.12 compared
to independant learning. Calibration criteria benefit from diversity though they do “not provide a
consistent ranking” as stated in Ashukha et al. (2019): for example, we notice that ECE highly
depends on hyperparameters, especially δcr, as shown on Figure 8 in Appendix A.4.
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4.D FURTHER ANALYSIS: DISCRIMINATOR BEHAVIOUR THROUGH OOD DETECTION

(a) Ind.+TS (74.0) (b) DICE+TS (75.2) (c) DICE×w (77.2)

Figure 7: Confidence estimates separate images from CIFAR-100
and OOD images from TinyImageNet (crop) for different strategies
(AUROC ↑). DICE×w uses the discriminator to scale its confidence:
1− w’s predictions behave like an ”input-dependant temperature”.

To measure the ability of
our ensemble to distinguish
in- and out-of-distribution
(OOD) images, we con-
sider other datasets at test
time following (Hendrycks
& Gimpel, 2017) (see Ap-
pendix D.2). The con-
fidence score is estimated
with the maximum soft-
max value: the confidence
for OOD images should
ideally be lower than for
CIFAR-100 test images.
Temperature scaling (results in Table 7) refines performances (results without TS in Table 6). DICE
beats Ind. and CEB in both cases. Moreover, we suspected that features were more correlated for
OOD images: they may share redundant artifacts. DICE×w multiplies the classification logits by
the mean over all pairs of 1 − w(zi, zj , ŷ), i 6= j, with predicted ŷ (as the true y is not available at
test time). DICE×w performs even better than DICE+TS, but at the cost of additional operations.
It shows that w can detect spurious correlations, adversarially deleted only when found in training.

4.E FURTHER ANALYSIS: DIVERSE TEACHER FOR IMPROVED CO-DISTILLATION

Table 4: Individual accuracy for branch-based co-distillation on CIFAR-100

1-net Ind. ONE OKDDip PCL OKDDip+CEB OKDDip+DICE
(Lan et al., 2018) (Chen et al., 2020b) (Wu & Gong, 2020)

T co-distillation - - 3 3 2.5 2 3 3 2.5 2 3 2.5 2

ResNet-32 3-branch 71.28±0.11 72.15±0.08
73.32±0.22 73.90±0.15 74.01±0.08 74.12±0.12 74.14±0.16 73.95±0.09 74.10±0.09 74.08±0.11 74.14±0.11 74.28±0.12 74.56±0.18

4-branch 73.42±0.18 74.40±0.13 74.42±0.11 74.31±0.09 - 74.01±0.11 74.15±0.21 74.61±0.17 74.22±0.08 74.43±0.18 74.95±0.15

The inference time in network-ensembles grows linearly with M. Sharing early-features is one solu-
tion. We experiment another one by using only the M-th branch at test time. We combine DICE with
OKDDip (Chen et al., 2020b): the M-th branch (= the student) learns to mimic the soft predictions
from the M-1 first branches (= the teacher), among which we enforce diversity. Our teacher has
lower internal temperature (as shown in Experiment 4.c): DICE performs best when soft predictions
are generated with lower T . We improve state-of-the-art by {+0.42,+0.53} for {3,4}-branches.

5 CONCLUSION

In this paper, we addressed the task of improving deep ensembles’ learning strategies. Motivated by
arguments from information theory, we derive a novel adversarial diversity loss, based on conditional
mutual information. We tackle the trade-off between individual accuracies and ensemble diversity
by deleting spurious and redundant correlations. We reach state-of-the-art performance on standard
image classification benchmarks. In Appendix F.2, we also show how to regularize deterministic
encoders with conditional redundancy without compression: this increases the applicability of our
research findings. The success of many real-world systems in production depends on the robustness
of deep ensembles: we hope to pave the way towards general-purpose strategies that go beyond
independent learning.
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Appendices
Appendix A shows additional experiments. Appendix B describes our implementation to facilitate
reproduction. In Appendix C, we summarize the concurrent approaches (see Table 10). In Appendix
D, we describe the datasets and the metrics used in our experiments. Appendix E clarifies certain
theoretical formulations. In Appendix F, we explain that DICE is a second-order approximation in
terms of information interactions and then we try to apply our diversity regularization to determin-
istic encoders. Appendix G motivates the removal of the second term from our neural estimation of
conditional redundancy. We conclude with a sociological analogy in Appendix H.

A ADDITIONAL EXPERIMENTS

A.1 COMPARISONS WITH CO-DISTILLATION AND SNAPSHOT-BASED APPROACHES

Table 5: Ensemble Accuracy on different setups. Concurrent approaches’ accuracies are those
reported in recent papers. DICE outperforms co-distillation and snapshot-based ensembles collected
on the training trajectory, which fail to capture the different modes of the data (Ashukha et al., 2019).

Architecture Concurrent Approach Baseline Ours

Dataset Backbone Structure Ens. Size Name Acc. According to Ind. Acc. DICE Acc.

CIFAR-100

ResNet-32
Branches 3 CL-ILR (Song & Chai, 2018) 72.99 (Chen et al., 2020b) 76.28 76.89

Nets 3 DML (Zhang et al., 2018) 76.11 (Chung et al., 2020) 76.45 76.98AFD (Chung et al., 2020) 76.64 (Chung et al., 2020)

ResNet-110

Branches 3 FFL (Kim et al., 2019b) 78.22 (Wu & Gong, 2020) 80.54 81.67PCL-E (Wu & Gong, 2020) 80.51 (Wu & Gong, 2020)

4 CL-ILR (Song & Chai, 2018) 79.81 (Chen et al., 2020b) 80.89 81.93

Nets 5

SWAG (Maddox et al., 2019) 77.69 (Ashukha et al., 2019)

81.7 (Ashukha et al., 2019) 81.82

Cyclic SGLD (Zhang et al., 2019) 74.27 (Ashukha et al., 2019)
Fast Geometric Ens (Garipov et al., 2018) 78.78 (Ashukha et al., 2019)
Variational Inf. (FFG) (Wu et al., 2019a) 77.59 (Ashukha et al., 2019)

KFAC-Laplace (Ritter et al., 2018) 77.13 (Ashukha et al., 2019)
Snapshot Ensembles (Huang et al., 2017) 77.17 (Ashukha et al., 2019)

