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Abstract

Calibration of neural networks is a topical problem that is becoming more and more important
as neural networks increasingly underpin real-world applications. The problem is especially
noticeable when using modern neural networks, for which there is a significant difference
between the confidence of the model and the probability of correct prediction. Various
strategies have been proposed to improve calibration, yet accurate calibration remains
challenging. We propose a novel framework with two contributions: introducing a new
differentiable surrogate for expected calibration error (DECE) that allows calibration quality
to be directly optimised, and a meta-learning framework that uses DECE to optimise for
validation set calibration with respect to model hyper-parameters. The results show that we
achieve competitive performance with existing calibration approaches. Our framework opens
up a new avenue and toolset for tackling calibration, which we believe will inspire further
work on this important challenge.

1 Introduction

When deploying neural networks to real-world applications, it is crucial that models’ own confidence estimates
accurately match their probability of making a correct prediction. If a model is over-confident about its
predictions, we cannot rely on it; while well-calibrated models can abstain or ask for human feedback in the
case of uncertain predictions. Models with accurate confidence estimates about their own predictions can
be described as well-calibrated. This is particularly important in applications involving safety or human
impact – such as autonomous vehicles (Bojarski et al., 2016; Wiseman, 2022) and medical diagnosis (Jiang
et al., 2012; Caruana et al., 2015; El-Sappagh et al., 2023), and tasks that directly rely on calibration such as
outlier detection (Hendrycks & Gimpel, 2017; Liang et al., 2018; Wang et al., 2023). However, modern neural
networks are known to be badly calibrated (Guo et al., 2017; Gawlikowski et al., 2021).

This challenge of calibrating neural networks has motivated a growing area of research. Perhaps the simplest
approach is to post-process predictions with techniques such as temperature scaling (Guo et al., 2017).
However, this has limited efficacy (Wang et al., 2021) and fails in the common situation of distribution
shift between training and testing data (Ovadia et al., 2019; Tomani et al., 2021). It also reduces network’s
confidence in correct predictions. Another family of approaches modifies the model training regime to improve
calibration. Müller et al. (2019) show that label smoothing regularization improves calibration by increasing
overall predictive entropy. But it is unclear how to set the label smoothing parameter so as to optimise
calibration. Mukhoti et al. (2020) show that Focal loss leads to better calibrated models than standard
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Figure 1: Illustration of the calibration generalisation gap. ECE and classi�cation error during training of
ResNet18 on CIFAR-10, using cross-entropy loss and showing mean and std. across three random seeds.
Training ECE and error fall to 0. However, calibration over�tting occurs and validation ECE increases. This
motivates the need for meta-learning to tune hyper-parameters to optimisevalidation calibration.

cross-entropy, and Kumar et al. (2018) introduce a proxy for calibration error to be minimised along with
standard cross-entropy on the training set. However, this does not ensure calibration on the test set. Ovadia
et al. (2019); Mosser & Naeini (2022) show that Bayesian neural network approaches are comparatively
well-calibrated, however these are di�cult and expensive to scale to large modern architectures.

The above approaches explore the impact of various architectures and design parameters on calibration. In
this paper we step back and consider how to optimise for calibration. Direct optimisation for calibration
would require a di�erentiable metric for calibration. However, calibration is typically measured using expected
calibration error (ECE), which is not di�erentiable due to its internal binning/counting operation. Therefore
our �rst contribution is a high-quality di�erentiable approximation to ECE, which we denote DECE. A
second consideration is how to optimise for calibration � given that calibration itself is a quantity with a
generalisation gap between training and validation (Carrell et al., 2022). We illustrate this challenge in
Figure 1, which shows how validation calibration worsens as training calibration improves during training.
To this end, our second contribution is to introduce a framework for meta-learning model calibration: We �t
a model on the training set using a given set of hyper-parameters, evaluate it on a disjoint validation set,
and optimise for the hyper-parameters that lead to the bestvalidation calibration as measured by DECE.
Our framework for di�erentiable optimisation of validation calibration is generic and can potentially be used
with any continuous model hyper-parameters. Our third contribution is a speci�c choice of hyper-parameters
which, when meta-learned with a suitable calibration objective, are e�ective for tuning the base model's
calibration. Speci�cally, we propose non-uniform label-smoothing, which can be tuned by meta-learning to
penalise di�erently each unique combination of true and predicted label.

To summarize, we present a novel framework and toolset for improving model calibration by di�erentiable
optimisation of model hyper-parameters with respect to validation calibration. We analyse our di�erentiable
calibration metric in detail, and show that it closely matches the original non-di�erentiable metric. When
instantiated with label smoothing hyper-parameters, our empirical results show that our framework produces
high-accuracy and well-calibrated models that are competitive with existing methods across a range of
benchmarks and architectures.

