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Abstract

Low-resource languages, by its very definition,001
tend to be under represented in the pre-training002
corpora of Large Language Models. In this003
work, we investigate three low-resource cross-004
lingual approaches that enable an LLM adapt to005
tasks in previously unseen languages. Llama-2006
is an LLM where Indic languages, among007
many other language families, contribute to008
less than 0.005% of the total 2 trillion token009
pre-training corpora. In this work, we experi-010
ment with the English-dominated Llama-2 for011
cross-lingual transfer to three Indic languages,012
Bengali, Hindi, and Tamil as target languages.013
We study three approaches for cross-lingual014
transfer, under ICL and fine-tuning. One, we015
find that adding additional supervisory signals016
via a dominant language in the LLM, leads017
to improvements, both under in-context learn-018
ing and fine-tuning. Two, adapting the target019
languages to word reordering may be benefi-020
cial under ICL, but its impact diminishes with021
fine tuning. Finally, continued pre-training in022
one low-resource language can improve model023
performance for other related low-resource lan-024
guages.025

1 Introduction026

Large language models (LLM; Brown et al., 2020;027

Touvron et al., 2023; Chowdhery et al., 2022; Mes-028

nard et al., 2024) are known to generalise well029

across several tasks, including in few shot and zero-030

shot setups. However, there is limited evidence that031

shows the ability of these models to generalise to032

tasks in new languages out of the box, especially to033

those with which the model has limited exposure to.034

In this work, we investigate how effectively we can035

leverage the LLMs for cross lingual transfer, espe-036

cially for adapting it to low-resource languages.037

LLMs typically require tens of billions, if not tril-038

lions, of tokens for its pre-training. Now, that is a039

challenge for majority of the languages in the world.040

More than 80% of languages in the world are ‘left041

Figure 1: Improved natural language understanding
(NLU) and generation (NLG) of Llama-2-7b in Ben-
gali and Tamil through continued pre-training in Hindi
(Bridging) and leveraging English for cross-lingual
transfer (Handholding).

behind’ (Joshi et al., 2020), and barely have enough 042

digitised data that matches the requirements for pre- 043

training an LLM from scratch. For instance, the 044

most populous country in the world, India, speaks 045

more than 400 languages1, with 22 of them recog- 046

nised as scheduled languages by the Government of 047

India. However, none of these languages contribute 048

to more than 0.005% of the pre-training data of 049

an open-source LLM like Llama-2 (Touvron et al., 050

1https://en.wikipedia.org/wiki/Languages_of_
India
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Figure 2: Task of slot filling, using the cross-lingual transfer objective from English to Hindi, using an LLM. In this
example, the word ‘sun’ translates to ‘sūraja’ in Hindi and ‘sunday’ translates to ‘ravivāra’. Thus, in the output. the
LLM assigns the label weather_descriptor to the word ‘sun’ in Hindi, and the label date to ‘sunday’ in Hindi. Refer
to Table 11 and Table 12 for details on the prompt.