WRN-28-2 Nets 3 DML (Zhang et al., 2018) 79.41 (Chung et al., 2020) 80.01 80.55AFD (Chung et al., 2020) 79.78 (Chung et al., 2020)

CIFAR-10 ResNet-110 Branches 3 FFL (Kim et al., 2019b) 95.01 (Wu & Gong, 2020) 95.62 95.74PCL-E (Wu & Gong, 2020) 95.58 (Wu & Gong, 2020)

A.2 OUT-OF-DISTRIBUTION DETECTION

Table 6 summarizes our OOD experiments in the 4-branches ResNet-32 setup. We recover that
IB improves OOD detection (Alemi et al., 2018). Moreover, we empirically validate our intuition:
features from in-distribution images are in average less predictive from each other compared to
pairs of features from OOD images. w can perform alone as a OOD-detector, but is best used
in complement to DICE. In DICE×w, logits are multiplied by the sigmoid output of w averaged
over all pairs. Table 7 shows that temperature scaling improves all approaches without modifying
ranking. Finally, DICE×w, even without TS, is better than DICE, even with TS.

Table 6: Out-of-distribution performances before temperature scaling.

Dataset FPR (95 % TPR) ↓ Detection ↓ AUROC ↑ AUPR In ↑ AUPR Out ↑
Train Test OOD Ind. CEB DICE w only DICE×w Ind. CEB DICE w only DICE×w Ind. CEB DICE w only DICE×w Ind. CEB DICE w only DICE×w Ind. CEB DICE w only DICE×w

CIFAR-100

TinyImageNet (crop) 80.1 80.4 77.9 82.2 73.7 33.0 32.1 31.2 32.4 28.8 72.4 73.8 74.7 71.1 77.2 71.5 73.0 73.4 66.0 74.3 70.5 71.7 72.4 69.6 75.9
TinyImageNet (resize) 84.4 83.6 81.0 87.9 78.8 35.5 34.5 33.6 35.7 31.7 69.1 70.6 71.7 66.1 73.6 68.0 69.3 70.4 60.5 70.3 66.8 68.5 69.3 64.4 71.9

LSUN (crop) 79.1 82.7 81.1 74.9 73.3 28.6 29.2 29.3 29.9 28.5 77.7 76.2 75.9 76.3 78.9 79.9 78.6 77.8 74.7 79.2 73.9 71.8 71.8 75.1 76.8
LSUN (resize) 83.1 81.0 80.0 82.5 75.9 34.2 32.1 31.4 32.0 29.2 71.5 74.2 74.2 71.6 77..1 73.2 75.5 75.4 66.3 76.5 68.3 71.5 71.2 69.7 75.0

iSUN 85.3 83.4 83.8 84.2 79.7 35.3 33.2 33.3 34.3 31.7 69.6 72.5 71.9 68.7 74.4 72.7 75.3 74.7 65.6 74.7 63.7 66.9 65.7 64.9 69.5
TinyImageNet+LSUN+iSUN 82.3 82.2 80.7 82.3 76.2 33.4 32.2 31.8 32.8 30.2 72.1 73.5 73.8 70.9 76.4 38.1 39.9 40.3 28.7 39.4 91.5 91.9 91.9 91.4 93.1

CIFAR-10 80.1 82.9 78.5 90.0 79.9 30.0 30.3 28.8 36.6 28.7 76.6 76.0 78.1 66.5 78.4 79.7 79.1 80.9 64.6 80.8 72.5 71.6 73.9 62.8 73.9

Table 7: Out-of-distribution performances after temperature scaling.

Dataset FPR (95 % TPR) ↓ Detection ↓ AUROC ↑ AUPR In ↑ AUPR Out ↑
Train Test OOD Ind. CEB DICE DICE×w Ind. CEB DICE DICE×w Ind. CEB DICE DICE×w Ind. CEB DICE DICE×w Ind. CEB DICE DICE×w

CIFAR-100

TinyImageNet (crop) 77.7 78.4 77.1 73.2 32.1 31.2 31.5 27.9 74.0 74.8 75.2 77.9 72.6 74.1 74.0 74.8 72.3 73.4 73.4 76.4
TinyImageNet (resize) 83.0 82.3 80.4 78.5 34.4 33.6 32.9 30.7 70.5 71.5 72.6 74.3 69.0 70.5 70.9 70.8 68.3 70.2 70.3 72.5

LSUN (crop) 76.7 81.7 80.2 72.7 27.6 28.6 28.5 28.2 79.3 77.2 77.0 79.2 81.2 79.4 78.7 79.5 75.9 73.1 72.5 77.1
LSUN (resize) 81.5 79.0 79.5 75.4 33.1 30.9 30.6 28.3 73.0 75.4 75.1 78.1 74.3 76.8 76.0 76.9 70.1 73.4 72.2 75.6

iSUN 84.3 82.3 83.2 79.3 34.5 32.3 32.2 30.8 70.9 73.5 72.7 75.0 73.5 76.4 74.6 75.6 65.2 68.6 66.6 70.1
TinyImageNet+LSUN+iSUN 80.5 80.7 80.0 75.8 32.3 31.3 31.2 29.3 73.6 74.4 74.7 76.9 39.3 41.4 40.9 39.8 92.0 92.5 92.2 93.3

CIFAR-10 78.8 82.1 78.2 80.0 29.6 29.9 28.6 28.3 77.5 76.7 78.5 78.6 80.2 79.4 81.2 81.0 73.5 72.5 74.5 74.0
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A.3 ACCURACY VERSUS SIZE

We recover from Table 8 the Memory Split Advantage (MSA) from Chirkova et al. (2020): splitting
the memory budget between three branches of ResNet-32 results in better performance than spend-
ing twice the budget on one ResNet-110. DICE further improves this advantage. Our framework
is particularly effective in the branch-based setting, as it reduces the computational overhead (espe-
cially in terms of FLOPS) at a slight cost in diversity. A 4-branches DICE ensemble has the same
accuracy in average as a classical 7-branches ensemble.

Table 8: Ensemble effectiveness evaluation. Top-1 accuracy (%), number of parameters (M) and
floating point operations (GFLOPs). This table is summarized in Figure 1. DICE always outper-
forms the independent learning baseline, even with only 1 member because of the CEB component.
The saturation phenomenon is reduced.