2 Related work

Calibration Since �nding modern neural networks are typically miscalibrated (Guo et al., 2017), model
calibration has become a popular area for research (Gawlikowski et al., 2021) with many applications, including
medical image segmentation (Judge et al., 2022) and object detection (Munir et al., 2023). Guo et al. (2017)
study a variety of potential solutions and �nd simple post-training rescaling of the logits � temperature scaling
� works relatively well. Kumar et al. (2018) propose a kernel-based measure of calibration called MMCE
that they use as regularization during training of neural networks. Mukhoti et al. (2020) show Focal loss � a
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relatively simple weighted alternative to cross-entropy � can be used to train well-calibrated neural networks.
The classic Brier score (Brier, 1950), which is the squared error between the softmax vector with probabilities
and the ground-truth one-hot encoding, has also been shown to work well. Similarly, label smoothing (Müller
et al., 2019) has been shown to improve model calibration. Noise during training more broadly can also be
bene�cial for improving calibration (Ferianc et al., 2023). These aforementioned methods do not optimise for
calibration metric (e.g., ECE) directly, because the calibration metrics are usually non-di�erentiable. In this
work, we propose a new high-quality di�erentiable approximation to ECE, and utilize it with meta-learning.

Karandikar et al. (2021) have proposed soft-binned ECE (SB-ECE) as an auxiliary loss to be used during
training to encourage better calibration. The approach makes the binning operation used in ECE di�erentiable,
leading to an additional objective that is more compatible with gradient-based methods. SB-ECE does not
make the accuracy component of ECE di�erentiable, but we make all components of ECE di�erentiable. We
also try to obtain a highly accurate approximation of the binning operation, while SB-ECE binning estimate
for the left-most and right-most bin can be inaccurate as a result of using bin's center value. We provide
additional comparison with SB-ECE in the appendix, showing DECE provides a closer approximation to
ECE than SB-ECE, and that empirically our meta-learning approach with DECE leads to better calibration.

Meta-learning We use the newly introduced DECE metric as part of the meta-objective for gradient-based
meta-learning. Gradient-based meta-learning has become popular since the seminal work MAML (Finn
et al., 2017) has successfully used it to solve the challenging problem of few-shot learning (Wang et al., 2020;
Song et al., 2023; Bohdal et al., 2023). Nevertheless, gradient-based meta-learning is not limited to few-shot
learning problems, but it can also be used to solve various other challenges, including training with noisy
labels (Shu et al., 2019; Algan & Ulusoy, 2022), dataset distillation (Wang et al., 2018; Bohdal et al., 2020;
Yu et al., 2023), domain generalization and adaptation (Li et al., 2019; Balaji et al., 2018; Bohdal et al.,
2022), molecular property prediction (Chen et al., 2023) and many others.

Gradient-based meta-learning is typically formulated as a bilevel optimisation problem where the main model
is trained in the inner loop and the meta-knowledge or hyper-parameters are trained in the outer loop. In
the case of few-shot learning it is possible to fully train the model within the inner loop � also known as
o�ine meta-learning. In more realistic and larger scale settings such as ours, it is only feasible to do one or a
few updates in the inner loop. This approach is known as online meta-learning (Hospedales et al., 2021) and
means that we jointly train the main model as well as the meta-knowledge. Online meta-learning is most
commonly done using the so-calledT1 � T2 method (Luketina et al., 2016) that updates the meta-knowledge
by backpropagating through one step of the main model update. This is the approach that we adopt, however
more advanced or e�cient approaches are also available (Lorraine et al., 2020; Bohdal et al., 2021).

Label smoothing We use label smoothing as the meta-knowledge that we use to demonstrate the bene�ts
of using our DECE metric. Label smoothing has been proposed by Szegedy et al. (2016) as a technique
to alleviate over�tting and improve the generalization of neural networks. It consists of replacing the
one-hot labels by their softer alternative that gives non-zero target probabilities to the incorrect classes.
Label smoothing has been studied in more detail, for example Müller et al. (2019) have observed that label
smoothing can improve calibration, but at the same time it can hurt knowledge distillation if used for training
the teacher. Mukhoti et al. (2020) have compared Focal loss with label smoothing among other approaches,
showing that simple label smoothing strategy has a limited scope for state-of-the-art calibration.

However, we demonstrate that using meta-learning and our DECE objective, a more expressive form of label
smoothing can achieve state-of-the-art calibration results. Note that meta-learning has already been used for
label smoothing (Li et al., 2020), but using it as meta-knowledge to directly optimise calibration is new.

3 Methods

3.1 Preliminaries

We �rst discuss expected calibration error (ECE) (Naeini et al., 2015), before we derive a di�erentiable
approximation to it. ECE measures the expected di�erence (in absolute value) between the accuracies and
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the con�dences of the model on examples that belong to di�erent con�dence intervals. ECE is de�ned as

ECE =
MX

m =1

jBm j
n

jacc (Bm ) � conf (Bm )j ;

where accuracy and con�dence for binBm are

acc (Bm ) =
1

jBm j

X

i 2 B m

1 (ŷi = yi )

conf (Bm ) =
1

jBm j

X

i 2 B m

p̂i :

There are M interval bins each of size1=M and n samples. Con�dencep̂i is the probability of the top
prediction as given by the model for examplei . We group the con�dences into their corresponding bins,
with bin Bm covering interval ( m � 1

M ; m
M ]. The predicted class of examplei is ŷi , while yi is the true class of

example i and 1 is an indicator function.