2023). In fact, more than 95% of these languages051

lack enough digital resources to incorporate them052

into an LLM. These resource-poor languages tend053

to get poorer in representation with the progress in054

the field (Joshi et al., 2020; Ojo et al., 2024).055

Some of the recent works, explore various tech-056

niques to adapt an LLM to new languages, es-057

pecially with limited target language resources058

(Rathore et al., 2023). Tanwar et al. (2023) exploit059

cross-lingual transfer to improve in-context learn-060

ing (ICL) for binary sequence classification tasks061

in low-resource languages by utilizing in-context062

exemplars from a high-resource language seman-063

tically similar to the input in the target language.064

Husain et al. (2024) employ continual pre-training065

on Llama-2 with romanized pre-training corpora066

of non-roman script languages, to exploit cross-067

lingual transfer using the script of English. Awasthi068

et al. (2023) use 540b PaLM (Chowdhery et al.,069

2022) to generate training data in low-resource lan-070

guages using labelled instances in English. Razu-071

movskaia et al. (2024) provide analyses of multi-072

lingual capabilities of LLMs on NLU tasks under073

the settings of in-context learning (ICL), super-074

vised fine-tuning (SFT), and supervised instruction-075

tuning (SIT).076

Our investigation primarily involves the follow-077

ing three questions, centered around information078

extraction (IE) tasks in a low-resource language us-079

ing an instruction-tuned LLM. Q1. Handholding:080

For an IE task in a low-resource target language,081

would providing a parallel, annotated sentence in082

the predominant language of the LLM, help to ex-083

ploit cross-lingual transfer, resulting in improved084

performance for the target language. By predomi-085

nant language, we imply the language that forms086

the majority of the pre-training corpora. Q2. Mas-087

querading: Would adapting the target language to 088

resemble the predominant language enable in cross- 089

lingual transfer, benefiting the target language. Fi- 090

nally, Q3. Bridging: Whether model adaptation 091

in one of the low-resource languages can benefit 092

other related low-resource languages. More clarity 093

on these questions, is presented in Section 2. 094

We focus on three Indic languages, namely, Ben- 095

gali, Hindi, and Tamil. These languages are cultur- 096

ally diverse within the Indic context, with Bengali 097

and Hindi belonging to the Indo-Aryan family and 098

Tamil to the Dravidian family. To evaluate our 099

hypotheses Q1, Q2, and Q3, we focus on two in- 100

formation extraction tasks: slot filling and named 101

entity recognition (NER). Further, we use a 7 bil- 102

lion parameter English-centric LLM Llama-2 as 103

our base LLM, unless otherwise stated. The slot 104

filling and named entity recognition tasks possess 105

label-set size of 55 and 3, respectively. Addition- 106

ally, none of Bengali, Hindi, and Tamil contribute 107

to more than 0.005% of the pre-training corpora 108

of Llama-2. Moreover, English is the predomi- 109

nant language, contributing to roughly 90% of the 110

pre-training corpora. 111

In our experiments, we simlulate a low-resource 112

scenario where we do not expect the target lan- 113

guage to have more than roughly 10, 000 instances. 114

In Bridging, when Llama-2 is adapted with Hindi 115

through continued pre-training, we use more than 116

10,000 sentences in Hindi. However, in this case, 117

Hindi is referred to as the bridge language. The 118

evaluation is solely performed on Bengali and 119

Tamil, both of which satisfy aforementioned cri- 120

teria for the low-resource setting. Our investiga- 121

tion includes exploiting few-shot in-context learn- 122

ing (ICL) ability of Llama-2 as well as model 123

adaptation with parameter-efficient supervised fine- 124
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tuning (PEFT). To evaluate Llama-2, or any auto-125