Architecture CIFAR-100

Backbone Structure Ens. Size Params. (M) GFLOPs Ind. DICE

ResNet-32

Base 1 0.47 0.14 71.28 71.31

Branches

2 0.83 0.18 74.89 75.40
3 1.19 0.23 76.28 76.89
4 1.55 0.28 76.78 77.51
5 1.91 0.32 77.24 78.08
6 2.27 0.36 77.39 78.29
7 2.63 0.40 77.52 78.44
8 2.99 0.44 77.60 78.60
10 3.71 0.51 77.64 78.71

Nets

2 0.95 0.28 75.01 75.32
3 1.42 0.42 76.45 76.98
4 1.89 0.56 77.38 77.92
5 2.36 0.70 77.82 78.41
6 2.83 0.84 78.16 78.83
7 3.29 0.98 78.36 79.05
8 3.78 1.12 78.49 79.24
10 4.71 1.41 78.59 79.35

ResNet-110
Base 1 1.73 0.51 76.21 76.25

Branches 3 4.33 0.84 80.54 81.67
4 5.68 1.02 80.89 81.93

A.4 TRAINING DYNAMICS IN TERMS OF ACCURACY, UNCERTAINTY ESTIMATION AND
CALIBRATION

Figure 8: Training dynamics on the validation dataset while training on 95% of the training
dataset. A higher diversity coefficient decreases individual performance (lower left), but increases
ensemble performance in terms of accuracy (upper left), uncertainty estimation (upper right) up to a
value, found at δcr = 0.2 for 4-branches ResNet-32. Calibration before temperature scaling (lower
right) highly benefits from higher diversity. Learning rate updates create ”steps” in the curves.
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A.5 TRAINING DYNAMICS IN TERMS OF DIVERSITY

Figure 9: Diversity dynamics on train and validation dataset. DICE increases diversity for pair-
wise (ratio errors, agreement, Q-statistics) and non-pairwise (entropy, Kohavi-Wolpert variance)
measures.

We measured diversity in 4.b with the ratio error (Aksela, 2003). But as stated by Kuncheva &
Whitaker (2003), diversity can be measured in numerous ways. For pairwise measures, we aver-
aged over the

(
M
2

)
pairs: the Q-statistics is positive when classifiers recognize the same object, the

agreement score measures the frequency that both classifiers predict the same class. Note that even
if we only apply pairwise constraints, we also increase non-pairwise measures: for example, the
Kohavi-Wolpert variance (Kohavi et al., 1996) which measures the variability of the predicted class,
and the entropy diversity which measures overall disagreement.

A.6 UNCERTAINTY ESTIMATION AND CALIBRATION BEFORE TEMPERATURE SCALING

Table 9: Uncertainty estimation (NLL, BS) and calibration (ECE, TACE) on CIFAR-100 before
temperature scaling for 4-branches ResNet-32.

Metrics 1-net Ind. OKDDip-E ADP IB CEB IBR CEBR DICE

NLL ↓ (10−1) 11.56 8.55 8.38 10.85 8.37 8.37 8.27 8.25 8.06
BS ↓ (10−3) 4.12 3.35 3.28 3.79 3.25 3.25 3.21 3.23 3.15

ECE ↓ (10−2) 10.47 7.45 6.67 21.14 5.32 5.76 5.15 5.46 4.05
TACE ↓ (10−3) 2.42 1.86 1.81 4.53 1.58 1.67 1.60 1.65 1.46

Acc. ↑ (%) 71.28 76.71 76.85 77.21 76.93 76.98 77.25 77.30 77.51
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B TRAINING DETAILS

B.1 GENERAL OPTIMIZATION

Experiments Classical hyperparameters were taken from (Chen et al., 2020b) for conducting fair
comparisons. Newly added hyperparameters were fine-tuned on a validation dataset made of 5% of
the training dataset.

Architecture We implemented the proposed method with ResNet (He et al., 2016) and Wide-
ResNet (Zagoruyko & Komodakis, 2016) architectures. Following standard practices, we average
the logits of our predictions uniformly. For branch-based ensemble, we separate the last block and
the classifier of each member from the weights sharing while the other low-level layers were shared.

Learning Following (Chen et al., 2020b), we used SGD with Nesterov with momentum of 0.9,
mini-batch size of 128, weight decay of 5e-4, 300 epochs, a standard learning rate scheduler that
sets values {0.1, 0.001, 0.0001} at steps {0, 150, 225} for CIFAR-10/100. In CIFAR-100, we addi-
tionally set the learning rate at 0.00001 at step 250. We used traditional basic data augmentation that
consists of horizontal flips and a random crop of 32 pixels with a padding of 4 pixels. The learning
curve is shown on Figure 8.

B.2 INFORMATION BOTTLENECK IMPLEMENTATION

Architecture Features are extracted just before the dense layer since deeper layers are more se-
mantics, of size d = {64, 128, 256} for {ResNet-32, WRN-28-2, ResNet-110}. Our encoder does
not provide a deterministic point in the features space but a feature distribution encoded by mean
and diagonal covariance matrix. The covariance is predicted after a Softplus activation function
with one additional dense layer, taking as input the features mean, with d(d+ 1) trainable weights.
In training we sample once from this features distribution with the reparameterization trick. In
inference, we predict from the distribution’s mean (and therefore only once). We parameterized
b(z|y) ∼ N(bµ(y),1) with trainable mean and unit diagonal covariance, with d additional train-
able weights per class. As noticed in (Fischer & Alemi, 2020), this can be represented as a single
embedding layer mapping one-hot classes to d-dimensional tensors. Therefore in total we only add
d(d+1+K) trainable weights, that all can be discarded during inference. For VIB, the embedding
bµ is shared among classes: in total it adds d(d + 2) trainable weights. Contrary to recent IB ap-
proaches (Wu et al., 2019b; Wu & Fischer, 2020; Fischer & Alemi, 2020), we only have one dense
layer to predict logits after the features bottleneck, and we did not change the batch normalization,
for fair comparisons with traditional ensemble methods.