ECE metric is not di�erentiable because assigning examples into bins is not di�erentiable and also accuracy
is not di�erentiable due to the indicator function. We propose approximations to both binning and accuracy
and derive a new metric called di�erentiable ECE (DECE).

3.2 Di�erentiable ECE

ECE is composed of accuracy, con�dence and binning, but only con�dence is di�erentiable.

Di�erentiable accuracy In order to obtain a di�erentiable approximation to accuracy, we consider
approaches that allow us to �nd a di�erentiable way to calculate the rank of a given class. Two approaches
stand out: di�erentiable ranking (Blondel et al., 2020) and an all-pairs approach (Qin et al., 2010). While
both allow us to approximate the rank in a di�erentiable way, di�erentiable ranking is implemented on
CPU only, which would introduce a potential bottleneck for modern applications. All-pairs approach has
asymptotic complexity of O(n2) for n classes, while di�erentiable ranking is O(n logn). However, if the
number of classes is not in thousands or millions, di�erentiable ranking would be slower because of not using
GPUs. We use the all-pairs approach to estimate the rank of a given class.

All-pairs (Qin et al., 2010) calculates a rank of classi as [R (�)] i = 1+
P

j 6= i 1 [� i < � j ] ; where � are the logits.
We can obtain soft ranks by replacing the indicator function with a sigmoid scaled with some temperature
value � a to obtain reliable estimates of the rank of the top predicted class. Once the rank[R(�)] l for true
classl is calculated, we can estimate the accuracy as acc= max(0 ; 2 � [R]l ).

Soft binning Our approach is similar to (Yang et al., 2018). We take con�dencep̂i for example x i and
pass it through one-layer neural networksoftmax((wp̂i + b)=�b) parameterized with di�erent values of w
and b as explained in (Yang et al., 2018), with temperature � b to control the binning. This leads to M
di�erent probabilities, saying how likely it is that p̂i belongs to the speci�c bin Bm 2 1::M . We will denote
these probabilities asom (x i ) = p(Bm jp̂i ).

Putting these parts together, we de�ne DECE using a minibatch of n examples as:

DECE =
MX

m =1

P n
i =1 om (x i )

n
jacc (Bm ) � conf (Bm )j ;

acc (Bm ) =
1

P n
i =1 om (x i )

nX

i =1

om (x i )1 (ŷi = yi ) ;

conf (Bm ) =
1

P n
i =1 om (x i )

nX

i =1

om (x i )p̂i :
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3.3 Meta-learning

Di�erentiable ECE provides an objective to optimise, but we still need to decide how to utilize it. One option
could be to directly use it as an extra objective in combination with standard cross-entropy, as used by a few
existing attempts (Karandikar et al., 2021; Kumar et al., 2018). However, we expect this to be unhelpful
as calibration on the training set is usually good � the issue being a failure of calibration generalisation to
the held out validation or test set (Carrell et al., 2022), as illustrated in Figure 1. Meanwhile multi-task
training with such non-standard losses may negatively a�ect the learning dynamics of existing well tuned
model training procedures. To optimise for calibration of held-out data, without disturbing standard model
training dynamics, we explore the novel approach of using DECE as part of the objective for hyper-parameter
meta-learning in an outer loop that wraps an inner learning process of conventional cross-entropy-driven
model training.

Meta-learning objective We formulate our approach as a bilevel optimisation problem. Our model
is assumed to be composed of feature extractor� and classi�er � . These are trained to minimiseL train

CE ,
cross-entropy loss on the training set. The goal of meta-learning is to �nd hyper-parameters! so that training
with them optimises the meta-objective computed on the meta-validation set. In our case the meta-objective
is a combination of cross-entropy and DECE to re�ect that the meta-learned hyper-parameters should lead
to both good generalization and calibration. More speci�cally the meta-objective is L val

CE + �DECE , with
hyper-parameter � specifying how much weight is placed on calibration. The bilevel optimisation problem
can then be summarized as:

! � = arg min
!

L val
CE + �DECE (� � � � � (! )) ;

� � ; � � (! ) = arg min
� ;�

L train
CE (� � � ; ! ) : (1)

To solve this e�ciently, we adopt online meta-learning approach (Luketina et al., 2016; Hospedales et al.,
2021) where we alternate base model and hyper-parameter updates. This is an e�cient strategy as we do not
need to backpropagate through many inner-loop steps or retrain the model from scratch for each update of
meta-knowledge.

When simulating training during the inner loop, we only update the classi�er and keep the feature extractor
frozen for e�ciency, as suggested by (Balaji et al., 2018). Base model training is done separately using a full
model update and a more advanced optimiser.