regressive LLM in general, we frame the tasks of126

slot filling and named entity recognition as text-127

to-text generation tasks. Figure 2 showcases slot128

filling as a text-to-text generation task.129

Extensive experiments on Llama-2 show that130

Handholding improves NLU and NLG in Ben-131

gali, Hindi and Tamil by exploiting cross-lingual132

transfer from English, under both few-shot ICL133

and PEFT. Further, Bridging with Hindi, improves134

monolingual task performance in related languages135

of Bengali and Tamil under PEFT. Ultimately,136

Handholding + Bridging turns out the most bene-137

ficial combination, yielding best task performance138

for both low-resource languages of Bengali and139

Tamil. A quantitative overview has been presented140

in Figure 1.141

Our major contributions can be summarized as142

follows:143

• We demonstrate that the predominant lan-144

guage of an LLM can be leveraged to aid low-145

resource languages. Specifically, leveraging146

English via Handholding, improves the over-147

all performance of Llama-2 for information148

extraction tasks in Hindi, Bengali, and Tamil149

under both few-shot in-context learning (ICL)150

and parameter-efficient fine-tuning (PEFT).151

• Improved natural language understanding and152

generation in Bengali and Tamil, as shown by153

our experiments with Llama-2 adapted with154

Hindi (Bridging), demonstrates that adapting155

a model in one low-resource language can156

benefit other related languages.157

• Modifying target language via (Masquerad-158

ing) to resemble the predominant language,159

English, gives superficial benefits in few-shot160

ICL and diminishes further in PEFT.161

2 Preliminaries162

2.1 Task Definition163

Given a finite label-set L, let XS =164

(XS
1 , X

S
2 , . . . , X

S
n ) denote a sentence in source165

language and AS = (AS
1 , A

S
2 , . . . , A

S
n) represent166

the corresponding word-level label sequence,167

where AS
i ∈ L ∪ {ϕ} and ϕ indicates the absence168

of a label. A labelled source sequence is given169

by ZS = ((XS
1 , A

S
1 ), (X

S
2 , A

S
2 ), . . . , (X

S
n , A

S
n)).170

In Handholding, our goal is to transfer these171

annotations to a parallel, unannotated sentence172

in target language XT = (XT
1 , X

T
2 , . . . , X

T
m), 173

producing an labelled target sentence ZT . Figure 2 174

demonstrates the defined text-to-text cross-lingual 175

setup. Formally, 176

ZT = argmax
Y

PLLM(Y | ZS ,XT ) 177

where Y = ((Y1, B1), (Y2, B2), . . . , (Ym, Bm)) 178

is a potential annotated target sentence, with Yi 179

being elements of XT and Bi being elements of 180

L∪{ϕ}. In our context, the conditional probability 181

can be decomposed following the auto-regressive 182

nature of LLM generation: 183

PLLM(Y | ZS ,XT ) =∏
i

P ((Yi, Bi) | (Yj , Bj)<i,Z
S ,XT ) 184

In a similar manner, as shown in Figure 2, a 185

monolingual objective with no Handholding, can 186

be formulated in the following manner: 187

ZT = argmax
Y

PLLM(Y | XT ) 188

189

PLLM(Y | XT ) =
∏
i

P ((Yi, Bi) | (Yj , Bj)<i,X
T ) 190

2.2 Handholding, Masquerading, and 191

Bridging 192

Predominant Language as a Point of Supervi- 193

sion: In our work, with Llama-2, English is the 194

predominant language with 89.70% presence in the 195

pre-training corpora of Llama-2. On the contrary, 196

low-resource languages like Bengali, Hindi, and 197

Tamil, cover less than 0.005%, and can be regarded 198

as ‘unseen’ when compared to English. To lever- 199

age the understanding of Llama-2 in English for 200

an IE task in a low-resource ‘target’ language, we 201

include annotated parallel sentence in English as 202

a part of the task-specific prompt to the LLM. As 203

shown in Figure 2, referred to as Handholding, we 204

utilize annotated English sentence (ZS) to facilitate 205

cross-lingual transfer to the target language. 206

Adaptation of Target Language: To further aid 207

cross-lingual transfer, we look at ways in which 208

the target language can resemble English. First, 209

we look at word order. Word order refers to the 210

arrangement of words in a sentence. Word order 211

is one of the syntactic features that varies across 212

languages. English follows subject-verb-object or- 213

der. On the contrary, Indic languages largely follow 214
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subject-object-verb word order where the verb ap-215