Scheduling We employ the jump-start method that facilitates the learning of bottleneck-inspired
models (Wu et al., 2019b; Wu & Fischer, 2020; Fischer & Alemi, 2020): we progressively anneal
the value of βceb. For CIFAR-10, we took the scheduling from (Fischer & Alemi, 2020), except
that we widened the intervals to make the training loss decrease more smoothly: log(βceb) reaches
values {100, 10, 2} at steps {0, 5, 100}. No standard scheduling was available for CIFAR-100. As
it is more difficult than CIFAR-10, we added additional jump-epochs with lower values: log(βceb)
reaches values {100, 10, 2, 1.5, 1} at steps {0, 8, 175, 250, 300}. This slow scheduling increases
progressively the covariance predictions eσ(x) and facilitates learning. For VIB, we scheduled
similarly using the equivalence from (Fischer, 2020): βib = βceb + 1. We found VCEB to have
lower standard deviation in performances than VCEB: βib can hinder the learnability (Wu et al.,
2019b). These schedulings have been used in all our setups, without and with redundancy losses,
for ResNet-32, ResNet-110 and WRN-28-10, for from 1 to 10 members.

B.3 ADVERSARIAL TRAINING IMPLEMENTATION

Redundancy Following standard adversarial learning practices, our discriminator for redundancy
estimation is a MLP with 4 layers of size {256, 256, 100, 1}, with leaky-ReLus of slope 0.2, opti-
mized by RMSProp with learning rate {0.003, 0.005} for CIFAR-{10, 100}. We empirically found
that four steps for the discriminator for one step of the classifier increase stability. Specifically, it
takes as input the concatenation of the two hidden representations of size d, sampled with a repa-
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Figure 10: Discriminator dynamics and learning curve. The task becomes harder for higher values
of δcr: the joint and product features distributions tend to be indistinguishable.

rameterization trick. Gradients are not backpropagated in the layer that predicts the covariance, as
it would artificially increase the covariance to reduce the mutual information among branches. The
output, followed by a sigmoid activation function, should be close to 1 (resp. 0) if the sample comes
from the joint (resp. product) distribution.

Figure 11: The discrimina-
tor remains calibrated even
at the end of the adversarial
training.

Conditional Redundancy The discriminator for CR estimation
needs to take into account the target class Y . It first embeds Y in
an embedding layer of size 64, which is concatenated at the inputs
of the first and second layers. Improved features merging method
could be applied, such as Ben-Younes et al. (2019). The output has
size K, and we select the index associated with the Y . We note in
Figure 11 that our discriminator remains calibrated.

Ensemble with M Models In the general case, we only con-
sider pairwise interactions, therefore we need to estimate

(
M
2

)
val-

ues. To reduce the number of parameters, we use only one dis-
criminator w. Features associated with zk are filled with zeros
when we sample from p(zi, zj , y) or from p(zi, y)p(zj |y), where
i, j, k ∈ {1, . . . ,M}, k 6= i and k 6= j. Therefore, the input tensor
for the discriminator is of size (M ∗ d + 64): its first layer has (M ∗ d + 64) ∗ 256 dense weights:
the number of weights in w scales linearly with M and d as w’s input grows linearly, but w’s hidden
size remains fixed.

δcr value For branch-based and network-based CIFAR-100, we found δcr at
{0.1, 0.15, 0.2, 0.22, 0.25} for {2, 3, 4, 5, 6} members to perform best on the validation
dataset when training on 95% on the classical training dataset. For CIFAR-10, {0.1} for 4 members.
We found that lower values of δr were necessary for our baselines IBR and CEBR.

Scheduling For fair comparison, we apply the traditional ramp-up scheduling up to step 80 from
the co-distillation literature (Lan et al., 2018; Kim et al., 2019b; Chen et al., 2020b) to all concurrent
approaches and to our redundancy training.

Sampling To sample from p(z1, z2, y), we select features extracted from one image. To sample
from p(z1, y)p(z2|y), we select features extracted from two different inputs, that share the same
class y. In practise, we keep a memory from previous batches as the batch size is 128 whereas we
have 100 classes in CIFAR-100. This memory, of size M ∗ d ∗ K ∗ 4, is updated at the end of
each training step. Our sampling is a special case of k-NN sampling (Molavipour et al., 2020): as
we sample from a discrete categorical variable, the closest neighbour has exactly the same discrete
value. The training can be unstable as it minimises the divergence between two distributions. To
make them overlap over the features space, we sample numsample = {4} times from the gaussian
distribution of Z1 and Z2 with the reparameterization trick. This procedure is similar to instance
noise (Sønderby et al., 2016) and it allows us to safely optimise w at each iteration. It gives better
robustness than just giving the gaussian mean. Moreover, we progressively ease the discriminator
task by scheduling the covariance through time with a linear ramp-up. First the covariance is set
to 1 until epoch 100, then it linearly reduces to the predicted covariance eσi (x) until step 250. We
sample a ratio rationegpos of one positive pair for {2, 4} negative pairs on CIFAR-{10, 100}.
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Clipping Following Bachman et al. (2019), we clip the density ratios (tanhclip) by computing
the non linearity exp[τ tanh log[f(z1,z2,y)]

τ ]. A lower τ reduces the variance of the estimation and
stabilizes the training even with a strong discriminator, at the cost of additional bias. The clipping
threshold τ was set to 10 as in Song & Ermon (2020).

B.4 PSEUDO-CODE

Algorithm 1: Full DICE Procedure for M = 2 members
/* Setup */
Parameters: θ1 = {e1, b1, c1}, θ2 = {e2, b2, c2} and discriminator w, randomly initialized
Input: Observations {xn, yn}Nn=1, coefficients βceb and δcr, schedulings scheceb and

rampupendstepstartstep, clipping threshold τ , batch size b, optimisers gθ1,2 and gw,
number of discriminators step nstepd, number of samples nums, ratio of
positive/negative sample rationegpos

/* Training Procedure */
1 for s← 1 to 300 do
2 βsceb ← scheceb(startvalue=0, endvalue=βceb, step=s)
3 δscr ← rampup80

0 (startvalue=0, endvalue=δcr, step=s)
4 Randomly select batch {(xn, yn)}n∈B of size b // Batch Sampling

/* Step 1: Classification Loss with CEB */
5 for m← 1 to 2 do
6 zni ← eµi (z|xn) + εeσi (z|xn), ∀n ∈ B with ε ∼ N(0, 1)