We give the overview of our meta-learning algorithm in Algorithm 1. The inner loop that trains the main
model (� ; � ) (line 10) is conducted using hyper-parameters! , while the outer loop (line 12) that trains the
hyper-parameters does not directly use it for evaluating the meta-objective (e.g. no learnable label smoothing
is applied to the meta-validation labels that are used in the outer loop). We backpropagate through one step
of update of the main model.

Hyper-parameter choice A key part of meta-learning is to select suitable meta-knowledge (hyper-
parameters) that we will optimise to achieve the meta-learning goal (Hospedales et al., 2021). Having cast
calibration optimisation as a meta-learning process, we are free to use any of the wide range of hyper-parameters
surveyed in (Hospedales et al., 2021). Note that in contrast to grid search that standard temperature scaling
(Guo et al., 2017; Mukhoti et al., 2020) and other approaches rely on, we have gradients with respect to
hyper-parameters and so can therefore potentially optimise calibration with respect to high-dimensional
hyper-parameters. In this paper we explore two options to demonstrate this generality: 1) Unit-wise L2
regularization coe�cients of each weight in the classi�er layer, inspired by (Balaji et al., 2018) and (Lorraine
et al., 2020); and 2) various types of learnable label smoothing (LS) (Müller et al., 2019). However, we found
LS to be better overall, so our experiments focus on this and selectively compare against L2.

Learnable label-smoothing Learnable label smoothing learns one or more coe�cients to smooth the
one-hot encoded labels. More formally, if there areK classes in total,yk is 1 for the correct classk = c and
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Algorithm 1 Meta-Calibration

1: Input: � , � : inner and outer-loop learning rates
2: Output: trained feature extractor � , classi�er � and label smoothing!
3: ! � p(! )
4: � ; � � p(� ); p(� )
5: while training do
6: Sample minibatch of training x t ; yt and meta-validation xv ; yv examples
7: // For LS: use ! to smooth yt

8: // For L2: add unit-wise weight-decay !
9: Calculate L i = L CE (f � � � (x t ) ; yt ; ! )

10: Update � ; �  � ; � � � r � ;� L i

11: Calculate L o = L CE + �DECE (f � � � (xv ) ; yv )
12: Update !  ! � � r ! L o

13: end while

yk is 0 for all classesk 6= c, then with learnable label smoothing ! the soft label for classk becomes

yLS
k = yk (1 � ! c;k ) + ! c;k =K:

In the scalar case of label smoothing,! c is the same for all classes, while for the vector case it takes di�erent
values for each classc. We consider scalar and vector variations as part of ablation.

Our main variation of meta-calibration uses non-uniform label smoothing. It is computed using the overall
strength of smoothing ! s

c for the correct classc and also ! d
c;k saying how ! s

c is distributed across the various
incorrect classesk 6= c. Given correct classc, with this variation the soft label for class k is calculated as:

yLS
k = yk (1 � ! s

c ) + ! s
c

! d
c;k

� +
P K

i =1 ! d
c;i

;

where we normalize the distribution weights to sum to 1 and use small value� to avoid division by 0. The
learnable label smoothing parameters are restricted to non-negative values, with the total label smoothing
strength at most 0.5. In practice the above is implemented by learning a vector ofK elements specifying the
strengths of overall label smoothing for di�erent correct classesc, and a matrix of K � (K � 1) elements
specifying how the label smoothing is distributed across the incorrect classesk 6= c.

Learnable L2 regularization In the case of learnable L2 regularization (cf: Balaji et al. (2018)), the
goal is to �nd unit-wise L2 regularization coe�cients ! for the classi�er layer � so that training with them
optimises the meta-objective that includes DECE (� is the feature extractor). The inner loop loss becomes

L i = L CE (f � � � (x t ) ; yt ) + ! k� k2:

4 Experiments

Our experiments show that DECE-driven meta-learning can be used to obtain excellent calibration across a
variety of benchmarks and models.

4.1 Calibration experiments

Datasets and settings We experiment with CIFAR-10 and CIFAR-100 benchmarks (Krizhevsky, 2009),
SVHN (Netzer et al., 2011) and 20 Newsgroups dataset (Lang, 1995), covering both computer vision and
NLP. For CIFAR benchmark, we use ResNet18, ResNet50, ResNet110 (He et al., 2015) and WideResNet26-10
(Zagoruyko & Komodakis, 2016) models. For SVHN we use ResNet18, while for 20 Newsgroups we use
global pooling CNN (Lin et al., 2014). We extend the implementation provided by (Mukhoti et al., 2020) to
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implement and evaluate our meta-learning approach. We use the same hyper-parameters as selected by the
authors for fair comparison, which we summarize next.