pears at the tail part of a sentence. Second, we216

look at the script of English, to aid cross-lingual217

transfer. As English follows the Latin script, we218

employ transliteration schemes to transform the219

sentence in the target language to Latin. We refer220

to this adaptation of the target to resemble English221

as Masquerading. Figure 2 gives an overview of222

target sentence (XT) masqueraded to resemble223

English.224

Related Language as a Bridge: Continual pre-225

training (Cui et al., 2024; Gupta et al., 2023), vo-226

cabulary extension (Zhao et al., 2024), instruction-227

tuning(Gala et al., 2024; Li et al., 2023; Husain228

et al., 2024) are some of the ways to increase rep-229

resentation of language(s) into an LLM. As Hindi230

is one of the most represented languages in India,231

we investigate the effect of adapting an LLM in232

Hindi through continual pre-training, on related233

low-resource languages of Bengali and Tamil. We234

refer to this as Bridging. Hindi in this scenario,235

becomes the bridge language, while Bengali and236

Tamil become the target languages for evaulation.237

3 Experiments238

3.1 Datasets239

Slot Filling: We use Amazon Massive (FitzGer-240

ald et al., 2022). The dataset includes slot anno-241

tated virtual assistant utterances parallel across242

51 languages. We choose sentences from [utt]243

and [annot_utt] fields of the dataset to represent244

unannotated sequence X and ground-truth anno-245

tated sequence Z respectively for cross-lingual246

transfer among languages: English, Bengali,247

Hindi, and Tamil. This dataset includes 55 label248

types, including place_name, business_name,249

music_genre, among others. Refer to Table 9 for250

all label types and Table 8 for the train-test split.251

Named Entity Recognition: We work with with252

AI4Bharat Naamapadam (Mhaske et al., 2023), the253

largest publicly available NER dataset for 11 Indic254

languages, sampled and annotated from Samanan-255

tar (Ramesh et al., 2022). For the languages in256

focus, Bengali, Hindi, and Tamil, Naamapadam257

has 961.7k, 985.8k, and 497.9k instances in their258

train split, respectively. We sample 16k instances259

for each of the languages. Due to the absence of260

ground-truth annotated parallel sequences in En-261

glish for each of Hindi, Bengali, and Tamil, we262

leverage the same strategy as (Mhaske et al., 2023)263

and pick the corresponding set of English sen- 264

tences from Samanantar and annotate them using 265

a bert-base token-classification reference model. 266

List of all label types and train-test split can be 267

found in Table 9 and Table 8, respectively. 268

3.2 Implementation Details 269

To evaluate all the hypotheses presented in Sec- 270

tion 2, we use English-centric Llama-2-7b (Tou- 271

vron et al., 2023). By ‘English-centric’, we mean to 272

point that English is the predominant language of 273

the LLM. Particularly, we use Llama-2-7b-chat, 274

the instruction-tuned variant of pre-trained base 275

Llama-2-7b. The need for the instruction-tuned 276

variant is mainly attributed to the nature of a 277

prompt-based generation task where we expect an 278

LLM to be prompted with an instruction followed 279

by an input instance. 280

For Handholding, we use English as the labelled 281

point of supervision to enable cross-lingual transfer. 282

Further, we do not use ground-truth English labels 283

during task-specific model inference; instead, we 284

label the English sentence using a token classifica- 285

tion model before the cross-lingual transfer step. 286

We refer to these predicted labels for English as 287

pseudo labels and the ground-truth labels for En- 288

glish as oracle labels. For slot filling, we use 84.05 289

F1 score xlm-roberta-base2 token classification 290

model proposed in (Kubis et al., 2023). Whereas, 291

for named entity recognition, we use 91.3 F1 score 292

bert-base3 token classifier, as discussed in Sec- 293

tion 3.1. Figure 4 shows the difference between an 294

oracle and pseudo labelled sentence in English for 295

the task of slot filling. 296

In Masquerading with word order, we use 297

GIZA++ (Och and Ney, 2003), a word alignment 298

model based on the statistical models by IBM 299

(Brown et al., 1993) and pre-trained LM-based 300

SimAlign (Sabet et al., 2021) to generate word 301

re-ordered target sentences. Specifically, we use 302

SimAlign for Hindi and GIZA++ for Bengali and 303

Tamil based on qualitative assessment. In the 304

latter setting of Masquerading, we follow ISO 305

15919:2001 to transliterate the sentences in Ben- 306

gali, Hindi, and Tamil to Latin script. Refer Fig- 307

ure 3 for an example of adapting Hindi to resemble 308

English. 309

For Bridging, we utilize Airavata-7b (Gala 310

et al., 2024), a continually pre-trained and 311

2https://huggingface.co/cartesinus/
xlm-r-base-amazon-massive-slot

3https://huggingface.co/dslim/bert-base-NER
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Figure 3: English follows subject verb object
word order in contrast to Hindi. Hindi follows the word
order of subject object verb As shown, XT is
presented in SOV order and re-ordered XT is presented
in SVO order. transliterated XT is XT in Latin script
using ISO 15919:2001. Here, only the script of XT is
changed, keeping the word order of Hindi.

instruction-tuned version of pre-trained base312

Llama-2-7b model in code-mixed Hindi and En-313

glish. To ensure that the effect of Bridging in Hindi314

on Bengali and Tamil can be solely attributed to the315

increased representation of Hindi, we highlight the316

key differences between Llama-2-7b-chat and317

Airavata-7b.318

According to Touvron et al. (2023),319

Llama-2-7b-chat builds on Llama-2-7b320

base pre-trained model through supervised321

fine-tuning with publicly available SFT datasets322

(Chung et al., 2022) and 27, 540 high-quality323

in-house vendor-based SFT annotations followed324

by reinforcement learning through human feed-325

back (RLHF) (Ouyang et al., 2022) with over 1326

million human annotated instances. Whereas, to327

train Airavata-7b, Gala et al. (2024) employ328

LoRA fine-tuning on a continually pre-trained329

Llama-2-7b with publicly available English330

SFT datasets, with their translations in Hindi,331

amounting to a total of 385K SFT instances.332

We note two observations: (1) the utilized SFT333

datasets do not cover either of the two datasets334

used in our evaluation, eliminating any case of335

labelled data leakage and (2) the quality of the336

SFT instances used for training Airavata-7b does337

not match that of Llama-2-7b-chat, mainly due338

to absence of high quality in-house annotations339

and the Hindi subset being translations of publicly340

available English SFT instances, which generally341

possess insufficient diversity and insufficient qual-342

ity (Touvron et al., 2023). Hereafter, we refer to343

Llama-2-7b-chat and Airavata-7b, simply as344

Llamachat and Airavata, respectively.345

Figure 4: Here, oracle ZS refers to the ground-truth
annotation of XS. pseudo ZS is obtained after passing
XS through an xlm-roberta-base token classification
model.