7 VCEBi ← 1
b

∑
n∈B
{ 1
βs
ceb
DKL(ei(z|xn)‖bi(z|yn))− log ci(y

n|zni }

/* Step 2: Diversity Loss with Conditional Redundancy */
8 for m← 1 to 2 do
9 eσ,si (z|xn) = rampup250

100(startvalue=1, endvalue=eσi (z|xn), step=s)
10 for k ← 1 to nums do
11 zni,k ← eµi (z|xn) + εeσ,si (z|xn), ∀n ∈ B with ε ∼ N(0, 1)

12 B ← {(zn1,k, zn2,k, yn)}, ∀n ∈ B, k ∈ {1, . . . , nums} // Joint Distrib.

13 L̂CRDV ← 1
|B|

∑
t∈B

log f(t) with f(t)← tanhclip( w(t)
1−w(t) , τ)

14 θ1,2 ← gθ1,2(∇θ1VCEB1 +∇θ2VCEB2 + δscr∇θ1,2L̂CRDV ) // Backprop Ensemble
/* Step 3: Adversarial Training */

15 for ← 1 to nstepd do
16 B ← {(zn1,k, zn2,k, yn)}, ∀n ∈ B,∀k ∈ {1, . . . , nums} // Joint Distrib.

17 Bp ← {(zn1,k, zn
′

2,k′ , y
n)}, ∀n ∈ B,∀k ∈ {1, . . . , nums}, k′ ∈ {1, . . . , rationegpos }

18 with n′ ∈ B, yn = yn
′
, n 6= n′ // Product distribution

19 w ← gw(∇wLce(w)) // Backprop Discriminator
20 Sample new zni,k

/* Test Procedure */

Data: Inputs {xn}Tn=1 // Test Data

Output: argmax
k∈{1,...,K}

( 1
2 [c1(e

µ
1 (z|xn)) + c2(e

µ
2 (z|xn))]), ∀n ∈ {1, . . . , T}

B.5 EMPIRICAL LIMITATIONS

Our approach relies on very recent works in neural network estimation of mutual information, that
still suffer from loose approximations. Improvements in this area would facilitate our learning pro-
cedure. Our approach increases the number of operations because of the adversarial procedure, but
only during training: the inference time remains the same.
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Table 10: Summary of different approaches.

Method Co-distillation Diversity I.B. Merging Others Branch/Net Consistently better than Ind.

DML (Zhang et al., 2018) Pred. pairwise Net
CL-ILR (Song & Chai, 2018) Pred. Branch

ONE (Lan et al., 2018) Preds Gate Branch
FFL (Kim et al., 2019b) Pred. Feat. Fus. Both

OKDDip (Chen et al., 2020b) Pred. asymetric Both ≈
KDCL (Guo et al., 2020) Pred. Data Augmentation Weights on val Net
PCL (Wu & Gong, 2020) Pred. Data Augmentation Feat. Fus. Mean teacher Branch ≈
AFD (Chung et al., 2020) Features Net ≈

GAL (Kariyappa & Qureshi, 2019) Gradients Net
GPMR (Dabouei et al., 2020) Gradients Grads. Magnitude Net

ADP (Pang et al., 2019) Non maximum pred. Entropy Pred. Both X
DIBS (Sinha et al., 2020) JSD Features VIB Custom sampling Both ?

IB VIB Both X
CEB VCEB Both X

IBR (Ours equation 9) R VIB Both X
CEBR (Ours equation 10) R VCEB Both X

DICE (Ours equation 5) CR VCEB Both X

C CONCURRENT APPROACHES

Concurrent approaches can be divided in two general patterns: they promote either individual accu-
racy by co-distillation either ensemble diversity.

C.1 CO-DISTILLATION APPROACHES

Contrary to the traditional distillation (Hinton et al., 2015) that aligns the soft prediction between a
static pre-trained strong teacher towards a smaller student, online co-distillation performs teaching
in an end-to-end one-stage procedure: the teacher and the student are trained simultaneously.

Distillation in Logits The seminal ”Deep Mutual Learning” (DML) (Zhang et al., 2018) intro-
duced the main idea: multiple networks learn to mimic each other by reducing KL-losses between
pairs of predictions. ”Collaborative learning for deep neural networks” (CL-ILR) (Song & Chai,
2018) used the branch-based architecture by sharing low-level layers to reduce the training complex-
ity, and ”Knowledge Distillation by On-the-Fly Native Ensemble” (ONE) (Lan et al., 2018) used
a weighted combination of logits as teacher hence providing better information to each network.
”Online Knowledge Distillation via Collaborative Learning” (KDCL) (Guo et al., 2020) computed
the optimum weight on an held-out validation dataset. ”Feature Fusion for Online Mutual Knowl-
edge Distillation” (FFL) (Kim et al., 2019b) introduced a feature fusion module. These approaches
improve individual performance at the cost of increased homogenization. ”Online Knowledge Dis-
tillation with Diverse Peers” (OKDDip) (Chen et al., 2020b) slightly alleviates this problem with
an asymmetric distillation and a self-attention mechanism. ”Peer Collaborative Learning for Online
Knowledge Distillation” (PCL) (Wu & Gong, 2020) benefited from the mean-teacher paradigm with
temporal ensembling and from diverse data augmentation, at the cost of multiple inferences through
the shared backbone.

Distillation in Features Whereas all previous approaches only apply distillation on the logits, the
recent ”Feature-map-level Online Adversarial Knowledge Distillation” (AFD) (Chung et al., 2020)
aligned features distributions by adversarial training. Note that this is not opposite to our approach,
as they force distributions to be similar while we force them to be uncorrelated.

C.2 DIVERSITY APPROACHES

On the other hands, some recent papers in computer vision explicitly encourage diversity among the
members with regularization losses.