CIFAR and SVHN models are trained for 350 epochs, with a multi-step scheduler that decreases the initial
learning rate of 0.1 by a factor of 10 after 150 and 250 epochs. Each model is trained with SGD with
momentum of 0.9, weight decay of 0.0005 and minibatch size of 128. 90% of the original training set is used
for training and 10% for validation. In the case of meta-learning, we create a further separatemeta-validation
set that is of size 10% of the original training data, so we directly train with 80% of the original training
data. 20 Newsgroups models are trained with Adam optimiser with the default parameters, 128 minibatch
size and for 50 epochs. As the �nal model we select the checkpoint with the best validation accuracy.

For DECE, we use M = 15 bins and scaling parameters� a = 100; � b = 0 :01. Learnable label smoothing
coe�cients are optimised using Adam (Kingma & Ba, 2015) optimiser with learning rate of 0.001. The
meta-learnable parameters are initialized at 0.0 (no label smoothing or L2 regularization initially). The
total number of meta-parameters isK � K , 1 and K for the non-uniform, scalar and vector label smoothing
respectively, while it is 512� K + K for learnable L2 regularization. We use� = 0 :5 in the meta-objective,
and we have selected it based on validation set calibration and accuracy after trying several values.

Results We �rst follow the experimental setup of Mukhoti et al. (2020) and compare with the following
alternatives: 1) cross-entropy, 2) Brier score (Brier, 1950), 3) Weighted MMCE (Kumar et al., 2018) with
� = 2 , 4) Focal loss (Lin et al., 2017) with  = 3 , 5) Adaptive (sample dependent) focal loss (FLSD) (Mukhoti
et al., 2020) with  = 5 and  = 3 for predicted probability p 2 [0; 0:2) and p 2 [0:2; 1) respectively. 6) Label
smoothing (LS) with a �xed smoothing factor of 0.05. In all cases we report the mean and standard deviation
across three repetitions to obtain a more reliable estimate of the performance. In contrast, Mukhoti et al.
(2020) report their results on only one run, so in the tables we include our own results for the comparison
with the baselines.

We show the test ECE, test ECE after temperature scaling (TS) and test error rates in Tables 1, 2 and 3
respectively. Meta-Calibration leads to excellent intrinsic calibration without the need for post-processing
(Table 1), which is practically valuable because post-processing is not always possible (Kim & Yun, 2020)
or reliable (Ovadia et al., 2019). However, even after post-processing using TS Meta-Calibration gives
competitive performance (Table 2), as evidenced by the best average rank across the considered scenarios.
Table 3 shows that Meta-Calibration maintains comparable accuracy to the competitors, even if it does not
have the best average rank there. Overall Meta-Calibration leads to signi�cantly better intrinsic calibration,
while keeping similar or only marginally worse accuracy.

Table 1: Test ECE (%, #): Our Meta-Calibration (MC) leads to excellent intrinsic calibration.

Dataset Model CE Brier MMCE FL-3 FLSD-53 LS MC (Ours)

CIFAR-10

ResNet18 4.23� 0.15 1.23� 0.03 4.36� 0.16 2.11� 0.09 2.22� 0.04 3.63� 0.06 1.17� 0.26
ResNet50 4.20� 0.01 1.95� 0.15 4.49� 0.18 1.48� 0.19 1.68� 0.14 2.58� 0.26 1.09� 0.09
ResNet110 4.81� 0.12 2.58� 0.17 4.20� 0.74 1.82� 0.20 2.16� 0.22 1.96� 0.36 1.07� 0.12
WideResNet26-10 3.37� 0.11 1.03� 0.08 3.48� 0.06 1.57� 0.32 1.50� 0.15 3.68� 0.10 0.94� 0.10

CIFAR-100

ResNet18 8.79� 0.59 5.19� 0.18 7.41� 1.30 2.83� 0.27 2.47� 0.12 6.87� 0.29 2.52� 0.35
ResNet50 12.56� 1.44 4.82� 0.36 9.02� 1.72 4.78� 1.00 5.43� 0.31 5.94� 0.52 3.07� 0.18
ResNet110 14.96� 0.83 6.52� 0.56 12.29� 1.25 6.64� 1.42 7.38� 0.25 10.69� 0.39 2.80� 0.58
WideResNet26-10 12.39� 1.44 4.26� 0.30 8.35� 2.79 2.36� 0.13 2.30� 0.36 3.94� 0.96 3.86� 0.34

SVHN ResNet18 2.98� 0.08 1.94� 0.10 3.14� 0.10 2.69� 0.06 2.83� 0.17 3.88� 0.01 1.14� 0.12

20 Newsgroups Global Pooling CNN 18.58� 0.80 16.49� 0.70 14.68� 1.03 7.51� 0.51 6.13� 1.84 5.14� 0.64 2.56� 0.38

Average rank 6.4 3.5 6.1 2.8 3.1 4.8 1.3

Note that while Brier score, Focal loss and FLSD modify the base model's loss function, our Meta-Calibration
corresponds to the vanilla cross-entropy baseline, but where label smoothing is tuned by our DECE-driven
hyper-parameter meta-learning rather than being selected by hand.
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Table 2: Test ECE with temperature scaling (%, #): Our Meta-Calibration (MC) obtains excellent calibration
also after temperature scaling.