We use HuggingFace transformers4 (Wolf 346

et al., 2020) for task and language adaptation with 347

PEFT and ICL experiments. For ICL, we em- 348

ploy openICL (Wu et al., 2023) and use k-nearest 349

neighbour based retrieval for few-shot demonstra- 350

tions, following Liu et al. (2022). For retrieval, 351

we compute sentence level representation of the 352

inference time input and the training data using 353

Reimers and Gurevych (2019). We specifically use 354

xlm-roberta-base (Conneau et al., 2020) as the 355

base pre-trained model. We choose 8 input-output 356

pairs as for the few-shot demonstrations. These 357

demonstrations for both tasks are mutually exclu- 358

sive. For instance, in Masquerading with word or- 359

der, we keep all demonstrations to have re-ordered 360

sentences in the target language. It ensures that the 361

few-shot examples are directly relevant to the task 362

variation with high specificity. 363

For PEFT, we utilize HuggingFace PEFT5 with 364

LoRA (Hu et al., 2021) on top of 4-bit quantiza- 365

tion, to fine-tune Llamachat and Airavata on a sin- 366

gle 80GB NVIDIA A100 Tensor Core GPU. With 367

PEFT-LoRA, trainable parameters amount to only 368

0.5% of the total parameters of the aforementioned 369

LLMs. We train our models with 32-bit paged 370

AdamW (Loshchilov and Hutter, 2019) optimizer, 371

with an initial learning rate of 1 × 10−3 coupled 372

with a cosine scheduler. Refer to Appendix D for 373

detailed model configuration. 374

During inference, we switch to Contrastive 375

Search6 (Su and Collier, 2023) with α = 0.6 to 376

penalize token repetitions and control model behav- 377

ior to generate human-level coherent outputs. 378

Metrics: We use micro-F1 as our primary evalua- 379

tion metric for slot filling and named entity recogni- 380

4https://huggingface.co/docs/transformers/
index

5https://github.com/huggingface/peft
6https://huggingface.co/blog/

introducing-csearch
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tion, both being NLU tasks. Given that both tasks381

are framed as text-to-text tasks via an LLM, we382

also include Exact Match to capture correctness,383

and chrF++ (Popović, 2017) to assess the lexical384

overlap between the LLM-generated prediction and385

the ground-truth reference. Additionally, we mea-386

sure the naturalness of the generated output on 500387

randomly sampled test instances using MAUVE388

(Pillutla et al., 2021).389

4 Results390

In this section, we present our findings with com-391

parative analysis for the approaches of Handhold-392

ing, Masquerading, and Bridging on Llama-2 with393

few-shot ICL and PEFT. For consolidated quantita-394

tive figures with PEFT refer to Table 7.395

Monolingual ICL Results: We report near zero396

performance with Llamachat in the monolingual397

ICL settings. We follow few-shot prompt demon-398

stration under 3 different ICL settings. Here, we399

provide the input in the target language as is,400

or masquerade it by either transliterating or re-401

ordering the input. Nevertheless, we observe near-402

zero micro-F1, exact match (EM) scores, and poor403

lexical overlap with reference outputs in all three404

languages for both the tasks. These observations405

align with the observations made in (Razumovskaia406

et al., 2024) and demonstrate the challenges in407

adapting a new unseen language in ICL settings408

to an LLM like Llama-2.409

Language
Metric Llamachat (monolingual)

F1 EM chrF++ MAUVE

Slot Filling

Bengali 54.72 22.37 71.40 89.07
Hindi 51.89 23.15 70.90 59.82
Tamil 44.29 14.37 70.65 49.04

Named Entity Recognition

Bengali 59.98 24.69 85.91 95.28
Hindi 71.58 38.25 90.00 98.70
Tamil 39.92 12.25 68.72 33.06

Table 1: Monolingual performance of Llamachat under
PEFT.

Monolingual PEFT Results: As shown in Ta-410

ble 1, we observe performance improvements un-411

der monolingual settings, when the model param-412

eters are updated with task-specific PEFT. Aver-413

aged over both tasks, the exact match (EM) scores414

of labelled output generations in Bengali, Hindi,415

and Tamil stand at 23.53%, 30.7%, and 13.31%,416

respectively. Whereas, the lexical overlap of the 417

generated outputs with the ground-truth outputs are 418

78.65%, 80.45%, and 69.68%, respectively. These 419

Indic languages are morphologically rich, in gen- 420

eral, leading to lower EM scores, though report 421

higher chrF++ (lexical overlap) and MAUVE (nat- 422

uralness) scores, comparatively. 423

Language
Metric Llamachat (Handholding)

F1 EM chrF++ MAUVE

Slot Filling

Bengali 64.32 36.82 79.27 90.39
Hindi 60.60 36.70 77.95 89.72
Tamil 61.48 33.79 80.67 76.51

Named Entity Recognition

Bengali 80.35 45.44 91.00 93.36
Hindi 78.03 47.50 90.38 97.09
Tamil 74.18 42.69 88.75 81.34

Table 2: Effect of Handholding on Llamachat under
PEFT.

Handholding PEFT Results: Table 2 shows the 424

performance for the target language under PEFT 425

with Handholding. We observe that Handholding 426

can help further improve the performance in the 427

target language, with task-specific PEFT. Bengali, 428

Hindi and Tamil benefit from labelled sentence in 429

English under PEFT by 9.6%, 8.71%, and 17.19% 430

micro-F1 score for slot filling, and 20.37%, 6.45%, 431

and 34.26% micro-F1 score for named entity recog- 432

nition. EM scores also improve by an average of 433

17.6%, 11.4%, and 24.93% for Bengali. Hindi and 434

Tamil, respectively. Similarly, lexical overlap im- 435

proves in 6 out of 6 cases. However, we observe a 436

drop of 1.92% and 1.61% in naturalness scores of 437

Bengali and Hindi for the NER task. 438

Language
Change H

H + M
(re-ordered)