Diversity in Logits ”Diversity Regularization in Deep Ensembles” (Shui et al., 2018) applied
negative correlation (Liu & Yao, 1999a) to regularize the training for improved calibration, with
no impact on accuracy. ”Learning under Model Misspecification: Applications to Variational and
Ensemble methods” (Masegosa, 2020) theoretically motivated the minimization of second-order
PAC-Bayes bounds for ensembles, empirically estimated through a generalized variational method.
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”Adaptive Diversity Promoting” (ADP) (Pang et al., 2019) decorrelates only the non-maximal pre-
dictions to maintain the individual accuracies, while promoting ensemble entropy. It forces different
members to have different ranking of predictions among non maximal predictions. However, Liang
et al. (2018) has shown that ranking of outputs are critical: for example, non maximal logits tend to
be more separated from each other for in-domain inputs compared to out-of-domain inputs. There-
fore individual accuracies are decreased. Coefficients α and β are respectively set to 2 and 0.5, as in
the original paper.

Diversity in Features One could think about increasing classical distances among features like
L2 in (Kim et al., 2018), but in our experiments it reduces overall accuracy: it is not even invariant
to linear transformations such as translation. ”Diversity inducing Information Bottleneck in Model
Ensembles” from Sinha et al. (2020) trains a multi-branch network and applies VIB on individ-
ual branch, by encoding p(z|y) ∼ N (0, 1), which was shown to be hard to learn (Wu & Fischer,
2020). Moreover, we notice that their diversity-inducing adversarial loss is an estimation of the
JS-divergence between pairs of features, built on the dual f -divergence representation (Nowozin
et al., 2016): similar idea was recently used for saliency detection (Chen et al., 2020a). As the
JS-divergence is a symmetrical formulation of the KL, we argue that DIBS and IBR share the same
motivations and only have minor discrepancies: the adversarial terms in DIBS loss with both terms
sampled from the same branch and both terms sampled from the same prior. In our experiments,
these differences reduce overall performance. We will include their scores when they publish mea-
surable results on CIFAR datasets or when they release their code.

Diversity in Gradients ”Improving adversarial robustness of ensembles with diversity training.”
(GAL) (Kariyappa & Qureshi, 2019) enforced diversity in the gradients with a gradient alignment
loss. ”Exploiting Joint Robustness to Adversarial Perturbations” (Dabouei et al., 2020) considered
the optimal bound for the similarity of gradients. However, as stated in the latter, “promoting di-
versity of gradient directions slightly degrades the classification performance on natural examples
. . . [because] classifiers learn to discriminate input samples based on distinct sets of representative
features”. Therefore we do not consider them as concurrent work.

D EXPERIMENTAL SETUP

D.1 TRAINING DATASETS

We train our procedure on two image classification benchmarks, CIFAR-100 and CIFAR-10,
(Krizhevsky et al., 2009). They consist of 60k 32*32 natural and colored images in respectively
100 classes and 10 classes, with 50k training images and 10k test images. For hyperparameter se-
lection and ablation studies, we train on 95% of the training dataset, and analyze performances on
the validation dataset made of the remaining 5%.

D.2 OOD

Dataset We used the traditional out-of-distribution datasets for CIFAR-100, described in (Liang
et al., 2018): TinyImageNet (Deng et al., 2009), LSUN (Yu et al., 2015), iSUN(Xu et al.,
2015), and CIFAR-10. We borrowed the evaluation code from https://github.com/
uoguelph-mlrg/confidence_estimation (DeVries & Taylor, 2018).

Metrics We reported the standard metrics for binary classification: FPR at 95 % TPR, Detection
error, AUROC (Area Under the Receiver Operating Characteristic curve) and AUPR (Area under the
Precision-Recall curve, -in or -out depending on which dataset is specified as positive). See Liang
et al. (2018) for definitions and interpretations of these metrics.
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E ADDITIONAL THEORETICAL ELEMENTS

E.1 BIAS VARIANCE COVARIANCE DECOMPOSITION

The Bias-Variance-Covariance Decomposition (Ueda & Nakano, 1996) generalizes the Bias-
Variance Decomposition (Kohavi et al., 1996) by treating the ensemble of M members as a single
learning unit.

E[(f − t)2] = bias
2
+

1

M
var + (1− 1

M
)covar, (7)

with

bias =
1

M

∑
i

(E[fi]− t),

var =
1

M

∑
i

E[(E[fi]− t)2],

covar =
1

M(M − 1)

∑
i

∑
j 6=i

E[(fi − E[fi])(fj − E[fj ])].

The estimation improves when the covariance between members is zero: the reduction factor of
the variance component equals to M when errors are uncorrelated. Compared to the Bias-Variance
Decomposition (Kohavi et al., 1996), it leads to a variance reduction of 1

M . Brown et al. (2005a;b)
summarized it this way: “in addition to the bias and variance of the individual estimators, the gen-
eralisation error of an ensemble also depends on the covariance between the individuals. This raises
the interesting issue of why we should ever train ensemble members separately; why shouldn’t we
try to find some way to capture the effect of the covariance in the error function?”.

E.2 MUTUAL INFORMATION

Nobody knows what entropy really is.

John Van Neumann to Claude Shannon

At the cornerstone of Shannon’s information theory in 1948 (Shannon, 1948), mutual information is
the difference between the sum of individual entropies and the entropy of the variables considered
jointly. Stated otherwise, it is the reduction in the uncertainty of one variable due to the knowledge
of the other variable (Cover, 1999). Entropy owed its name to the thermodynamic measure of
uncertainty introduced by Rudolf Clausius and developed by Ludwig Boltzmann.

I(Z1;Z2) = H(Z1) +H(Z2)−H(Z1, Z2)
= H(Z1)−H(Z1|Z2)
= DKL(P (Z1, Z2)‖P (Z1)P (Z2)).

The conditional mutual information generalizes mutual information when a third variable is given:

I(Z1;Z2|Y ) = DKL(P (Z1, Z2|Y )‖P (Z1|Y )P (Z2|Y )).

E.3 KL BETWEEN GAUSSIANS

The Kullback-Leibler divergence (Kullback, 1959) between two gaussian distributions takes a par-
ticularly simple form:

DKL(e(z|x)‖b(z|y)) = log
bσ(y)

eσ(x)
+
eσ(x)2 + (eµ(x)− bµ(y))2

2bσ(y)2
− 1

2
(Gaussian param.)