Dataset Model CE Brier MMCE FL-3 FLSD-53 LS MC (Ours)

CIFAR-10

ResNet18 1.16� 0.10 (2.30) 1.23� 0.03 (1.00) 1.25� 0.08 (2.30) 1.10� 0.11 (0.90) 1.48� 0.31 (0.87) 1.31� 0.08 (0.90) 1.34� 0.47 (0.97)
ResNet50 1.20� 0.17 (2.53) 0.97� 0.02 (1.17) 1.35� 0.38 (2.50) 1.10� 0.16 (1.07) 1.21� 0.31 (1.07) 1.42� 0.15 (0.90) 1.09� 0.09 (1.00)
ResNet110 1.49� 0.19 (2.57) 1.55� 0.35 (1.13) 1.20� 0.45 (1.90) 1.21� 0.07 (1.10) 1.33� 0.14 (1.10) 2.16� 0.21 (0.90) 1.33� 0.37 (0.97)
WideResNet26-10 1.14� 0.13 (2.20) 1.03� 0.08 (1.00) 0.99� 0.19 (2.23) 1.20� 0.29 (0.87) 1.09� 0.02 (0.90) 1.32� 0.04 (0.90) 0.94� 0.10 (1.00)

CIFAR-100

ResNet18 5.47� 0.22 (1.33) 4.21� 0.23 (0.90) 6.09� 0.39 (1.13) 2.83� 0.27 (1.00) 2.47� 0.12 (1.00) 4.37� 0.45 (0.90) 2.71� 0.58 (1.03)
ResNet50 2.51� 0.23 (1.57) 3.43� 0.32 (1.10) 3.19� 0.53 (1.37) 2.25� 0.69 (1.10) 2.53� 0.11 (1.10) 4.28� 0.42 (1.10) 2.51� 0.45 (1.07)
ResNet110 3.77� 0.51 (1.57) 3.71� 0.67 (1.17) 2.74� 0.45 (1.40) 3.97� 0.28 (1.10) 4.13� 0.40 (1.10) 6.04� 0.31 (1.10) 2.55� 0.33 (1.03)
WideResNet26-10 3.08� 0.26 (1.80) 2.49� 0.13 (1.10) 4.52� 0.52 (1.40) 2.20� 0.12 (1.03) 2.30� 0.36 (1.00) 3.62� 0.74 (1.07) 2.72� 0.19 (1.10)

SVHN ResNet18 0.74� 0.04 (2.10) 0.83� 0.09 (0.90) 1.10� 0.01 (2.30) 0.90� 0.43 (0.83) 1.11� 0.37 (0.87) 1.45� 0.51 (0.87) 1.14� 0.12 (1.00)

20 Newsgroups Global Pooling CNN 2.85� 0.34 (3.67) 4.32� 0.79 (2.97) 4.00� 0.22 (2.60) 3.59� 0.34 (1.43) 2.76� 0.20 (1.33) 3.19� 0.30 (1.10) 2.50� 0.32 (0.97)

Average rank 3.7 3.8 4.4 3.0 3.9 6.2 2.8

Table 3: Test error (%, #): Our Meta-Calibration (MC) obtains excellent calibration with only small increases
in the test error.

Dataset Model CE Brier MMCE FL-3 FLSD-53 LS MC (Ours)

CIFAR-10

ResNet18 4.99� 0.14 5.27� 0.21 5.17� 0.19 5.06� 0.09 5.22� 0.04 4.94� 0.13 5.22� 0.06
ResNet50 4.90� 0.02 5.15� 0.14 5.13� 0.12 5.27� 0.22 5.26� 0.15 4.77� 0.11 5.46� 0.05
ResNet110 5.40� 0.10 5.97� 0.17 5.70� 0.12 5.67� 0.33 5.87� 0.13 5.45� 0.11 6.09� 0.22
WideResNet26-10 3.99� 0.07 4.20� 0.03 4.11� 0.06 4.18� 0.03 4.22� 0.05 4.05� 0.07 4.36� 0.20

CIFAR-100

ResNet18 22.85� 0.17 23.50� 0.17 23.80� 0.18 22.87� 0.16 23.23� 0.32 22.35� 0.27 23.88� 0.20
ResNet50 22.41� 0.24 24.81� 0.33 22.43� 0.05 22.27� 0.13 22.76� 0.27 21.85� 0.06 23.22� 0.48
ResNet110 22.99� 0.19 28.29� 1.42 23.81� 0.58 23.12� 0.26 23.71� 0.24 23.08� 0.15 24.51� 0.41
WideResNet26-10 20.41� 0.12 20.77� 0.05 20.60� 0.10 19.80� 0.40 19.97� 0.25 20.82� 0.42 22.35� 0.03