H + M
(transliterated)

Slot Filling

en(source) → bn(target) 28.02 30.12∗ 18.01
en(source) → hi(target) 38.97 40.82∗ 16.57
en(source) → ta(target) 22.09 24.38∗ 12.61

Named Entity Recognition

en(source) → bn(target) 13.89 27.88∗ 17.78
en(source) → hi(target) 47.61 49.82∗ 19.61
en(source) → ta(target) 19.07 30.08∗ 18.84

Table 3: Micro-F1 scores for the combination of Hand-
holding (H) and Masquerading (M) under few-shot
ICL.The symbol, ∗ represents statistically significant
gains based on pairwise t-tests with just Handholding
(p < 0.05).
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Handholding ICL Results: Similarly, Table 3439

reports significant improvements in cross-lingual440

transfer to the target language when using Hand-441

holding under ICL settings as well. With few-shot442

ICL using Handholding, we see significant gains,443

as compared to the near-zero performances with444

few-shot ICL in monolingual settings. Moreover,445

we are getting non-zero EM scores in 4 out of 6446

cases with Handholding under ICL. Nevertheless,447

as expected, the performance improvements in ab-448

solute terms is much higher in Handholding with449

task-specific PEFT (Table 2).450

Handholding and Masquerading ICL Results:451

Further, Handholding, along with Masquerading452

via word re-ordering, leads to statistically signifi-453

cant results under ICL. Table 3 shows the results for454

both Masquerading via re-ordering and translitera-455

tion. For both the tasks, re-ordering the sentences456

in all the three languages to resemble the word457

order in English leads to statistically significant458

results. However, Handholding + Masquerading459

via transliterated target sentences under ICL results460

in performance drops. As shown in Table 3, the461

use of transliterated sentences generally results in462

worse performance than using Handholding alone,463

except for Bengali in NER.464

Language
Change H

H + M
(re-ordered)

Slot Filling

en(source) → bn(target) 64.32 63.19
en(source) → hi(target) 60.60 61.11
en(source) → ta(target) 61.48 63.30

Named Entity Recognition

en(source) → bn(target) 80.35 55.23
en(source) → hi(target) 78.03 54.01
en(source) → ta(target) 74.18 43.96

Table 4: Micro-F1 scores for the combination of Hand-
holding (H) and Masquerading (M) under PEFT.

Handholding and Masquerading PEFT Results:465

As shown in Table 2 and Table 3, Handholding466

benefits the target language, both under ICL and467

PEFT settings. Similarly, combining Handhold-468

ing with Masquerading via word re-ordering has469

shown to be beneficial under ICL. Table 4 presents470

the results for the combination of Handholding and471

Masquerading with task-specific PEFT. However,472

the benefits from Masquerading appear to diminish473

or be counterproductive during PEFT, especially474

for NER tasks. Nevertheless we see statistically475

significant gains for Slot Filling in Tamil, though 476

not for Hindi. Within Masquerading, we do not 477

explore the setting of transliteration of target sen- 478

tence due to its consistent poor performance under 479

few-shot ICL. For slot filling, Bengali sees a reduc- 480

tion of 1.13% micro-F1 whereas Hindi and Tamil 481

observe increase in micro-F1 scores by 0.51% and 482

1.82%, respectively. 483

Language
Model

Llamachat Airavata

Slot Filling

bn(target) 54.72 64.28∗

ta(target) 44.29 46.03∗

Named Entity Recognition

bn(target) 59.98 66.62∗

ta(target) 39.92 66.14∗

Table 5: Micro-F1 scores for the effect of Bridging on
monolingual performance in Bengali and Tamil. The
symbol, ∗ represents statistically significant gains for
Airavata based on pairwise t-tests with Llamachat (p <
0.05).

Bridging: In Bridging, Hindi serves as the bridge 484

language, while English still remains the predom- 485

inant language. In this case, we evaluate model 486

performance on Bengali and Tamil as the target 487

languages. As discussed in Section 3.2, we use 488

Airavata to evaluate the effect of increased rep- 489

resentation of Hindi on the related languages of 490

Bengali and Tamil. Our first observation fol- 491

lows that Bridging improves monolingual perfor- 492

mance in both Bengali and Tamil with task-specific 493

PEFT. As shown in Table 5, Airavata outperforms 494

Llamachat in both Bengali and Tamil for both tasks 495

of slot filling and named entity recognition. For 496

slot filling, Bengali observes an increase of 9.56% 497

micro-F1, 21.37% increase in EM score, 10.17% 498

increase in lexical overlap and an improved out- 499

put naturalness by 9.63%. Whereas, Tamil benefits 500

with an increased micro-F1, and EM of 1.74%, 501

and 7.03%. respectively. However, lexical overlap 502

and naturalness of generated outputs with reference 503

outputs falls by 9.31% and 12.52% in Airavata as 504

compared to Llamachat. For named entity recogni- 505

tion, we see similar improvements under all met- 506

rics, for both languages post Bridging except the 507

fall in naturalness for Bengali by 2.47%. 508

Handholding and Bridging: Table 6 presents 509

the best performing combination, in terms of model 510

performance for slot filling and named entity recog- 511
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Language
Model