=
1

2
[(1 + eσ(x)2 − log(eσ(x)2))︸ ︷︷ ︸

Variance

+(eµ(x)− bµ(y))2︸ ︷︷ ︸
Mean

]. (bσ(y) = 1)

The variance component forces the predicted variance eσ(x) to be close to bσ(y) = 1. The mean
component forces the class-embedding bµ(y) to converge to the average of the different elements
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in its class. These class-embeddings are similar to class-prototypes, highlighting a theoretical link
between CEB (Fischer, 2020; Fischer & Alemi, 2020) and prototype based learning methods (Liu
& Nakagawa, 2001).

E.4 DIFFERENCE BETWEEN VCEB AND VIB

In Fischer (2020), CEB is variationally upper bounded by VCEB. We detail the computations:

CEBβceb(Z) =
1

βceb
I(X;Z|Y )− I(Y ;Z) (Definition)

=
1

βceb
[I(X,Y ;Z)− I(Y ;Z)]− I(Y ;Z) (Chain rule)

=
1

βceb
[I(X;Z)− I(Y ;Z)]− I(Y ;Z) (Markov assumptions)

=
1

βceb
[−H(Z|X) +H(Z|Y )]− [H(Y )−H(Y |Z)] (MI as diff. of 2 ent.)

≤ 1

βceb
[−H(Z|X) +H(Z|Y )]− [−H(Y |Z)] (Non-negativity of ent.)

=

∫
{ 1

βceb
log

e(z|x)
p(z|y) − log p(y|z)}p(x, y, z)∂x∂y∂z (Definition of ent.)

≤
∫
{ 1

βceb
log

e(z|x)
b(z|y) − log c(y|z)}p(x, y)e(z|x)∂x∂y∂z (Variational approx.)

≈ 1

N

N∑
n=1

∫
{ 1

βceb
log

e(z|xn)
b(z|yn) − log c(yn|z)}e(z|xn)∂z (Empirical data distrib.)

≈ VCEBβceb(θ = {e, b, c}), (Reparameterization trick)
where

VCEBβceb(θ = {e, b, c}) = 1

N

N∑
n=1

{ 1

βceb
DKL(e(z|xn)‖b(z|yn))− Eε log c(yn|e(xn, ε)}.

As a reminder, Alemi et al. (2017) upper bounded: IBβib
(Z) = 1

βib
I(X;Z)− I(Y ;Z) by:

VIBβib(θ = {e, b, c}) = 1

N

N∑
n=1

{ 1

βib
DKL(e(z|xn)‖b(z))− Eε log c(yn|e(xn, ε)}. (8)

In VIB, all features distribution e(z|x) are moved towards the same class-agnostic distribution
b(z) ∼ N(µ, σ), independently of y. In VCEB, e(z|x) are moved towards the class conditional
marginal bµ(y) ∼ N(bµ(y), bσ(y)). This is the unique difference between VIB and VCEB. VIB
leads to a looser approximation with more bias than VCEB.

E.5 TRANSFORMING IBR AND CEBR INTO TRACTABLE LOSSES

In this section we derive the variational approximation of the IBR criterion, defined by:
IBRβib,δr (Z1, Z2) = IBβib

(Z1) + IBβib
(Z2) + δrI(Z1;Z2).

Redundancy Estimation To estimate the redundancy component, we apply the same procedure as
for conditional redundancy but without the categorical constraint, as in the seminal work of Belghazi
et al. (2018) for mutual information estimation. Let B and Bp be two random batches sampled
respectively from the observed joint distribution p(z1, z2) = p(e1(z|x), e2(z|x)) and the product
distribution p(z1)p(z2) = p(e1(z|x))p(e2(z|x′)), where x, x′ are two inputs that may not belong
to the same class. We similarly train a network w that tries to discriminate these two distributions.
With f = w

1−w , the redundancy estimation is:

ÎRDV =
1

|B|
∑

(z1,z2)∈B

log f(z1, z2)︸ ︷︷ ︸
Diversity

− log(
1

|Bp|
∑

(z1,z′2)∈Bp

f(z1, z
′
2)),

and the final loss:
L̂RDV (e1, e2) =

1

|B|
∑

(z1,z2)∈B

log f(z1, z2).
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IBR Finally we train θ1 = {e1, b1, c1} and θ2 = {e2, b2, c2} jointly by minimizing:

LIBR(θ1, θ2) = VIBβib
(θ1) + VIBβib

(θ2) + δrL̂RDV (e1, e2). (9)

CEBR For ablation study, we also consider a criterion that would benefit from CEB’s tight ap-
proximation but with non-conditional redundancy regularization:

LCEBR(θ1, θ2) = VCEBβceb
(θ1) + VCEBβceb

(θ2) + δrL̂RDV (e1, e2). (10)

F FIRST, SECOND AND HIGHER-ORDER INFORMATION INTERACTIONS

F.1 DICE REDUCES FIRST AND SECOND ORDER INTERACTIONS

Applying information-theoretic principles for deep ensembles leads to tackling interactions among
features through conditional mutual information minimization. We define the order of an informa-
tion interaction as the number of different extracted features involved.

First Order Tackling the first-order interaction I(X;Zi|Y ) with VCEB empirically increased
overall performance compared to ensembles of deterministic features extractors learned with cat-
egorical cross entropy, at no cost in inference and almost no additional cost in training. In the
Markov chain Zi ← X → Zj , the chain rules provides: I(Zi;Zj |Y ) ≤ I(X;Zi|Y ). More gen-
erally, I(X;Zi|Y ) upper bounds higher order interactions such as third order I(Zi;Zj , Zk|Y ). In
conclusion, VCEB reduces an upper bound of higher order interactions with quite a simple varia-
tional approximation.

Second Order In this paper, we directly target the second-order interaction I(Zi;Zj |Y ) through
a more complex adversarial training. We increase diversity and performances by remove spurious
correlations shared by Zi and Zj that would otherwise cause simultaneous errors.

Higher Order interactions include the third order I(Zi;Zj , Zk|Y ), the fourth order
I(Zi;Zj , Zk, Zl|Y ), etc, up to the M -th order. They capture more complex correlations among
features. For example, Zj alone (and Zk alone) could be unable to predict Zi, while they [Zj , Zk]
could together. However we only consider first and second order interactions in the current submis-
sion. It is common practice, for example in the feature selection literature (Battiti, 1994; Fleuret,
2004; Brown, 2009; Peng et al., 2005). The main reason to truncate higher order interactions is com-
putational, as the number of components would grow exponentially and add significant additional
cost in training. Another reason is empirical, the additional hyper-parameters may be hard to cali-
brate. But these higher order interactions could be approximated through neural estimations like the
second order. For example, for the third order, features Zi, Zj and Zk could be given simultaneously
to the discriminator w. The complete analysis of these higher order interactions has huge potential
and could lead to a future research project.