SVHN ResNet18 4.11� 0.08 3.90� 0.19 4.15� 0.08 4.20� 0.07 4.18� 0.06 4.13� 0.09 4.08� 0.02

20 Newsgroups Global Pooling CNN 26.64� 0.27 26.59� 0.72 26.92� 0.32 27.65� 0.38 27.59� 0.94 26.10� 0.31 27.26� 0.59

Average rank 2.1 4.9 4.2 3.9 4.8 2.1 5.9

4.2 Further analysis

Alternative calibration metrics We investigate if models meta-trained using DECE also perform well
when evaluated using more advanced calibration metrics than ECE. In particular, we evaluate performance
using class-wise ECE (CECE) (Kumar et al., 2019; Widmann et al., 2019; Vaicenavicius et al., 2019; Kull
et al., 2019) that considers the scores of all classes in the predicted distribution, instead of only the class with
the highest probability. The results in Table 4 con�rm that models meta-trained using DECE have excellent
calibration also in terms of the CECE criterion.

Table 4: Test Classwise-ECE (%,#): Our Meta-Calibration (MC) leads to excellent calibration also when
using a more advanced calibration metric.

Dataset Model CE Brier MMCE FL-3 FLSD-53 LS-0.05 MC (Ours)

CIFAR-10

ResNet18 0.87� 0.04 0.46� 0.02 0.91� 0.03 0.52� 0.02 0.53� 0.03 0.73� 0.01 0.41� 0.01
ResNet50 0.88� 0.01 0.46� 0.02 0.93� 0.04 0.44� 0.02 0.44� 0.03 0.63� 0.02 0.48� 0.04
ResNet110 0.99� 0.02 0.58� 0.04 0.89� 0.14 0.50� 0.02 0.55� 0.05 0.66� 0.03 0.45� 0.01
WideResNet 0.71� 0.01 0.37� 0.00 0.74� 0.01 0.43� 0.02 0.43� 0.04 0.72� 0.02 0.34� 0.00

CIFAR-100

ResNet18 0.23� 0.01 0.24� 0.00 0.22� 0.01 0.20� 0.00 0.20� 0.00 0.26� 0.00 0.19� 0.00
ResNet50 0.29� 0.03 0.20� 0.01 0.24� 0.03 0.20� 0.00 0.20� 0.01 0.21� 0.00 0.19� 0.00
ResNet110 0.34� 0.02 0.23� 0.01 0.29� 0.02 0.22� 0.01 0.23� 0.00 0.26� 0.00 0.19� 0.00
WideResNet 0.29� 0.02 0.19� 0.00 0.23� 0.03 0.18� 0.00 0.18� 0.00 0.21� 0.01 0.19� 0.00

SVHN ResNet18 0.62� 0.02 0.52� 0.02 0.65� 0.02 0.67� 0.03 0.68� 0.04 0.81� 0.05 0.29� 0.03

20 Newsgroups Global Pooling CNN 2.01� 0.07 1.80� 0.04 1.63� 0.09 1.29� 0.03 1.22� 0.14 0.97� 0.06 1.00� 0.04

Average rank 6.0 3.3 5.8 2.5 2.8 5.1 1.6

Alternative hyper-parameter choice We present a general metric that can be used for optimising
hyper-parameters for superior calibration. While our main experiments are conducted with non-uniform label
smoothing, we demonstrate the generality of the framework by also learning alternative meta-parameters. In
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particular, we also consider scalar and vector version of label smoothing as well as learnable L2 regularization.
We perform the additional evaluation using ResNet18 on the CIFAR benchmark.

The results in Table 5 con�rm learnable L2 regularization also leads to clear improvement in ECE over the
cross-entropy baseline. However, the error rate is slightly increased compared to learnable LS, hence we
focused on the latter for our other experiments. Scalar and vector LS (MC-S and MC-V) have both improved
the calibration, but non-uniform label smoothing (MC) has worked better thanks to its larger expressivity.

Table 5: Comparison of hyper-parameter choice for meta-calibration: CIFAR benchmark with ResNet18
model. Test errors (%, #) and test ECE (%, #). Other variants of Meta-Calibration also lead to strong
improvements in calibration, with non-uniform label smoothing leading to the best calibration overall.

Dataset Method ECE (#) Error ( #)

CIFAR-10

CE 4.23 � 0.15 4.99� 0.14
MC 1.17 � 0.26 5.22� 0.06
MC-S 1.48 � 0.26 5.17� 0.13
MC-V 1.51 � 0.26 5.07� 0.03
MC-L2 1.78 � 0.22 5.49� 0.14

CIFAR-100

CE 8.79 � 0.59 22.85� 0.17
MC 2.52 � 0.35 23.88� 0.20
MC-S 6.13 � 1.20 24.07� 0.17
MC-V 3.98 � 0.23 23.96� 0.12
MC-L2 4.18 � 0.26 26.10� 0.14

Ablation study on meta-learning objective design Recall our framework in Equation 1 is setup to
perform conventional model training in the inner optimisation, given hyper-parameters; and meta-learning of
hyper-parameters in the outer optimisation, by minimising a combination of cross-entropy and our DECE
metric as evaluated on the meta-validation set. While we view this setup as being the most intuitive, other
architectures are also possible in terms of choice of objective for use in the inner and outer layer of the bilevel
optimisation. As a comparison to our DECE, we also evaluate the prior metric MMCE previously proposed
as a proxy for model calibration in (Kumar et al., 2018).