Llamachat Airavata

Slot Filling

en(source) → bn(target) 64.32 67.21
en(source) → ta(target) 61.48 65.24

Named Entity Recognition

en(source) → bn(target) 80.35 84.80
en(source) → ta(target) 74.18 82.09

Table 6: Micro-F1 scores for the combination of Hand-
holding (H) + Bridging (B) under PEFT.

nition. This is achieved by Bridging Llama-2 with512

Hindi, followed by task-specific model adaptation513

through PEFT with Handholding. In this case,514

Bengali benefits by 2.89% micro-F1, 11.72% EM515

score, 1.54% lexical overlap and 4.98% in natural-516

ness as compared to Handholding with Llamachat517

for the task of slot-filling and 4.45% in micro-F1,518

13.81% in EM score, 2.86% in lexical overlap and519

6.49% in naturalness for named entity recognition.520

Similarly, for slot filling, Tamil observes increase521

of 3.84% micro-F1, 10.37% EM score, but a drop522

in 0.26% lexical overlap and 2.69% naturalness of523

generated output. Whereas, for named entity recog-524

nition, model performance in Tamil increases by525

7.91% micro-F1, 19.87% EM score, 5.89% lexical526

overlap, and 18.12% naturalness score.527

5 Conclusion528

In this work, through extensive experiments on529

English-centric Llama-2-7b-chat under both ICL530

and PEFT, we show that Handholding improves531

NLU and NLG in low-resource languages: Ben-532

gali, Hindi and Tamil by exploiting cross-lingual533

transfer from English, demonstrating that the pre-534

dominant language of an LLM can be leveraged535

to aid low-resource languages. Further, Bridging536

with a low-resource related language Hindi, results537

to improved monolingual task performance in re-538

lated languages of Bengali and Tamil. Ultimately,539

through Handholding + Bridging, we show that540

incorporating both the predominant language of541

the LLM and adapting the LLM in a related lan-542

guage results to better cross-lingual transfer, lead-543

ing to significantly improved understanding and544

generation in other related low-resource languages.545

However, adapting the target language to resem-546

ble the predominant language in terms of syntax547

and script (Masquerading), only leads to superfi-548

cial performance improvements in the low-resource549

language. 550

Limitations 551

The very notion of the cross-lingual transfer objec- 552

tive from an labelled sentence in source language to 553

an unannotated sentence in target language requires 554

parallel data. High-quality parallel data is not uni- 555

formly available for all language pairs, specifically 556

for underrepresented language families like the In- 557

dic family. The requirement of an annotated source 558

during training and/or inference adds up as a bottle- 559

neck. As shown in Section 3.2, it can be subdued 560

if we have a reference model to label the source, 561

before cross-lingual transfer. However, the likeli- 562

hood of a high-accuracy reference model is min- 563

imal when considering the case of cross-lingual 564

transfer of annotations between two underrepre- 565

sented languages. 566
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Jun Zhao, Zhihao Zhang, Luhui Gao, Qi Zhang, Tao Gui,835
and Xuanjing Huang. 2024. Llama beyond english:836
An empirical study on language capability transfer.837

A Evaluation Results838

Refer to Table 7 for micro-F1, EM and lexical over-839

lap scores for all experiments with Handholding,840

Masquerading and Bridging under PEFT.841

B Dataset Splits842

The dataset split for both tasks is presented in Ta-843

ble 8. For Massive, we use the train, validation,844

and test split as on HuggingFace datasets7. For845

evaluation, we restrict the test set to only contain846

utterances that have at least 1 token with a slot la-847

bel. For Naamapadam, we split the 16k sampled848

instances in a 8:1:1 ratio to create train, validation,849

and test subsets.850

C List of Label Types851

Complete list of label types within Massive and852

Naamapadam is showcased in Table 9.853

D Training and Inference Configuration854

We present our PEFT and ICL hyperparameter855

settings in Table 10. These hyperparameters re-856

main the same across both Llama-2-7b-chat and857

Airavata-7b.858

E Prompt Details859

Refer to Tables 11 to 13 for prompts used in our860

experiments.861

7https://huggingface.co/datasets/MASSIVE
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Language
Configuration

Llama-2 Airavata

monolingual H H + M B (monolingual) H + B

F1 EM chrF++ MAUVE F1 EM chrF++ MAUVE F1 EM chrF++ MAUVE F1 EM chrF++ MAUVE F1 EM chrF++ MAUVE