F.2 LEARNING FEATURES INDEPENDENCE WITHOUT COMPRESSION

The question is whether we could learn deterministic encoders with second order I(Zi;Zj |Y ) reg-
ularization without tackling first order I(X;Zi|Y ). We summarized several approaches in Table
11.

First Approach Without Sampling Deterministic encoders predict deterministic points in the
features space. Feeding the discriminator w with deterministic triples without sampling increases
diversity and reaches 77.09, compared to 76.78 for independent deterministic. Compared to DICE,
w’s task has been simplified: indeed, w tries to separate the joint and the product deterministic dis-
tributions that may not overlap anymore. This violates convergence conditions, destabilizes overall
adversarial training and the equilibrium between the encoders and the discriminator.

Sampling and Reparameterization Trick To make the joint and product distributions overlap
over the features space, we apply the reparametrization trick on features with variance 1. This
second approach is similar to instance noise (Sønderby et al., 2016), which tackled the instability of
adversarial training. We reached 77.33 by protecting individual accuracies.
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Table 11: Comparison between deterministic and distribution encoders on 4-branches ResNet-
32 for Top-1 accuracy (%) on CIFAR-100.

Method CR Reparameterization
trick

Variance
in Sampling

Categorical Cross-Entropy
(Deterministic Encoder)

VCEB
(Distribution Encoder)

No CR 76.78± 0.19 76.98± 0.18
CR without sampling X 77.09 ± 0.24 77.12 ± 0.17
CR with variance=1 X X 1 77.33 ± 0.21 77.29 ± 0.14

CR with input-dependant variance X X eσi (x) - 77.51± 0.17

Synergy between CEB and CR In comparison, we obtain 77.51 with DICE. In addition to the-
oretical motivations, VCEB and CR work empirically in synergy. First, the adversarial learning is
simplified and only focuses on spurious correlations VCEB has not already deleted. Thus it may
explain the improved stability related to the value of δcr and the reduction in standard deviations in
performances. Second, VCEB learns a Gaussian distribution; a mean but also an input-dependant
covariance eσi (x). This covariance fits the uncertainty of a given sample: in a similar context, Yu
et al. (2019) has shown that large covariances were given for difficult samples. Sampling from
this input-dependant covariance performs better than using an arbitrary fixed variance shared by all
dimensions from all extracted features from all samples, from 77.29 to 77.51.

Conclusion DICE benefits from both components: learning redundancy along with VCEB im-
proves results, at almost no extra cost. We think CR can definitely be applied with deterministic
encoders as long as the inputs of the discriminator are sampled from overlapping distributions in
the features space. Future work could study new methods to select the variance in sampling. As
compression losses yield additional hyper-parameters and may underperform for some architec-
tures/datasets, learning only the conditional redundancy (without compression) could increase the
applicability of our contributions.

G IMPACT OF THE SECOND TERM IN THE NEURAL ESTIMATION OF
CONDITIONAL REDUNDANCY

G.1 CONDITIONAL REDUNDANCY IN TWO COMPONENTS

The conditional redundancy can be estimated by the difference between two components:

ÎCRDV =
1

|B|
∑

(z1,z2,y)∈B

log f(z1, z2, y)︸ ︷︷ ︸
Diversity

− log

 1

|Bp|
∑

(z1,z′2,y)∈Bp

f(z1, z
′
2, y)︸ ︷︷ ︸

Fake correlations

 , (11)

with f = w
1−w . In this paper, we focused only on the left hand side (LHS) component from equa-

tion 11 which leads to L̂CRDV in equation 4. We showed empirically that it improves ensemble diver-
sity and overall performances. LHS forces features extracted from the same input to be unpredictable
from each other; to simulate that they have been extracted from two different images.

Now we investigate the impact of the right hand side (RHS) component from equation 11. We
conjecture that RHS forces features extracted from two different inputs from the same class to create
fake correlations, to simulate that they have been extracted from the same image. Overall, the RHS
would correlate members and decrease diversity in our ensemble.

G.2 EXPERIMENTS

These intuitions are confirmed by experiments with a 4-branches ResNet-32 on CIFAR-100, which
are illustrated in Figure 12. Training only with the RHS and removing the LHS (the opposite of
what is done in DICE) reduces diversity compared to CEB. Moreover, keeping both the LHS and
the RHS leads to slightly reduced diversity and ensemble accuracy compared to DICE. We obtained
77.40± 0.19 with LHS+RHS instead of 77.51± 0.17 with only the LHS. In conclusion, dropping the
RHS performs better while reducing the training cost.
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Figure 12: Training dynamics and ablation study of components from equation 11. Adding
the RHS overall decreases ensemble performances, in terms of accuracy (upper left) or uncertainty
estimation (upper right), when combined with CEB or DICE(=LHS). It decreases diversity (lower
right) with no clear impact on individual accuracy (lower left).

H SOCIOLOGICAL ANALOGY

We showed that increasing diversity in features while encouraging the different learners to agree
improves performance for neural networks: the optimal diversity-accuracy trade-off was obtained
with a large diversity. To finish, we make a short analogy with the importance of diversity in our
society. Decision-making in group is better than individual decision as long as the members do
not belong to the same cluster. Homogenization of the decision makers increases vulnerability to
failures, whereas diversity of backgrounds sparks new discoveries (Muldoon, 2016): ideas should
be shared and debated among members reflecting the diversity of the society’s various components.
Academia especially needs this diversity to promote trust in research (Sierra-Mercado & Lázaro-
Muñoz, 2018), to improve quality of the findings (Swartz et al., 2019), productivity of the teams
(Vasilescu et al., 2015) and even schooling’s impact (Bowman, 2013).

I LEARNING STRATEGY OVERVIEW

We provide in Figure 13 a zoomed version of our learning strategy.

J MAIN TABLE

Table 12 unifies our main results on CIFAR-100 from Table 1 and CIFAR-10 from Table 2.
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