From the results in Table 6 we can conclude that: 1) Meta-learning with combined CE and DECE meta-
objective is bene�cial for improving calibration (M5 vs M0). 2) Alternative outer-loop objectives CE (M2)
and DECE (M3) improve calibration but not as signi�cantly as the combined meta-objective (M5 vs M2
and M5 vs M4). 3) MMCE completely fails as a meta-objective (M3). 4) DECE improves calibration when
used as a secondary loss in multi-task learning, but at greater detriment to test error (M1 vs M0). 5) Our
combined meta-objective (M5) is the best overall.

Table 6: Ablation study on losses for inner and outer objectives in bilevel optimisation using CIFAR-10 and
CIFAR-100 with ResNet18.

CIFAR-10 CIFAR-100
Model Meta-Loss Loss ECE (%,#) Error (%, #) ECE (%, #) Error (%, #)

M0: Vanilla CE - CE 4.23 � 0.15 4.99� 0.14 8.79� 0.59 22.85� 0.17
M1: Multi-task - CE + DECE 3.80 � 0.03 10.24� 0.21 4.40� 0.39 29.49� 0.17
M2: Meta-Calibration CE CE 1.31 � 0.36 5.13� 0.24 3.00� 1.12 23.72� 0.40
M3: Meta-Calibration MMCE CE 44.24 � 0.70 6.77� 0.25 21.94� 2.39 25.40� 0.31
M4: Meta-Calibration DECE CE 1.26 � 0.44 5.21� 0.14 3.28� 0.31 23.83� 0.14
M5: Meta-Calibration CE + DECE CE 1.17 � 0.26 5.22� 0.06 2.52� 0.35 23.88� 0.20

Evaluating DECE approximation to ECE A key contribution of this work is DECE, a di�erentiable
approximation to expected calibration error. In this section we investigate the quality of our DECE
approximation. We trained the same ResNet18 backbone on both CIFAR-10 and CIFAR-100 benchmarks
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for 350 epochs, recording DECE and ECE values at various points. The results in Figure 2a show both
Spearman and Pearson correlation coe�cient between DECE and ECE. In both cases they are close to 1,
and become even closer to 1 as training continues. This shows that DECE accurately estimates ECE, while
providing di�erentiability for end-to-end optimisation. We further we show in Figure 2b that their mean
values are very close to each other.

(a) Correlation between DECE and ECE is close to 1. (b) Mean ECE and DECE are close to each other.

Figure 2: Evaluation of how DECE approximates ECE, using ResNet18 on CIFAR.

What hyper-parameters are learned? We show our approach learns non-trivial hyper-parameter settings
to achieve its excellent calibration performance. Figure 3 shows how the learned overall strength of smoothing
evolves during training for both CIFAR-10 and CIFAR-100 benchmarks � using ResNet18. We show the
mean and standard deviation across three repetitions and all classes.

From the �gure we observe label smoothing changes in response to changes in learning rate, which happens
after 150 and 250 epochs. For CIFAR-100 with more classes it starts with large smoothing values and �nishes
with smaller values. The large standard deviations are due to the model making use of a wide range of
class-wise smoothing parameters. It would be infeasible to manually select a curriculum for label smoothing
at di�erent stages of training, as it would be to tune a range of smoothing parameters: The ability to optimise
these hyper-parameters automatically is a key bene�t of our framework.

Figure 3: Overall label smoothing during training for CIFAR, using ResNet18. The learned smoothing
strategy is non-trivial and adapts according to the learning rate schedule.

We also analyse how the smoothing is distributed across the di�erent classes in Figure 4 and 5. The results
show that the smoothing is indeed non-uniform, demonstrating the model does exploit the ability to learn a
complex label-smoothing distribution. The learned non-uniform label-smoothing distribution can be observed
to subject visually similar classes to more smoothing (Figure 4(b)), which makes sense to reduce the con�dence
of the most likely kinds of speci�c errors. This idea is quanti�ed more systematically for CIFAR-100 in
Figure 5, which compares the average degree of smoothing between classes in the same superclass, and those
in di�erent superclasses. The results show that within-superclass smoothing is generally much stronger than
across-superclass smoothing, even though the model receives no annotation or supervision about superclasses.
It learns this smoothing structure given the objective of optimising (meta-)validation calibration.

We further analysed the hyper-parameters in the case of learnable L2 regularization and show it as part of the
appendix. The �gure shows we learn a range of regularization values to achieve a good calibration outcome.
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