Slot Filling

Bengali 54.72 22.37 71.40 89.07 64.32 36.82 79.27 90.39 63.19 0.96 71.81 37.6 64.28 43.74 81.57 98.70 67.21 48.54 80.81 95.37
Hindi 51.89 23.15 70.90 59.82 60.60 36.70 77.95 89.72 61.11 17.29 73.49 24.18 − − − − − − − −
Tamil 44.29 14.37 70.65 49.04 61.48 33.79 80.67 76.51 63.30 17.80 74.96 19.67 46.03 21.40 61.34 36.52 65.24 44.16 80.41 73.82

Named Entity Recognition

Bengali 59.98 24.69 85.91 95.28 80.35 45.44 91.00 93.36 55.23 0.37 54.43 15.14 66.42 34.63 89.45 92.81 84.80 59.25 93.86 99.85
Hindi 71.58 38.25 90.00 98.70 78.03 47.50 90.38 97.09 54.01 0.63 46.18 18.62 − − − − − − −
Tamil 39.92 12.25 68.72 33.06 74.18 42.69 88.75 81.34 43.96 1.31 49.93 45.28 66.14 42.81 91.42 99.22 82.09 62.56 94.64 99.46

Table 7: micro-F1, EM, chrF++, and MAUVE scores under PEFT with the model configurations of H: Handholding,
M: Masquerading, and B: Bridging. Here, MAUVE is computed on 500 randomly sampled test instances.

Task
Dataset Split

Train Test

Slot Filling 11.5k 1.9k

Named Entity Recognition 12.8k 1.6k

Table 8: Dataset split for slot filling and named entity
recognition tasks.

date time color_type
house_place place_name time_zone
artist_name timeofday meal_type
food_type order_type news_topic
music_genre weather_descriptor playlist_name
device_type player_setting song_name
media_type joke_type alarm_type
music_descriptor business_name business_type
general_frequency change_amount event_name
ingredient person coffee_type
drink_type music_album relation
radio_name app_name podcast_descriptor
audiobook_author audiobook_name cooking_type
list_name game_name podcast_name
movie_type movie_name transport_type
transport_name transport_agency transport_descriptor
definition_word currency_name personal_info
email_address email_folder game_type
change_amount

person (PER) organization (ORG) location (LOC)

Table 9: List of all label types in Massive and Naama-
padam, in that order.

Massive Naamapadam

LoRA rank 8 8
LoRA alpha 16 16
Batch size (Training) 32 16
Batch size (Inference) 4 4
Gradient checkpointing True True
Gradient accumulation steps 4 4
Max. gradient norm 0.3 0.3
Epochs 2, 3 3
Learning rate 1e-3 1e-3
Optimizer 32-bit AdamW (paged) 32-bit Adam (paged)
Precision bf16 bf16
LR scheduler cosine cosine
Train batch size 32 16
Warm-up ratio 0.05 0.05
Max. sequence length (Training) 512 1024
Stopping Criteria (Inference) 512 768
Penalty alpha (Inference) 0.6 0.6
top_k (Inference) 4 4

Table 10: Complete set of hyperparameters for PEFT
and ICL. For ICL, we use the same inference-time hy-
perparameters as mentioned above.

Reinsert the slot annotations into
the following Hindi sentence using the
information in the English sentence.

### Hindi: [Unannotated target]
### English: [Annotated source]
### Output:

Table 11: Example prompt format for PEFT with the
cross-lingual annotation transfer objective.

Reinsert the slot annotations into the
following Hindi sentence.

### Hindi: [Unannotated target]
### Output:

Table 12: Prompt format for PEFT with the monolingual
annotation objective.
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«SYS» Add annotations for the
corresponding tokens in Tamil
sentences using the annotation
information given in the English
sentence. The annotations are marked
in the format [annotation_type :
token/value]
Input will be provided in the
following format
### Tamil: Tamil sentence
### English: English sentence
Output should be printed after the
string “### Output:"
The final output should be the Tamil
sentence with annotations inserted
corresponding to the annotations of
the English sentence. Do not add
any extra annotations to the Tamil
sentence, which are not present in
the English sentence input.«/SYS»

Add annotations for the given tokens
<list of tokens present in annotated
source> in Tamil sentence using the
annotation information given in the
English sentence
### Tamil: [Unannotated target]
### English: [Annotated source]
### Output: [Annotated target]
.
.
.
× n few-shot examples

Add annotations for the given tokens
<list of tokens present in annotated
source> in Tamil sentence using the
annotation information given in the
English sentence
### Tamil: <An unannotated Tamil
sentence>
### English: <An annotated English
sentence>
### Output:

Table 13: Example prompt format for few-shot ICL with
the cross-lingual annotation transfer objective.
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